CINXE.COM
Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches - PMC
<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="76C105AF746690030605AF002A4CEE2D.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="acssd"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <meta name="ncbi_feature" content="associated_data"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Nano Letters"> <meta name="citation_title" content="Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches"> <meta name="citation_author" content="Rafiq M Lubken"> <meta name="citation_author_institution" content="Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_author_institution" content="Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_author" content="Arthur M de Jong"> <meta name="citation_author_institution" content="Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_author_institution" content="Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_author" content="Menno W J Prins"> <meta name="citation_author_institution" content="Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_author_institution" content="Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_author_institution" content="Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands"> <meta name="citation_publication_date" content="2020 Feb 24"> <meta name="citation_volume" content="20"> <meta name="citation_issue" content="4"> <meta name="citation_firstpage" content="2296"> <meta name="citation_doi" content="10.1021/acs.nanolett.9b04561"> <meta name="citation_pmid" content="32091908"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/pdf/nl9b04561.pdf"> <meta name="description" content="Single-molecule techniques have become impactful in bioanalytical sciences, though the advantages for continuous biosensing are yet to be discovered. Here we present a multiplexed, continuous biosensing method, enabled by an analyte-sensitive, ..."> <meta name="og:title" content="Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Single-molecule techniques have become impactful in bioanalytical sciences, though the advantages for continuous biosensing are yet to be discovered. Here we present a multiplexed, continuous biosensing method, enabled by an analyte-sensitive, ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="7252944"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1021/acs.nanolett.9b04561" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/nl9b04561.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7252944%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/7252944/" data-citation-style="nlm" data-download-format-link="/resources/citations/7252944/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-acssd.png" alt="ACS AuthorChoice logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to ACS AuthorChoice" title="Link to ACS AuthorChoice" shape="default" href="https://doi.org/10.1021/acs.nanolett.9b04561" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Nano Lett</button></div>. 2020 Feb 24;20(4):2296–2302. doi: <a href="https://doi.org/10.1021/acs.nanolett.9b04561" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1021/acs.nanolett.9b04561</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Nano%20Lett%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Nano%20Lett%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Nano%20Lett%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Nano%20Lett%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Lubken%20RM%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Rafiq M Lubken</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Rafiq M Lubken</span></h3> <div class="p"> <sup>†</sup>Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p"> <sup>‡</sup>Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Lubken%20RM%22%5BAuthor%5D" class="usa-link"><span class="name western">Rafiq M Lubken</span></a> </div> </div> <sup>†,</sup><sup>‡</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22de%20Jong%20AM%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Arthur M de Jong</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Arthur M de Jong</span></h3> <div class="p"> <sup>§</sup>Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p"> <sup>‡</sup>Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22de%20Jong%20AM%22%5BAuthor%5D" class="usa-link"><span class="name western">Arthur M de Jong</span></a> </div> </div> <sup>§,</sup><sup>‡</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Prins%20MWJ%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Menno W J Prins</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Menno W J Prins</span></h3> <div class="p"> <sup>†</sup>Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p"> <sup>§</sup>Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p"> <sup>‡</sup>Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Prins%20MWJ%22%5BAuthor%5D" class="usa-link"><span class="name western">Menno W J Prins</span></a> </div> </div> <sup>†,</sup><sup>§,</sup><sup>‡,</sup><sup>*</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="aff1"> <sup>†</sup>Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div id="aff3"> <sup>§</sup>Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div id="aff2"> <sup>‡</sup>Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands</div> <div class="author-notes p"><div class="fn" id="cor1"> <sup>*</sup><p class="display-inline">Email: <span>m.w.j.prins@tue.nl</span>. Phone: 0031 40 247 4018.</p> </div></div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2019 Nov 5; Revised 2020 Feb 17; Issue date 2020 Apr 8.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>Copyright © 2020 American Chemical Society</div> <p>This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution <a href="http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">License</a>, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC7252944 PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/32091908/" class="usa-link">32091908</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Abstract</h2> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><img class="graphic" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a602/7252944/e90ed3d403fc/nl9b04561_0004.jpg" loading="lazy" id="ab-tgr1" height="208" width="666" alt="graphic file with name nl9b04561_0004.jpg"></p> <p>Single-molecule techniques have become impactful in bioanalytical sciences, though the advantages for continuous biosensing are yet to be discovered. Here we present a multiplexed, continuous biosensing method, enabled by an analyte-sensitive, single-molecular nanoswitch with a particle as a reporter. The nanoswitch opens and closes under the influence of single target molecules. This reversible switching yields binary transitions between two highly reproducible states, enabling reliable quantification of the single-molecule kinetics. The multiplexing functionality is encoded per particle via the dissociation characteristics of the nanoswitch, while the target concentration is revealed by the association characteristics. We demonstrate by experiments and simulations the multiplexed, continuous monitoring of oligonucleotide targets, at picomolar concentrations in buffer and in filtered human blood plasma.</p> <section id="kwd-group1" class="kwd-group"><p><strong>Keywords:</strong> multiplexing, single-molecule biosensing, continuous biosensing, kinetic identification</p></section></section><hr class="headless"> <p id="sec1">Single-molecule techniques have become impactful in bioanalytical sciences because of their high detection sensitivity and digital quantitation.<sup><a href="#ref1" class="usa-link" aria-describedby="ref1">1</a>−<a href="#ref3" class="usa-link" aria-describedby="ref3">3</a></sup> However, in the upcoming field of sensors for continuous biomolecular monitoring,<sup><a href="#ref4" class="usa-link" aria-describedby="ref4">4</a>−<a href="#ref8" class="usa-link" aria-describedby="ref8">8</a></sup> the advantages of single-molecule methodologies are yet to be discovered. Multiplexing refers in bioanalysis to the ability to measure multiple specific molecules in parallel. This is used to obtain comprehensive knowledge about biological systems and optimal diagnostic power in medical applications. Well-known methods for multiplexing are, for example, bead arrays,<sup><a href="#ref9" class="usa-link" aria-describedby="ref9">9</a>,<a href="#ref10" class="usa-link" aria-describedby="ref10">10</a></sup> real-time PCR,<sup><a href="#ref11" class="usa-link" aria-describedby="ref11">11</a></sup> and DNA microarrays.<sup><a href="#ref12" class="usa-link" aria-describedby="ref12">12</a></sup> Here, samples are processed with mixtures of reagents and thereafter analyte-specific signals are measured in spectral channels or distinct positions. Such reagent-based multiplexing assays involve taking distinct samples and passing these through sequential processing steps. However, an ideal multiplexing methodology for real-time monitoring does not require reagents nor complicated sample processing. Such a methodology would allow the generation of a continuous and uninterrupted stream of measurement data, over a prolonged period of time, in a simple and cost-effective manner.</p> <p>Here we describe a novel methodology to achieve reagent-less, multiplexed, continuous biomolecular sensing by single-molecule encoded binary nanoswitches. The molecular design and measurement principle are sketched in <a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>, exemplified with a DNA model system. <a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>a shows a micrometer-sized particle bound to a substrate by a single nanoswitch. The nanoswitch comprises three components: (1) a single double-stranded DNA stem tethering the particle to the substrate, (2) a single probe attached to the DNA stem, and (3) multiple probes attached to the particle surface. The probe on the stem binds reversibly to target molecules that are captured from solution by the probes on the particle. The probe on the stem encodes the nanoswitch, because the interaction between this stem probe and the target molecules is designed to have a characteristic dissociation rate, which is the basis of the multiplexing functionality. In previous work, we studied sensor designs with less controlled numbers and orientations of probes on the substrate,<sup><a href="#ref13" class="usa-link" aria-describedby="ref13">13</a></sup> giving variable responses within and between particles. In the nanoswitch design of <a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>, every particle has only a single probe, in a well-defined orientation on the central stem. Combined with the smooth spherical particle, unambiguous concentric Brownian motion patterns are obtained (<a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>b). These translate into time traces with binary transitions, from which unbound and bound state lifetimes and therefore association and dissociation kinetic rates are extracted at the level of individual particles. The dissociation kinetics of each particle are a unique signature that identifies to which kinetic subpopulation the particle belongs (index <em>i</em> or <em>j</em>). Hundreds of particles are measured simultaneously, each kinetically identified, and assigned to their specific subpopulation (<a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>c). In each subpopulation, the association rates are continuously measured. The effective association rate depends on the amount of target molecules captured on the particle. Thus, by using a differently kinetic encoded nanoswitch per particle subpopulation, the concentration of multiple specific analyte molecules can be recorded over time simultaneously (<a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>d).</p> <figure class="fig xbox font-sm" id="fig1"><h2 class="obj_head">Figure 1.</h2> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7252944_nl9b04561_0001.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a602/7252944/6e8c90f2112c/nl9b04561_0001.jpg" loading="lazy" id="gr1" height="644" width="705" alt="Figure 1"></a></p> <div class="p text-right font-secondary"><a href="figure/fig1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Sensor concept with a single-molecule encoded binary nanoswitch for multiplexed continuous biomolecular monitoring. (a) Micrometer-sized particles (yellow) are tethered to a substrate using a 56 nm dsDNA stem (black). The particle is functionalized with particle probes of type <em>i</em> (dark green) and a single stem probe of type <em>i</em> (green). Both probes bind reversibly to a single target molecule of type <em>i</em> (light green) present in solution. The inset shows schematically the DNA-based nanoswitch conjugated to the particle by a NeutrAvidin–biotin interaction and to the substrate by an antibody–antigen (digoxigenin) interaction. A detailed overview of the DNA sequences is given in the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>. (b) Target molecule binding to the nanoswitch causes the particle to exhibit either of two concentric motion patterns corresponding to the unbound (high mobility) and bound state (low mobility). (c) The radial position of a particle over time shows binary transitions caused by single-molecule binding and unbinding events. The distribution of observed bound state lifetimes per particle can be used to distinguish between, e.g., low-affinity (particles <em>i</em>, blue) and high-affinity (particles <em>j</em>, red) target-specific particle subpopulations, referred to as kinetic identification. Examples of raw data traces are shown in the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>. (d) Hundreds of particles, each functionalized with an encoded binary nanoswitch, are observed simultaneously. By kinetic identification based on the dissociation kinetics, each particle can be assigned to a target-specific particle subpopulation. For each particle subpopulation, the respective target concentration can be determined over time using the measured association kinetics.</p></figcaption></figure><section id="sec2"><h2 class="pmc_sec_title">Results and Discussion</h2> <p><a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a> illustrates the analytical performance and tunability of the stem probe sensor of <a href="#fig1" class="usa-link">Figure <a href="#fig1" class="usa-link">1</a></a>a (see the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>). Panels a and b of <a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a> show the association and dissociation rates measured in both buffer (<a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>a) and filtered blood plasma (<a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>b) for a single-stranded DNA target with mid affinity to the particle probe. The mean bound state lifetime τ<sub>B</sub> (red), determined by fitting all observed bound state lifetimes by a single-exponential distribution (see the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>), is independent of the target concentration and of the matrix, which is the basis for the kinetic encoding strategy. In contrast, the mean unbound state lifetime τ<sub>U</sub> shows a clear concentration dependency (blue); an increasing target concentration in solution results in a shorter τ<sub>U</sub> as more target molecules are bound to the particle and therefore accessible for hybridization to the stem probe. In contrast to the dissociation kinetics, the association kinetics per particle show a broad distribution, indicating particle-to-particle variability. The mean unbound state lifetime τ<sub>U</sub> could be determined by fitting all observed unbound state lifetimes by a log-normal multiexponential distribution (see the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>). This method gives large errors at low statistics, which is particularly visible at low concentrations (see inset of <a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>b). <a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>c shows dose–response curves for DNA targets with different affinities. The signal plotted on the <em>y</em>-axis is the switching activity, the average number of binding and unbinding events per particle per time interval.<sup><a href="#ref13" class="usa-link" aria-describedby="ref13">13</a></sup> The dose–response curves exhibit an S-shape on a linear-logarithmic scale, which is characteristic for first-order affinity binding. The curves are fitted by the Hill equation<sup><a href="#ref14" class="usa-link" aria-describedby="ref14">14</a></sup></p> <table class="disp-formula p" id="eq1"><tr> <td class="formula"><img class="graphic" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a602/7252944/133d14e47c12/nl9b04561_m001.jpg" loading="lazy" height="33" width="133" alt="graphic file with name nl9b04561_m001.jpg"></td> <td class="label">1</td> </tr></table> <p>with <em>A</em> being the activity, <em>A</em><sub>B</sub> the background signal, <em>A</em><sub>A</sub> the activity amplitude (difference between the maximum signal and the background signal), EC<sub>50</sub> the half maximal effective concentration, and [<em>C</em>] the target concentration in solution. The curves shift to lower concentrations for an increasing affinity between target and particle probes, showing the tunability of the system. <a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>d shows a dose–response curve measured for the mid-affinity target in blood plasma filtered with a 50 kDa molecular weight cutoff. Here a similar EC<sub>50</sub> was found, but a higher background activity and larger uncertainty were found, compared to its counterpart in buffer. The higher background activity and larger uncertainty are caused by more nonspecific interactions and lower statistics, respectively.</p> <figure class="fig xbox font-sm" id="fig2"><h3 class="obj_head">Figure 2.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7252944_nl9b04561_0002.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a602/7252944/73b715f815ad/nl9b04561_0002.jpg" loading="lazy" id="gr2" height="830" width="697" alt="Figure 2"></a></p> <div class="p text-right font-secondary"><a href="figure/fig2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Performance of continuous biomarker monitoring in buffer and blood plasma. (a, b) Mid-affinity target concentration dependencies of the bound (red) and unbound state lifetime (blue). The data shows that <em>τ</em><sub>B</sub> = 15.2 ± 0.3 s and <em>τ</em><sub>B</sub> = 12.5 ± 0.5 s and that <em>τ</em><sub>U</sub> scales approximately as <em>τ</em><sub>U</sub> ∝ [<em>T</em>]<sup>−0.8±0.1</sup> and [<em>T</em>]<sup>−0.64±0.09</sup> for buffer and blood plasma conditions, respectively. (c) Dose–response curves of DNA targets in buffer, with a high, mid, and low affinity to the particle probe. Hill equation fits (solid lines) yield EC<sub>50</sub> values of 14 ± 6 pM, 0.17 ± 0.05 nM, and 1.7 ± 0.3 nM, respectively. (d) Dose–response curve in blood plasma of the mid-affinity DNA target. Hill equation fit (solid line) yields EC<sub>50</sub> of 0.4 ± 0.1 nM. The inset shows the data on a double linear scale. (e–g) Concentration response traces for low- and mid-affinity DNA targets in buffer and mid-affinity DNA target in blood plasma. The respective relaxation times are <em>τ</em><sub>R</sub> = 10 ± 1 min, <em>τ</em><sub>R</sub> = 41 ± 6 min, and <em>τ</em><sub>R</sub> = 37 ± 8 min, resulting from the single-exponential fits (red). Reported errors are the standard errors of the fit. The error bars in the activity graphs are the stochastic errors and are mostly smaller than the symbol size. The shading in panels c and d indicates the 95% confidence interval of the Hill equation fit. The number of particles per data point was between 15 and 100, measured in two microscopic fields of view.</p></figcaption></figure><p>The response to dynamic changes in target concentration is quantified in <a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>e–g for the low- and mid-affinity targets in buffer (e, f) and the mid-affinity target in blood plasma (g). The response to a sudden drop in target concentration can be described with a single-exponential relaxation of the observed activity, with characteristic relaxation times of approximately 10 min for the low-affinity target and 40 min for the mid-affinity target. For the mid-affinity target, the single-exponential relaxation profiles in buffer and in blood plasma show comparable time scales within their uncertainty interval (<a href="#fig2" class="usa-link">Figure <a href="#fig2" class="usa-link">2</a></a>f,g).</p> <p>The multiplexing functionality is shown in <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>, using two particle populations having different particle probes and equal stem probes, and two targets with comparable affinities to the particle probes and different affinities to the stem probes (see the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>). In <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>a–d, separate flow cells were used to determine the multiplexing specificity and sensitivity. <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>a shows the measured average bound state lifetimes for the two cases, that are clearly different and that are independent of target concentration, confirming that particle populations can be identified on the basis of kinetic dissociation rates. Each particle can in fact be considered as a single sensing entity. The distribution of the bound state lifetimes of all individual particles shows clearly two populations, as depicted in <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>b. The two populations can be separated by a combination of thresholding (indicated by the black line) and discarding the overlap of the distributions (indicated by the shaded area). The bound state lifetime distributions correspond to results from a simulation (see inset in <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>b). Due to the finite duration of the measurement, long bound state lifetimes are underestimated, causing the mean of the distribution of the longer lifetimes to be smaller than the ensemble bound state lifetime (<a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>a). Increasing the measurement time from 10 to 30 min reduces this underestimation. Longer measurement times result in narrower distributions, which increases the ability to discriminate between the two populations. <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>c quantifies the performance of the kinetic identification by its sensitivity and specificity for the low-affinity target. The sensitivity is defined as the fraction of true positives of the total number of particles below the threshold, and the specificity as the fraction of true negatives of the total number of particles above the threshold. Both the sensitivity and specificity can be increased by discarding overlapping data. This is shown in the inset for the values at the position of the red dot in the graph. In <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>d, the cross-talk between two particle populations is shown. In this experiment, the low- and high-affinity DNA targets were added to both flow cells sequentially, as indicated in the target concentration profiles. For the mismatched target condition, only a small fraction of switching particles was observed, indicating a negligible cross-talk. For both particle populations, the number of switching particles and the activity per particle increased when the fluid-cell-specific DNA targets were added, confirming the selectivity and sensitivity of the system.</p> <figure class="fig xbox font-sm" id="fig3"><h3 class="obj_head">Figure 3.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7252944_nl9b04561_0003.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a602/7252944/19d5ab120dfd/nl9b04561_0003.jpg" loading="lazy" id="gr3" height="560" width="686" alt="Figure 3"></a></p> <div class="p text-right font-secondary"><a href="figure/fig3/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Multiplexing performance by kinetic identification of nanoswitches. (a) Concentration dependencies of the bound state lifetime for low- and high-affinity targets (blue and red, respectively). The data indicate that <em>τ</em><sub>B</sub> = 15.4 ± 0.1 s and <em>τ</em><sub>B</sub> = 86 ± 2 s for low- and high-affinity targets, respectively. (b) Bound state lifetime distribution per particle for low- and high-affinity targets. The threshold and window width to discard ambiguous particles used for kinetic identification are indicated by the black line and shaded area, respectively. The dashed black lines show log-normal distributions. The inset shows simulated bound state lifetime distributions for both affinities, for a 10 min (solid lines) and 30 min (dashed lines) measurement. (c) Receiver operating curve that quantifies the performance of the kinetic identification. An optimum with a kinetic sensitivity of 97% and a kinetic specificity of 88% was found using a zero window width; see the red dot. The inset shows the potential of discarding ambiguous particles, by the approximate trends of the kinetic sensitivity and specificity as a function of the window width. (d) Control experiment to quantify the cross-talk between particle populations in the sensor. Flow cell A contains particles specific for target A and flow cell B for target B. The concentration–time profiles show how the targets are applied to each individual flow cell. Both sensors only respond to their specific target. (e) CDF of the bound state lifetimes with τ<sub>B</sub><sup>1</sup> = 13.7 ± 0.1 s and τ<sub>B</sub><sup>2</sup> = 113 ± 2 s resulting from a double-exponential fit (yellow). The inset shows the CDFs of the two separate particle populations. The single-exponential fits (yellow) give <em>τ</em><sub>B</sub> = 14.4 ± 0.1 s and <em>τ</em><sub>B</sub> = 113 ± 2 s for the low- and high-affinity interaction, respectively. (f) Simulated bound state lifetime distributions for a 30 min measurement show the multiplexing potential with the current experimental limits. The blue and red distributions have mean bound state lifetimes that are matched with the lifetimes found in panel e. Reported errors are the standard errors of the fit. The number of particles per data point was between 15 and 100.</p></figcaption></figure><p>In <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>e, the kinetic identification is demonstrated using two mixed particle populations in a single flow cell. The combined bound state lifetimes exhibit a double-exponential distribution, caused by the superposition of two single-exponential distributions of low-affinity and high-affinity dissociation. Using the threshold and window determined in <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>b,c, the two particle populations can be separated, resulting in two single-exponential distributions (see inset).</p> <p>The simulations of <a href="#fig3" class="usa-link">Figure <a href="#fig3" class="usa-link">3</a></a>f support the multiplexing potential. Simulated data were generated from measurements of particles with different dissociation rate constants, corresponding to different interaction strengths between target and stem probe. The association rate constants of all six data sets were equal. The graph shows the resulting bound state lifetime distributions per particle, for a 30 min measurement duration. The width of the distributions is mainly determined by the stochastic binding and unbinding processes; increasing the length of the measurement decreases the width of the distribution. Therefore, longer measurements increase the multiplexing capabilities. To separate bound state lifetime distributions on a particle level, a high accuracy to determine the mean bound state lifetime per particle is not required when the distributions are distinguishable; i.e., the kinetic sensitivity and specificity should be high. Therefore, kinetic encoding potentially results in six levels of multiplexing within a measurement time of 30 min. The time window suitable for multiplexing can be extended by another decade into shorter time scales, by increasing the particle diffusivity (see the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>).</p></section><section id="sec3"><h2 class="pmc_sec_title">Conclusion</h2> <p>In this paper, we presented a sensor design with an encoded binary nanoswitch, enabling continuous sensing of target molecules at picomolar concentrations in human blood plasma, across a broad dynamic range. The ability to create and identify particle subpopulations with distinct dissociation properties allows multiplexed biosensing with high sensitivity and specificity. Multiplexing by single-molecule kinetic encoding does not require any reagents and is therefore suited for continuous sensing and real-time biomolecular monitoring, in contrast to multiplexing methods such as bead arrays,<sup><a href="#ref9" class="usa-link" aria-describedby="ref9">9</a>,<a href="#ref10" class="usa-link" aria-describedby="ref10">10</a></sup> real-time PCR,<sup><a href="#ref11" class="usa-link" aria-describedby="ref11">11</a></sup> and DNA microarrays.<sup><a href="#ref12" class="usa-link" aria-describedby="ref12">12</a></sup> Kinetic encoding can be supplemented with orthogonal identification approaches, such as using particles with different colors (optical identification) and patterning of the sensor surface (identification by surface area imaging). Combining three identification approaches, each with six levels of multiplexing, would potentially give in total 6<sup>3</sup> = 216 levels. In practice, a trade-off exists between the degree of multiplexing and the analytical performance of the biosensor. To maintain the precision of the concentration determination of multiple target molecules, the number of particles should scale linearly with the degree of multiplexing. Furthermore, while the functionality of kinetically encoded nanoswitches is demonstrated in this paper using DNA as a model system, other markers may be addressed using affinity binders such as aptamers and antibodies.<sup><a href="#ref13" class="usa-link" aria-describedby="ref13">13</a></sup></p> <p>In conclusion, single-molecule encoded nanoswitches open the perspective to gain accurate real-time insights into live biological systems by continuous monitoring of biomolecules with a high level of multiplexing, high sensitivity, and high specificity using single-molecule information.</p></section><section id="sec4"><h2 class="pmc_sec_title">Materials and Methods</h2> <section id="sec4.1"><h3 class="pmc_sec_title">Binary Nanoswitch Assembly</h3> <p>All ssDNA oligonucleotides (IDT, standard desalting and HPLC purification for chemically modified DNA, stem probe: 5′- ∼TGC GAG AAC TCA GCA TAC ATC TA-3′) were diluted in TE buffer (10 mM Tris–HCl, 1 mM EDTA at pH 8.0) to a final concentration of 50 μM. The DNA strands were added together in equivalent amounts to a final concentration of 5 μM per strand in TE buffer with 50 mM NaCl. Using a thermal cycler (Bio-Rad, T100 Thermal Cycler), the mixture was heated to 95 °C and cooled down to 4 °C with a temperature decrease of 1 °C every 35 s. Analysis of DNA tethers was performed in a non-denaturing TBE gel (ThermoFischer Scientific, Novex TBE Gels, 4–20%). The TBE gel was assembled according to the supplier’s instructions, loaded with sample DNA mixtures in Nucleic Acid Sample Loading Buffer (Bio-Rad Laboratories) and an O’GeneRuler Ultra Low Range DNA Ladder (ThermoFischer Scientific), and ran in TBE buffer (89 mM Tris–HCl, 89 mM boric acid, 2 mM EDTA at pH 8.3). Subsequently, the gel was stained with SYBR Gold Nucleic Acid Gel Stain (Thermo Fischer Scientific, 10,000× concentrate in DMSO) in TBE buffer for 30 min. Finally, the TBE gel was visualized using an ImageQuant camera setup (GE Healthcare Life Sciences).</p></section><section id="sec4.2"><h3 class="pmc_sec_title">Silica Particle Functionalization</h3> <p>Carboxyl-functionalized silica particles (Bangs Laboratories, 1 μm mean diameter) at a concentration of 10 mg mL<sup>–1</sup> were activated with EDC (Sigma-Aldrich, final concentration of 4.3 mM) and NHS (Merck, for synthesis, final concentration of 10 mM) in MES buffer (0.1 M MES at pH 5.0) for 30 min at room temperature. After activation, the particles were centrifugally washed at 6,000 × <em>g</em> for 5 min using a tabletop spinner (Eppendorf MiniSpin) and resuspended in MES buffer. NeutrAvidin (ThermoFischer Scientific) was dissolved in Milli-Q (ThermoFischer Scientific, Pacific AFT 20) at a concentration of 10 mg mL<sup>–1</sup> and added to the activated particles at a final concentration of 500 μg mL<sup>–1</sup>. The protein functionalization was performed overnight at room temperature. The NeutrAvidin-functionalized silica particles were twice washed in TBS–Tween buffer (25 mM Tris–HCl, 0.15 mM NaCl, 0.05 vol % Tween-20) and twice in 0.1 wt % BSA in PBS–Tween buffer (130 mM NaCl, 7 mM Na<sub>2</sub>HPO<sub>4</sub>, 3 mM NaH<sub>2</sub>PO<sub>4</sub>, 0.05 vol % Tween-20, at pH 7.4). The binding capacity was determined using a fluorescence supernatant assay with Atto655-biotin and was approximately 800 pmol per mg of particles. The NeutrAvidin-functionalized silica particles were stored at 10 mg mL<sup>–1</sup> in PBS–Tween at 5 °C for up to 2 months until use.</p></section><section id="sec4.3"><h3 class="pmc_sec_title">Flow Cell Experiments</h3> <p>Glass slides (25 × 75 mm, #5, Menzel-Gläser) were cleaned by 15 min of sonication in methanol (VWR, absolute), isopropanol (VWR, absolute), and methanol (VWR, absolute) baths. After each sonication step, the glass coverslips were dried under nitrogen flow. A custom-made fluid cell sticker (Grace Biolabs) with an approximate volume of 24 μL was attached to the glass slide. A flow cell was made by inserting tubing (Freudenberg Medical, monolumen) into the fluid cell sticker and connecting the tubing to a syringe pump (Harvard Apparatus, Pump 11 Elite). First, the flow cell was prewetted with PBS (130 mM NaCl, 7 mM Na<sub>2</sub>HPO<sub>4</sub>, 3 mM NaH<sub>2</sub>PO<sub>4</sub> at pH 7.4) at a flow speed of 500 μL min<sup>–1</sup> for 2 min. Functionalization of the glass substrate was performed by physisorption of 83 ng mL<sup>–1</sup> anti-digoxigenin antibodies (ThermoFischer Scientific) in PBS for 60 min. Finally, the glass substrate was blocked by incubation with 1.0 wt % casein (Sigma-Aldrich, casein sodium salt from bovine milk) in PBS for 60 min. After each incubation step, the fluid cells were flushed with PBS (250 μL min<sup>–1</sup> for 1 min).</p> <p>NeutrAvidin-functionalized silica particles were incubated in bulk with a 10 nM nanoswitch for 10 min. Subsequently, the particles were coated with ssDNA by an incubation with 40 μM biotin-labeled single-stranded oligonucleotide (IDT, standard desalting, 5′-TAG TCA GGT TGG ATG TCT AC-3′-biotin). The particles were thrice centrifugally washed in 1.0 wt % BSA (Sigma-Aldrich, lyophilized powder, essentially globulin free, low endotoxin, ≥98%) and 0.05 vol % Tween-20 (Sigma-Aldrich) in PBS at 6,000 × <em>g</em> for 5 min using a tabletop spinner (Eppendorf MiniSpin). Finally, the particles were resuspended in PBS/BSA/Tween-20 to a final concentration of 0.17 mg mL<sup>–1</sup> (0.26 pM) and sonicated using an ultrasonic probe (Hielscher). The particles were added to the flow cell at a flow speed of 50 μL min<sup>–1</sup> for 5 min and incubated for 30 min. After incubation, the fluid cell was reversed and subsequently flushed with PBS/BSA/Tween-20 at a flow speed of 50 μL min<sup>–1</sup> for 5 min to remove unbound particles. A ssDNA target (IDT, standard desalting, low affinity: 5′-AAC CTG ACT AAA AAT AGA TGT ATG-3′, mid affinity: 5′-CAA CCT GAC TAA AAA TAG ATG TAT G-3′, high affinity: 5′-CCA ACC TGA CTA AAA ATA GAT GTA TG-3′) at the required concentration in PBS/BSA/Tween-20 was added at a flow speed of 50 μL min<sup>–1</sup> for 5 min and incubated for 20 min to reach equilibrium.</p></section><section id="sec4.4"><h3 class="pmc_sec_title">Flow Cell Experiments with Blood Plasma</h3> <p>Single-donor human blood plasma (Sanquin, The Netherlands, citrate stabilized, healthy volunteer) was filtered through a 50 kDa molecular weight cutoff centrifugal filter (Merck Millipore, Amicon). The plasma filtrate was collected and spiked with ssDNA at the required concentration. The measurements were then performed as described in the previous section.</p></section><section id="sec4.5"><h3 class="pmc_sec_title">Particle Imaging and Tracking</h3> <p>Samples were observed under a white light source using a microscope (Leica DM6000M) using a dark field illumination setup at a total magnification of 20× (Leica objective, N PLAN EPI BD, 20×, NA 0.4). A field-of-view of approximately 400 × 400 μm<sup>2</sup> was imaged using a CMOS camera (Grasshopper 2.3 MP Mono USB3 Vision, Sony Pregius IMX174 CMOS sensor) with an integration time of 10 ms and a sampling frequency of 30 Hz. The silica particles were tracked with a 3 nm accuracy using the center-of-intensity of the bright particles on the dark background. Trajectory parameters were calculated which describe the motion pattern and were used to select single-tethered particles.<sup><a href="#ref13" class="usa-link" aria-describedby="ref13">13</a></sup></p></section><section id="sec4.6"><h3 class="pmc_sec_title">State Lifetime Analysis</h3> <p>Particles that showed strong irregularities in their motion pattern (e.g., strongly confined or asymmetrical) or no switching behavior were excluded from further analysis.<sup><a href="#ref13" class="usa-link" aria-describedby="ref13">13</a></sup> The measurements were performed in a flow cell setup in which the target concentration was increased sequentially by means of buffer exchange. After 20 min incubation, the measurement was performed. Trajectory analysis was performed only on particles showing a bimodal distribution in the averaged radial position. In order to detect binding and unbinding events, a dual thresholding method was implemented in which the threshold was set on the (local) minimum between the two peaks of the bimodal distribution. A dual threshold with a 12.5% offset was found to yield accurate event detection with 91% sensitivity and 96% specificity (data not shown here). Based on the detected events, the bound (low mobility) and unbound states (high mobility) could be identified. The lifetimes of the two states were plotted in a cumulative distribution function for different target concentrations to extract the association and dissociation rate constants (see the <a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Supporting Information</a>). This was done for single binding and unbinding events per particle or as an ensemble using the information on single binding and unbinding events of all particles together or of a subset (specific population) of particles after kinetic identification.</p></section><section id="sec4.7"><h3 class="pmc_sec_title">Simulations</h3> <p>Data were simulated using experimental positional data of bound and unbound particles. For each simulation, two single-exponential distributions were generated: one with a given mean bound state lifetime and one with a given mean unbound state lifetime. The particle traces were reconstructed block-by-block with each block length according to the two predefined single-exponential distributions. Nonspecific interactions and inter- and intraparticle heterogeneity were neglected. Subsequent time-dependent analysis was performed as if experimental data were analyzed.</p></section></section><section id="notes1"><h2 class="pmc_sec_title">Supporting Information Available</h2> <p>The Supporting Information is available free of charge at <a href="https://pubs.acs.org/doi/10.1021/acs.nanolett.9b04561?goto=supporting-info" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://pubs.acs.org/doi/10.1021/acs.nanolett.9b04561</a>.</p> <ul id="silist" class="list" style="list-style-type:none"> <li><p>Details on used DNA sequences, quantifying single-molecule affinity kinetics, observed heterogeneity in association kinetics, and the potential of multiplexing by kinetic encoding (<a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_001.pdf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">PDF</a>)</p></li> <li><p>Comprehensive visualization of multiplexing by kinetic encoding (<a href="http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04561/suppl_file/nl9b04561_si_002.mp4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">MP4</a>)</p></li> </ul></section><section id="notes2"><h2 class="pmc_sec_title">Author Contributions</h2> <p>All authors conceived and designed the methodology, measurement system, and experiments. R.M.L. performed the experiments and the data analysis. All authors interpreted data, discussed results, and co-wrote the paper. All authors approved the submitted version of the manuscript.</p></section><section id="notes3"><p>The authors declare the following competing financial interest(s): M.W.J.P. is listed as one of the inventors on patent application WO/2016/096901 (Biosensor based on a tethered particle). M.W.J.P., A.M.d.J., and R.M.L. are listed as inventors on a filed patent application relating to the data presented in this paper. M.W.J.P. is cofounder of Helia Biomonitoring BV that has a license to these patents. All authors declare no further competing interests.</p></section><section id="sec11"><h2 class="pmc_sec_title">Supplementary Material</h2> <section class="sm xbox font-sm" id="sifile1"><div class="media p"><div class="caption"> <a href="/articles/instance/7252944/bin/nl9b04561_si_001.pdf" data-ga-action="click_feat_suppl" class="usa-link">nl9b04561_si_001.pdf</a><sup> (815.6KB, pdf) </sup> </div></div></section><section class="sm xbox font-sm" id="sifile2"><div class="media p"><div class="caption"> <a href="/articles/instance/7252944/bin/nl9b04561_si_002.mp4" data-ga-action="click_feat_suppl" class="usa-link">nl9b04561_si_002.mp4</a><sup> (82.9MB, mp4) </sup> </div></div></section></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="ref-list1_sec2"><ol class="ref-list font-sm"> <li id="ref1"> <cite>Rissin D. M.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. 10.1038/nbt.1641.</cite> [<a href="https://doi.org/10.1038/nbt.1641" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2919230/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20495550/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Biotechnol.&title=Single-molecule%20enzyme-linked%20immunosorbent%20assay%20detects%20serum%20proteins%20at%20subfemtomolar%20concentrations&author=D.%20M.%20Rissin&volume=28&publication_year=2010&pages=595-599&pmid=20495550&doi=10.1038/nbt.1641&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref2"> <cite>Pinheiro L. B.; Coleman V. A.; Hindson C. M.; Herrman J.; Hindson B. J.; Bhat S.; Emslie K. R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 2012, 84, 1003–1011. 10.1021/ac202578x.</cite> [<a href="https://doi.org/10.1021/ac202578x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3260738/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22122760/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anal.%20Chem.&title=Evaluation%20of%20a%20droplet%20digital%20polymerase%20chain%20reaction%20format%20for%20DNA%20copy%20number%20quantification&author=L.%20B.%20Pinheiro&author=V.%20A.%20Coleman&author=C.%20M.%20Hindson&author=J.%20Herrman&author=B.%20J.%20Hindson&volume=84&publication_year=2012&pages=1003-1011&pmid=22122760&doi=10.1021/ac202578x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref3"> <cite>Eid J.; et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 2009, 323, 133–138. 10.1126/science.1162986.</cite> [<a href="https://doi.org/10.1126/science.1162986" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19023044/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&title=Real-Time%20DNA%20Sequencing%20from%20Single%20Polymerase%20Molecules&author=J.%20Eid&volume=323&publication_year=2009&pages=133-138&pmid=19023044&doi=10.1126/science.1162986&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref4"> <cite>Lipani L.; Dupont B. G. R.; Doungmene F.; Marken F.; Tyrrell R. M.; Guy R. H.; Ilie A. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 2018, 13, 504–511. 10.1038/s41565-018-0112-4.</cite> [<a href="https://doi.org/10.1038/s41565-018-0112-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29632401/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Nanotechnol.&title=Non-invasive,%20transdermal,%20path-selective%20and%20specific%20glucose%20monitoring%20via%20a%20graphene-based%20platform&author=L.%20Lipani&author=B.%20G.%20R.%20Dupont&author=F.%20Doungmene&author=F.%20Marken&author=R.%20M.%20Tyrrell&volume=13&publication_year=2018&pages=504-511&pmid=29632401&doi=10.1038/s41565-018-0112-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref5"> <cite>Heikenfeld J.; Jajack A.; Feldman B.; Granger S. W.; Gaitonde S.; Begtrup G.; Katchman B. A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419. 10.1038/s41587-019-0040-3.</cite> [<a href="https://doi.org/10.1038/s41587-019-0040-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30804536/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Biotechnol.&title=Accessing%20analytes%20in%20biofluids%20for%20peripheral%20biochemical%20monitoring&author=J.%20Heikenfeld&author=A.%20Jajack&author=B.%20Feldman&author=S.%20W.%20Granger&author=S.%20Gaitonde&volume=37&publication_year=2019&pages=407-419&pmid=30804536&doi=10.1038/s41587-019-0040-3&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref6"> <cite>Zhang B.; Korolj A.; Lai B. F. L.; Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials 2018, 3, 257–278. 10.1038/s41578-018-0034-7.</cite> [<a href="https://doi.org/10.1038/s41578-018-0034-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature%20Reviews%20Materials&title=Advances%20in%20organ-on-a-chip%20engineering&author=B.%20Zhang&author=A.%20Korolj&author=B.%20F.%20L.%20Lai&author=M.%20Radisic&volume=3&publication_year=2018&pages=257-278&doi=10.1038/s41578-018-0034-7&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref7"> <cite>Kim J.; Campbell A. S.; Esteban-Fernández de Ávila B.; Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. 10.1038/s41587-019-0045-y.</cite> [<a href="https://doi.org/10.1038/s41587-019-0045-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8183422/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30804534/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Biotechnol.&title=Wearable%20biosensors%20for%20healthcare%20monitoring&author=J.%20Kim&author=A.%20S.%20Campbell&author=B.%20Esteban-Fern%C3%A1ndez%20de%20%C3%81vila&author=J.%20Wang&volume=37&publication_year=2019&pages=389-406&pmid=30804534&doi=10.1038/s41587-019-0045-y&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref8"> <cite>Heikenfeld J.; et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. 10.1039/C7LC00914C.</cite> [<a href="https://doi.org/10.1039/C7LC00914C" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5771841/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29182185/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lab%20Chip&title=Wearable%20sensors:%20modalities,%20challenges,%20and%20prospects&author=J.%20Heikenfeld&volume=18&publication_year=2018&pages=217-248&pmid=29182185&doi=10.1039/C7LC00914C&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref9"> <cite>Rissin D. M.; et al. Multiplexed single molecule immunoassays. Lab Chip 2013, 13, 2902–2911. 10.1039/c3lc50416f.</cite> [<a href="https://doi.org/10.1039/c3lc50416f" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10540087/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23719780/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lab%20Chip&title=Multiplexed%20single%20molecule%20immunoassays&author=D.%20M.%20Rissin&volume=13&publication_year=2013&pages=2902-2911&pmid=23719780&doi=10.1039/c3lc50416f&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref10"> <cite>Dunbar S. A. Applications of Luminex® xMAP<sup>TM</sup> technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 2006, 363, 71–82. 10.1016/j.cccn.2005.06.023.</cite> [<a href="https://doi.org/10.1016/j.cccn.2005.06.023" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7124242/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16102740/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Chim.%20Acta&title=Applications%20of%20Luminex%C2%AE%20xMAPTM%20technology%20for%20rapid,%20high-throughput%20multiplexed%20nucleic%20acid%20detection&author=S.%20A.%20Dunbar&volume=363&publication_year=2006&pages=71-82&pmid=16102740&doi=10.1016/j.cccn.2005.06.023&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref11"> <cite>Gurvich O. L.; Skoblov M. Real-Time PCR and Multiplex Approaches. Methods Mol. Biol. 2011, 784, 1–13. 10.1007/978-1-61779-289-2_1.</cite> [<a href="https://doi.org/10.1007/978-1-61779-289-2_1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21898209/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Methods%20Mol.%20Biol.&title=Real-Time%20PCR%20and%20Multiplex%20Approaches&author=O.%20L.%20Gurvich&author=M.%20Skoblov&volume=784&publication_year=2011&pages=1-13&pmid=21898209&doi=10.1007/978-1-61779-289-2_1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref12"> <cite>DeRisi J.; Penland L.; Brown P. O.; Bittner M. L.; Meltzer P. S.; Ray M.; Chen Y.; Su Y. A.; Trent J. M. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 1996, 14 (4), 457–460. 10.1038/ng1296-457.</cite> [<a href="https://doi.org/10.1038/ng1296-457" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8944026/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Genet.&title=Use%20of%20a%20cDNA%20microarray%20to%20analyse%20gene%20expression%20patterns%20in%20human%20cancer&author=J.%20DeRisi&author=L.%20Penland&author=P.%20O.%20Brown&author=M.%20L.%20Bittner&author=P.%20S.%20Meltzer&volume=14&issue=4&publication_year=1996&pages=457-460&pmid=8944026&doi=10.1038/ng1296-457&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref13"> <cite>Visser E. W. A.; Yan J.; van IJzendoorn L. J.; Prins M. W. J. Continuous biomarker monitoring by particle mobility sensing with single molecule resolution. Nat. Commun. 2018, 9, 2541. 10.1038/s41467-018-04802-8.</cite> [<a href="https://doi.org/10.1038/s41467-018-04802-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6026194/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29959314/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Commun.&title=Continuous%20biomarker%20monitoring%20by%20particle%20mobility%20sensing%20with%20single%20molecule%20resolution&author=E.%20W.%20A.%20Visser&author=J.%20Yan&author=L.%20J.%20van%20IJzendoorn&author=M.%20W.%20J.%20Prins&volume=9&publication_year=2018&pages=2541&pmid=29959314&doi=10.1038/s41467-018-04802-8&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref14"> <cite>Atkins P.; De Paula J.. Physical Chemistry for the Life Sciences; Oxford University Press: Oxford, U.K., 2006.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Physical%20Chemistry%20for%20the%20Life%20Sciences&publication_year=2006&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ol></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title">Associated Data</h2> <p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p> <section id="_adsm93_" lang="en" class="supplementary-materials"><h3 class="pmc_sec_title">Supplementary Materials</h3> <section class="sm xbox font-sm" id="db_ds_supplementary-material1_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7252944/bin/nl9b04561_si_001.pdf" data-ga-action="click_feat_suppl" class="usa-link">nl9b04561_si_001.pdf</a><sup> (815.6KB, pdf) </sup> </div></div></section><section class="sm xbox font-sm" id="db_ds_supplementary-material2_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7252944/bin/nl9b04561_si_002.mp4" data-ga-action="click_feat_suppl" class="usa-link">nl9b04561_si_002.mp4</a><sup> (82.9MB, mp4) </sup> </div></div></section></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Nano Letters are provided here courtesy of <strong>American Chemical Society</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1021/acs.nanolett.9b04561" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/nl9b04561.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (2.9 MB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/7252944/" data-citation-style="nlm" data-download-format-link="/resources/citations/7252944/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7252944%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7252944/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC7252944/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC7252944/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/32091908/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC7252944/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/32091908/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC7252944/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/7252944/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="oqgxAJQ70OlzpTd2u40njxPSfefWAmL8qZRIGIAZAmIipDsb1UwxWVMYdRMYeISf"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^"&=<>/]*" title="The following characters are not allowed in the Name field: "&=<>/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>