CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 254 results for author: <span class="mathjax">Xu, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Xu%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xu, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xu%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xu, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xu%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02088">arXiv:2412.02088</a> <span> [<a href="https://arxiv.org/pdf/2412.02088">pdf</a>, <a href="https://arxiv.org/format/2412.02088">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Theory of monochromatic advanced-wave picture and applications in biphoton optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02088v1-abstract-short" style="display: inline;"> Klyshko's advanced-wave picture (AWP) is mainly interpreted by replacing the nonlinear crystal producing biphotons via spontaneous parametric down-conversion (SPDC) by a mirror in quantum imaging protocols with thin crystals, where the biphotons are perfectly correlated in position at the crystal. To better explain the biphoton spatial states produced by arbitrary crystals and pump beams, we devel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02088v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02088v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02088v1-abstract-full" style="display: none;"> Klyshko's advanced-wave picture (AWP) is mainly interpreted by replacing the nonlinear crystal producing biphotons via spontaneous parametric down-conversion (SPDC) by a mirror in quantum imaging protocols with thin crystals, where the biphotons are perfectly correlated in position at the crystal. To better explain the biphoton spatial states produced by arbitrary crystals and pump beams, we develop a formal theory of AWP with monochromatic lights that the conditional wave function of one photon is calculated by propagation, multiplication, and another propagation. The case of more general photon postselection or no detection and the inclusion of polarization are studied. Then, we explain the form of biphoton state from SPDC with a bulk crystal and its free-space propagation. By treating the biphoton wave function as an impulse response function of a classical optical setup, we analyze quantum imaging with undetected photons and quantum holography with polarization entanglement, where properties like the spatial resolution can be concisely deduced. This method can be employed to design nonlinear materials or novel quantum imaging techniques. Finally, we discuss Klyshko's original proposal beyond monochromatic lights with the Hong-Ou-Mandel effect as an example. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02088v1-abstract-full').style.display = 'none'; document.getElementById('2412.02088v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Accepted by Physical Review A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18868">arXiv:2411.18868</a> <span> [<a href="https://arxiv.org/pdf/2411.18868">pdf</a>, <a href="https://arxiv.org/format/2411.18868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser writing and spin control of near infrared emitters in silicon carbide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Zhi-He Hao</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Z">Zhen-Xuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Maksimovic%2C+J">Jovan Maksimovic</a>, <a href="/search/quant-ph?searchtype=author&query=Katkus%2C+T">Tomas Katkus</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Castelletto%2C+S">Stefania Castelletto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18868v1-abstract-short" style="display: inline;"> Near infrared emission in silicon carbide is relevant for quantum technology specifically single photon emission and spin qubits for integrated quantum photonics, quantum communication and quantum sensing. In this paper we study the fluorescence emission of direct femtosecond laser written array of color centres in silicon carbide followed by thermal annealing. We show that in high energy laser wr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18868v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18868v1-abstract-full" style="display: none;"> Near infrared emission in silicon carbide is relevant for quantum technology specifically single photon emission and spin qubits for integrated quantum photonics, quantum communication and quantum sensing. In this paper we study the fluorescence emission of direct femtosecond laser written array of color centres in silicon carbide followed by thermal annealing. We show that in high energy laser writing pulses regions a near telecom O-band ensemble fluorescence emission is observed after thermal annealing and it is tentatively attributed to the nitrogen vacancy centre in silicon carbide. Further in the low energy laser irradiation spots after annealing, we fabricated few divacancy, PL5 and PL6 types and demonstrate their optical spin read-out, and coherent spin manipulation (Rabi and Ramsey oscillations and spin echo). We show that direct laser writing and thermal annealing can yield bright near telecom emission and preserve the spin coherence time of divacancy at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18868v1-abstract-full').style.display = 'none'; document.getElementById('2411.18868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04251">arXiv:2411.04251</a> <span> [<a href="https://arxiv.org/pdf/2411.04251">pdf</a>, <a href="https://arxiv.org/format/2411.04251">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> On Chord Dynamics and Complexity Growth in Double-Scaled SYK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jiuci Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04251v1-abstract-short" style="display: inline;"> We investigate the time evolution generated by the two-sided chord Hamiltonian in the double-scaled SYK model, which produces a probability distribution over operators in the double-scaled algebra. Via the bulk-to-boundary map, this distribution translates into dynamic profiles of bulk states within the chord Hilbert space. We derive analytic expressions for these states, valid across a wide param… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04251v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04251v1-abstract-full" style="display: none;"> We investigate the time evolution generated by the two-sided chord Hamiltonian in the double-scaled SYK model, which produces a probability distribution over operators in the double-scaled algebra. Via the bulk-to-boundary map, this distribution translates into dynamic profiles of bulk states within the chord Hilbert space. We derive analytic expressions for these states, valid across a wide parameter range and at all time scales. Additionally, we show how distinct semi-classical behaviors emerge by localizing within specific regions of the energy spectrum in the semi-classical limit. We reformulate the doubled Hilbert space formalism as an isometric map between the one-particle sector of the chord Hilbert space and the doubled zero-particle sector. Using this map, we obtain analytic results for correlation functions and examine the dynamical properties of operator Krylov complexity for chords, establishing an equivalence between the chord number generating function and the crossed four-point correlation function. We also consider finite-temperature effects, showing how operator spreading slows as temperature decreases. In the semi-classical limit, we apply a saddle point analysis and include the one-loop determinant to derive the normalized time-ordered four-point correlation function. The leading correction mirrors the \(1/N\) connected contribution observed in the large-\(p\) SYK model at infinite temperature. Finally, we analyze the time evolution of operator Krylov complexity for a matter chord in the triple-scaled regime, linking it to the renormalized two-sided length in JT gravity with matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04251v1-abstract-full').style.display = 'none'; document.getElementById('2411.04251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03255">arXiv:2411.03255</a> <span> [<a href="https://arxiv.org/pdf/2411.03255">pdf</a>, <a href="https://arxiv.org/format/2411.03255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Error Interference in Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+B">Boyang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Q">Qi Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yuan%2C+X">Xiao Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03255v2-abstract-short" style="display: inline;"> Understanding algorithmic error accumulation in quantum simulation is crucial due to its fundamental significance and practical applications in simulating quantum many-body system dynamics. Conventional theories typically apply the triangle inequality to provide an upper bound for the error. However, these often yield overly conservative and inaccurate estimates as they neglect error interference… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03255v2-abstract-full').style.display = 'inline'; document.getElementById('2411.03255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03255v2-abstract-full" style="display: none;"> Understanding algorithmic error accumulation in quantum simulation is crucial due to its fundamental significance and practical applications in simulating quantum many-body system dynamics. Conventional theories typically apply the triangle inequality to provide an upper bound for the error. However, these often yield overly conservative and inaccurate estimates as they neglect error interference -- a phenomenon where errors in different segments can destructively interfere. Here, we introduce a novel method that directly estimates the long-time algorithmic errors with multiple segments, thereby establishing a comprehensive framework for characterizing algorithmic error interference. We identify the sufficient and necessary condition for strict error interference and introduce the concept of approximate error interference, which is more broadly applicable to scenarios such as power-law interaction models, the Fermi-Hubbard model, and higher-order Trotter formulas. Our work demonstrates significant improvements over prior ones and opens new avenues for error analysis in quantum simulation, offering potential advancements in both theoretical algorithm design and experimental implementation of Hamiltonian simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03255v2-abstract-full').style.display = 'none'; document.getElementById('2411.03255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02881">arXiv:2411.02881</a> <span> [<a href="https://arxiv.org/pdf/2411.02881">pdf</a>, <a href="https://arxiv.org/format/2411.02881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Distributed Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Feng%2C+T">Tianfeng Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+W">Wenjun Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Ye%2C+Z">Zekun Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+P">Penghui Yao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Q">Qi Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02881v1-abstract-short" style="display: inline;"> Quantum simulation is a promising pathway toward practical quantum advantage by simulating large-scale quantum systems. In this work, we propose communication-efficient distributed quantum simulation protocols by exploring three quantum simulation algorithms, including the product formula, the truncated Taylor series, and the processing of quantum signals over a quantum network. Our protocols are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02881v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02881v1-abstract-full" style="display: none;"> Quantum simulation is a promising pathway toward practical quantum advantage by simulating large-scale quantum systems. In this work, we propose communication-efficient distributed quantum simulation protocols by exploring three quantum simulation algorithms, including the product formula, the truncated Taylor series, and the processing of quantum signals over a quantum network. Our protocols are further shown to be optimal by deriving a lower bound on the quantum communication complexity for distributed quantum simulations with respect to evolution time and the number of distributed quantum processing units. Additionally, our distributed techniques go beyond quantum simulation and are applied to distributed versions of Grover's algorithms and quantum phase estimation. Our work not only paves the way for achieving a practical quantum advantage by scalable quantum simulation but also enlightens the design of more general distributed architectures across various physical systems for quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02881v1-abstract-full').style.display = 'none'; document.getElementById('2411.02881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figues, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00316">arXiv:2411.00316</a> <span> [<a href="https://arxiv.org/pdf/2411.00316">pdf</a>, <a href="https://arxiv.org/format/2411.00316">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Quantum Entanglement Path Selection and Qubit Allocation via Adversarial Group Neural Bandits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yin Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00316v1-abstract-short" style="display: inline;"> Quantum Data Networks (QDNs) have emerged as a promising framework in the field of information processing and transmission, harnessing the principles of quantum mechanics. QDNs utilize a quantum teleportation technique through long-distance entanglement connections, encoding data information in quantum bits (qubits). Despite being a cornerstone in various quantum applications, quantum entanglement… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00316v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00316v1-abstract-full" style="display: none;"> Quantum Data Networks (QDNs) have emerged as a promising framework in the field of information processing and transmission, harnessing the principles of quantum mechanics. QDNs utilize a quantum teleportation technique through long-distance entanglement connections, encoding data information in quantum bits (qubits). Despite being a cornerstone in various quantum applications, quantum entanglement encounters challenges in establishing connections over extended distances due to probabilistic processes influenced by factors like optical fiber losses. The creation of long-distance entanglement connections between quantum computers involves multiple entanglement links and entanglement swapping techniques through successive quantum nodes, including quantum computers and quantum repeaters, necessitating optimal path selection and qubit allocation. Current research predominantly assumes known success rates of entanglement links between neighboring quantum nodes and overlooks potential network attackers. This paper addresses the online challenge of optimal path selection and qubit allocation, aiming to learn the best strategy for achieving the highest success rate of entanglement connections between two chosen quantum computers without prior knowledge of the success rate and in the presence of a QDN attacker. The proposed approach is based on multi-armed bandits, specifically adversarial group neural bandits, which treat each path as a group and view qubit allocation as arm selection. Our contributions encompass formulating an online adversarial optimization problem, introducing the EXPNeuralUCB bandits algorithm with theoretical performance guarantees, and conducting comprehensive simulations to showcase its superiority over established advanced algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00316v1-abstract-full').style.display = 'none'; document.getElementById('2411.00316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE/ACM Transactions on Networking</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22684">arXiv:2410.22684</a> <span> [<a href="https://arxiv.org/pdf/2410.22684">pdf</a>, <a href="https://arxiv.org/format/2410.22684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Imaginary part of timelike entanglement entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+W">Wu-zhong Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22684v2-abstract-short" style="display: inline;"> In this paper, we explore the imaginary part of the timelike entanglement entropy. In the context of field theory, it is more appropriate to obtain the timelike entanglement entropy through the Wick rotation of the twist operators. It is found that, in certain special cases, the imaginary part of the timelike entanglement entropy is related to the commutator of the twist operator and its first-ord… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22684v2-abstract-full').style.display = 'inline'; document.getElementById('2410.22684v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22684v2-abstract-full" style="display: none;"> In this paper, we explore the imaginary part of the timelike entanglement entropy. In the context of field theory, it is more appropriate to obtain the timelike entanglement entropy through the Wick rotation of the twist operators. It is found that, in certain special cases, the imaginary part of the timelike entanglement entropy is related to the commutator of the twist operator and its first-order temporal derivative. To evaluate these commutators, we employ the operator product expansion of the twist operators, revealing that the commutator is generally universal across most scenarios. However, in more general cases, the imaginary part of the timelike entanglement entropy proves to be more complex. We compute the commutator of the twist operators along with its higher-order temporal derivatives. Utilizing these results, we derive a modified formula for the imaginary part of the timelike entanglement entropy. Furthermore, we extend this formula to the case of strip subregion in higher dimensions. Our analysis shows that for the strip geometry, the imaginary part of the timelike entanglement entropy is solely related to the commutators of the twist operator and its first-order temporal derivative. The findings presented in this paper provide valuable insights into the imaginary part of timelike entanglement entropy and its physical significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22684v2-abstract-full').style.display = 'none'; document.getElementById('2410.22684v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18892">arXiv:2410.18892</a> <span> [<a href="https://arxiv.org/pdf/2410.18892">pdf</a>, <a href="https://arxiv.org/format/2410.18892">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental observation of spin defects in van der Waals material GeS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">W. Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+N+-">N. -J. Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+X+-">X. -D. Zeng</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+L+-">L. -K. Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J+-">J. -Y. Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Y+-">Y. -H. Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y+-">Y. -Q. Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y+-">Y. -T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z+-">Z. -A. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+J+-">J. -M. Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Ao%2C+C">C. Ao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J+-">J. -S. Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J+-">J. -S. Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Gali%2C+A">A. Gali</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C+-">C. -F. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G+-">G. -C. Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18892v1-abstract-short" style="display: inline;"> Spin defects in atomically thin two-dimensional (2D) materials such as hexagonal boron nitride (hBN) attract significant attention for their potential quantum applications. The layered host materials not only facilitate seamless integration with optoelectronic devices but also enable the formation of heterostructures with on-demand functionality. Furthermore, their atomic thickness renders them pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18892v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18892v1-abstract-full" style="display: none;"> Spin defects in atomically thin two-dimensional (2D) materials such as hexagonal boron nitride (hBN) attract significant attention for their potential quantum applications. The layered host materials not only facilitate seamless integration with optoelectronic devices but also enable the formation of heterostructures with on-demand functionality. Furthermore, their atomic thickness renders them particularly suitable for sensing applications. However, the short coherence times of the spin defects in hBN limit them in quantum applications that require extended coherence time. One primary reason is that both boron and nitrogen atoms have non-zero nuclear spins. Here, we present another 2D material germanium disulfide ($尾$-GeS$_2$) characterized by a wide bandgap and potential nuclear-spin-free lattice. This makes it as a promising host material for spin defects that possess long-coherence time. Our findings reveal the presence of more than two distinct types of spin defects in single-crystal $尾$-GeS$_2$. Coherent control of one type defect has been successfully demonstrated at both 5 K and room temperature, and the coherence time $T_2$ can achieve tens of microseconds, 100-folds of that of negatively charged boron vacancy (V$_{\text{B}}^-$) in hBN, satisfying the minimal threshold required for metropolitan quantum networks--one of the important applications of spins. We entatively assign the observed optical signals come from substitution defects. Together with previous theoretical prediction, we believe the coherence time can be further improved with optimized lattice quality, indicating $尾$-GeS$_2$ as a promising host material for long-coherence-time spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18892v1-abstract-full').style.display = 'none'; document.getElementById('2410.18892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05925">arXiv:2410.05925</a> <span> [<a href="https://arxiv.org/pdf/2410.05925">pdf</a>, <a href="https://arxiv.org/format/2410.05925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observing tight triple uncertainty relations in two-qubit systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+X">Xing-Yan Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Ze-Yan Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+J">Jia-Kun Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zheng-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jing-Ling Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05925v1-abstract-short" style="display: inline;"> As the fundamental tool in quantum information science, the uncertainty principle is essential for manifesting nonclassical properties of quantum systems. Plenty of efforts on the uncertainty principle with two observables have been achieved, making it an appealing challenge to extend the scenario to multiple observables. Here, based on an optical setup, we demonstrate the uncertainty relation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05925v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05925v1-abstract-full" style="display: none;"> As the fundamental tool in quantum information science, the uncertainty principle is essential for manifesting nonclassical properties of quantum systems. Plenty of efforts on the uncertainty principle with two observables have been achieved, making it an appealing challenge to extend the scenario to multiple observables. Here, based on an optical setup, we demonstrate the uncertainty relations in two-qubit systems involving three physical components with the tight constant $2/\sqrt{3}$, which signifies a more precise limit in the measurement of multiple quantum components and offers deeper insights into the trade-offs between observables. Furthermore, we reveal the correspondence of the maximal values of the uncertainty functions and the degree of entanglement, where the more uncertainty is proportional to the higher degree of entanglement. Our results provide a new insight into understanding the uncertainty relations with multiple observables and may motivate more innovative applications in quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05925v1-abstract-full').style.display = 'none'; document.getElementById('2410.05925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19224">arXiv:2409.19224</a> <span> [<a href="https://arxiv.org/pdf/2409.19224">pdf</a>, <a href="https://arxiv.org/format/2409.19224">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The controlled exciton transport of the Multi-chain system by cavity-dressed energy level crossings and anticrossings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+F">Fang-Qi Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Yu-Ren Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Ji-Ming Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Z">Zi-Fa Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+J">Ju-Kui Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jia-Hui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19224v2-abstract-short" style="display: inline;"> The accomplished functions of a variety of quantum devices are closely associated with the controlling of exciton transport. To this end we study the exciton transport of the two-dimensional system consisting of two-level multichains with various coupling configurations in a cavity. Two types of the chains are considered, including Tavis-Cummings and Su-Schrieffer-Heeger chain. Two conformations o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19224v2-abstract-full').style.display = 'inline'; document.getElementById('2409.19224v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19224v2-abstract-full" style="display: none;"> The accomplished functions of a variety of quantum devices are closely associated with the controlling of exciton transport. To this end we study the exciton transport of the two-dimensional system consisting of two-level multichains with various coupling configurations in a cavity. Two types of the chains are considered, including Tavis-Cummings and Su-Schrieffer-Heeger chain. Two conformations of the coupling between chains are considered, including square and triangle type. The effects of the inter-chain coupling, dimerization parameter, the cavity, the length of chains, and the number of chains on the exciton transport are in detail investigated for different coupling configurations of the multi-chain system through spectra and steady-state dynamics. The results show that in the absence of a cavity the exciton transport effciency is decided by the distribution of population of exciton on whole chains. However, when the cavity is considered the exciton transport currents and effciency of the system is controlled by the cavity-dressed energy level crossings and anticrossings near zero-energy modes, at which the coherent excitation and Landau-Zener transitions occur. Therefore, the exciton transport can be enhanced or suppressed at the crossings and anticrossings, in which the polariton acts as crucial role. Besides, it is discovered that the exciton transport effciency is closely related with the parity of both the length and the number of chains. This work is important for the understanding of the exciton transport mechanism in the multichain-cavity system, and provides theoretical basis for excitonic devices with controllable and effcient exciton transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19224v2-abstract-full').style.display = 'none'; document.getElementById('2409.19224v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15424">arXiv:2409.15424</a> <span> [<a href="https://arxiv.org/pdf/2409.15424">pdf</a>, <a href="https://arxiv.org/format/2409.15424">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-interference-induced pairing in antiferromagnetic bosonic $t$-$J$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hao-Kai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jia-Xin Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Ji-Si Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Weng%2C+Z">Zheng-Yu Weng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15424v1-abstract-short" style="display: inline;"> The pairing mechanism in an antiferromagnetic (AFM) bosonic $t$-$J$ model is investigated via large-scale density matrix renormalization group calculations. In contrast to the competing orders in the fermionic $t$-$J$ model, we discover that a pair density wave (PDW) of tightly bound hole pairs coexists with the AFM order forming a ``supersolid'' at small doping in the bosonic model. The pairing o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15424v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15424v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15424v1-abstract-full" style="display: none;"> The pairing mechanism in an antiferromagnetic (AFM) bosonic $t$-$J$ model is investigated via large-scale density matrix renormalization group calculations. In contrast to the competing orders in the fermionic $t$-$J$ model, we discover that a pair density wave (PDW) of tightly bound hole pairs coexists with the AFM order forming a ``supersolid'' at small doping in the bosonic model. The pairing order collapses at larger doping to a superfluid of single-boson condensation with the spin background polarized to a ferromagnetic (FM) order simultaneously. This pairing phase will disappear once a hidden quantum many-body Berry phase in the model is artificially switched off. Such a Berry phase, termed the phase string, introduces the sole ``sign problem'' in this bosonic model and imposes quantum phase frustration in the interference pattern between spin and charge degrees of freedom. Only via tightly pairing of doped holes, can such quantum frustration be most effectively erased in an AFM background. By contrast, the pairing vanishes as such a Berry phase trivializes in an FM background or is switched off by a sign-problem-free model (the Bose-Hubbard model at large $U$). The pairing mechanism proposed here is inherently quantum and many-body, stemming from exotic interference patterns caused by strong correlation effects, which is distinct from the semi-classical mechanisms based on bosonic fluctuations. Experimental schemes have been recently proposed to realize the bosonic $t$-$J$ model on ultracold Rydberg atom arrays, offering a useful platform to test the present unconventional pairing mechanism, which is also relevant to the fermionic case associated with high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15424v1-abstract-full').style.display = 'none'; document.getElementById('2409.15424v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 4+11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02000">arXiv:2409.02000</a> <span> [<a href="https://arxiv.org/pdf/2409.02000">pdf</a>, <a href="https://arxiv.org/ps/2409.02000">ps</a>, <a href="https://arxiv.org/format/2409.02000">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The Non-reciprocity of Multi-mode Optical Directional Amplifier Realized by Non-Hermitian Resonator Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xue%2C+J">Jin-Xiang Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+C">Chuan-Xun Du</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Chengchao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+L">Liu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yong-Long Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02000v1-abstract-short" style="display: inline;"> In the present paper, a multi-frequency optical non-reciprocal transmission is first realized by using a non-Hermitian multi-mode resonator array.We find that the non-reciprocity can be used to route optical signals, to prevent the reverse flow of noise, and find that the multi-frequency can be used to enhance information processing. In terms of the Scully-Lamb model and gain saturation effect, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02000v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02000v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02000v1-abstract-full" style="display: none;"> In the present paper, a multi-frequency optical non-reciprocal transmission is first realized by using a non-Hermitian multi-mode resonator array.We find that the non-reciprocity can be used to route optical signals, to prevent the reverse flow of noise, and find that the multi-frequency can be used to enhance information processing. In terms of the Scully-Lamb model and gain saturation effect, we accomplish a dual-frequency non-reciprocal transmission by introducing nonlinearity into a linear array of four-mode resonators. For example, a directional cyclic amplifier is constructed with non-reciprocal units. As potential applications, the non-reciprocity optical systems can be employed in dual-frequency control, parallel information processing, photonic integrated circuits, optical devices and so on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02000v1-abstract-full').style.display = 'none'; document.getElementById('2409.02000v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14497">arXiv:2407.14497</a> <span> [<a href="https://arxiv.org/pdf/2407.14497">pdf</a>, <a href="https://arxiv.org/format/2407.14497">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observable-Driven Speed-ups in Quantum Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yu%2C+W">Wenjun Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Q">Qi Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14497v1-abstract-short" style="display: inline;"> As quantum technology advances, quantum simulation becomes increasingly promising, with significant implications for quantum many-body physics and quantum chemistry. Despite being one of the most accessible simulation methods, the product formula encounters challenges due to the pessimistic gate count estimation. In this work, we elucidate how observable knowledge can accelerate quantum simulation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14497v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14497v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14497v1-abstract-full" style="display: none;"> As quantum technology advances, quantum simulation becomes increasingly promising, with significant implications for quantum many-body physics and quantum chemistry. Despite being one of the most accessible simulation methods, the product formula encounters challenges due to the pessimistic gate count estimation. In this work, we elucidate how observable knowledge can accelerate quantum simulations. By focusing on specific families of observables, we reduce product-formula simulation errors and gate counts in both short-time and arbitrary-time scenarios. For short-time simulations, we deliberately design and tailor product formulas to achieve size-independent errors for local and certain global observables. In arbitrary-time simulations, we reveal that Pauli-summation structured observables generally reduce average errors. Specifically, we obtain quadratic error reductions proportional to the number of summands for observables with evenly distributed Pauli coefficients. Our advanced error analyses, supported by numerical studies, indicate improved gate count estimation. We anticipate that the explored speed-ups can pave the way for efficiently realizing quantum simulations and demonstrating advantages on near-term quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14497v1-abstract-full').style.display = 'none'; document.getElementById('2407.14497v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13390">arXiv:2406.13390</a> <span> [<a href="https://arxiv.org/pdf/2406.13390">pdf</a>, <a href="https://arxiv.org/format/2406.13390">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Stabilizing the Kerr arbitrary cat states and holonomic universal control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yu%2C+K">Ke-hui Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+F">Fan Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+J">Jiao-jiao Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hong-rong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13390v1-abstract-short" style="display: inline;"> The interference-free double potential wells realized by the two-photon driving Kerr nonlinear resonator (KNR) can stabilize cat states and protect them from decoherence through a large energy gap. In this work, we use a parametrically driving KNR to propose a novel engineering Hamiltonian that can stabilize arbitrary cat states and independently manipulate the superposed coherent states to move a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13390v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13390v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13390v1-abstract-full" style="display: none;"> The interference-free double potential wells realized by the two-photon driving Kerr nonlinear resonator (KNR) can stabilize cat states and protect them from decoherence through a large energy gap. In this work, we use a parametrically driving KNR to propose a novel engineering Hamiltonian that can stabilize arbitrary cat states and independently manipulate the superposed coherent states to move arbitrarily in phase space. This greater degree of control allows us to make the two potential wells collide and merge, generating a collision state with many novel properties. Furthermore, the potential wells carrying quantum states move adiabatically in phase space produce quantum holonomy. We explore the quantum holonomy of collision states for the first time and propose a holonomy-free preparation method for arbitrary cat states. Additionally, we develop a universal holonomic quantum computing protocol utilizing the quantum holonomy of coherent and collision states, including single-qubit rotation gates and multi-qubit control gates. Finally, we propose an experimentally feasible physical realization in superconducting circuits to achieve the Hamiltonian described above. Our proposal provides a platform with greater control degrees of freedom, enabling more operations on bosonic modes and the exploration of intriguing physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13390v1-abstract-full').style.display = 'none'; document.getElementById('2406.13390v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08054">arXiv:2406.08054</a> <span> [<a href="https://arxiv.org/pdf/2406.08054">pdf</a>, <a href="https://arxiv.org/format/2406.08054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum harvester enables energy transfer without randomness transfer or dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Meng%2C+F">Fei Meng</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Junhao Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xiangjing Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Dahlsten%2C+O">Oscar Dahlsten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08054v1-abstract-short" style="display: inline;"> We consider a foundational question in energy harvesting: given a partly random energy source, is it possible to extract the energy without also transferring randomness or accepting another thermodynamical cost? We answer this in the positive, describing scenarios and protocols where in principle energy is extracted from a field with randomness but without any randomness being transferred, and wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08054v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08054v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08054v1-abstract-full" style="display: none;"> We consider a foundational question in energy harvesting: given a partly random energy source, is it possible to extract the energy without also transferring randomness or accepting another thermodynamical cost? We answer this in the positive, describing scenarios and protocols where in principle energy is extracted from a field with randomness but without any randomness being transferred, and without energy dissipation. Such protocols fundamentally outperform existing methods of rectification which dissipate power, or feedback demon-like protocols which transfer randomness to the feedback system. The protocols exploit the possibility of the harvesting system taking several trajectories that lead to the same final state at a given time. We explain why these protocols do not violate basic physical principles. A key example involves the experimentally well-established phenomenon of Rabi oscillations between energy levels, exploiting the multitude of rotation axes in the state space that take the lower energy state to the excited state. The quantum system is deterministically excited to the highest energy level after interacting with the source for a fixed amount of time, irrespective of the random initial phase of the external potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08054v1-abstract-full').style.display = 'none'; document.getElementById('2406.08054v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04973">arXiv:2406.04973</a> <span> [<a href="https://arxiv.org/pdf/2406.04973">pdf</a>, <a href="https://arxiv.org/format/2406.04973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.033602">10.1103/PhysRevLett.133.033602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhao-Di Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Miao%2C+R">Rui-Heng Miao</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+M">Mu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04973v2-abstract-short" style="display: inline;"> With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04973v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04973v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04973v2-abstract-full" style="display: none;"> With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective method to measure it. Quantum state tomography is costly, and quantum holography requires additional references. Here we introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function. The joint probability distribution of photon pairs at the back focal plane of a microlens array is measured and used for amplitude extraction and phase reconstruction. In the experiment, we observe that the biphoton amplitude correlation becomes weak while phase correlation shows up during free-space propagation. Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04973v2-abstract-full').style.display = 'none'; document.getElementById('2406.04973v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; Supplemental Material: 13 pages, 11 figures. (c) 2024 American Physical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 033602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09745">arXiv:2405.09745</a> <span> [<a href="https://arxiv.org/pdf/2405.09745">pdf</a>, <a href="https://arxiv.org/format/2405.09745">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Pseudoentropy sum rule by analytical continuation of the superposition parameter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+W">Wu-zhong Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+Y">Yao-zong Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09745v2-abstract-short" style="display: inline;"> In this paper, we establish a sum rule that connects the pseudoentropy and entanglement entropy of a superposition state. Through analytical continuation of the superposition parameter, we demonstrate that the transition matrix and density matrix of the superposition state can be treated in a unified manner. Within this framework, we naturally derive sum rules for the (reduced) transition matrix,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09745v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09745v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09745v2-abstract-full" style="display: none;"> In this paper, we establish a sum rule that connects the pseudoentropy and entanglement entropy of a superposition state. Through analytical continuation of the superposition parameter, we demonstrate that the transition matrix and density matrix of the superposition state can be treated in a unified manner. Within this framework, we naturally derive sum rules for the (reduced) transition matrix, pseudo R茅nyi entropy, and pseudoentropy. Furthermore, we demonstrate the close relationship between the sum rule for pseudoentropy and the singularity structure of the entropy function for the superposition state after analytical continuation. We also explore potential applications of the sum rule, including its relevance to understanding the gravity dual of non-Hermitian transition matrices and establishing upper bounds for the absolute value of pseudoentropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09745v2-abstract-full').style.display = 'none'; document.getElementById('2405.09745v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03173">arXiv:2405.03173</a> <span> [<a href="https://arxiv.org/pdf/2405.03173">pdf</a>, <a href="https://arxiv.org/format/2405.03173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xie%2C+N">Ningyi Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jiahua Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+T">Tiejin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+X">Xinwei Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Saito%2C+Y">Yoshiyuki Saito</a>, <a href="/search/quant-ph?searchtype=author&query=Asai%2C+N">Nobuyoshi Asai</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+D">Dongsheng Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03173v2-abstract-short" style="display: inline;"> The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms for solving combinatorial optimization problems. A specific variant, the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that share equivalent objective values. This property makes the algorithm independent of the problem structure, focusing instead on the di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03173v2-abstract-full').style.display = 'inline'; document.getElementById('2405.03173v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03173v2-abstract-full" style="display: none;"> The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms for solving combinatorial optimization problems. A specific variant, the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that share equivalent objective values. This property makes the algorithm independent of the problem structure, focusing instead on the distribution of objective values within the problem. In this work, we prove the probability upper bound for measuring a computational basis state from a GM-QAOA circuit with a given depth, which is a critical factor in QAOA cost. Using this, we derive the upper bounds for the probability of sampling an optimal solution, and for the approximation ratio of maximum optimization problems, both dependent on the objective value distribution. Through numerical analysis, we link the distribution to the problem size and build the regression models that relate the problem size, QAOA depth, and performance upper bound. Our results suggest that the GM-QAOA provides a quadratic enhancement in sampling probability and requires circuit depth that scales exponentially with problem size to maintain consistent performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03173v2-abstract-full').style.display = 'none'; document.getElementById('2405.03173v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09048">arXiv:2404.09048</a> <span> [<a href="https://arxiv.org/pdf/2404.09048">pdf</a>, <a href="https://arxiv.org/format/2404.09048">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Adaptive User-Centric Entanglement Routing in Quantum Data Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Bian%2C+J">Jieming Bian</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09048v1-abstract-short" style="display: inline;"> Distributed quantum computing (DQC) holds immense promise in harnessing the potential of quantum computing by interconnecting multiple small quantum computers (QCs) through a quantum data network (QDN). Establishing long-distance quantum entanglement between two QCs for quantum teleportation within the QDN is a critical aspect, and it involves entanglement routing - finding a route between QCs and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09048v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09048v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09048v1-abstract-full" style="display: none;"> Distributed quantum computing (DQC) holds immense promise in harnessing the potential of quantum computing by interconnecting multiple small quantum computers (QCs) through a quantum data network (QDN). Establishing long-distance quantum entanglement between two QCs for quantum teleportation within the QDN is a critical aspect, and it involves entanglement routing - finding a route between QCs and efficiently allocating qubits along that route. Existing approaches have mainly focused on optimizing entanglement performance for current entanglement connection (EC) requests. However, they often overlook the user's perspective, wherein the user making EC requests operates under a budget constraint over an extended period. Furthermore, both QDN resources (quantum channels and qubits) and the EC requests, reflecting the DQC workload, vary over time. In this paper, we present a novel user-centric entanglement routing problem that spans an extended period to maximize the entanglement success rate while adhering to the user's budget constraint. To address this challenge, we leverage the Lyapunov drift-plus-penalty framework to decompose the long-term optimization problem into per-slot problems, allowing us to find solutions using only the current system information. Subsequently, we develop efficient algorithms based on continuous-relaxation and Gibbs-sampling techniques to solve the per-slot entanglement routing problem. Theoretical performance guarantees are provided for both the per-slot and long-term problems. Extensive simulations demonstrate that our algorithm significantly outperforms baseline approaches in terms of entanglement success rate and budget adherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09048v1-abstract-full').style.display = 'none'; document.getElementById('2404.09048v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by IEEE International Conference on Distributed Computing Systems (ICDCS), 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06210">arXiv:2404.06210</a> <span> [<a href="https://arxiv.org/pdf/2404.06210">pdf</a>, <a href="https://arxiv.org/format/2404.06210">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherence and imaginarity of quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jianwei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06210v1-abstract-short" style="display: inline;"> Baumgratz, Cramer and Plenio established a rigorous framework (BCP framework) for quantifying the coherence of quantum states [\href{http://dx.doi.org/10.1103/PhysRevLett.113.140401}{Phys. Rev. Lett. 113, 140401 (2014)}]. In BCP framework, a quantum state is called incoherent if it is diagonal in the fixed orthonormal basis, and a coherence measure should satisfy some conditions. For a fixed ortho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06210v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06210v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06210v1-abstract-full" style="display: none;"> Baumgratz, Cramer and Plenio established a rigorous framework (BCP framework) for quantifying the coherence of quantum states [\href{http://dx.doi.org/10.1103/PhysRevLett.113.140401}{Phys. Rev. Lett. 113, 140401 (2014)}]. In BCP framework, a quantum state is called incoherent if it is diagonal in the fixed orthonormal basis, and a coherence measure should satisfy some conditions. For a fixed orthonormal basis, if a quantum state $蟻$ has nonzero imaginary part, then $蟻$ must be coherent. How to quantitatively characterize this fact? In this work, we show that any coherence measure $C$ in BCP framework has the property $C(蟻)-C($Re$蟻)\geq 0$ if $C$ is invariant under state complex conjugation, i.e., $C(蟻)=C(蟻^{\ast })$, here $蟻^{\ast }$ is the conjugate of $蟻,$ Re$蟻$ is the real part of $蟻.$ If $C$ does not satisfy $C(蟻)=C(蟻^{\ast }),$ we can define a new coherence measure $C^{\prime }(蟻)=\frac{1}{2}[C(蟻)+C(蟻^{\ast })]$ such that $C^{\prime }(蟻)=C^{\prime }(蟻^{\ast }).$ We also establish some similar results for bosonic Gaussian states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06210v1-abstract-full').style.display = 'none'; document.getElementById('2404.06210v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13915">arXiv:2403.13915</a> <span> [<a href="https://arxiv.org/pdf/2403.13915">pdf</a>, <a href="https://arxiv.org/format/2403.13915">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> On scrambling, tomperature and superdiffusion in de Sitter space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Milekhin%2C+A">Alexey Milekhin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jiuci Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13915v1-abstract-short" style="display: inline;"> This paper investigates basic properties of the de Sitter static patch using simple two-point functions in the probe approximation. We find that de Sitter equilibrates in a superdiffusive manner, unlike most physical systems which equilibrate diffusively. We also examine the scrambling time. In de Sitter, the two-point functions of free fields do not decay for sometime because quanta can reflect o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13915v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13915v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13915v1-abstract-full" style="display: none;"> This paper investigates basic properties of the de Sitter static patch using simple two-point functions in the probe approximation. We find that de Sitter equilibrates in a superdiffusive manner, unlike most physical systems which equilibrate diffusively. We also examine the scrambling time. In de Sitter, the two-point functions of free fields do not decay for sometime because quanta can reflect off the pole of the static patch. This suggests a minimum scrambling time of the order $\log(1/G_N)$, even for perturbations introduced on the stretched horizon, indicating fast scrambling inside de Sitter static patch. We also discuss the interplay between thermodynamic temperature and inverse correlation time, sometimes called "tomperature". <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13915v1-abstract-full').style.display = 'none'; document.getElementById('2403.13915v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages + appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04980">arXiv:2403.04980</a> <span> [<a href="https://arxiv.org/pdf/2403.04980">pdf</a>, <a href="https://arxiv.org/format/2403.04980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Photonic simulation of Majorana-based Jones polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+J">Jia-Kun Li</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Ze-Yan Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+J">Jia-He Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+S">Si-Jing Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Pachos%2C+J+K">Jiannis K. Pachos</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+Y">Yong-Jian Han</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04980v2-abstract-short" style="display: inline;"> Jones polynomials were introduced as a tool to distinguish between topologically different links. Recently, they emerged as the central building block of topological quantum computation: by braiding non-Abelian anyons it is possible to realise quantum algorithms through the computation of Jones polynomials. So far, it has been a formidable task to evaluate Jones polynomials through the control and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04980v2-abstract-full').style.display = 'inline'; document.getElementById('2403.04980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04980v2-abstract-full" style="display: none;"> Jones polynomials were introduced as a tool to distinguish between topologically different links. Recently, they emerged as the central building block of topological quantum computation: by braiding non-Abelian anyons it is possible to realise quantum algorithms through the computation of Jones polynomials. So far, it has been a formidable task to evaluate Jones polynomials through the control and manipulation of non-Abelian anyons. In this study, a photonic quantum system employing two-photon correlations and non-dissipative imaginary-time evolution is utilized to simulate two inequivalent braiding operations of Majorana zero modes. The resulting amplitudes are shown to be mathematically equivalent to Jones polynomials at a particular value of their parameter. The high-fidelity of our optical platform allows us to distinguish between a wide range of links, such as Hopf links, Solomon links, Trefoil knots, Figure Eight knots and Borromean rings, through determining their corresponding Jones polynomials. Our photonic quantum simulator represents a significant step towards executing fault-tolerant quantum algorithms based on topological quantum encoding and manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04980v2-abstract-full').style.display = 'none'; document.getElementById('2403.04980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12999">arXiv:2402.12999</a> <span> [<a href="https://arxiv.org/pdf/2402.12999">pdf</a>, <a href="https://arxiv.org/format/2402.12999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust single divacancy defects near stacking faults in 4H-SiC under resonant excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=He%2C+Z">Zhen-Xuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Ji-Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+W">Wu-Xi Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+R">Rui-Jian Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jun-Feng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wen%2C+X">Xiao-Lei Wen</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Zhi-He Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+S">Shuo Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&query=You%2C+L">Li-Xing You</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12999v1-abstract-short" style="display: inline;"> Color centers in silicon carbide (SiC) have demonstrated significant promise for quantum information processing. However, the undesirable ionization process that occurs during optical manipulation frequently causes fluctuations in the charge state and performance of these defects, thereby restricting the effectiveness of spin-photon interfaces. Recent predictions indicate that divacancy defects ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12999v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12999v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12999v1-abstract-full" style="display: none;"> Color centers in silicon carbide (SiC) have demonstrated significant promise for quantum information processing. However, the undesirable ionization process that occurs during optical manipulation frequently causes fluctuations in the charge state and performance of these defects, thereby restricting the effectiveness of spin-photon interfaces. Recent predictions indicate that divacancy defects near stacking faults possess the capability to stabilize their neutral charge states, thereby providing robustness against photoionization effects. In this work, we present a comprehensive protocol for the scalable and targeted fabrication of single divacancy arrays in 4H-SiC using a high-resolution focused helium ion beam. Through photoluminescence emission (PLE) experiments, we demonstrate long-term emission stability with minimal linewidth shift ($\sim$ 50 MHz over 3 hours) for the single c-axis divacancies within stacking faults. By measuring the ionization rate for different polytypes of divacancies, we found that the divacancies within stacking faults are more robust against resonant excitation. Additionally, angle-resolved PLE spectra reveal their two resonant-transition lines with mutually orthogonal polarizations. Notably, the PLE linewidths are approximately 7 times narrower and the spin-coherent times are 6 times longer compared to divacancies generated via carbon-ion implantation. These findings highlight the immense potential of SiC divacancies for on-chip quantum photonics and the construction of efficient spin-to-photon interfaces, indicating a significant step forward in the development of quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12999v1-abstract-full').style.display = 'none'; document.getElementById('2402.12999v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06415">arXiv:2402.06415</a> <span> [<a href="https://arxiv.org/pdf/2402.06415">pdf</a>, <a href="https://arxiv.org/format/2402.06415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Many-body computing on Field Programmable Gate Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lv%2C+S">Songtai Lv</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yang Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Meng%2C+Y">Yuchen Meng</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+X">Xiaochen Yao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jincheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Q">Qibin Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06415v1-abstract-short" style="display: inline;"> A new implementation of many-body calculations is of paramount importance in the field of computational physics. In this study, we leverage the capabilities of Field Programmable Gate Arrays (FPGAs) for conducting quantum many-body calculations. Through the design of appropriate schemes for Monte Carlo and tensor network methods, we effectively utilize the parallel processing capabilities provided… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06415v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06415v1-abstract-full" style="display: none;"> A new implementation of many-body calculations is of paramount importance in the field of computational physics. In this study, we leverage the capabilities of Field Programmable Gate Arrays (FPGAs) for conducting quantum many-body calculations. Through the design of appropriate schemes for Monte Carlo and tensor network methods, we effectively utilize the parallel processing capabilities provided by FPGAs. This has resulted in a remarkable tenfold speedup compared to CPU-based computation for a Monte Carlo algorithm. We also demonstrate, for the first time, the utilization of FPGA to accelerate a typical tensor network algorithm. Our findings unambiguously highlight the significant advantages of hardware implementation and pave the way for novel approaches to many-body calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06415v1-abstract-full').style.display = 'none'; document.getElementById('2402.06415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13688">arXiv:2312.13688</a> <span> [<a href="https://arxiv.org/pdf/2312.13688">pdf</a>, <a href="https://arxiv.org/format/2312.13688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Parameter dependence of entanglement spectra in quantum field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+W">Wu-zhong Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13688v1-abstract-short" style="display: inline;"> In this paper, we explore the characteristics of reduced density matrix spectra in quantum field theories. Previous studies mainly focus on the function $\mathcal{P}(位):=\sum_i 未(位-位_i)$, where $位_i$ denote the eigenvalues of the reduced density matirx. We introduce a series of functions designed to capture the parameter dependencies of these spectra. These functions encompass information regardin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13688v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13688v1-abstract-full" style="display: none;"> In this paper, we explore the characteristics of reduced density matrix spectra in quantum field theories. Previous studies mainly focus on the function $\mathcal{P}(位):=\sum_i 未(位-位_i)$, where $位_i$ denote the eigenvalues of the reduced density matirx. We introduce a series of functions designed to capture the parameter dependencies of these spectra. These functions encompass information regarding the derivatives of eigenvalues concerning the parameters, notably including the function $\mathcal{P}_{伪_J}(位):=\sum_i \frac{\partial 位_i }{\partial 伪_J}未(位-位_i)$, where $伪_J$ denotes the specific parameter. Computation of these functions is achievable through the utilization of R茅nyi entropy. Intriguingly, we uncover compelling relationships among these functions and demonstrate their utility in constructing the eigenvalues of reduced density matrices for select cases. We perform computations of these functions across several illustrative examples. Specially, we conducted a detailed study of the variations of $\mathcal{P}(位)$ and $\mathcal{P}_{伪_J}(位)$ under general perturbation, elucidating their physical implications. In the context of holographic theory, we ascertain that the zero point of the function $\mathcal{P}_{伪_J}(位)$ possesses universality, determined as $位_0=e^{-S}$, where $S$ denotes the entanglement entropy of the reduced density matrix. Furthermore, we exhibit potential applications of these functions in analyzing the properties of entanglement entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13688v1-abstract-full').style.display = 'none'; document.getElementById('2312.13688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10660">arXiv:2312.10660</a> <span> [<a href="https://arxiv.org/pdf/2312.10660">pdf</a>, <a href="https://arxiv.org/format/2312.10660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic hybrid magnonic circuits based on spalled YIG thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jing Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Horn%2C+C">Connor Horn</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+Y">Yu Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xinhao Li</a>, <a href="/search/quant-ph?searchtype=author&query=Rosenmann%2C+D">Daniel Rosenmann</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+X">Xu Han</a>, <a href="/search/quant-ph?searchtype=author&query=Levy%2C+M">Miguel Levy</a>, <a href="/search/quant-ph?searchtype=author&query=Guha%2C+S">Supratik Guha</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10660v2-abstract-short" style="display: inline;"> Yttrium iron garnet (YIG) magnonics has sparked extensive research interests toward harnessing magnons (quasiparticles of collective spin excitation) for signal processing. In particular, YIG magnonics-based hybrid systems exhibit great potentials for quantum information science because of their wide frequency tunability and excellent compatibility with other platforms. However, the broad applicat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10660v2-abstract-full').style.display = 'inline'; document.getElementById('2312.10660v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10660v2-abstract-full" style="display: none;"> Yttrium iron garnet (YIG) magnonics has sparked extensive research interests toward harnessing magnons (quasiparticles of collective spin excitation) for signal processing. In particular, YIG magnonics-based hybrid systems exhibit great potentials for quantum information science because of their wide frequency tunability and excellent compatibility with other platforms. However, the broad application and scalability of thin-film YIG devices in the quantum regime has been severely limited due to the substantial microwave loss in the host substrate for YIG, gadolinium gallium garnet (GGG), at cryogenic temperatures. In this study, we demonstrate that substrate-free YIG thin films can be obtained by introducing the controlled spalling and layer transfer technology to YIG/GGG samples. Our approach is validated by measuring a hybrid device consisting of a superconducting resonator and a spalled YIG film, which gives a strong coupling feature indicating the good coherence of our system. This advancement paves the way for enhanced on-chip integration and the scalability of YIG-based quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10660v2-abstract-full').style.display = 'none'; document.getElementById('2312.10660v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08920">arXiv:2312.08920</a> <span> [<a href="https://arxiv.org/pdf/2312.08920">pdf</a>, <a href="https://arxiv.org/format/2312.08920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.032431">10.1103/PhysRevA.110.032431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A spectrum-based shortcut method for topological systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Mei%2C+F">Feng Mei</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Y">Yan-Qing Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08920v2-abstract-short" style="display: inline;"> The need for fast and robust quantum state transfer is an essential element in scalable quantum information processing, leading to widespread interest in shortcuts to adiabaticity for speeding up adiabatic quantum protocols. However, shortcuts to adiabaticity for systems with more than a few levels is occasionally challenging to compute in theory and frequently difficult to implement in experiment… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08920v2-abstract-full').style.display = 'inline'; document.getElementById('2312.08920v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08920v2-abstract-full" style="display: none;"> The need for fast and robust quantum state transfer is an essential element in scalable quantum information processing, leading to widespread interest in shortcuts to adiabaticity for speeding up adiabatic quantum protocols. However, shortcuts to adiabaticity for systems with more than a few levels is occasionally challenging to compute in theory and frequently difficult to implement in experiments. In this work, we develop a protocol for constructing shortcuts to adiabaticity through the multi-state Landau-Zener approach and a stricter adiabatic condition. Importantly, our protocol only requires a few pieces of information about the energy spectrum and just adjusts the evolutionary rate of the system. It means that our protocol has broad applicability to theoretical models and does not require increasing the difficulty of the experiment. As examples, we apply our protocol to state transfer in the two-level Landau-Zener model, the non-Hermitian Su-Schrieffer-Heeger (SSH) model and the topological Thouless pump model and find that it can speed up the manipulation speed while remaining robust to Hamiltonian errors. Furthermore, based on the experimental friendliness of our findings, it can potentially be extended to many-body systems, dissipation cases, or Floquet processes. Overall, the proposed shortcut protocol offers a promising avenue for enhancing the efficiency and reliability of quantum state transfer protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08920v2-abstract-full').style.display = 'none'; document.getElementById('2312.08920v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 032431 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03623">arXiv:2312.03623</a> <span> [<a href="https://arxiv.org/pdf/2312.03623">pdf</a>, <a href="https://arxiv.org/format/2312.03623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Revisiting Brownian SYK and its possible relations to de Sitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Milekhin%2C+A">Alexey Milekhin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jiuci Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03623v2-abstract-short" style="display: inline;"> We revisit Brownian Sachdev-Ye-Kitaev model and argue that it has emergent energy conservation overlooked in the literature before. We solve this model in the double-scaled regime and demonstrate hyperfast scrambling, exponential decay of correlation functions, bounded spectrum and unexpected factorization of higher-point functions. We comment on how these results are related to de Sitter holograp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03623v2-abstract-full').style.display = 'inline'; document.getElementById('2312.03623v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03623v2-abstract-full" style="display: none;"> We revisit Brownian Sachdev-Ye-Kitaev model and argue that it has emergent energy conservation overlooked in the literature before. We solve this model in the double-scaled regime and demonstrate hyperfast scrambling, exponential decay of correlation functions, bounded spectrum and unexpected factorization of higher-point functions. We comment on how these results are related to de Sitter holography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03623v2-abstract-full').style.display = 'none'; document.getElementById('2312.03623v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: updated references; v1: 1+20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17588">arXiv:2311.17588</a> <span> [<a href="https://arxiv.org/pdf/2311.17588">pdf</a>, <a href="https://arxiv.org/format/2311.17588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of edge states along a synthetic orbital angular momentum dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liao%2C+Y">Yu-Wei Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+M">Mu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hao-Qing Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Zhi-He Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+T">Tian-Xiang Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Z">Zong-Quan Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17588v1-abstract-short" style="display: inline;"> The synthetic dimension is a rising method to study topological physics, which enables us to implement high-dimensional physics in low-dimensional geometries. Photonic orbital angular momentum (OAM), a degree of freedom characterized by discrete yet unbounded, serves as a suitable synthetic dimension. However, a sharp boundary along a synthetic OAM dimension has not been demonstrated, dramatically… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17588v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17588v1-abstract-full" style="display: none;"> The synthetic dimension is a rising method to study topological physics, which enables us to implement high-dimensional physics in low-dimensional geometries. Photonic orbital angular momentum (OAM), a degree of freedom characterized by discrete yet unbounded, serves as a suitable synthetic dimension. However, a sharp boundary along a synthetic OAM dimension has not been demonstrated, dramatically limiting the investigation of topological edge effects in an open boundary lattice system. In this work, we make a sharp boundary along a Floquet Su-Schrieffer-Heeger OAM lattice and form approximate semi-infinite lattices by drilling a pinhole on the optical elements in a cavity. The band structures with zero ($\pm蟺$) energy boundary states are measured directly, benefiting from the spectra detection of the cavity. Moreover, we obtain the edge modes moving from the gap to the bulk by dynamically changing the boundary phase, and we reveal that interference near the surface leads to spectrum discretization. Our work provides a new perspective to observe edge effects and explore practical photonics tools. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17588v1-abstract-full').style.display = 'none'; document.getElementById('2311.17588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12547">arXiv:2311.12547</a> <span> [<a href="https://arxiv.org/pdf/2311.12547">pdf</a>, <a href="https://arxiv.org/ps/2311.12547">ps</a>, <a href="https://arxiv.org/format/2311.12547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2024.130024">10.1016/j.physleta.2024.130024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying the imaginarity of quantum states via Tsallis relative entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jianwei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12547v1-abstract-short" style="display: inline;"> It is a fundamental question that why quantum mechanics uses complex numbers instead of only real numbers. To address this topic, recently, a rigorous resource theory for the imaginarity of quantum states were established, and several imaginarity measures were proposed. In this work, we propose a new imaginarity measure based on the Tsallis relative entropy. This imaginarity measure has explicit e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12547v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12547v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12547v1-abstract-full" style="display: none;"> It is a fundamental question that why quantum mechanics uses complex numbers instead of only real numbers. To address this topic, recently, a rigorous resource theory for the imaginarity of quantum states were established, and several imaginarity measures were proposed. In this work, we propose a new imaginarity measure based on the Tsallis relative entropy. This imaginarity measure has explicit expression, and also, it is computable for bosonic Gaussian states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12547v1-abstract-full').style.display = 'none'; document.getElementById('2311.12547v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure. Any comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A 528 (2024) 130024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12389">arXiv:2310.12389</a> <span> [<a href="https://arxiv.org/pdf/2310.12389">pdf</a>, <a href="https://arxiv.org/format/2310.12389">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computing for MIMO Beam Selection Problem: Model and Optical Experimental Solution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yuhong Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+W">Wenxin Li</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+C">Chengkang Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Hou%2C+S">Shuai Hou</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+X">Xian Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+C">Chunfeng Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Wen%2C+J">Jingwei Wen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jiaqi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cao%2C+C">Chongyu Cao</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Y">Yin Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+H">Hai Wei</a>, <a href="/search/quant-ph?searchtype=author&query=Wen%2C+K">Kai Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12389v2-abstract-short" style="display: inline;"> Massive multiple-input multiple-output (MIMO) has gained widespread popularity in recent years due to its ability to increase data rates, improve signal quality, and provide better coverage in challenging environments. In this paper, we investigate the MIMO beam selection (MBS) problem, which is proven to be NP-hard and computationally intractable. To deal with this problem, quantum computing that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12389v2-abstract-full').style.display = 'inline'; document.getElementById('2310.12389v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12389v2-abstract-full" style="display: none;"> Massive multiple-input multiple-output (MIMO) has gained widespread popularity in recent years due to its ability to increase data rates, improve signal quality, and provide better coverage in challenging environments. In this paper, we investigate the MIMO beam selection (MBS) problem, which is proven to be NP-hard and computationally intractable. To deal with this problem, quantum computing that can provide faster and more efficient solutions to large-scale combinatorial optimization is considered. MBS is formulated in a quadratic unbounded binary optimization form and solved with Coherent Ising Machine (CIM) physical machine. We compare the performance of our solution with two classic heuristics, simulated annealing and Tabu search. The results demonstrate an average performance improvement by a factor of 261.23 and 20.6, respectively, which shows that CIM-based solution performs significantly better in terms of selecting the optimal subset of beams. This work shows great promise for practical 5G operation and promotes the application of quantum computing in solving computationally hard problems in communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12389v2-abstract-full').style.display = 'none'; document.getElementById('2310.12389v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE Globecom 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.16972">arXiv:2309.16972</a> <span> [<a href="https://arxiv.org/pdf/2309.16972">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/s2010324723500133">10.1142/s2010324723500133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Quantum States Preparation Method Based on Difference-Driven Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wenjie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jing Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+B">Bosi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.16972v1-abstract-short" style="display: inline;"> Due to the large state space of the two-qubit system, and the adoption of ladder reward function in the existing quantum state preparation methods, the convergence speed is slow and it is difficult to prepare the desired target quantum state with high fidelity under limited conditions. To solve the above problems, a difference-driven reinforcement learning (RL) algorithm for quantum state preparat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16972v1-abstract-full').style.display = 'inline'; document.getElementById('2309.16972v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.16972v1-abstract-full" style="display: none;"> Due to the large state space of the two-qubit system, and the adoption of ladder reward function in the existing quantum state preparation methods, the convergence speed is slow and it is difficult to prepare the desired target quantum state with high fidelity under limited conditions. To solve the above problems, a difference-driven reinforcement learning (RL) algorithm for quantum state preparation of two-qubit system is proposed by improving the reward function and action selection strategy. Firstly, a model is constructed for the problem of preparing quantum states of a two-qubit system, with restrictions on the type of quantum gates and the time for quantum state evolution. In the preparation process, a weighted differential dynamic reward function is designed to assist the algorithm quickly obtain the maximum expected cumulative reward. Then, an adaptive e-greedy action selection strategy is adopted to achieve a balance between exploration and utilization to a certain extent, thereby improving the fidelity of the final quantum state. The simulation results show that the proposed algorithm can prepare quantum state with high fidelity under limited conditions. Compared with other algorithms, it has different degrees of improvement in convergence speed and fidelity of the final quantum state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16972v1-abstract-full').style.display = 'none'; document.getElementById('2309.16972v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SPIN, 2023.13(03):p.2350013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13334">arXiv:2308.13334</a> <span> [<a href="https://arxiv.org/pdf/2308.13334">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamics Investigation of the quantum-control-assisted multipartite uncertainty relation in Heisenberg model with Dzyaloshinski-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jie Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+X">Xiao Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+A">Ai-Ling Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Guo-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13334v1-abstract-short" style="display: inline;"> Recently, Zheng constructs a quantum-control-assisted multipartite variance-based uncertainty relation, which successfully extends the conditional uncertainty relation to the multipartite case [Annalen der physik, 533, 2100014 (2021)]. We here investigate the dynamics of the new uncertainty relation in the Heisenberg system with the Dzyaloshinski-Moriya interaction. It is found that, different fro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13334v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13334v1-abstract-full" style="display: none;"> Recently, Zheng constructs a quantum-control-assisted multipartite variance-based uncertainty relation, which successfully extends the conditional uncertainty relation to the multipartite case [Annalen der physik, 533, 2100014 (2021)]. We here investigate the dynamics of the new uncertainty relation in the Heisenberg system with the Dzyaloshinski-Moriya interaction. It is found that, different from entanglement, the mixedness of the system has an interesting single-valued relationship with the tightness and lower bound of the uncertainty relation. This single-valued relationship indicates that the tightness and lower bound of the uncertainty relation can be written as the functional form of the mixedness. Moreover, the single-valued relationship with the mixedness is the common nature of conditional uncertainty relations, and has no relationship with the form of the uncertainty relations. Also, the comparison between the new conditional variance-based uncertainty relation and the existing entropic one has been made. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13334v1-abstract-full').style.display = 'none'; document.getElementById('2308.13334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Scr. 98 (2023) 065106 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11115">arXiv:2308.11115</a> <span> [<a href="https://arxiv.org/pdf/2308.11115">pdf</a>, <a href="https://arxiv.org/format/2308.11115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Exploring Parity Magnetic Effects through Experimental Simulation with Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Y">Yan-Qing Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jianwen Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+W">Wen Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Lan%2C+D">Dong Lan</a>, <a href="/search/quant-ph?searchtype=author&query=Palumbo%2C+G">Giandomenico Palumbo</a>, <a href="/search/quant-ph?searchtype=author&query=Goldman%2C+N">Nathan Goldman</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+S">Shi-Liang Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+X">Xinsheng Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z+D">Z. D. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Y">Yang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11115v1-abstract-short" style="display: inline;"> We present the successful realization of four-dimensional (4D) semimetal bands featuring tensor monopoles, achieved using superconducting quantum circuits. Our experiment involves the creation of a highly tunable diamond energy diagram with four coupled transmons, and the parametric modulation of their tunable couplers, effectively mapping momentum space to parameter space. This approach enables u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11115v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11115v1-abstract-full" style="display: none;"> We present the successful realization of four-dimensional (4D) semimetal bands featuring tensor monopoles, achieved using superconducting quantum circuits. Our experiment involves the creation of a highly tunable diamond energy diagram with four coupled transmons, and the parametric modulation of their tunable couplers, effectively mapping momentum space to parameter space. This approach enables us to establish a 4D Dirac-like Hamiltonian with fourfold degenerate points. Moreover, we manipulate the energy of tensor monopoles by introducing an additional pump microwave field, generating effective magnetic and pseudo-electric fields and simulating topological parity magnetic effects emerging from the parity anomaly. Utilizing non-adiabatic response methods, we measure the fractional second Chern number for a Dirac valley with a varying mass term, signifying a nontrivial topological phase transition connected to a 5D Yang monopole. Our work lays the foundation for further investigations into higher-dimensional topological states of matter and enriches our comprehension of topological phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11115v1-abstract-full').style.display = 'none'; document.getElementById('2308.11115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14116">arXiv:2307.14116</a> <span> [<a href="https://arxiv.org/pdf/2307.14116">pdf</a>, <a href="https://arxiv.org/ps/2307.14116">ps</a>, <a href="https://arxiv.org/format/2307.14116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.062203">10.1103/PhysRevA.108.062203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaginarity of Gaussian states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jianwei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14116v1-abstract-short" style="display: inline;"> It has been a long-standing debate that why quantum mechanics uses complex numbers but not only real numbers. To address this topic, in recent years, the imaginarity theory has been developed in the way of quantum resource theory. However, the existing imaginarity theory mainly focuses on the quantum systems with finite dimensions. Gaussian states are widely used in many fields of quantum physics,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14116v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14116v1-abstract-full" style="display: none;"> It has been a long-standing debate that why quantum mechanics uses complex numbers but not only real numbers. To address this topic, in recent years, the imaginarity theory has been developed in the way of quantum resource theory. However, the existing imaginarity theory mainly focuses on the quantum systems with finite dimensions. Gaussian states are widely used in many fields of quantum physics, but they are in the quantum systems with infinite dimensions. In this paper we establish a resource theory of imaginarity for bosonic Gaussian states. To do so, under the Fock basis, we determine the real Gaussian states and real Gaussian channels in terms of the means and covariance matrices of Gaussian states. Also, we provide two imaginary measures for Gaussian states based on the fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14116v1-abstract-full').style.display = 'none'; document.getElementById('2307.14116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 108, 062203 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08462">arXiv:2307.08462</a> <span> [<a href="https://arxiv.org/pdf/2307.08462">pdf</a>, <a href="https://arxiv.org/format/2307.08462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/PRJ.463829">10.1364/PRJ.463829 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental verification of a coherence factorization law for quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Cheng-Jie Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zheng-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Shao%2C+J">Jian-Wei Shao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08462v1-abstract-short" style="display: inline;"> As a quantum resource, quantum coherence plays an important role in modern physics. Many coherence measures and their relations with entanglement have been proposed, and the dynamics of entanglement has been experimentally studied. However, the knowledge of general results for coherence dynamics in open systems is limited. Here we propose a coherence factorization law, which describes the evolutio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08462v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08462v1-abstract-full" style="display: none;"> As a quantum resource, quantum coherence plays an important role in modern physics. Many coherence measures and their relations with entanglement have been proposed, and the dynamics of entanglement has been experimentally studied. However, the knowledge of general results for coherence dynamics in open systems is limited. Here we propose a coherence factorization law, which describes the evolution of coherence passing through any noisy channels characterized by genuinely incoherent operations. We use photons to implement the quantum operations and experimentally verify the law for qubits and qutrits. Our work is a step toward the understanding of the evolution of coherence when the system interacts with the environment, and will boost the study of more general laws of coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08462v1-abstract-full').style.display = 'none'; document.getElementById('2307.08462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures. (c) 2022 Chinese Laser Press. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photon. Res. 10, 2172 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12299">arXiv:2306.12299</a> <span> [<a href="https://arxiv.org/pdf/2306.12299">pdf</a>, <a href="https://arxiv.org/format/2306.12299">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-44496-1">10.1038/s41467-023-44496-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Iyama%2C+D">Daisuke Iyama</a>, <a href="/search/quant-ph?searchtype=author&query=Kamiya%2C+T">Takahiko Kamiya</a>, <a href="/search/quant-ph?searchtype=author&query=Fujii%2C+S">Shiori Fujii</a>, <a href="/search/quant-ph?searchtype=author&query=Mukai%2C+H">Hiroto Mukai</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yu Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Nagase%2C+T">Toshiaki Nagase</a>, <a href="/search/quant-ph?searchtype=author&query=Tomonaga%2C+A">Akiyoshi Tomonaga</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+J">Jiao-Jiao Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Watabe%2C+S">Shohei Watabe</a>, <a href="/search/quant-ph?searchtype=author&query=Kwon%2C+S">Sangil Kwon</a>, <a href="/search/quant-ph?searchtype=author&query=Tsai%2C+J">Jaw-Shen Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12299v4-abstract-short" style="display: inline;"> Quantum tunneling is the phenomenon that makes superconducting circuits "quantum". Recently, there has been a renewed interest in using quantum tunneling in phase space of a Kerr parametric oscillator as a resource for quantum information processing. Here, we report a direct observation of quantum interference induced by such tunneling in a planar superconducting circuit through Wigner tomography.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12299v4-abstract-full').style.display = 'inline'; document.getElementById('2306.12299v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12299v4-abstract-full" style="display: none;"> Quantum tunneling is the phenomenon that makes superconducting circuits "quantum". Recently, there has been a renewed interest in using quantum tunneling in phase space of a Kerr parametric oscillator as a resource for quantum information processing. Here, we report a direct observation of quantum interference induced by such tunneling in a planar superconducting circuit through Wigner tomography. We experimentally elucidate all essential properties of this quantum interference, such as mapping from Fock states to cat states, a temporal oscillation due to the pump detuning, as well as its characteristic Rabi oscillations and Ramsey fringes. Finally, we perform gate operations as manipulations of the observed quantum interference. Our findings lay the groundwork for further studies on quantum properties of superconducting Kerr parametric oscillators and their use in quantum information technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12299v4-abstract-full').style.display = 'none'; document.getElementById('2306.12299v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 86 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09326">arXiv:2306.09326</a> <span> [<a href="https://arxiv.org/pdf/2306.09326">pdf</a>, <a href="https://arxiv.org/ps/2306.09326">ps</a>, <a href="https://arxiv.org/format/2306.09326">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Instantaneous nonlocal quantum computation and circuit depth reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yu%2C+L">Li Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jie Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+F">Fuqun Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+C">Chui-Ping Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09326v2-abstract-short" style="display: inline;"> Instantaneous two-party quantum computation is a computation process with bipartite input and output, in which there are initial shared entanglement, and the nonlocal interactions are limited to simultaneous classical communication in both directions. It is almost equivalent to the problem of instantaneous measurements, and is related to some topics in quantum foundations and position-based quantu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09326v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09326v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09326v2-abstract-full" style="display: none;"> Instantaneous two-party quantum computation is a computation process with bipartite input and output, in which there are initial shared entanglement, and the nonlocal interactions are limited to simultaneous classical communication in both directions. It is almost equivalent to the problem of instantaneous measurements, and is related to some topics in quantum foundations and position-based quantum cryptography. In the first part of this work, we show that a particular simplified subprocedure, known as a garden-hose gadget, cannot significantly reduce the entanglement cost in instantaneous two-party quantum computation. In the second part, we show that any unitary circuit consisting of layers of Clifford gates and T gates can be implemented using a circuit with measurements (or a unitary circuit) of depth proportional to the T-depth of the original circuit. This result has some similarity with and also some difference from a result in measurement-based quantum computation. It is of limited use since interesting quantum algorithms often require a high ratio of T gates, but still we discuss its extensions and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09326v2-abstract-full').style.display = 'none'; document.getElementById('2306.09326v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages. Revised Sec. 3 and the last part of Sec. 4</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11114">arXiv:2305.11114</a> <span> [<a href="https://arxiv.org/pdf/2305.11114">pdf</a>, <a href="https://arxiv.org/ps/2305.11114">ps</a>, <a href="https://arxiv.org/format/2305.11114">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum linear polynomial evaluation based on XOR oblivious transfer compatible with classical partially homomorphic encryption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yu%2C+L">Li Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jie Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+F">Fuqun Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+C">Chui-Ping Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11114v5-abstract-short" style="display: inline;"> XOR oblivious transfer is a universal cryptographic primitive that can be related to linear polynomial evaluation. We firstly introduce some bipartite quantum protocols for XOR oblivious transfer, which are not secure if one party cheats, and some of them can be combined with a classical XOR homomorphic encryption scheme for evaluation of linear polynomials modulo 2 with hybrid security. We then i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11114v5-abstract-full').style.display = 'inline'; document.getElementById('2305.11114v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11114v5-abstract-full" style="display: none;"> XOR oblivious transfer is a universal cryptographic primitive that can be related to linear polynomial evaluation. We firstly introduce some bipartite quantum protocols for XOR oblivious transfer, which are not secure if one party cheats, and some of them can be combined with a classical XOR homomorphic encryption scheme for evaluation of linear polynomials modulo 2 with hybrid security. We then introduce a general protocol using modified versions of the XOR oblivious transfer protocols to evaluate linear polynomials modulo 2 with partial information-theoretic security. When combined with the ability to perform arbitrary quantum computation, this would lead to deterministic interactive two-party computation which is quite secure in the information-theoretic sense when the allowed set of inputs is large. For the task of classical function evaluation, although the quantum computation approach is still usable, we also discuss purely classical post-processing methods based on the proposed linear polynomial evaluation protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11114v5-abstract-full').style.display = 'none'; document.getElementById('2305.11114v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages. Added the current Protocols 2 and 3, and removed the previous Section IV since it is no longer needed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03244">arXiv:2305.03244</a> <span> [<a href="https://arxiv.org/pdf/2305.03244">pdf</a>, <a href="https://arxiv.org/format/2305.03244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00568">10.1021/acs.nanolett.3c00568 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmonic-enhanced bright single spin defects in silicon carbide membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Ji-Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Zhi-He Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+W">Wu-Xi Lin</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Z">Zhen-Xuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+R">Rui-Jian Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+L">Liping Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&query=You%2C+L">Lixing You</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03244v1-abstract-short" style="display: inline;"> Optically addressable spin defects in silicon carbide (SiC) have emerged as attractable platforms for various quantum technologies. However, the low photon count rate significantly limits their applications. We strongly enhanced the brightness by 7 times and spin-control strength by 14 times of single divacancy defects in 4H-SiC membranes using surface plasmon generated by gold film coplanar waveg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03244v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03244v1-abstract-full" style="display: none;"> Optically addressable spin defects in silicon carbide (SiC) have emerged as attractable platforms for various quantum technologies. However, the low photon count rate significantly limits their applications. We strongly enhanced the brightness by 7 times and spin-control strength by 14 times of single divacancy defects in 4H-SiC membranes using surface plasmon generated by gold film coplanar waveguides. The mechanism of the plasmonic-enhanced effect is further studied by tuning the distance between single defects and the surface of the gold film. A three-energy-level model is used to determine the corresponding transition rates consistent with the enhanced brightness of single defects. Lifetime measurements also verified the coupling between defects and surface plasmons. Our scheme is low-cost, without complicated microfabrication and delicate structures, which is applicable for other spin defects in different materials. This work would promote developing spin defect-based quantum applications in mature SiC materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03244v1-abstract-full').style.display = 'none'; document.getElementById('2305.03244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12240">arXiv:2304.12240</a> <span> [<a href="https://arxiv.org/pdf/2304.12240">pdf</a>, <a href="https://arxiv.org/format/2304.12240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Gaussian Boson Sampling with Pseudo-Photon-Number Resolving Detectors and Quantum Computational Advantage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Deng%2C+Y">Yu-Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+Y">Yi-Chao Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Hua-Liang Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+S">Si-Qiu Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Su%2C+H">Hao Su</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zhi-Jiong Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao-Yang Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+M">Meng-Hao Jia</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jia-Min Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+J">Jian Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Peng%2C+L">Li-Chao Peng</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+J">Jiarong Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+Y">Yi Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jia Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yuxuan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yaojian Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Gan%2C+L">Lin Gan</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+G">Guangwen Yang</a>, <a href="/search/quant-ph?searchtype=author&query=You%2C+L">Lixing You</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+L">Li Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+H">Han-Sen Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui Wang</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12240v3-abstract-short" style="display: inline;"> We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12240v3-abstract-full').style.display = 'inline'; document.getElementById('2304.12240v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12240v3-abstract-full" style="display: none;"> We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical mockups. Estimating with the best classical algorithms to date, generating a single ideal sample from the same distribution on the supercomputer Frontier would take ~ 600 years using exact methods, whereas our quantum computer, Jiuzhang 3.0, takes only 1.27 us to produce a sample. Generating the hardest sample from the experiment using an exact algorithm would take Frontier ~ 3.1*10^10 years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12240v3-abstract-full').style.display = 'none'; document.getElementById('2304.12240v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRL 2023 to appear</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09028">arXiv:2304.09028</a> <span> [<a href="https://arxiv.org/pdf/2304.09028">pdf</a>, <a href="https://arxiv.org/ps/2304.09028">ps</a>, <a href="https://arxiv.org/format/2304.09028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2023.129049">10.1016/j.physleta.2023.129049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying the phase of quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jianwei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09028v1-abstract-short" style="display: inline;"> Phase is a basic ingredient for quantum states since quantum mechanics uses complex numbers to describe quantum states. In this letter, we introduce a rigorous framework to quantify the phase of quantum states. To do so, we regard phase as a quantum resource, and specify the free states and free operations. We determine the conditions a phase measure should satisfy and provide some phase measures.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09028v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09028v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09028v1-abstract-full" style="display: none;"> Phase is a basic ingredient for quantum states since quantum mechanics uses complex numbers to describe quantum states. In this letter, we introduce a rigorous framework to quantify the phase of quantum states. To do so, we regard phase as a quantum resource, and specify the free states and free operations. We determine the conditions a phase measure should satisfy and provide some phase measures. We also propose the notion of intrinsic phase for quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09028v1-abstract-full').style.display = 'none'; document.getElementById('2304.09028v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. Any comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A 482 (2023) 129049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04210">arXiv:2304.04210</a> <span> [<a href="https://arxiv.org/pdf/2304.04210">pdf</a>, <a href="https://arxiv.org/format/2304.04210">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Filtering one-way Einstein-Podolsky-Rosen steering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">Ze-Yan Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+J">Jia-Kun Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xiang%2C+Y">Yu Xiang</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Q">Qiong-Yi He</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zheng-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+M">Mu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04210v3-abstract-short" style="display: inline;"> Einstein-Podolsky-Rosen (EPR) steering, a fundamental concept of quantum nonlocality, describes one observer's capability to remotely affect another distant observer's state by local measurements. Unlike quantum entanglement and Bell nonlocality, both associated with the symmetric quantum correlation, EPR steering depicts the unique asymmetric property of quantum nonlocality. With the local filter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04210v3-abstract-full').style.display = 'inline'; document.getElementById('2304.04210v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04210v3-abstract-full" style="display: none;"> Einstein-Podolsky-Rosen (EPR) steering, a fundamental concept of quantum nonlocality, describes one observer's capability to remotely affect another distant observer's state by local measurements. Unlike quantum entanglement and Bell nonlocality, both associated with the symmetric quantum correlation, EPR steering depicts the unique asymmetric property of quantum nonlocality. With the local filter operation in which some system components are discarded, quantum nonlocality can be distilled to enhance the nonlocal correlation, and even the hidden nonlocality can be activated. However, asymmetric quantum nonlocality in the filter operation still lacks a well-rounded investigation, especially considering the discarded parts where quantum nonlocal correlations may still exist with probabilities. Here, in both theory and experiment, we investigate the effect of reusing the discarded particles from local filter. We observe all configurations of EPR steering simultaneously and other intriguing evolution of asymmetric quantum nonlocality, such as reversing the direction of one-way EPR steering. This work provides a perspective to answer "What is the essential role of utilizing quantum steering as a resource?", and demonstrates a practical toolbox for manipulating asymmetric quantum systems with significant potential applications in quantum information tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04210v3-abstract-full').style.display = 'none'; document.getElementById('2304.04210v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11pages, 6figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00236">arXiv:2304.00236</a> <span> [<a href="https://arxiv.org/pdf/2304.00236">pdf</a>, <a href="https://arxiv.org/format/2304.00236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.042608">10.1103/PhysRevA.107.042608 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstructing the multiphoton spatial wave function with coincidence wavefront sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+M">Mu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Liao%2C+Y">Yu-Wei Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00236v3-abstract-short" style="display: inline;"> The quantum wave function of multiple particles provides additional information which is inaccessible to detectors working alone. Here, we introduce the coincidence wavefront sensing (CWS) method to reconstruct the phase of the multiphoton transverse spatial wave function. The spatially resolved coincidence photon counting is involved. Numerical simulations of two-photon cases using the weak measu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00236v3-abstract-full').style.display = 'inline'; document.getElementById('2304.00236v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00236v3-abstract-full" style="display: none;"> The quantum wave function of multiple particles provides additional information which is inaccessible to detectors working alone. Here, we introduce the coincidence wavefront sensing (CWS) method to reconstruct the phase of the multiphoton transverse spatial wave function. The spatially resolved coincidence photon counting is involved. Numerical simulations of two-photon cases using the weak measurement wavefront sensor are performed to test its correctness, and the phase information hidden in the correlation are revealed. Our work provides a direct spatial way to characterize multipartite quantum systems, and leads to fundamental studies like experimental Bohmian mechanics and applications in quantum optical technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00236v3-abstract-full').style.display = 'none'; document.getElementById('2304.00236v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Note for the third version (v3): After publication, we found the author names of the 22nd reference was misspelled, and the experimental setup of another referring letter was misinterpreted in the main text. So we corrected the names of the 22nd reference and removed the 46th reference along with its description in the main text. (c) 2023 American Physical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 107, 042608 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17223">arXiv:2303.17223</a> <span> [<a href="https://arxiv.org/pdf/2303.17223">pdf</a>, <a href="https://arxiv.org/format/2303.17223">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental super-Heisenberg quantum metrology with indefinite gate order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yin%2C+P">Peng Yin</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+X">Xiaobin Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Yuxiang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Y">Yu Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+W">Wen-Hao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+G">Gong-Chu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+Y">Yong-Jian Han</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+B">Bi-Heng Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Chiribella%2C+G">Giulio Chiribella</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Geng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17223v1-abstract-short" style="display: inline;"> The precision of quantum metrology is widely believed to be restricted by the Heisenberg limit, corresponding to a root mean square error that is inversely proportional to the number of independent processes probed in an experiment, N. In the past, some proposals have challenged this belief, for example using non-linear interactions among the probes. However, these proposals turned out to still ob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17223v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17223v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17223v1-abstract-full" style="display: none;"> The precision of quantum metrology is widely believed to be restricted by the Heisenberg limit, corresponding to a root mean square error that is inversely proportional to the number of independent processes probed in an experiment, N. In the past, some proposals have challenged this belief, for example using non-linear interactions among the probes. However, these proposals turned out to still obey the Heisenberg limit with respect to other relevant resources, such as the total energy of the probes. Here, we present a photonic implementation of a quantum metrology protocol surpassing the Heisenberg limit by probing two groups of independent processes in a superposition of two alternative causal orders. Each process creates a phase space displacement, and our setup is able to estimate a geometric phase associated to two sets of N displacements with an error that falls quadratically with N. Our results only require a single-photon probe with an initial energy that is independent of N. Using a superposition of causal orders outperforms every setup where the displacements are probed in a definite order. Our experiment features the demonstration of indefinite causal order in a continuous-variable system, and opens up the experimental investigation of quantum metrology setups boosted by indefinite causal order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17223v1-abstract-full').style.display = 'none'; document.getElementById('2303.17223v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05187">arXiv:2303.05187</a> <span> [<a href="https://arxiv.org/pdf/2303.05187">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-022-01063-5">10.1038/s41377-022-01063-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of separating the waveparticle duality of a single photon with the quantum Cheshire cat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+J">JiaKun Li</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+Z">ZeYan Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">ZhengHao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+X">XingYan Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">JingLing Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">JinShi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">ChuanFeng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">GuangCan Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05187v1-abstract-short" style="display: inline;"> As a fundamental characteristic of physical entities, waveparticle duality describes whether a microscopic entity exhibits wave or particle attributes depending on the specific experimental setup. This assumption is premised on the notion that physical properties are inseparable from the objective carrier. However, after the concept of the quantum Cheshire cats was proposed, which makes the separa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05187v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05187v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05187v1-abstract-full" style="display: none;"> As a fundamental characteristic of physical entities, waveparticle duality describes whether a microscopic entity exhibits wave or particle attributes depending on the specific experimental setup. This assumption is premised on the notion that physical properties are inseparable from the objective carrier. However, after the concept of the quantum Cheshire cats was proposed, which makes the separation of physical attributes from the entity possible, the premise no longer holds. Furthermore, an experimental demonstration of the separation of the wave and particle attributes inspired by this scenario remains scarce. In this work, we experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept for the first time. By applying a weak disturbance to the evolution of the system, we achieve an effect similar to the quantum Cheshire cat and demonstrated the separation of the wave and particle attributes via the extraction of weak values. Our work provides a new perspective for the indepth understanding of waveparticle duality and promotes the application of weak measurements in fundamentals of quantum mechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05187v1-abstract-full').style.display = 'none'; document.getElementById('2303.05187v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,4 figures, published in Light: Science & Applications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light Sci Appl 12, 18 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00940">arXiv:2302.00940</a> <span> [<a href="https://arxiv.org/pdf/2302.00940">pdf</a>, <a href="https://arxiv.org/format/2302.00940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.070801">10.1103/PhysRevLett.130.070801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconditional and robust quantum metrological advantage beyond NOON states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qin%2C+J">Jian Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+Y">Yu-Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+H">Han-Sen Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Peng%2C+L">Li-Chao Peng</a>, <a href="/search/quant-ph?searchtype=author&query=Su%2C+H">Hao Su</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Y">Yi-Han Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jia-Min Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+D">Dian Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+S">Si-Qiu Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Hua-Liang Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+L">Li Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+N">Nai-Le Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00940v2-abstract-short" style="display: inline;"> Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multi-photon entangled NOON states can in principle beat the shot-noise limit and reach the Heisenberg limit, high NOON states are difficult to prepare and fragile to photon loss which hinders it from reaching unconditional quantum metrological advantages. Here, we comb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00940v2-abstract-full').style.display = 'inline'; document.getElementById('2302.00940v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00940v2-abstract-full" style="display: none;"> Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multi-photon entangled NOON states can in principle beat the shot-noise limit and reach the Heisenberg limit, high NOON states are difficult to prepare and fragile to photon loss which hinders it from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-NOON states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-to-use of our method make it applicable in practical quantum metrology at low photon flux regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00940v2-abstract-full').style.display = 'none'; document.getElementById('2302.00940v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published, with an independent and simultaneous submission on arXiv:2111.09756</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00936">arXiv:2302.00936</a> <span> [<a href="https://arxiv.org/pdf/2302.00936">pdf</a>, <a href="https://arxiv.org/format/2302.00936">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.190601">10.1103/PhysRevLett.130.190601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solving Graph Problems Using Gaussian Boson Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Deng%2C+Y">Yu-Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+S">Si-Qiu Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+Y">Yi-Chao Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zhi-Jiong Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Hua-Liang Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Su%2C+H">Hao Su</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao-Yang Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jia-Min Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+M">Meng-Hao Jia</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+H">Han-Sen Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+J">Jiarong Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+Y">Yi Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J">Jia Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+W">Wei-Jun Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=You%2C+L">Lixing You</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+L">Li Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+N">Nai-Le Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00936v2-abstract-short" style="display: inline;"> Gaussian boson sampling (GBS) is not only a feasible protocol for demonstrating quantum computational advantage, but also mathematically associated with certain graph-related and quantum chemistry problems. In particular, it is proposed that the generated samples from the GBS could be harnessed to enhance the classical stochastic algorithms in searching some graph features. Here, we use Jiuzhang,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00936v2-abstract-full').style.display = 'inline'; document.getElementById('2302.00936v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00936v2-abstract-full" style="display: none;"> Gaussian boson sampling (GBS) is not only a feasible protocol for demonstrating quantum computational advantage, but also mathematically associated with certain graph-related and quantum chemistry problems. In particular, it is proposed that the generated samples from the GBS could be harnessed to enhance the classical stochastic algorithms in searching some graph features. Here, we use Jiuzhang, a noisy intermediate-scale quantum computer, to solve graph problems. The samples are generated from a 144-mode fully-connected photonic processor, with photon-click up to 80 in the quantum computational advantage regime. We investigate the open question of whether the GBS enhancement over the classical stochastic algorithms persists -- and how it scales -- with an increasing system size on noisy quantum devices in the computationally interesting regime. We experimentally observe the presence of GBS enhancement with large photon-click number and a robustness of the enhancement under certain noise. Our work is a step toward testing real-world problems using the existing noisy intermediate-scale quantum computers, and hopes to stimulate the development of more efficient classical and quantum-inspired algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00936v2-abstract-full').style.display = 'none'; document.getElementById('2302.00936v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16336">arXiv:2211.16336</a> <span> [<a href="https://arxiv.org/pdf/2211.16336">pdf</a>, <a href="https://arxiv.org/format/2211.16336">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.263602">10.1103/PhysRevLett.129.263602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hong-Ou-Mandel Interference between Two Hyper-Entangled Photons Enables Observation of Symmetric and Anti-Symmetric Particle Exchange Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhi-Feng Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+C">Chao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jia-Min Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+Z">Zi-Mo Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/quant-ph?searchtype=author&query=Dong%2C+B">Bo-Wen Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Lou%2C+Y">Yan-Chao Lou</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Yu-Xiang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+S">Shu-Tian Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhi-Hong Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+W">Wen-Zheng Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16336v1-abstract-short" style="display: inline;"> Two-photon Hong-Ou-Mandel (HOM) interference is a fundamental quantum effect with no classical counterpart. The exiting researches on two-photon interference were mainly limited in one degree of freedom (DoF), hence it is still a challenge to realize the quantum interference in multiple DoFs. Here we demonstrate the HOM interference between two hyper-entangled photons in two DoFs of polarization a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16336v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16336v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16336v1-abstract-full" style="display: none;"> Two-photon Hong-Ou-Mandel (HOM) interference is a fundamental quantum effect with no classical counterpart. The exiting researches on two-photon interference were mainly limited in one degree of freedom (DoF), hence it is still a challenge to realize the quantum interference in multiple DoFs. Here we demonstrate the HOM interference between two hyper-entangled photons in two DoFs of polarization and orbital angular momentum (OAM) for all the sixteen hyper-entangled Bell states. We observe hyper-entangled two-photon interference with bunching effect for ten symmetric states (nine Boson-Boson states, one Fermion-Fermion state) and anti-bunching effect for six anti-symmetric states (three Boson-Fermion states, three Fermion-Boson states). More interestingly, expanding the Hilbert space by introducing an extra DoF for two photons enables to transfer the unmeasurable external phase in the initial DoF to a measurable internal phase in the expanded two DoFs. We directly measured the symmetric exchange phases being $0.012 \pm 0.002$, $0.025 \pm 0.002$ and $0.027 \pm 0.002$ in radian for the three Boson states in OAM and the anti-symmetric exchange phase being $0.991 蟺\pm 0.002$ in radian for the other Fermion state, as theoretical predictions. Our work may not only pave the way for more wide applications of quantum interference, but also develop new technologies by expanding Hilbert space in more DoFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16336v1-abstract-full').style.display = 'none'; document.getElementById('2211.16336v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10602">arXiv:2211.10602</a> <span> [<a href="https://arxiv.org/pdf/2211.10602">pdf</a>, <a href="https://arxiv.org/format/2211.10602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s44214-022-00015-9">10.1007/s44214-022-00015-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating topological materials with photonic synthetic dimensions in cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+M">Mu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10602v1-abstract-short" style="display: inline;"> Photons play essential roles in fundamental physics and practical technologies. They have become one of the attractive informaiton carriers for quantum computation and quantum simulation. Recently, various photonic degrees of freedom supported by optical resonant cavities form photonic synthetic dimensions, which contribute to all-optical platforms for simulating novel topological materials. The p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10602v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10602v1-abstract-full" style="display: none;"> Photons play essential roles in fundamental physics and practical technologies. They have become one of the attractive informaiton carriers for quantum computation and quantum simulation. Recently, various photonic degrees of freedom supported by optical resonant cavities form photonic synthetic dimensions, which contribute to all-optical platforms for simulating novel topological materials. The photonic discrete or continuous degrees of freedom are mapped to the lattices or momenta of the simulated topological matter, and the couplings between optical modes are equivalent to the interactions among quasi-particles. Mature optical modulations enable flexible engineering of the simulated Hamiltonian. Meanwhile, the resonant detection methods provide direct approaches to obtaining the corresponding energy band structures, particle distributions and dynamical evolutions. In this Review, we give an overview of the synthetic dimensions in optical cavities, including frequency, orbital angular momentum, time-multiplexed lattice, and independent parameters. Abundant higher-dimensional topological models have been demonstrated in lower dimensional synthetic systems. We further discuss the potential development of photonic synthetic dimensions in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10602v1-abstract-full').style.display = 'none'; document.getElementById('2211.10602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xu%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>