CINXE.COM
Search results for: radiative forcing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: radiative forcing</title> <meta name="description" content="Search results for: radiative forcing"> <meta name="keywords" content="radiative forcing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="radiative forcing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="radiative forcing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 251</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: radiative forcing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Methane versus Carbon Dioxide Mitigation Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20J.%20Severinsky">Alexander J. Severinsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Allen%20L.%20Sessoms"> Allen L. Sessoms</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20leakages" title="methane leakages">methane leakages</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20radiative%20forcing" title=" methane radiative forcing"> methane radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20mitigation" title=" methane mitigation"> methane mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20net%20zero" title=" methane net zero"> methane net zero</a> </p> <a href="https://publications.waset.org/abstracts/136614/methane-versus-carbon-dioxide-mitigation-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiya%20Rao">Sofiya Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol-cloud-precipitation%20interaction" title="aerosol-cloud-precipitation interaction">aerosol-cloud-precipitation interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol-cloud-climate%20interaction" title=" aerosol-cloud-climate interaction"> aerosol-cloud-climate interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20radiative%20forcing" title=" indirect radiative forcing"> indirect radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20model" title=" climate model"> climate model</a> </p> <a href="https://publications.waset.org/abstracts/94163/observationally-constrained-estimates-of-aerosol-indirect-radiative-forcing-over-indian-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Srivastava">Shreya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20radiative%20forcing%20%28ARF%29" title="aerosol radiative forcing (ARF)">aerosol radiative forcing (ARF)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20composition" title=" aerosol composition"> aerosol composition</a>, <a href="https://publications.waset.org/abstracts/search?q=MISR" title=" MISR"> MISR</a>, <a href="https://publications.waset.org/abstracts/search?q=CERES" title=" CERES"> CERES</a>, <a href="https://publications.waset.org/abstracts/search?q=SBDART" title=" SBDART"> SBDART</a> </p> <a href="https://publications.waset.org/abstracts/182412/aerosol-direct-radiative-forcing-over-the-indian-subcontinent-a-comparative-analysis-from-the-satellite-observation-and-radiative-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Seasonal Variability of Aerosol Optical Properties and Their Radiative Effects over Indo-Gangetic Plain in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Taneja">Kanika Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Soni"> V. K. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Attri"> S. D. Attri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafeel%20Ahmad"> Kafeel Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamshad%20Ahmad"> Shamshad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols represent an important component of earth-atmosphere system and have a profound impact on the global and regional climate. With the growing population and urbanization, the aerosol load in the atmosphere over the Indian region is found to be increasing. Several studies have reported that the aerosol optical depth over the northern part of India is higher as compared to the southern part. The northern India along the Indo-Gangetic plain is often influenced with dust transported from the Thar Desert in northwestern India and from Arabian Peninsula during the pre-monsoon season. Seasonal variations in aerosol optical and radiative properties were examined using data retrieved from ground based multi-wavelength Prede Sun/sky radiometer (POM-02) over Delhi, Rohtak, Jodhpur and Varanasi for the period April 2011-April 2013. These stations are part of the Skynet-India network of India Meteorological Department. The Sun/sky radiometer (POM-02) has advantage over other instruments that it can be calibrated on-site. These aerosol optical properties retrieved from skyradiometer observations are further used to analyze the Direct Aerosol Radiative Forcing (DARF) over the study locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20properties" title="aerosol optical properties">aerosol optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=indo-%20gangetic%20plain" title=" indo- gangetic plain"> indo- gangetic plain</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20forcing" title=" radiative forcing"> radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20radiometer" title=" sky radiometer"> sky radiometer</a> </p> <a href="https://publications.waset.org/abstracts/26748/seasonal-variability-of-aerosol-optical-properties-and-their-radiative-effects-over-indo-gangetic-plain-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadollah%20Bahrami">Asadollah Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20radiative%20entropy%20generation" title="spectral radiative entropy generation">spectral radiative entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray%20medium" title=" non-gray medium"> non-gray medium</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20k%28CK%29%20model" title=" correlated k(CK) model"> correlated k(CK) model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a> </p> <a href="https://publications.waset.org/abstracts/169050/analysis-of-spectral-radiative-entropy-generation-in-a-non-gray-participating-medium-with-heat-source-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Srivastava">Shreya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushovan%20Ghosh"> Sushovan Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20Radiative%20forcing%20%28ARF%29" title="aerosol Radiative forcing (ARF)">aerosol Radiative forcing (ARF)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20composition" title=" aerosol composition"> aerosol composition</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20scattering%20albedo%20%28SSA%29" title=" single scattering albedo (SSA)"> single scattering albedo (SSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=CERES" title=" CERES"> CERES</a> </p> <a href="https://publications.waset.org/abstracts/182415/aerosol-radiative-forcing-over-indian-subcontinent-for-2000-2021-using-satellite-observations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Seasonal Variation in Aerosols Characteristics over Ahmedabad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devansh%20Desai">Devansh Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamandeep%20Kaur"> Chamandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kullu">Nirmal Kullu</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Christopher"> George Christopher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiative%20forcing" title="radiative forcing">radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20depth" title=" aerosol optical depth"> aerosol optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20mode" title=" fine mode"> fine mode</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20mode" title=" coarse mode"> coarse mode</a> </p> <a href="https://publications.waset.org/abstracts/19171/seasonal-variation-in-aerosols-characteristics-over-ahmedabad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Long Term Changes of Aerosols and Their Radiative Forcing over the Tropical Urban Station Pune, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Raju">M. P. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Safai"> P. D. Safai</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20P.%20Rao"> P. S. P. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20S.%20Devara"> P. C. S. Devara</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Naidu"> C. V. Naidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the Physical and chemical characteristics of aerosols, samples of Total Suspended Particulates (TSP) were collected using a high volume sampler at Pune, a semi-urban location in SW India during March 2009 to February 2010. TSP samples were analyzed for water soluble components like F, Cl, NO3, SO4, NH4, Na, K, Ca, and Mg and acid soluble components like Al, Zn, Fe and Cu using Ion-Chromatograph and Atomic Absorption Spectrometer. Analysis of the data revealed that the monthly mean TSP concentrations varied between 471.3 µg/m3 and 30.5 µg/m3 with an annual mean value of 159.8 µg/m3. TSP concentrations were found to be less during post-monsoon and winter (October through February), compared to those in summer and monsoon (March through September). Anthropogenic activities like vehicular emissions and dust particles originated from urban activities were the major sources for TSP. TSP showed good correlation with all the major ionic components, especially with SO4 (R= 0.62) and NO3 (R= 0.67) indicating the impact of anthropogenic sources over the aerosols at Pune. However, the overall aerosol nature was alkaline (Ave pH = 6.17) mainly due to the neutralizing effects of Ca and NH4. SO4 contributed more (58.8%) to the total acidity as compared to NO3 (41.1%) where as, Ca contributed more (66.5%) to the total alkalinity than NH4 (33.5%). Seasonality of acid soluble component Al, Fe and Cu showed remarkable increase, indicating the dominance of soil source over the man-made activities. Overall study on TSP indicated that aerosols at Pune were mainly affected by the local sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic%20and%20neutralization%20potential" title=" acidic and neutralization potential"> acidic and neutralization potential</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20forcing" title=" radiative forcing"> radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20station" title=" urban station"> urban station</a> </p> <a href="https://publications.waset.org/abstracts/13829/long-term-changes-of-aerosols-and-their-radiative-forcing-over-the-tropical-urban-station-pune-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Impact of Unusual Dust Event on Regional Climate in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Taneja">Kanika Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Soni"> V. K. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafeel%20Ahmad"> Kafeel Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamshad%20Ahmad"> Shamshad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20properties" title="aerosol optical properties">aerosol optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20storm" title=" dust storm"> dust storm</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20transfer%20model" title=" radiative transfer model"> radiative transfer model</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20radiometer" title=" sky radiometer"> sky radiometer</a> </p> <a href="https://publications.waset.org/abstracts/30683/impact-of-unusual-dust-event-on-regional-climate-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Radiative Reactions Analysis at the Range of Astrophysical Energies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the elastic scattering of protons on <sup>10</sup>B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V<sub>0</sub>) and proton energy (E<sub>p</sub>) has been obtained. Also, surface imaginary potential W<sub>D</sub> is proportional to the proton energy (E<sub>p</sub>) in the range 0.400 and 17 MeV. The radiative reaction <sup>10</sup>B(p,γ)<sup>11</sup>C has been analyzed using potential model. A comparison between <sup>10</sup>B(p,γ)<sup>11</sup>C and <sup>6</sup>Li(p,γ)<sup>7</sup>Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction <sup>7</sup>Li(p,γ)<sup>8</sup>Be has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering%20of%20protons%20on%2010B%20nuclei" title="elastic scattering of protons on 10B nuclei">elastic scattering of protons on 10B nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20potential%20parameters" title=" optical potential parameters"> optical potential parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20model" title=" potential model"> potential model</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20reaction" title=" radiative reaction"> radiative reaction</a> </p> <a href="https://publications.waset.org/abstracts/88571/radiative-reactions-analysis-at-the-range-of-astrophysical-energies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Mahmoudi">Yasser Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Karimi"> Nader Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non-equilibrium" title=" local thermal non-equilibrium"> local thermal non-equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20heat%20transfer" title=" forced convection heat transfer"> forced convection heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20Ordinate%20Method%20%28DOM%29" title=" Discrete Ordinate Method (DOM)"> Discrete Ordinate Method (DOM)</a> </p> <a href="https://publications.waset.org/abstracts/7823/on-the-influence-of-thermal-radiation-upon-heat-transfer-characteristics-of-a-porous-media-under-local-thermal-non-equilibrium-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashok">A. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Satapathy"> K.Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Prerana%20Nashine"> B. Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiative%20heat%20transfer" title=" transient radiative heat transfer "> transient radiative heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/9579/conduction-accompanied-with-transient-radiative-heat-transfer-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Comprehensive, Up-to-Date Climate System Change Indicators, Trends and Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Carter">Peter Carter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comprehensive climate change indicators and trends inform the state of the climate (system) with respect to present and future climate change scenarios and the urgency of mitigation and adaptation. With data records now going back for many decades, indicator trends can complement model projections. They are provided as datasets by several climate monitoring centers, reviewed by state of the climate reports, and documented by the IPCC assessments. Up-to-date indicators are provided here. Rates of change are instructive, as are extremes. The indicators include greenhouse gas (GHG) emissions (natural and synthetic), cumulative CO2 emissions, atmospheric GHG concentrations (including CO2 equivalent), stratospheric ozone, surface ozone, radiative forcing, global average temperature increase, land temperature increase, zonal temperature increases, carbon sinks, soil moisture, sea surface temperature, ocean heat content, ocean acidification, ocean oxygen, glacier mass, Arctic temperature, Arctic sea ice (extent and volume), northern hemisphere snow cover, permafrost indices, Arctic GHG emissions, ice sheet mass, sea level rise, and stratospheric and surface ozone. Global warming is not the most reliable single metric for the climate state. Radiative forcing, atmospheric CO2 equivalent, and ocean heat content are more reliable. Global warming does not provide future commitment, whereas atmospheric CO2 equivalent does. Cumulative carbon is used for estimating carbon budgets. The forcing of aerosols is briefly addressed. Indicator interactions are included. In particular, indicators can provide insight into several crucial global warming amplifying feedback loops, which are explained. All indicators are increasing (adversely), most as fast as ever and some faster. One particularly pressing indicator is rapidly increasing global atmospheric methane. In this respect, methane emissions and sources are covered in more detail. In their application, indicators used in assessing safe planetary boundaries are included. Indicators are considered with respect to recent published papers on possible catastrophic climate change and climate system tipping thresholds. They are climate-change-policy relevant. In particular, relevant policies include the 2015 Paris Agreement on “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” and the 1992 UN Framework Convention on Climate change, which has “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.” <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20indicators" title=" climate change indicators"> climate change indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20trends" title=" climate change trends"> climate change trends</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20system%20change%20interactions" title=" climate system change interactions"> climate system change interactions</a> </p> <a href="https://publications.waset.org/abstracts/157637/comprehensive-up-to-date-climate-system-change-indicators-trends-and-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Solving Transient Conduction and Radiation using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20K.%20Satapathy">Ashok K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Nashine"> Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiative heat transfer in participating medium was anticipated using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient energy equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/6346/solving-transient-conduction-and-radiation-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jia%20He">Jia-Jia He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hua%20Sun"> Jin-Hua Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title="rigid polyurethane foam">rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title=" cone calorimeter"> cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20time" title=" ignition time"> ignition time</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20heat%20flux" title=" external heat flux"> external heat flux</a> </p> <a href="https://publications.waset.org/abstracts/77115/effect-of-external-radiative-heat-flux-on-combustion-characteristics-of-rigid-polyurethane-foam-under-piloted-ignition-and-radiative-auto-ignition-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> TiO2/PDMS Coating With Minimum Solar Absorption Loss for Passive Daytime Radiative Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhrigu%20Rishi%20Mishra">Bhrigu Rishi Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreerag%20Sundaram"> Sreerag Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Jo%20Varghese"> Nithin Jo Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthik%20Sasihithlu"> Karthik Sasihithlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have designed a TiO2/PDMS coating with 94% solar reflection, 96% IR emission, and 81.8 W/m2 cooling power for passive daytime radiative cooling using Kubelka Munk theory and CST microwave studio. To reduce solar absorption loss in 0.3-0.39 m wavelength region, a TiO2 thin film on top of the coating is used. Simulation using Ansys Lumerical shows that for a 20 m thick TiO2/PDMS coating, a TiO2 thin film of 84 nm increases the coating's reflectivity by 11% in the solar region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20daytime%20radiative%20cooling" title="passive daytime radiative cooling">passive daytime radiative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20metamaterial" title=" disordered metamaterial"> disordered metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=Kudelka%20Munk%20theory" title=" Kudelka Munk theory"> Kudelka Munk theory</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20reflectivity" title=" solar reflectivity"> solar reflectivity</a> </p> <a href="https://publications.waset.org/abstracts/146810/tio2pdms-coating-with-minimum-solar-absorption-loss-for-passive-daytime-radiative-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Siddiqui">Rehan Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Brendan%20Quine"> Brendan Quine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiance%20enhancement" title="radiance enhancement">radiance enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20transfer" title=" radiative transfer"> radiative transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=shortwave%20upwelling%20radiative%20flux" title=" shortwave upwelling radiative flux"> shortwave upwelling radiative flux</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20reflectivity" title=" cloud reflectivity"> cloud reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/38435/the-climate-impact-due-to-clouds-and-selected-greenhouse-gases-by-short-wave-upwelling-radiative-flux-within-spectral-range-of-space-orbiting-argus1000-micro-spectrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reheating%20furnace" title="reheating furnace">reheating furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slab" title=" steel slab"> steel slab</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title=" radiative heat transfer"> radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=WSGGM" title=" WSGGM"> WSGGM</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/8145/on-the-thermal-behavior-of-the-slab-in-a-reheating-furnace-with-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raoudha%20Chaabane">Raoudha Chaabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Askri"> Faouzi Askri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sassi%20Ben%20Nasrallah"> Sassi Ben Nasrallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=LBM" title=" LBM"> LBM</a>, <a href="https://publications.waset.org/abstracts/search?q=CVFEM-%20radiation%20coupled%20with%20convection" title=" CVFEM- radiation coupled with convection"> CVFEM- radiation coupled with convection</a> </p> <a href="https://publications.waset.org/abstracts/16709/numerical-simulation-of-rayleigh-benard-convection-and-radiation-heat-transfer-in-two-dimensional-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Performance Analysis of a Combined Ordered Successive and Interference Cancellation Using Zero-Forcing Detection over Rayleigh Fading Channels in Mimo Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20R.%20Elbergali">Jamal R. Elbergali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple Input Multiple Output (MIMO) systems are wireless systems with multiple antenna elements at both ends of the link. Wireless communication systems demand high data rate and spectral efficiency with increased reliability. MIMO systems have been popular techniques to achieve these goals because increased data rate is possible through spatial multiplexing scheme and diversity. Spatial Multiplexing (SM) is used to achieve higher possible throughput than diversity. In this paper, we propose a Zero-Forcing (ZF) detection using a combination of Ordered Successive Interference Cancellation (OSIC) and Zero Forcing using Interference Cancellation (ZF-IC). The proposed method used an OSIC based on Signal to Noise Ratio (SNR) ordering to get the estimation of last symbol (x ̃_(N_T )), then the estimated last symbol is considered to be an input to the ZF-IC. We analyze the Bit Error Rate (BER) performance of the proposed MIMO system over Rayleigh Fading Channel, using Binary Phase Shift Keying (BPSK) modulation scheme. The results show better performance than the previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SNR" title="SNR">SNR</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/abstracts/search?q=BPSK" title=" BPSK"> BPSK</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation" title=" modulation"> modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20forcing%20%28ZF%29" title=" zero forcing (ZF)"> zero forcing (ZF)</a>, <a href="https://publications.waset.org/abstracts/search?q=OSIC" title=" OSIC"> OSIC</a>, <a href="https://publications.waset.org/abstracts/search?q=ZF-IC" title=" ZF-IC"> ZF-IC</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20multiplexing%20%28SM%29" title=" spatial multiplexing (SM)"> spatial multiplexing (SM)</a> </p> <a href="https://publications.waset.org/abstracts/36113/performance-analysis-of-a-combined-ordered-successive-and-interference-cancellation-using-zero-forcing-detection-over-rayleigh-fading-channels-in-mimo-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20J.%20Severinsky">Alexander J. Severinsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 <sup>o</sup>C" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m<sup>2</sup> on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m<sup>2</sup>. In 2018, these radiative forces heated the atmosphere by approximately 5.1 <sup>o</sup>C, which will create a thermal equilibrium average ground surface temperature increase of 4.6 <sup>o</sup>C to 4.8 <sup>o</sup>C by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m<sup>2</sup> causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 <sup>o</sup>C, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 <sup>o</sup>C increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force" title="greenhouse radiative force">greenhouse radiative force</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20air%20temperature" title=" greenhouse air temperature"> greenhouse air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20thermodynamics" title=" greenhouse thermodynamics"> greenhouse thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20historical" title=" greenhouse historical"> greenhouse historical</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force%20on%20ice" title=" greenhouse radiative force on ice"> greenhouse radiative force on ice</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force%20on%20plants" title=" greenhouse radiative force on plants"> greenhouse radiative force on plants</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force%20in%20air" title=" greenhouse radiative force in air"> greenhouse radiative force in air</a> </p> <a href="https://publications.waset.org/abstracts/128167/greenhouse-gasses-effect-on-atmospheric-temperature-increase-and-the-observable-effects-on-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Numerical Assessment of Fire Characteristics with Bodies Engulfed in Hydrocarbon Pool Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Kumar%20Bathina">Siva Kumar Bathina</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudheer%20Siddapureddy"> Sudheer Siddapureddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fires accident becomes even worse when the hazardous equipment like reactors or radioactive waste packages are engulfed in fire. In this work, large-eddy numerical fire simulations are performed using fire dynamic simulator to predict the thermal behavior of such bodies engulfed in hydrocarbon pool fires. A radiatively dominated 0.3 m circular burner with n-heptane as the fuel is considered in this work. The fire numerical simulation results without anybody inside the fire are validated with the reported experimental data. The comparison is in good agreement for different flame properties like predicted mass burning rate, flame height, time-averaged center-line temperature, time-averaged center-line velocity, puffing frequency, the irradiance at the surroundings, and the radiative heat feedback to the pool surface. Cask of different sizes is simulated with SS304L material. The results are independent of the material of the cask simulated as the adiabatic surface temperature concept is employed in this study. It is observed that the mass burning rate increases with the blockage ratio (3% ≤ B ≤ 32%). However, the change in this increment is reduced at higher blockage ratios (B > 14%). This is because the radiative heat feedback to the fuel surface is not only from the flame but also from the cask volume. As B increases, the volume of the cask increases and thereby increases the radiative contribution to the fuel surface. The radiative heat feedback in the case of the cask engulfed in the fire is increased by 2.5% to 31% compared to the fire without cask. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20surface%20temperature" title="adiabatic surface temperature">adiabatic surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20accidents" title=" fire accidents"> fire accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20dynamic%20simulator" title=" fire dynamic simulator"> fire dynamic simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20feedback" title=" radiative heat feedback"> radiative heat feedback</a> </p> <a href="https://publications.waset.org/abstracts/115684/numerical-assessment-of-fire-characteristics-with-bodies-engulfed-in-hydrocarbon-pool-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linta%20Rose">Linta Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20K.%20Bhaskaran"> Prasad K. Bhaskaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADCIRC" title="ADCIRC">ADCIRC</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20Bay%20of%20Bengal" title=" head Bay of Bengal"> head Bay of Bengal</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20sea%20level%20pressure" title=" mean sea level pressure"> mean sea level pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20forcing" title=" meteorological forcing"> meteorological forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=water-level" title=" water-level"> water-level</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/68632/numerical-modelling-of-the-influence-of-meteorological-forcing-on-water-level-in-the-head-bay-of-bengal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akinnubi%20Rufus%20Temidayo">Akinnubi Rufus Temidayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=west%20africa" title="west africa">west africa</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative" title=" radiative"> radiative</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=resilence" title=" resilence"> resilence</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a> </p> <a href="https://publications.waset.org/abstracts/193671/evaluating-radiative-feedback-mechanisms-in-coastal-west-africa-using-regional-climate-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> On the Blocked-off Finite-Volume Radiation Solutions in a Two-Dimensional Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blocked-off formulations for the analysis of radiative heat transfer are formulated and examined in order to find the solutions in a two-dimensional complex enclosure. The final discretization equations using the step scheme for spatial differencing practice are proposed with the additional source term to incorporate the blocked-off procedure. After introducing the implementation for inactive region into the general discretization equation, three different problems are examined to find the performance of the solution methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title="radiative heat transfer">radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Volume%20Method%20%28FVM%29" title=" Finite Volume Method (FVM)"> Finite Volume Method (FVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=blocked-off%20solution%20procedure" title=" blocked-off solution procedure"> blocked-off solution procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=body-fitted%20coordinate" title=" body-fitted coordinate"> body-fitted coordinate</a> </p> <a href="https://publications.waset.org/abstracts/19872/on-the-blocked-off-finite-volume-radiation-solutions-in-a-two-dimensional-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjith%20Maniyeri">Ranjith Maniyeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahamed%20C.%20Saleel"> Ahamed C. Saleel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feedback%20Forcing%20Scheme" title="Feedback Forcing Scheme">Feedback Forcing Scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Volume%20Method" title=" Finite Volume Method"> Finite Volume Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Immersed%20Boundary%20Method" title=" Immersed Boundary Method"> Immersed Boundary Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20Equations" title=" Navier-Stokes Equations"> Navier-Stokes Equations</a> </p> <a href="https://publications.waset.org/abstracts/57963/numerical-simulation-of-two-dimensional-flow-over-a-stationary-circular-cylinder-using-feedback-forcing-scheme-based-immersed-boundary-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venkateswarlu">M. Venkateswarlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mahamuda"> S. K. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna"> K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=JO%20parameters" title=" JO parameters"> JO parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thullium" title=" thullium"> thullium</a> </p> <a href="https://publications.waset.org/abstracts/47260/photoluminescence-and-spectroscopic-studies-of-tm3-ions-doped-lead-tungsten-tellurite-glasses-for-visible-red-and-near-ir-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Thermal Resistance of Special Garments Exposed to a Radiant Heat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Pichova">Jana Pichova</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubos%20Hes"> Lubos Hes</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Bajzik"> Vladimir Bajzik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protective clothing is designed to keep a wearer save in hazardous conditions or enable perform short time working operation without being injured or feeling discomfort. Firefighters or other related workers are exposed to abnormal heat which can be conductive, convective or radiant type. Their garment is proposed to resist this conditions and prevent burn injuries or dead of human. However thermal comfort of firefighter exposed to high heat source have not been studied yet. Thermal resistance is the best representative parameter of thermal comfort. In this study a new method of testing of thermal resistance of special clothing exposed to high radiation heat source was designed. This method simulates human body wearing single or multi-layered garment which is exposed to radiative heat. Setup of this method enables measuring of radiative heat flow in time without effect of convection. The new testing method is verified on chosen group of textiles for firefighters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protective%20clothing" title="protective clothing">protective clothing</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat" title=" radiative heat"> radiative heat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort%20of%20firefighters" title=" thermal comfort of firefighters"> thermal comfort of firefighters</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance%20of%20special%20garments" title=" thermal resistance of special garments"> thermal resistance of special garments</a> </p> <a href="https://publications.waset.org/abstracts/31445/thermal-resistance-of-special-garments-exposed-to-a-radiant-heat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Multidisciplinary Approach to the Effects of Generator Exhaust Fumes on Air: Case Study of Onitsha</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20V.%20Okpala">U. V. Okpala</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Okpala"> C. C. Okpala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of generator exhaust fumes on air, a case study of Onitsha was considered in this work. A sample of 400 respondents was randomly chosen in the study area based on the population. Questionnaire was designed and administered to inhabitants of the study area to enable the researchers ascertain information on the effect of generator exhaust fumes on air and possible remedies. The issue of the types of generators owned by residents, quantity of fuel products purchased per day and the number of years of generator ownership were discussed. The Pearson’s product moment analysis correlation and Chi-square test were applied in the hypothesis testing. The result shows that huge amount of effluents are discharged on the environment thereby polluting the air. This leads to radiative forcing, depletion of ozone layer and precipitation of acid rain. This has untold effect on the climate system. To ensure proper recovery, the study recommends that government makes available alternative energy sources in addition to the conventional power to save the environment; with this, waste becomes wealth towards a sustainable economy in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onitsha" title="Onitsha">Onitsha</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20products" title=" fuel products"> fuel products</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20fumes%20and%20remedies" title=" exhaust fumes and remedies"> exhaust fumes and remedies</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20systems" title=" energy systems"> energy systems</a> </p> <a href="https://publications.waset.org/abstracts/3214/multidisciplinary-approach-to-the-effects-of-generator-exhaust-fumes-on-air-case-study-of-onitsha" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna">K. Swapna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=I-H%20model" title=" I-H model"> I-H model</a> </p> <a href="https://publications.waset.org/abstracts/88085/spectroscopic-studies-of-dy3-ions-in-alkaline-earth-boro-tellurite-glasses-for-optoelectronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20forcing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>