CINXE.COM

Search results for: tensile adhesion test

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tensile adhesion test</title> <meta name="description" content="Search results for: tensile adhesion test"> <meta name="keywords" content="tensile adhesion test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tensile adhesion test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tensile adhesion test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10318</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tensile adhesion test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10318</span> Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abachi">P. Abachi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20W.%20Coyle"> T. W. Coyle</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Musavi%20Gharavi"> P. S. Musavi Gharavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four<strong>-</strong>point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bend%20test" title=" four-point bend test"> four-point bend test</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20fracture%20toughness" title=" interfacial fracture toughness"> interfacial fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20chevron-notched%20short-bar%20specimen" title=" modified chevron-notched short-bar specimen"> modified chevron-notched short-bar specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20sprayed%20coating" title=" plasma sprayed coating"> plasma sprayed coating</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test" title=" tensile adhesion test"> tensile adhesion test</a> </p> <a href="https://publications.waset.org/abstracts/46136/plasma-spraying-of-316-stainless-steel-on-aluminum-and-investigation-of-coatsubstrate-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10317</span> Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Etezadi">M. Etezadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fahimifar"> A. Fahimifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title="tensile strength">tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20materials" title=" brittle materials"> brittle materials</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20tensile%20test" title=" direct and indirect tensile test"> direct and indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling "> numerical modeling </a> </p> <a href="https://publications.waset.org/abstracts/36005/comparison-of-direct-and-indirect-tensile-strength-of-brittle-materials-and-accurate-estimate-of-tensile-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10316</span> Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliakbar%20Golshani">Aliakbar Golshani</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Ramezanzad"> Armin Ramezanzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20flow%20code" title=" particle flow code"> particle flow code</a>, <a href="https://publications.waset.org/abstracts/search?q=PFC" title=" PFC"> PFC</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20Test" title=" Brazilian Test"> Brazilian Test</a> </p> <a href="https://publications.waset.org/abstracts/108663/estimation-of-tensile-strength-for-granitic-rocks-by-using-discrete-element-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10315</span> Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Shalchy">Faezeh Shalchy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20concrete" title="fiber-reinforced concrete">fiber-reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/26458/nanostructure-and-adhesion-of-cementpolymer-fiber-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10314</span> Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Soni">D. K. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20rocks" title="sedimentary rocks">sedimentary rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20test" title=" split tensile test"> split tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20rate" title=" deformation rate"> deformation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20rate" title=" saturation rate"> saturation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20stone" title=" sand stone"> sand stone</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20stone" title=" lime stone"> lime stone</a> </p> <a href="https://publications.waset.org/abstracts/7251/effect-of-saturation-and-deformation-rate-on-split-tensile-strength-for-various-sedimentary-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10313</span> Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20A.%20Janjua">Zaid A. Janjua</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Turnbull"> Barbara Turnbull</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwing-So%20Choi"> Kwing-So Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20adhesion" title="ice adhesion">ice adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifuge" title=" centrifuge"> centrifuge</a>, <a href="https://publications.waset.org/abstracts/search?q=glaze%20ice" title=" glaze ice"> glaze ice</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing%20temperature" title=" freezing temperature"> freezing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a> </p> <a href="https://publications.waset.org/abstracts/60459/centrifuge-testing-to-determine-the-effect-of-temperature-on-the-adhesion-strength-of-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10312</span> Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Murakami">Shingo Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20deformation" title=" out-of-plane deformation"> out-of-plane deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a> </p> <a href="https://publications.waset.org/abstracts/13151/effect-of-out-of-plane-deformation-on-relaxation-method-of-stress-concentration-in-a-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10311</span> Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Murakami">Shingo Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20deformation" title=" out-of-plane deformation"> out-of-plane deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a> </p> <a href="https://publications.waset.org/abstracts/17377/effect-of-out-of-plane-deformation-on-relaxation-method-of-stress-concentration-in-a-plate-with-a-circular-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10310</span> Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saifullah%20Karimullah">Saifullah Karimullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing%20techniques" title="additive manufacturing techniques">additive manufacturing techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20software" title=" CAD software"> CAD software</a>, <a href="https://publications.waset.org/abstracts/search?q=UTM%20machine" title=" UTM machine"> UTM machine</a> </p> <a href="https://publications.waset.org/abstracts/158329/investigation-of-the-effects-of-processing-parameters-on-pla-based-3d-printed-tensile-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10309</span> Adhesion Performance According to Lateral Reinforcement Method of Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You">Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20performance" title="adhesion performance">adhesion performance</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20reinforcement" title=" lateral reinforcement"> lateral reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title=" pull-out test"> pull-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/67487/adhesion-performance-according-to-lateral-reinforcement-method-of-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10308</span> Waterproofing Agent in Concrete for Tensile Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Azani%20Yahya">Muhamad Azani Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Nadiah%20Nor%20Ali"> Umi Nadiah Nor Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alias%20Yusof"> Mohammed Alias Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazman%20Mohamad%20Nor"> Norazman Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Munikanan"> Vikneswaran Munikanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20tensile%20concrete" title="high tensile concrete">high tensile concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waterproofing%20agent" title=" waterproofing agent"> waterproofing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/58331/waterproofing-agent-in-concrete-for-tensile-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10307</span> Investigation of Mechanical Properties and Positron Annihilation Lifetime Spectroscopy of Acrylonitrile Butadiene Styrene/Polycarbonate Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20M.%20Abdelhaleem">Ayman M. M. Abdelhaleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gamal%20Sadek"> Mustafa Gamal Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Reyad"> Kamal Reyad</a>, <a href="https://publications.waset.org/abstracts/search?q=Montasser%20M.%20Dewidar"> Montasser M. Dewidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to study the effect of adding polycarbonate (PC) to pure Acrylonitrile Butadiene Styrene (ABS) using the injection moulding process. The PC was mixed mechanically with ABS in 10%, 20%, 30%, 40%, and 50% by weight. The mechanical properties of pure ABS reinforced with PC were investigated using tensile, impact, hardness, and wear tests. The results showed that, by adding 10%, 20%, 30%, 40%, and 50% wt. of PC to the pure ABS, the ultimate tensile strength increased from 55 N/mm2 for neat ABS to 57 N/mm2 (i.e. 3.63%), 60 N/mm2 (i.e. 9.09%), 63 N/mm2 (i.e. 14.54%), 66 N/mm2 (i.e. 20%), 69 N/mm2 (i.e. 25.45%) respectively. Test results also revealed nearly 5.72% improvement in young's modulus by adding 10% of PC to ABS, 16.74% improvement by adding 20%, 23.34% improvement by adding 30%, 27.75% improvement by adding 40%, and no other increase in case of 50%. The impact test results showed that with the increase of the PC content, first, the impact strength decreased and then increased gradually. The impact strength decreased rapidly when the content of PC was 0% to 10% range. As well as, in the case of 20%, 30%, 40%, and 50% PC, the impact strength is increased. The hardness test results, using the Shore D tester, showed that, as the PC particles contents increased, the hardness increased from 76 for the ABS to 80 for 10% PC, and decreased to 79 for 20% PC, and then increased to 80 in case of 30%, 40%, and 50% PC. Wear test results showed that PC improves the wear resistance of ABS/PC blends. Positron annihilation lifetime spectroscopy showed that with an increase of PC in ABS/PC blends, a slight decrease in free volume size and an increase in the tensile strength due to good adhesion between PC and ABS matrix, which acted as an advantage in the polymer matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS" title="ABS">ABS</a>, <a href="https://publications.waset.org/abstracts/search?q=PC" title=" PC"> PC</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding%20process" title=" injection molding process"> injection molding process</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20spectroscopy" title=" lifetime spectroscopy"> lifetime spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/163599/investigation-of-mechanical-properties-and-positron-annihilation-lifetime-spectroscopy-of-acrylonitrile-butadiene-styrenepolycarbonate-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10306</span> Development of Coir Reinforced Composite for Automotive Parts Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okpala%20Charles%20Chikwendu">Okpala Charles Chikwendu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezeanyim%20Okechukwu%20Chiedu"> Ezeanyim Okechukwu Chiedu</a>, <a href="https://publications.waset.org/abstracts/search?q=Onukwuli%20Somto%20Kenneth"> Onukwuli Somto Kenneth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coir" title="coir">coir</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=coir%20fiber" title=" coir fiber"> coir fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20husk" title=" coconut husk"> coconut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile" title=" automobile"> automobile</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20test" title=" mechanical test"> mechanical test</a> </p> <a href="https://publications.waset.org/abstracts/182055/development-of-coir-reinforced-composite-for-automotive-parts-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10305</span> Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faci%20Youcef">Faci Youcef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Maalem%20Badredine"> Maalem Badredine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination" title=" inclination"> inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=analyzed" title=" analyzed"> analyzed</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/182410/study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10304</span> Study Properties of Bamboo Composite after Treatment Surface by Chemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiatnarong%20Supapanmanee">Kiatnarong Supapanmanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekkarin%20Phongphinittana"> Ekkarin Phongphinittana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pongsak%20Nimdum"> Pongsak Nimdum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fiber" title="bamboo fiber">bamboo fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strip" title=" bamboo strip"> bamboo strip</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20composite" title=" bamboo composite"> bamboo composite</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20bamboo" title=" pure bamboo"> pure bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20bamboo" title=" mechanical properties of bamboo"> mechanical properties of bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20finite%20element%20method" title=" bamboo finite element method"> bamboo finite element method</a> </p> <a href="https://publications.waset.org/abstracts/150083/study-properties-of-bamboo-composite-after-treatment-surface-by-chemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10303</span> In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20J.%20Cedano">Francisco J. Cedano</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20%20M.%20Pinz%C3%B3n"> Laura M. Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20I.%20Castro"> Camila I. Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Salcedo"> Felipe Salcedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20P.%20Casas"> Juan P. Casas</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Brice%C3%B1o"> Juan C. Briceño</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioadhesive" title="bioadhesive">bioadhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20adhesive" title=" bone adhesive"> bone adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title=" glutaraldehyde"> glutaraldehyde</a> </p> <a href="https://publications.waset.org/abstracts/42598/in-vitro-evaluation-of-a-chitosan-based-adhesive-to-treat-bone-fractures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10302</span> Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Bolz">Paul G. Bolz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Lindner"> Paul G. Lindner</a>, <a href="https://publications.waset.org/abstracts/search?q=Frohmut%20Wellner"> Frohmut Wellner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Schulze"> Christian Schulze</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Huebelt"> Joern Huebelt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20indirect%20tensile%20test" title=" cyclic indirect tensile test"> cyclic indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus%20of%20elasticity" title=" dynamic modulus of elasticity"> dynamic modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfrequency" title=" eigenfrequency"> eigenfrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a> </p> <a href="https://publications.waset.org/abstracts/133563/measurement-of-the-dynamic-modulus-of-elasticity-of-cylindrical-concrete-specimens-used-for-the-cyclic-indirect-tensile-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10301</span> Chemical Durability of Textured Glass-coat Suitable for Building Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adejo%20Andrew%20Ojonugwa">Adejo Andrew Ojonugwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jomboh%20Jeff%20Kator"> Jomboh Jeff Kator</a>, <a href="https://publications.waset.org/abstracts/search?q=Garkida%20Adele%20Dzikwi"> Garkida Adele Dzikwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20durability" title="chemical durability">chemical durability</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-coat" title=" glass-coat"> glass-coat</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/157990/chemical-durability-of-textured-glass-coat-suitable-for-building-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10300</span> An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Faci">Youcef Faci</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Badredine%20Maalem"> Badredine Maalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=bolt%20inclination%20angle" title=" bolt inclination angle"> bolt inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/182322/an-experimental-study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10299</span> Development and Characterization of Sandwich Bio-Composites Based on Short Alfa Fiber and Jute Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Rezzoug">Amine Rezzoug</a>, <a href="https://publications.waset.org/abstracts/search?q=Selsabil%20Rokia%20Laraba"> Selsabil Rokia Laraba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Ancer"> Mourad Ancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Abdi"> Said Abdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are taking center stage in different fields thanks to their mechanical characteristics and their ease of preparation. Environmental constraints have led to the development of composite with natural reinforcements. The sandwich structure has the advantage to have good flexural proprieties for low density, which is why it was chosen in this work. The development of these materials is related to an energy saving strategy and environmental protection. The present work refers to the study of the development and characterization of sandwiches composites based on hybrids laminates with natural reinforcements (Alfa and Jute), a metal fabric was introduced into composite in order to have a compromise between weight and properties. We use different configurations of reinforcements (jute, metallic fabric) to develop laminates in order to use them as thin facings for sandwiches materials. While the core was an epoxy matrix reinforced with Alfa short fibers, a chemical treatment sodium hydroxide was cared to improve the adhesion of the Alfa fibers. The mechanical characterization of our materials was made by the tensile and bending test, to highlight the influence of jute and Alfa. After testing, the fracture surfaces are observed by scanning electron microscopy (SEM). Optical microscopy allowed us to calculate the degree of porosity and to observe the morphology of the individual layers. Laminates based on jute fabric have shown better results in tensile test as well as to bending, compared to those of the metallic fabric (100%, 65%). Sandwich Panels were also characterized in terms of bending test. Results we had provide, shows that this composite has sufficient properties for possible replacing conventional composite materials by considering the environmental factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title="bending test">bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-composites" title=" bio-composites"> bio-composites</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwiches" title=" sandwiches"> sandwiches</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a> </p> <a href="https://publications.waset.org/abstracts/35497/development-and-characterization-of-sandwich-bio-composites-based-on-short-alfa-fiber-and-jute-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10298</span> Filler for Higher Bitumen Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rezagholilou">Alireza Rezagholilou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moisture susceptibility of bituminous mixes directly affect the stripping of asphalt layers. The majority of relevant test methods are mechanical methods with low repeatability and consistency of results. Thus, this research aims to evaluate the physicochemical interactions of bitumen and aggregates based on the wettability concept. As such, the surface energies of components at the interface are measured by contact angle method. That gives an opportunity to investigate the adhesion properties of multiple mineral fillers at various percentages to explore the best dosage in the mix. Three types of fillers, such as hydrated lime, ground lime and rock powder, are incorporated into the bitumen mix for a series of sessile drop tests for both aggregates and binders. Results show the variation of adhesion properties versus filler (%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20energy" title=" surface energy"> surface energy</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20susceptibility" title=" moisture susceptibility"> moisture susceptibility</a> </p> <a href="https://publications.waset.org/abstracts/171324/filler-for-higher-bitumen-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10297</span> Experimental Investigations on the Mechanical properties of Spiny (Kawayan Tinik) Bamboo Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Doreen%20E.%20Candelaria">Ma. Doreen E. Candelaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Louise%20Margaret%20A.%20Ramos"> Ma. Louise Margaret A. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dr.%20Jaime%20Y.%20Hernandez"> Dr. Jaime Y. Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr"> Jr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo has been introduced as a possible alternative to some construction materials nowadays. Its potential use in the field of engineering, however, is still not widely practiced due to insufficient engineering knowledge on the material’s properties and characteristics. Although there are researches and studies proving its advantages, it is still not enough to say that bamboo can sustain and provide the strength and capacity required of common structures. In line with this, a more detailed analysis was made to observe the layered structure of the bamboo, particularly the species of Kawayan Tinik. It is the main intent of this research to provide the necessary experiments to determine the tensile strength of dried bamboo samples. The test includes tensile strength parallel to fibers with samples taken at internodes only. Throughout the experiment, methods suggested by the International Organization for Standardization (ISO) were followed. The specimens were tested using 3366 INSTRON Universal Testing Machine, with a rate of loading set to 0.6 mm/min. It was then observed from the results of these experiments that dried bamboo samples recorded high layered tensile strengths, as high as 600 MPa. Likewise, along the culm’s length and across its cross section, higher tensile strength were observed at the top part and at its outer layers. Overall, the top part recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The recorded tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. From this variation in tensile strength across the cross section, it may be concluded that an increase in tensile strength may be observed towards the outer periphery of the bamboo. With these preliminary investigations on the layered tensile strength of bamboo, it is highly recommended to conduct experimental investigations on the layered compressive strength properties as well. It is also suggested to conduct investigations evaluating perpendicular layered tensile strength of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strength" title="bamboo strength">bamboo strength</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20strength%20tests" title=" layered strength tests"> layered strength tests</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20test" title=" strength test"> strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test "> tensile test </a> </p> <a href="https://publications.waset.org/abstracts/24458/experimental-investigations-on-the-mechanical-properties-of-spiny-kawayan-tinik-bamboo-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10296</span> Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iris%20K%C3%A4ppler">Iris Käppler</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Matth%C3%A4i"> Paul Matthäi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Cherif"> Chokri Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-crimp%20fabric" title="non-crimp fabric">non-crimp fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=stitch-free" title=" stitch-free"> stitch-free</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20fibre" title=" high-performance fibre"> high-performance fibre</a> </p> <a href="https://publications.waset.org/abstracts/11677/adhesion-problematic-for-novel-non-crimp-fabric-and-surface-modification-of-carbon-fibres-using-oxy-fluorination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10295</span> The Effect of the Spinacia oleracea Extract on the Control of the Green Mold &#039;Penilillium digitatum&#039; at the Post Harvested Citrus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Chbani">Asma Chbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Douaa%20Salim"> Douaa Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Josephine%20%20Al%20Alam"> Josephine Al Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20De%20Caro"> Pascale De Caro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Penicillium digitatum, the causal agent of citrus green mold, is responsible for 90% of post-harvest losses. Chemical fungicides remain the most used products for protection against this pathogen but are also responsible for damage to human health and the environment. The aim of this study is to evaluate the ability of Spinacia oleracea extract to serve as biological control agents, an alternative to harmful synthetic fungicides, against orange decay for storing fruit caused by P. digitatum. In this study, we studied the implication of a crude extract of a green plant, Spinacia oleracea, in the protection of oranges against P. digitatum. Thus, in vivo antifungal tests as well as adhesion test were done. For in vivo antifungal test, oranges were pulverized with the prepared crude extracts at different concentrations ranged from 25 g L⁻¹ to 200 g L⁻¹, contaminated by the fungus and then observed during 8 weeks for their macroscopic changes at 24°C. For adhesion test, the adhesion index is defined as the number of Penicillium digitatum spores fixed per orange cell. An index greater than 25 is the indicator of a strong adhesion, whereas for an index less than 10, the adhesion is low. Ten orange cells were examined in triplicate for each extract, and the averages of adherent cells were calculated. Obtained results showed an inhibitory activity of the Penicillium development with the aqueous extract of dry Spinacia oleracea with a concentration of 50 g L⁻¹ considered as the minimal protective concentration. The prepared extracts showed a greater inhibition of the development of P. digitatum up to 10 weeks, even greater than the fungicide control Nystatin. Adhesion test’s results showed that the adhesion of P. digitatum spores to the epidermal cells of oranges in the presence of the crude spinach leaves extract is weak; the mean of the obtained adhesion index was estimated to 2.7. However, a high adhesion was observed with water used a negative control. In conclusion, all these results confirm that the use of this green plant highly rich in chlorophyll having several phytotherapeutic activities, could be employed as a great treatment for protection of oranges against mold and also as an alternative for chemical fungicides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Penicillium%20digitatum" title="Penicillium digitatum">Penicillium digitatum</a>, <a href="https://publications.waset.org/abstracts/search?q=Spinacia%20oleracea" title=" Spinacia oleracea"> Spinacia oleracea</a>, <a href="https://publications.waset.org/abstracts/search?q=oranges" title=" oranges"> oranges</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest%20diseases" title=" postharvest diseases"> postharvest diseases</a> </p> <a href="https://publications.waset.org/abstracts/82068/the-effect-of-the-spinacia-oleracea-extract-on-the-control-of-the-green-mold-penilillium-digitatum-at-the-post-harvested-citrus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10294</span> Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Asad%20Ali%20Gillani">S. Asad Ali Gillani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Toumi"> Ahmed Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anaclet%20Turatsinze"> Anaclet Turatsinze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20substrate" title="concrete substrate">concrete substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20preparation" title=" surface preparation"> surface preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=overlays" title=" overlays"> overlays</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20tensile%20strength" title=" bond tensile strength "> bond tensile strength </a> </p> <a href="https://publications.waset.org/abstracts/38385/effect-of-surface-preparation-of-concrete-substrate-on-bond-tensile-strength-of-thin-bonded-cement-based-overlays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10293</span> Core-Shell Nanofibers for Prevention of Postsurgical Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Ping%20Chen">Jyh-Ping Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Lin%20Sheu"> Chia-Lin Sheu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-adhesion" title="anti-adhesion">anti-adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ibuprofen" title=" ibuprofen"> ibuprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/72385/core-shell-nanofibers-for-prevention-of-postsurgical-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10292</span> Influence of Magnetized Water on the Split Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justine%20Cyril%20E.%20Nunag">Justine Cyril E. Nunag</a>, <a href="https://publications.waset.org/abstracts/search?q=Nestor%20B.%20Sabado%20Jr."> Nestor B. Sabado Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jienne%20Chester%20M.%20Tolosa"> Jienne Chester M. Tolosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness%20property" title="hardness property">hardness property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20water" title=" magnetic water"> magnetic water</a>, <a href="https://publications.waset.org/abstracts/search?q=quick-setting%20admixture" title=" quick-setting admixture"> quick-setting admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20strength" title=" split tensile strength"> split tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20testing%20machine" title=" universal testing machine"> universal testing machine</a> </p> <a href="https://publications.waset.org/abstracts/146441/influence-of-magnetized-water-on-the-split-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10291</span> The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Engin">Sevda Engin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Buyuk"> Ugur Buyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Necmettin%20Marasli"> Necmettin Marasli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directional%20solidification" title="directional solidification">directional solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20test" title=" hardness test"> hardness test</a> </p> <a href="https://publications.waset.org/abstracts/45109/the-effects-of-microstructure-of-directionally-solidified-al-si-fe-alloys-on-micro-hardness-tensile-strength-and-electrical-resistivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10290</span> Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Remache">Djamel Remache</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Dos%20Santos"> Serge Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Cliez"> Michael Cliez</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gratton"> Michel Gratton</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Chabrand"> Patrick Chabrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Rossi"> Jean-Marie Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Louis%20Milan"> Jean-Louis Milan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20skin%20tissue%20behavior" title="mechanical skin tissue behavior">mechanical skin tissue behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20tensile%20test" title=" uniaxial tensile test"> uniaxial tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20optimization%20approach" title=" inverse optimization approach"> inverse optimization approach</a> </p> <a href="https://publications.waset.org/abstracts/65920/mechanical-characterization-of-porcine-skin-with-the-finite-element-method-based-inverse-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10289</span> Tensile Strength of Asphalt Concrete Due to Moisture Conditioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiqul%20A.%20Tarefder"> Rafiqul A. Tarefder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of moisture conditioning on the Indirect Tensile Strength (ITS) of asphalt concrete. As a first step, cylindrical samples of 100 mm diameter and 50 mm thick were prepared using a Superpave gyratory compactor. Next, the samples were conditioned using Moisture Induced Susceptibility Test (MIST) device at different numbers of moisture conditioning cycles. In the MIST device, samples are subjected water pressure through the sample pores cyclically. The MIST conditioned samples were tested for ITS. Results show that the ITS does not change significantly with MIST conditioning at the specific pressure and cycles adopted in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20test" title=" laboratory test"> laboratory test</a> </p> <a href="https://publications.waset.org/abstracts/12183/tensile-strength-of-asphalt-concrete-due-to-moisture-conditioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=343">343</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=344">344</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10