CINXE.COM
Gompertz distribution - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Gompertz distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"928a3a22-bc20-43b9-9258-17cf8f6efa54","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Gompertz_distribution","wgTitle":"Gompertz distribution","wgCurRevisionId":1227034809,"wgRevisionId":1227034809,"wgArticleId":20101246,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Articles lacking in-text citations from December 2011","All articles lacking in-text citations","All articles with dead external links","Articles with dead external links from December 2019","Articles with permanently dead external links","Continuous distributions","Survival analysis","Actuarial science"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Gompertz_distribution","wgRelevantArticleId":20101246,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1011784","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/GompertzPDF.svg/1200px-GompertzPDF.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/GompertzPDF.svg/800px-GompertzPDF.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/GompertzPDF.svg/640px-GompertzPDF.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Gompertz distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Gompertz_distribution"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Gompertz_distribution&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Gompertz_distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Gompertz_distribution rootpage-Gompertz_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Gompertz+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Gompertz+distribution" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Gompertz+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Gompertz+distribution" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Specification" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Specification"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Specification</span> </div> </a> <button aria-controls="toc-Specification-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Specification subsection</span> </button> <ul id="toc-Specification-sublist" class="vector-toc-list"> <li id="toc-Probability_density_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_density_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Probability density function</span> </div> </a> <ul id="toc-Probability_density_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cumulative_distribution_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cumulative_distribution_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Cumulative distribution function</span> </div> </a> <ul id="toc-Cumulative_distribution_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Moment_generating_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Moment_generating_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Moment generating function</span> </div> </a> <ul id="toc-Moment_generating_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Shapes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Shapes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Shapes</span> </div> </a> <ul id="toc-Shapes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kullback-Leibler_divergence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kullback-Leibler_divergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Kullback-Leibler divergence</span> </div> </a> <ul id="toc-Kullback-Leibler_divergence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Related_distributions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Related distributions</span> </div> </a> <ul id="toc-Related_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Gompertz distribution</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_de_Gompertz" title="Distribució de Gompertz – Catalan" lang="ca" hreflang="ca" data-title="Distribució de Gompertz" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%DA%AF%D9%85%D9%BE%D8%B1%D8%AA%D8%B2" title="توزیع گمپرتز – Persian" lang="fa" hreflang="fa" data-title="توزیع گمپرتز" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_de_Gompertz" title="Loi de Gompertz – French" lang="fr" hreflang="fr" data-title="Loi de Gompertz" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B3%B0%ED%8D%BC%EC%B8%A0_%EB%B6%84%ED%8F%AC" title="곰퍼츠 분포 – Korean" lang="ko" hreflang="ko" data-title="곰퍼츠 분포" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Gompertz-eloszl%C3%A1s" title="Gompertz-eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="Gompertz-eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1011784#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Gompertz_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Gompertz_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Gompertz_distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Gompertz_distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Gompertz_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Gompertz_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&oldid=1227034809" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Gompertz_distribution&id=1227034809&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGompertz_distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGompertz_distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Gompertz_distribution&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Gompertz_distribution&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1011784" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Continuous probability distribution, named after Benjamin Gompertz</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">December 2011</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1247679731">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">Gompertz distribution</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:GompertzPDF.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/GompertzPDF.svg/325px-GompertzPDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/GompertzPDF.svg/488px-GompertzPDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/GompertzPDF.svg/650px-GompertzPDF.svg.png 2x" data-file-width="800" data-file-height="600" /></a></span></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:GompertzCDF.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/GompertzCDF.svg/325px-GompertzCDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/GompertzCDF.svg/488px-GompertzCDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/GompertzCDF.svg/650px-GompertzCDF.svg.png 2x" data-file-width="800" data-file-height="600" /></a></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> shape <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta >0\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo>></mo> <mn>0</mn> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta >0\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec590a6465130fefd68c97e9ead722ffc5547da3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:5.817ex; height:2.676ex;" alt="{\displaystyle \eta >0\,\!}"></span>, scale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b>0\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>></mo> <mn>0</mn> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b>0\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13d47cc76715806f2ec47ab8c605336ab2f87a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:5.646ex; height:2.176ex;" alt="{\displaystyle b>0\,\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [0,\infty )\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [0,\infty )\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be00d03e32dc2701e685f3f746dee4702dfdd208" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:10.021ex; height:2.843ex;" alt="{\displaystyle x\in [0,\infty )\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\eta \exp \left(\eta +bx-\eta e^{bx}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>η<!-- η --></mi> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>η<!-- η --></mi> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>x</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\eta \exp \left(\eta +bx-\eta e^{bx}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ee1700bd9477ab1ae171e8b58ea310aafe0557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.545ex; height:3.343ex;" alt="{\displaystyle b\eta \exp \left(\eta +bx-\eta e^{bx}\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-\exp \left(-\eta \left(e^{bx}-1\right)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>x</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-\exp \left(-\eta \left(e^{bx}-1\right)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0232cabe8dc1abbebd122661274f22ceb122dd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.144ex; height:3.343ex;" alt="{\displaystyle 1-\exp \left(-\eta \left(e^{bx}-1\right)\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Quantile_function" title="Quantile function">Quantile</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{b}}\ln \left(1-{\frac {1}{\eta }}\ln(1-u)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>η<!-- η --></mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>u</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{b}}\ln \left(1-{\frac {1}{\eta }}\ln(1-u)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dda6400366524fdc016dc6de21ba0b2393cf0879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.223ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{b}}\ln \left(1-{\frac {1}{\eta }}\ln(1-u)\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1/b)e^{\eta }{\text{Ei}}\left(-\eta \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>η<!-- η --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>Ei</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1/b)e^{\eta }{\text{Ei}}\left(-\eta \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa6f9a263833e9bb206b4d53d4a242223960e22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.678ex; height:2.843ex;" alt="{\displaystyle (1/b)e^{\eta }{\text{Ei}}\left(-\eta \right)}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{where Ei}}\left(z\right)=\int \limits _{-z}^{\infty }\left(e^{-v}/v\right)dv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>where Ei</mtext> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>v</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>v</mi> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{where Ei}}\left(z\right)=\int \limits _{-z}^{\infty }\left(e^{-v}/v\right)dv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73c20cf29a98d204436930ae0554c79777a92880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.154ex; height:8.843ex;" alt="{\displaystyle {\text{where Ei}}\left(z\right)=\int \limits _{-z}^{\infty }\left(e^{-v}/v\right)dv}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1/b\right)\ln \left[\left(1/\eta \right)\ln \left(1/2\right)+1\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>η<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1/b\right)\ln \left[\left(1/\eta \right)\ln \left(1/2\right)+1\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2025ab32684a86966829b308bb1452815fe57bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.682ex; height:2.843ex;" alt="{\displaystyle \left(1/b\right)\ln \left[\left(1/\eta \right)\ln \left(1/2\right)+1\right]}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\left(1/b\right)\ln \left(1/\eta \right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>η<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\left(1/b\right)\ln \left(1/\eta \right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d24226e989c0992a406e32fd7abbe555db4dd15f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.796ex; height:2.843ex;" alt="{\displaystyle =\left(1/b\right)\ln \left(1/\eta \right)\ }"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121,0<\eta <1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>with </mtext> </mrow> <mn>0</mn> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>F</mtext> </mrow> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>)</mo> </mrow> <mo><</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>0.632121</mn> <mo>,</mo> <mn>0</mn> <mo><</mo> <mi>η<!-- η --></mi> <mo><</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121,0<\eta <1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9441b4af73fe72345e5ea76423fa8b1073071da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.587ex; height:3.176ex;" alt="{\displaystyle {\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121,0<\eta <1}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =0,\quad \eta \geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="1em" /> <mi>η<!-- η --></mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =0,\quad \eta \geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5f2b8601bbad5f296a12a749174dbf28fc3cd11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.403ex; height:2.676ex;" alt="{\displaystyle =0,\quad \eta \geq 1}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1/b\right)^{2}e^{\eta }\{-2\eta {\ }_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;\eta \right)+\gamma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>η<!-- η --></mi> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>η<!-- η --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>F</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>;</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>;</mo> <mi>η<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1/b\right)^{2}e^{\eta }\{-2\eta {\ }_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;\eta \right)+\gamma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7336f678e004c75463a47b8192822d397bd82e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.557ex; height:3.343ex;" alt="{\displaystyle \left(1/b\right)^{2}e^{\eta }\{-2\eta {\ }_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;\eta \right)+\gamma ^{2}}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\left(\pi ^{2}/6\right)+2\gamma \ln \left(\eta \right)+[\ln \left(\eta \right)]^{2}-e^{\eta }[{\text{Ei}}\left(-\eta \right)]^{2}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>γ<!-- γ --></mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>η<!-- η --></mi> <mo>)</mo> </mrow> <mo>+</mo> <mo stretchy="false">[</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>η<!-- η --></mi> <mo>)</mo> </mrow> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>η<!-- η --></mi> </mrow> </msup> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Ei</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\left(\pi ^{2}/6\right)+2\gamma \ln \left(\eta \right)+[\ln \left(\eta \right)]^{2}-e^{\eta }[{\text{Ei}}\left(-\eta \right)]^{2}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0850883c7b5814914301c155e014ceb896b962b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.612ex; height:3.343ex;" alt="{\displaystyle +\left(\pi ^{2}/6\right)+2\gamma \ln \left(\eta \right)+[\ln \left(\eta \right)]^{2}-e^{\eta }[{\text{Ei}}\left(-\eta \right)]^{2}\}}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{ where }}&\gamma {\text{ is the Euler constant: }}\,\!\\&\gamma =-\psi \left(1\right)={\text{0.577215... }}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> where </mtext> </mrow> </mtd> <mtd> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is the Euler constant: </mtext> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>γ<!-- γ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>ψ<!-- ψ --></mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>0.577215... </mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\text{ where }}&\gamma {\text{ is the Euler constant: }}\,\!\\&\gamma =-\psi \left(1\right)={\text{0.577215... }}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7a78d5abed13586371b6aa77019307d2fc5912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.304ex; height:6.009ex;" alt="{\displaystyle {\begin{aligned}{\text{ where }}&\gamma {\text{ is the Euler constant: }}\,\!\\&\gamma =-\psi \left(1\right)={\text{0.577215... }}\end{aligned}}}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{ and }}{}_{3}{\text{F}}_{3}&\left(1,1,1;2,2,2;-z\right)=\\&\sum _{k=0}^{\infty }\left[1/\left(k+1\right)^{3}\right]\left(-1\right)^{k}\left(z^{k}/k!\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>F</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>;</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>;</mo> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> <mo>!</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\text{ and }}{}_{3}{\text{F}}_{3}&\left(1,1,1;2,2,2;-z\right)=\\&\sum _{k=0}^{\infty }\left[1/\left(k+1\right)^{3}\right]\left(-1\right)^{k}\left(z^{k}/k!\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/119de9d74e9e1513410d20f25e74f7b7336a0948" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.228ex; margin-bottom: -0.277ex; width:39.985ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}{\text{ and }}{}_{3}{\text{F}}_{3}&\left(1,1,1;2,2,2;-z\right)=\\&\sum _{k=0}^{\infty }\left[1/\left(k+1\right)^{3}\right]\left(-1\right)^{k}\left(z^{k}/k!\right)\end{aligned}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}\left(e^{-tx}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>t</mi> <mi>x</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>η<!-- η --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>η<!-- η --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>η<!-- η --></mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}\left(e^{-tx}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1a6bc7f6cab5296ac08acf61dac396ae628fe67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.94ex; height:3.343ex;" alt="{\displaystyle {\text{E}}\left(e^{-tx}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{with E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>with E</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>η<!-- η --></mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <mi>v</mi> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> </msup> <mi>d</mi> <mi>v</mi> <mo>,</mo> <mtext> </mtext> <mi>t</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{with E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19c15fc51950b4d9af4bb02c774719ce212b5c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.266ex; height:5.843ex;" alt="{\displaystyle {\text{with E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0}"></span></td></tr></tbody></table> <p>In <a href="/wiki/Probability" title="Probability">probability</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <b>Gompertz distribution</b> is a <a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">continuous probability distribution</a>, named after <a href="/wiki/Benjamin_Gompertz" title="Benjamin Gompertz">Benjamin Gompertz</a>. The Gompertz distribution is often applied to describe the distribution of adult lifespans by <a href="/wiki/Demographer" class="mw-redirect" title="Demographer">demographers</a><sup id="cite_ref-Vaupel1986_1-0" class="reference"><a href="#cite_note-Vaupel1986-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Preston2001_2-0" class="reference"><a href="#cite_note-Preston2001-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Actuaries" class="mw-redirect" title="Actuaries">actuaries</a>.<sup id="cite_ref-Benjamin1980_3-0" class="reference"><a href="#cite_note-Benjamin1980-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Willemse2000_4-0" class="reference"><a href="#cite_note-Willemse2000-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Related fields of science such as biology<sup id="cite_ref-Economos1982_5-0" class="reference"><a href="#cite_note-Economos1982-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> and gerontology<sup id="cite_ref-Brown1974_6-0" class="reference"><a href="#cite_note-Brown1974-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> also considered the Gompertz distribution for the analysis of survival. More recently, computer scientists have also started to model the failure rates of computer code by the Gompertz distribution.<sup id="cite_ref-Ohishi2009_7-0" class="reference"><a href="#cite_note-Ohishi2009-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> In Marketing Science, it has been used as an individual-level simulation for <a href="/wiki/Customer_lifetime_value" title="Customer lifetime value">customer lifetime value</a> modeling.<sup id="cite_ref-BG_8-0" class="reference"><a href="#cite_note-BG-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Network_theory" title="Network theory">network theory</a>, particularly the <a href="/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model" title="Erdős–Rényi model">Erdős–Rényi model</a>, the walk length of a random <a href="/wiki/Self-avoiding_walk" title="Self-avoiding walk">self-avoiding walk</a> (SAW) is distributed according to the Gompertz distribution.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Specification">Specification</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=1" title="Edit section: Specification"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Probability_density_function">Probability density function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=2" title="Edit section: Probability density function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the Gompertz distribution is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\left(x;\eta ,b\right)=b\eta \exp \left(\eta +bx-\eta e^{bx}\right){\text{for }}x\geq 0,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>;</mo> <mi>η<!-- η --></mi> <mo>,</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>b</mi> <mi>η<!-- η --></mi> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>η<!-- η --></mi> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>x</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\left(x;\eta ,b\right)=b\eta \exp \left(\eta +bx-\eta e^{bx}\right){\text{for }}x\geq 0,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b836ba28e4578e953a2eb35353db6773c1212be0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.674ex; height:3.343ex;" alt="{\displaystyle f\left(x;\eta ,b\right)=b\eta \exp \left(\eta +bx-\eta e^{bx}\right){\text{for }}x\geq 0,\,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b>0\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>></mo> <mn>0</mn> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b>0\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13d47cc76715806f2ec47ab8c605336ab2f87a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:5.646ex; height:2.176ex;" alt="{\displaystyle b>0\,\!}"></span> is the <a href="/wiki/Scale_parameter" title="Scale parameter">scale parameter</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta >0\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo>></mo> <mn>0</mn> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta >0\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec590a6465130fefd68c97e9ead722ffc5547da3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:5.817ex; height:2.676ex;" alt="{\displaystyle \eta >0\,\!}"></span> is the <a href="/wiki/Shape_parameter" title="Shape parameter">shape parameter</a> of the Gompertz distribution. In the actuarial and biological sciences and in demography, the Gompertz distribution is parametrized slightly differently (<a href="/wiki/Gompertz%E2%80%93Makeham_law_of_mortality" title="Gompertz–Makeham law of mortality">Gompertz–Makeham law of mortality</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Cumulative_distribution_function">Cumulative distribution function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=3" title="Edit section: Cumulative distribution function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> of the Gompertz distribution is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\left(x;\eta ,b\right)=1-\exp \left(-\eta \left(e^{bx}-1\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>;</mo> <mi>η<!-- η --></mi> <mo>,</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>x</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\left(x;\eta ,b\right)=1-\exp \left(-\eta \left(e^{bx}-1\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ae55bf9147da00979096fa841f7bad95484e94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.391ex; height:3.343ex;" alt="{\displaystyle F\left(x;\eta ,b\right)=1-\exp \left(-\eta \left(e^{bx}-1\right)\right),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta ,b>0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo>,</mo> <mi>b</mi> <mo>></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta ,b>0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7bc4cbc667b806f715610fa9d8e2cdd7e9e7ef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.109ex; height:2.676ex;" alt="{\displaystyle \eta ,b>0,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\geq 0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\geq 0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d92492a8abdb3b99b42d70ca9c746ef785778eda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.625ex; height:2.343ex;" alt="{\displaystyle x\geq 0\,.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Moment_generating_function">Moment generating function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=4" title="Edit section: Moment generating function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The moment generating function is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}\left(e^{-tX}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>t</mi> <mi>X</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>η<!-- η --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>η<!-- η --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>η<!-- η --></mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}\left(e^{-tX}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2edcf262fd60fb16cc506077cf1badf28a724591" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:22.4ex; height:3.509ex;" alt="{\displaystyle {\text{E}}\left(e^{-tX}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>η<!-- η --></mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <mi>v</mi> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> </msup> <mi>d</mi> <mi>v</mi> <mo>,</mo> <mtext> </mtext> <mi>t</mi> <mo>></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a9347a720710bdf7fc0f9d30cd3f35a3c0bdcda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.811ex; height:5.843ex;" alt="{\displaystyle {\text{E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=5" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left. Its <a href="/wiki/Hazard_function" class="mw-redirect" title="Hazard function">hazard function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=\eta be^{bx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>η<!-- η --></mi> <mi>b</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=\eta be^{bx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b255bcf32fc342762cb90c265a21c279f8bab72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.705ex; height:3.176ex;" alt="{\displaystyle h(x)=\eta be^{bx}}"></span> is a convex function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\left(x;\eta ,b\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>;</mo> <mi>η<!-- η --></mi> <mo>,</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\left(x;\eta ,b\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/491abf7265b119e531691e9fc897aac85b863d32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.502ex; height:2.843ex;" alt="{\displaystyle F\left(x;\eta ,b\right)}"></span>. The model can be fitted into the innovation-imitation paradigm with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=\eta b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>η<!-- η --></mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=\eta b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2531b06c2ec2ebd6321b24cc4123a657cf008193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:6.524ex; height:2.676ex;" alt="{\displaystyle p=\eta b}"></span> as the coefficient of innovation and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> as the coefficient of imitation. When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> becomes large, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f9d8936c28d327f65c390886501cde7ff012a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.737ex; height:2.843ex;" alt="{\displaystyle z(t)}"></span> approaches <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>. The model can also belong to the propensity-to-adopt paradigm with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> as the propensity to adopt and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> as the overall appeal of the new offering. </p> <div class="mw-heading mw-heading3"><h3 id="Shapes">Shapes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=6" title="Edit section: Shapes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Gompertz density function can take on different shapes depending on the values of the shape parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1982f93a2a290d0f77529f7ea7bb4d0b5f56cac5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:1.557ex; height:2.176ex;" alt="{\displaystyle \eta \,\!}"></span>: </p> <ul><li>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta \geq 1,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta \geq 1,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e39ac696235b62056844a3176afac4a644c1127b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.464ex; height:2.676ex;" alt="{\displaystyle \eta \geq 1,\,}"></span> the probability density function has its mode at 0.</li> <li>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0<\eta <1,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo><</mo> <mi>η<!-- η --></mi> <mo><</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0<\eta <1,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b354ee954e6cec688612c370f29cafacfdcfc44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.725ex; height:2.676ex;" alt="{\displaystyle 0<\eta <1,\,}"></span> the probability density function has its mode at</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}=\left(1/b\right)\ln \left(1/\eta \right){\text{with }}0<F\left(x^{*}\right)<1-e^{-1}=0.632121}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>η<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>with </mtext> </mrow> <mn>0</mn> <mo><</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>)</mo> </mrow> <mo><</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>0.632121</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}=\left(1/b\right)\ln \left(1/\eta \right){\text{with }}0<F\left(x^{*}\right)<1-e^{-1}=0.632121}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2e5333b4db0254de7e5ab548807ecd7a2583ff8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.329ex; height:3.176ex;" alt="{\displaystyle x^{*}=\left(1/b\right)\ln \left(1/\eta \right){\text{with }}0<F\left(x^{*}\right)<1-e^{-1}=0.632121}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Kullback-Leibler_divergence">Kullback-Leibler divergence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=7" title="Edit section: Kullback-Leibler divergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50dfd257a51e037112c917f8a9e47c9c053466df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.509ex;" alt="{\displaystyle f_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc886fdaa7adc9be11ff4a5076da5e0943bcff58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.509ex;" alt="{\displaystyle f_{2}}"></span> are the probability density functions of two Gompertz distributions, then their <a href="/wiki/Kullback-Leibler_divergence" class="mw-redirect" title="Kullback-Leibler divergence">Kullback-Leibler divergence</a> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;b_{1},\eta _{1})\,\ln {\frac {f_{1}(x;b_{1},\eta _{1})}{f_{2}(x;b_{2},\eta _{2})}}dx\\&=\ln {\frac {e^{\eta _{1}}\,b_{1}\,\eta _{1}}{e^{\eta _{2}}\,b_{2}\,\eta _{2}}}+e^{\eta _{1}}\left[\left({\frac {b_{2}}{b_{1}}}-1\right)\,\operatorname {Ei} (-\eta _{1})+{\frac {\eta _{2}}{\eta _{1}^{\frac {b_{2}}{b_{1}}}}}\,\Gamma \left({\frac {b_{2}}{b_{1}}}+1,\eta _{1}\right)\right]-(\eta _{1}+1)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∥<!-- ∥ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>Ei</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msubsup> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> </msubsup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;b_{1},\eta _{1})\,\ln {\frac {f_{1}(x;b_{1},\eta _{1})}{f_{2}(x;b_{2},\eta _{2})}}dx\\&=\ln {\frac {e^{\eta _{1}}\,b_{1}\,\eta _{1}}{e^{\eta _{2}}\,b_{2}\,\eta _{2}}}+e^{\eta _{1}}\left[\left({\frac {b_{2}}{b_{1}}}-1\right)\,\operatorname {Ei} (-\eta _{1})+{\frac {\eta _{2}}{\eta _{1}^{\frac {b_{2}}{b_{1}}}}}\,\Gamma \left({\frac {b_{2}}{b_{1}}}+1,\eta _{1}\right)\right]-(\eta _{1}+1)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9b95f1a065a165b2d14d8e118ed769dc59be0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:90.771ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;b_{1},\eta _{1})\,\ln {\frac {f_{1}(x;b_{1},\eta _{1})}{f_{2}(x;b_{2},\eta _{2})}}dx\\&=\ln {\frac {e^{\eta _{1}}\,b_{1}\,\eta _{1}}{e^{\eta _{2}}\,b_{2}\,\eta _{2}}}+e^{\eta _{1}}\left[\left({\frac {b_{2}}{b_{1}}}-1\right)\,\operatorname {Ei} (-\eta _{1})+{\frac {\eta _{2}}{\eta _{1}^{\frac {b_{2}}{b_{1}}}}}\,\Gamma \left({\frac {b_{2}}{b_{1}}}+1,\eta _{1}\right)\right]-(\eta _{1}+1)\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Ei} (\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Ei</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Ei} (\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/433460bdf5f2e1d9881ce14d92ba2f254f1882b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.686ex; height:2.843ex;" alt="{\displaystyle \operatorname {Ei} (\cdot )}"></span> denotes the <a href="/wiki/Exponential_integral" title="Exponential integral">exponential integral</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (\cdot ,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (\cdot ,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8449bf2e114e259d02fa66016319c85586564c9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.59ex; height:2.843ex;" alt="{\displaystyle \Gamma (\cdot ,\cdot )}"></span> is the upper <a href="/wiki/Incomplete_gamma_function" title="Incomplete gamma function">incomplete gamma function</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Related_distributions">Related distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=8" title="Edit section: Related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>If <i>X</i> is defined to be the result of sampling from a <a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel distribution</a> until a negative value <i>Y</i> is produced, and setting <i>X</i>=−<i>Y</i>, then <i>X</i> has a Gompertz distribution.</li> <li>The <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a> is a natural <a href="/wiki/Conjugate_prior" title="Conjugate prior">conjugate prior</a> to a Gompertz likelihood with known scale parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\,\!.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\,\!.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b132160d65148c9524a3dab426cb293968353c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.644ex; height:2.176ex;" alt="{\displaystyle b\,\!.}"></span><sup id="cite_ref-BG_8-1" class="reference"><a href="#cite_note-BG-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li> <li>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1982f93a2a290d0f77529f7ea7bb4d0b5f56cac5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:1.557ex; height:2.176ex;" alt="{\displaystyle \eta \,\!}"></span> varies according to a <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a> with shape parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e383db6745c5569c37ab2290d41e06a27510337" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.875ex; height:1.676ex;" alt="{\displaystyle \alpha \,\!}"></span> and scale parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbffae41136f224bb11aabbc95e5177101c5535b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:1.719ex; height:2.509ex;" alt="{\displaystyle \beta \,\!}"></span> (mean = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha /\beta \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>β<!-- β --></mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha /\beta \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af8d0d52241b4dbad68d895981d257501b95f6bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:4.369ex; height:2.843ex;" alt="{\displaystyle \alpha /\beta \,\!}"></span>), the distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is Gamma/Gompertz.<sup id="cite_ref-BG_8-2" class="reference"><a href="#cite_note-BG-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li></ul> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Gompertz_distribution.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Gompertz_distribution.png/300px-Gompertz_distribution.png" decoding="async" width="300" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Gompertz_distribution.png/450px-Gompertz_distribution.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Gompertz_distribution.png/600px-Gompertz_distribution.png 2x" data-file-width="623" data-file-height="441" /></a><figcaption>Gompertz distribution fitted to maximum monthly 1-day rainfalls <sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></figcaption></figure> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \mathrm {Gompertz} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \mathrm {Gompertz} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/438a375a8a45dc25c052113737cdd99254072db2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.968ex; height:2.509ex;" alt="{\displaystyle Y\sim \mathrm {Gompertz} }"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\exp(Y)\sim \mathrm {Weibull} ^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">W</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\exp(Y)\sim \mathrm {Weibull} ^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eae53c3c6355c1cd48cbab8b6555026b3707a82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.591ex; height:3.176ex;" alt="{\displaystyle X=\exp(Y)\sim \mathrm {Weibull} ^{-1}}"></span>, and hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(-Y)\sim \mathrm {Weibull} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">W</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">l</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(-Y)\sim \mathrm {Weibull} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f214bb17aa649c8223d8d556902c492ff83fadf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.988ex; height:2.843ex;" alt="{\displaystyle \exp(-Y)\sim \mathrm {Weibull} }"></span>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=9" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In <a href="/wiki/Hydrology" title="Hydrology">hydrology</a> the Gompertz distribution is applied to extreme events such as annual maximum one-day rainfalls and river discharges. The blue picture illustrates an example of fitting the Gompertz distribution to ranked annually maximum one-day rainfalls showing also the 90% <a href="/wiki/Confidence_belt" class="mw-redirect" title="Confidence belt">confidence belt</a> based on the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>. The rainfall data are represented by <a href="/wiki/Plotting_position" class="mw-redirect" title="Plotting position">plotting positions</a> as part of the <a href="/wiki/Cumulative_frequency_analysis" title="Cumulative frequency analysis">cumulative frequency analysis</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Gompertz-Makeham_law_of_mortality" class="mw-redirect" title="Gompertz-Makeham law of mortality">Gompertz-Makeham law of mortality</a></li> <li><a href="/wiki/Gompertz_function" title="Gompertz function">Gompertz function</a></li> <li><a href="/wiki/Customer_lifetime_value" title="Customer lifetime value">Customer lifetime value</a></li> <li><a href="/wiki/Gamma_Gompertz_distribution" class="mw-redirect" title="Gamma Gompertz distribution">Gamma Gompertz distribution</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=11" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Vaupel1986-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaupel1986_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFVaupel1986" class="citation journal cs1">Vaupel, James W. (1986). <a rel="nofollow" class="external text" href="http://pure.iiasa.ac.at/id/eprint/2683/1/WP-85-017.pdf">"How change in age-specific mortality affects life expectancy"</a> <span class="cs1-format">(PDF)</span>. <i>Population Studies</i>. <b>40</b> (1): 147–157. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0032472031000141896">10.1080/0032472031000141896</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11611920">11611920</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Population+Studies&rft.atitle=How+change+in+age-specific+mortality+affects+life+expectancy&rft.volume=40&rft.issue=1&rft.pages=147-157&rft.date=1986&rft_id=info%3Adoi%2F10.1080%2F0032472031000141896&rft_id=info%3Apmid%2F11611920&rft.aulast=Vaupel&rft.aufirst=James+W.&rft_id=http%3A%2F%2Fpure.iiasa.ac.at%2Fid%2Feprint%2F2683%2F1%2FWP-85-017.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Preston2001-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Preston2001_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrestonHeuveline,_PatrickGuillot,_Michel2001" class="citation book cs1">Preston, Samuel H.; Heuveline, Patrick; Guillot, Michel (2001). <i>Demography:measuring and modeling population processes</i>. Oxford: Blackwell.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Demography%3Ameasuring+and+modeling+population+processes&rft.place=Oxford&rft.pub=Blackwell&rft.date=2001&rft.aulast=Preston&rft.aufirst=Samuel+H.&rft.au=Heuveline%2C+Patrick&rft.au=Guillot%2C+Michel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Benjamin1980-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Benjamin1980_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenjaminHaycocks,_H.W.Pollard,_J.1980" class="citation book cs1">Benjamin, Bernard; Haycocks, H.W.; Pollard, J. (1980). <i>The Analysis of Mortality and Other Actuarial Statistics</i>. London: Heinemann.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Analysis+of+Mortality+and+Other+Actuarial+Statistics&rft.place=London&rft.pub=Heinemann&rft.date=1980&rft.aulast=Benjamin&rft.aufirst=Bernard&rft.au=Haycocks%2C+H.W.&rft.au=Pollard%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Willemse2000-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Willemse2000_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWillemseKoppelaar,_H.2000" class="citation journal cs1">Willemse, W. J.; Koppelaar, H. (2000). "Knowledge elicitation of Gompertz' law of mortality". <i>Scandinavian Actuarial Journal</i>. <b>2000</b> (2): 168–179. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F034612300750066845">10.1080/034612300750066845</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122719776">122719776</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scandinavian+Actuarial+Journal&rft.atitle=Knowledge+elicitation+of+Gompertz%27+law+of+mortality&rft.volume=2000&rft.issue=2&rft.pages=168-179&rft.date=2000&rft_id=info%3Adoi%2F10.1080%2F034612300750066845&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122719776%23id-name%3DS2CID&rft.aulast=Willemse&rft.aufirst=W.+J.&rft.au=Koppelaar%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Economos1982-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Economos1982_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEconomos1982" class="citation journal cs1">Economos, A. (1982). "Rate of aging, rate of dying and the mechanism of mortality". <i>Archives of Gerontology and Geriatrics</i>. <b>1</b> (1): 46–51. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0167-4943%2882%2990003-6">10.1016/0167-4943(82)90003-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6821142">6821142</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Archives+of+Gerontology+and+Geriatrics&rft.atitle=Rate+of+aging%2C+rate+of+dying+and+the+mechanism+of+mortality&rft.volume=1&rft.issue=1&rft.pages=46-51&rft.date=1982&rft_id=info%3Adoi%2F10.1016%2F0167-4943%2882%2990003-6&rft_id=info%3Apmid%2F6821142&rft.aulast=Economos&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Brown1974-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brown1974_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownForbes,_W.1974" class="citation journal cs1">Brown, K.; Forbes, W. (1974). "A mathematical model of aging processes". <i>Journal of Gerontology</i>. <b>29</b> (1): 46–51. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fgeronj%2F29.1.46">10.1093/geronj/29.1.46</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/4809664">4809664</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Gerontology&rft.atitle=A+mathematical+model+of+aging+processes&rft.volume=29&rft.issue=1&rft.pages=46-51&rft.date=1974&rft_id=info%3Adoi%2F10.1093%2Fgeronj%2F29.1.46&rft_id=info%3Apmid%2F4809664&rft.aulast=Brown&rft.aufirst=K.&rft.au=Forbes%2C+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Ohishi2009-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ohishi2009_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOhishiOkamura,_H.Dohi,_T.2009" class="citation journal cs1">Ohishi, K.; Okamura, H.; Dohi, T. (2009). <a rel="nofollow" class="external text" href="http://ir.lib.hiroshima-u.ac.jp/00027703">"Gompertz software reliability model: estimation algorithm and empirical validation"</a>. <i>Journal of Systems and Software</i>. <b>82</b> (3): 535–543. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jss.2008.11.840">10.1016/j.jss.2008.11.840</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Systems+and+Software&rft.atitle=Gompertz+software+reliability+model%3A+estimation+algorithm+and+empirical+validation&rft.volume=82&rft.issue=3&rft.pages=535-543&rft.date=2009&rft_id=info%3Adoi%2F10.1016%2Fj.jss.2008.11.840&rft.aulast=Ohishi&rft.aufirst=K.&rft.au=Okamura%2C+H.&rft.au=Dohi%2C+T.&rft_id=http%3A%2F%2Fir.lib.hiroshima-u.ac.jp%2F00027703&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-BG-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-BG_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BG_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BG_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBemmaorGlady,_Nicolas2012" class="citation journal cs1">Bemmaor, Albert C.; Glady, Nicolas (2012). "Modeling Purchasing Behavior With Sudden 'Death': A Flexible Customer Lifetime Model". <i>Management Science</i>. <b>58</b> (5): 1012–1021. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1287%2Fmnsc.1110.1461">10.1287/mnsc.1110.1461</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Management+Science&rft.atitle=Modeling+Purchasing+Behavior+With+Sudden+%27Death%27%3A+A+Flexible+Customer+Lifetime+Model&rft.volume=58&rft.issue=5&rft.pages=1012-1021&rft.date=2012&rft_id=info%3Adoi%2F10.1287%2Fmnsc.1110.1461&rft.aulast=Bemmaor&rft.aufirst=Albert+C.&rft.au=Glady%2C+Nicolas&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Tishby, Biham, Katzav (2016), The distribution of path lengths of self avoiding walks on Erdős-Rényi networks, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.06613">1603.06613</a>.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Bauckhage, C. (2014), Characterizations and Kullback-Leibler Divergence of Gompertz Distributions, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/1402.3193">1402.3193</a>.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"> Calculator for probability distribution fitting <a rel="nofollow" class="external autonumber" href="https://www.waterlog.info/cumfreq.htm">[1]</a> </span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiberKotz2003" class="citation book cs1">Kleiber, Christian; Kotz, Samuel (2003). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/book/10.1002/0471457175"><i>Statistical Size Distributions in Economics and Actuarial Sciences</i></a>. Wiley. p. 179. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471457175">10.1002/0471457175</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780471150640" title="Special:BookSources/9780471150640"><bdi>9780471150640</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistical+Size+Distributions+in+Economics+and+Actuarial+Sciences&rft.pages=179&rft.pub=Wiley&rft.date=2003&rft_id=info%3Adoi%2F10.1002%2F0471457175&rft.isbn=9780471150640&rft.aulast=Kleiber&rft.aufirst=Christian&rft.au=Kotz%2C+Samuel&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fbook%2F10.1002%2F0471457175&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gompertz_distribution&action=edit&section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBemmaorGlady2011" class="citation web cs1">Bemmaor, Albert C.; Glady, Nicolas (2011). <a rel="nofollow" class="external text" href="https://dl.dropbox.com/u/7097708/gg_nbd_MATLAB.pdf">"Implementing the Gamma/Gompertz/NBD Model in MATLAB"</a> <span class="cs1-format">(PDF)</span>. Cergy-Pontoise: ESSEC Business School.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Implementing+the+Gamma%2FGompertz%2FNBD+Model+in+MATLAB&rft.place=Cergy-Pontoise&rft.pub=ESSEC+Business+School&rft.date=2011&rft.aulast=Bemmaor&rft.aufirst=Albert+C.&rft.au=Glady%2C+Nicolas&rft_id=http%3A%2F%2Fdl.dropbox.com%2Fu%2F7097708%2Fgg_nbd_MATLAB.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged December 2019">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGompertz1825" class="citation journal cs1"><a href="/wiki/Benjamin_Gompertz" title="Benjamin Gompertz">Gompertz, B.</a> (1825). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1432356">"On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies"</a>. <i>Philosophical Transactions of the Royal Society of London</i>. <b>115</b>: 513–583. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1825.0026">10.1098/rstl.1825.0026</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/107756">107756</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145157003">145157003</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London&rft.atitle=On+the+Nature+of+the+Function+Expressive+of+the+Law+of+Human+Mortality%2C+and+on+a+New+Mode+of+Determining+the+Value+of+Life+Contingencies&rft.volume=115&rft.pages=513-583&rft.date=1825&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145157003%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F107756%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1098%2Frstl.1825.0026&rft.aulast=Gompertz&rft.aufirst=B.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1432356&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonKotzBalakrishnan1995" class="citation book cs1">Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1995). <i>Continuous Univariate Distributions</i>. Vol. 2 (2nd ed.). New York: John Wiley & Sons. pp. 25–26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-58494-0" title="Special:BookSources/0-471-58494-0"><bdi>0-471-58494-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Continuous+Univariate+Distributions&rft.place=New+York&rft.pages=25-26&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons&rft.date=1995&rft.isbn=0-471-58494-0&rft.aulast=Johnson&rft.aufirst=Norman+L.&rft.au=Kotz%2C+Samuel&rft.au=Balakrishnan%2C+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheikhBoah,_J._K.Younas,_M.1989" class="citation journal cs1">Sheikh, A. K.; Boah, J. K.; Younas, M. (1989). "Truncated Extreme Value Model for Pipeline Reliability". <i>Reliability Engineering and System Safety</i>. <b>25</b> (1): 1–14. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0951-8320%2889%2990020-3">10.1016/0951-8320(89)90020-3</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reliability+Engineering+and+System+Safety&rft.atitle=Truncated+Extreme+Value+Model+for+Pipeline+Reliability&rft.volume=25&rft.issue=1&rft.pages=1-14&rft.date=1989&rft_id=info%3Adoi%2F10.1016%2F0951-8320%2889%2990020-3&rft.aulast=Sheikh&rft.aufirst=A.+K.&rft.au=Boah%2C+J.+K.&rft.au=Younas%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGompertz+distribution" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford's law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf's law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a class="mw-selflink selflink">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling's T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks's lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher's z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson's SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student's t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens's sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐6z6cl Cached time: 20241122144334 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.657 seconds Real time usage: 0.882 seconds Preprocessor visited node count: 2241/1000000 Post‐expand include size: 102346/2097152 bytes Template argument size: 3816/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 58666/5000000 bytes Lua time usage: 0.381/10.000 seconds Lua memory usage: 6082295/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 612.112 1 -total 33.39% 204.374 1 Template:Reflist 25.79% 157.881 8 Template:Cite_journal 22.31% 136.562 4 Template:Navbox 21.97% 134.489 1 Template:ProbDistributions 15.05% 92.101 1 Template:Short_description 12.70% 77.765 1 Template:More_footnotes 11.46% 70.140 1 Template:Ambox 9.43% 57.724 2 Template:Pagetype 7.42% 45.447 1 Template:Probability_distribution --> <!-- Saved in parser cache with key enwiki:pcache:idhash:20101246-0!canonical and timestamp 20241122144334 and revision id 1227034809. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Gompertz_distribution&oldid=1227034809">https://en.wikipedia.org/w/index.php?title=Gompertz_distribution&oldid=1227034809</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Survival_analysis" title="Category:Survival analysis">Survival analysis</a></li><li><a href="/wiki/Category:Actuarial_science" title="Category:Actuarial science">Actuarial science</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_December_2011" title="Category:Articles lacking in-text citations from December 2011">Articles lacking in-text citations from December 2011</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_December_2019" title="Category:Articles with dead external links from December 2019">Articles with dead external links from December 2019</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 3 June 2024, at 08:13<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Gompertz_distribution&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-f2r5r","wgBackendResponseTime":220,"wgPageParseReport":{"limitreport":{"cputime":"0.657","walltime":"0.882","ppvisitednodes":{"value":2241,"limit":1000000},"postexpandincludesize":{"value":102346,"limit":2097152},"templateargumentsize":{"value":3816,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":58666,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 612.112 1 -total"," 33.39% 204.374 1 Template:Reflist"," 25.79% 157.881 8 Template:Cite_journal"," 22.31% 136.562 4 Template:Navbox"," 21.97% 134.489 1 Template:ProbDistributions"," 15.05% 92.101 1 Template:Short_description"," 12.70% 77.765 1 Template:More_footnotes"," 11.46% 70.140 1 Template:Ambox"," 9.43% 57.724 2 Template:Pagetype"," 7.42% 45.447 1 Template:Probability_distribution"]},"scribunto":{"limitreport-timeusage":{"value":"0.381","limit":"10.000"},"limitreport-memusage":{"value":6082295,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-6z6cl","timestamp":"20241122144334","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Gompertz distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Gompertz_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1011784","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1011784","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-11-06T23:13:47Z","dateModified":"2024-06-03T08:13:48Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/ae\/GompertzPDF.svg","headline":"continuous probability distribution, named after Benjamin Gompertz"}</script> </body> </html>