CINXE.COM

Search results for: surcharge preload

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: surcharge preload</title> <meta name="description" content="Search results for: surcharge preload"> <meta name="keywords" content="surcharge preload"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="surcharge preload" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="surcharge preload"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: surcharge preload</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> A Study on the Response of Vacuum Consolidation on Soft Clay in Combination with Prefabricated Vertical Drain (PVD), Embankment and Surcharge Preloading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmeelee%20Subramaniam">Sharmeelee Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhd%20Harris%20Ramli"> Muhd Harris Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Fauziah%20Ahmad"> Fauziah Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of vacuum pressure to accelerate ground consolidation has been growing significantly in recent years. This ground improvement technique has its advantages, especially in areas where suitable fill is scarce, as it minimizes the surcharge fill height required for the preloading. A study was carried out to examine the response of soft subsoil subjected to vacuum consolidation in combination with embankment loading, surcharge preloading and PVD with two-way drainage. This paper shall describe a procedure to determine the optimum surcharge height and penetration depth of prefabricated vertical drains (PVD) where vacuum consolidation is combined with the use of PVD in soft clay deposits with two-way drainage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20vertical%20drain" title="prefabricated vertical drain">prefabricated vertical drain</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge%20preload" title=" surcharge preload"> surcharge preload</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20consolidation" title=" vacuum consolidation"> vacuum consolidation</a> </p> <a href="https://publications.waset.org/abstracts/163568/a-study-on-the-response-of-vacuum-consolidation-on-soft-clay-in-combination-with-prefabricated-vertical-drain-pvd-embankment-and-surcharge-preloading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Oouchi">Shinji Oouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajime%20Nomura"> Hajime Nomura</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Pin%20Hung"> Jui-Pin Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20compliance" title="dynamic compliance">dynamic compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20preload" title=" bearing preload"> bearing preload</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20damping" title=" modal damping"> modal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20preload" title=" standard preload"> standard preload</a> </p> <a href="https://publications.waset.org/abstracts/15889/variation-of-the-dynamic-characteristics-of-a-spindle-with-the-change-of-bearing-preload" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Machining Stability of a Milling Machine with Different Preloaded Spindle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pin%20Hung">Jui-Pin Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiao-Wen%20Chang"> Qiao-Wen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Run%20Chen"> Yong-Run Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the spindle unit. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change for spindle with different preload. As can be found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This implies that the machining stability of spindle tool system is affected to vary by the machine frame structure. Besides, such an effect is quite different and varied with the preload of the spindle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20preload" title="bearing preload">bearing preload</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20compliance" title=" dynamic compliance"> dynamic compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=machining%20stability" title=" machining stability"> machining stability</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle" title=" spindle"> spindle</a> </p> <a href="https://publications.waset.org/abstracts/30499/machining-stability-of-a-milling-machine-with-different-preloaded-spindle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Run%20Chen"> Yong-Run Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Cheng%20Shih"> Wei-Cheng Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Lin"> Chun-Wei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20stiffness" title="contact stiffness">contact stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20stage" title=" feeding stage"> feeding stage</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20guides" title=" linear guides"> linear guides</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20characteristics" title=" modal characteristics"> modal characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-load" title=" pre-load"> pre-load</a> </p> <a href="https://publications.waset.org/abstracts/51628/variations-of-the-modal-characteristics-of-the-feeding-stage-with-different-preloaded-linear-guide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Seismic Investigation on the Effect of Surface Structures and Twin Tunnel on the Site Response in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Mohammadi"> Saeideh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Site response has a profound effect on earthquake damages. Seismic interaction of urban tunnels with surface structures could also affect seismic site response<strong><span dir="RTL">.</span></strong> Here, we use FLAC 2D to investigate the interaction of a single tunnel and twin tunnels-surface structures on the site response. Soil stratification and properties are selected based on Line. No 7 of the Tehran subway. The effect of surface structure is considered in two ways: Equivalent surcharge and geometrical modeling of the structure. Comparison of the results shows that consideration of the structure geometry is vital in dynamic analysis and leads to the changes in the magnitude of displacements, accelerations and response spectrum. Therefore it is necessary for the surface structures to be wholly modeled and not just considered as a surcharge in dynamic analysis. The use of twin tunnel also leads to the reduction of dynamic residual settlement<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superstructure" title="superstructure">superstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel" title=" tunnel"> tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response" title=" site response"> site response</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge" title=" surcharge"> surcharge</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/106616/seismic-investigation-on-the-effect-of-surface-structures-and-twin-tunnel-on-the-site-response-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effect of Preloading on Long-Term Settlement of Closed Landfills: A Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Alibeikloo">Mehrnaz Alibeikloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajar%20Share%20Isfahani"> Hajar Share Isfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Khabbaz"> Hadi Khabbaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, by developing cities and increasing population, reconstructing on closed landfill sites in some regions is unavoidable. Long-term settlement is one of the major concerns associated with reconstruction on landfills after closure. The purpose of this research is evaluating the effect of preloading in various patterns of height and time on long-term settlements of closed landfills. In this regard, five scenarios of surcharge from 1 to 3 m high within 3, 4.5 and 6 months of preloading time have been modeled using PLAXIS 2D software. Moreover, the numerical results have been compared to those obtained from analytical methods, and a good agreement has been achieved. The findings indicate that there is a linear relationship between settlement and surcharge height. Although, long-term settlement decreased by applying a longer and higher preloading, the time of preloading was found to be a more effective factor compared to preloading height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preloading" title="preloading">preloading</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20settlement" title=" long-term settlement"> long-term settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%202D" title=" PLAXIS 2D"> PLAXIS 2D</a> </p> <a href="https://publications.waset.org/abstracts/108297/effect-of-preloading-on-long-term-settlement-of-closed-landfills-a-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Numerical Study of Partial Penetration of PVDs In Soft Clay Soils Treatment Along With Surcharge Preloading (Bangkok Airport Case Study)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mehdi%20Pardsouie">Mohammad Mehdi Pardsouie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mokhberi"> Mehdi Mokhberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Ali%20Zomorodian"> Seyed Mohammad Ali Zomorodian</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Alireza%20Nasehi"> Seyed Alireza Nasehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the challenging parts of every project, including prefabricated vertical drains (PVDs), is the determination of the depth of installation and its configuration. In this paper, Geostudio 2018 was used for modeling and verification of the full-scale test embankments (TS1, TS2, and TS3), which were constructed to study the effectiveness of PVDs for accelerating the consolidation and dissipation of the excess pore-pressures resulting from fill placement at Bangkok airport. Different depths and scenarios were modeled and the results were compared and analyzed. Since the ultimate goal is attaining pre-determined settlement, the settlement curve under soil embankment was used for the investigation of the results. It was shown that nearly in all cases, the same results and efficiency might be obtained by partial depth installation of PVDs instead of complete full constant length installation. However, it should be mentioned that because of distinct soil characteristics of clay soils and layers properties of any project, further investigation of full-scale test embankments and modeling is needed prior to finalizing the ultimate design by competent geotechnical consultants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partial%20penetration" title="partial penetration">partial penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge%20preloading" title=" surcharge preloading"> surcharge preloading</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20water%20pressure" title=" excess pore water pressure"> excess pore water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangkok%20test%20embankments" title=" Bangkok test embankments"> Bangkok test embankments</a> </p> <a href="https://publications.waset.org/abstracts/143189/numerical-study-of-partial-penetration-of-pvds-in-soft-clay-soils-treatment-along-with-surcharge-preloading-bangkok-airport-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Accidental U.S. Taxpayers Residing Abroad: Choosing between U.S. Citizenship or Keeping Their Local Investment Accounts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Sewald">Marco Sewald</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the current enforcement of exterritorial U.S. legislation, up to 9 million U.S. (dual) citizens residing abroad are subject to U.S. double and surcharge taxation and at risk of losing access to otherwise basic financial services and investment opportunities abroad. The United States is the only OECD country that taxes non-resident citizens, lawful permanent residents and other non-resident aliens on their worldwide income, based on local U.S. tax laws. To enforce these policies the U.S. has implemented ‘saving clauses’ in all tax treaties and implemented several compliance provisions, including the Foreign Account Tax Compliance Act (FATCA), Qualified Intermediaries Agreements (QI) and Intergovernmental Agreements (IGA) addressing Foreign Financial Institutions (FFIs) to implement these provisions in foreign jurisdictions. This policy creates systematic cases of double and surcharge taxation. The increased enforcement of compliance rules is creating additional report burdens for U.S. persons abroad and FFIs accepting such U.S. persons as customers. FFIs in Europe react with a growing denial of specific financial services to this population. The numbers of U.S. citizens renouncing has dramatically increased in the last years. A case study is chosen as an appropriate methodology and research method, as being an empirical inquiry that investigates a contemporary phenomenon within its real-life context; when the boundaries between phenomenon and context are not clearly evident; and in which multiple sources of evidence are used. This evaluative approach is testing whether the combination of policies works in practice, or whether they are in accordance with desirable moral, political, economical aims, or may serve other causes. The research critically evaluates the financial and non-financial consequences and develops sufficient strategies. It further discusses these strategies to avoid the undesired consequences of exterritorial U.S. legislation. Three possible strategies are resulting from the use cases: (1) Duck and cover, (2) Pay U.S. double/surcharge taxes, tax preparing fees and accept imposed product limitations and (3) Renounce U.S. citizenship and pay possible exit taxes, tax preparing fees and the requested $2,350 fee to renounce. While the first strategy is unlawful and therefore unsuitable, the second strategy is only suitable if the U.S. citizen residing abroad is planning to move to the U.S. in the future. The last strategy is the only reasonable and lawful way provided by the U.S. to limit the exposure to U.S. double and surcharge taxation and the limitations on financial products. The results are believed to add a perspective to the current academic discourse regarding U.S. citizenship based taxation, currently dominated by U.S. scholars, while providing sufficient strategies for the affected population at the same time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citizenship%20based%20taxation" title="citizenship based taxation">citizenship based taxation</a>, <a href="https://publications.waset.org/abstracts/search?q=FATCA" title=" FATCA"> FATCA</a>, <a href="https://publications.waset.org/abstracts/search?q=FBAR" title=" FBAR"> FBAR</a>, <a href="https://publications.waset.org/abstracts/search?q=qualified%20intermediaries%20agreements" title=" qualified intermediaries agreements"> qualified intermediaries agreements</a>, <a href="https://publications.waset.org/abstracts/search?q=renounce%20U.S.%20citizenship" title=" renounce U.S. citizenship"> renounce U.S. citizenship</a> </p> <a href="https://publications.waset.org/abstracts/56149/accidental-us-taxpayers-residing-abroad-choosing-between-us-citizenship-or-keeping-their-local-investment-accounts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taghvamanesh"> S. Taghvamanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors N <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity%20factor%20N%CE%B3" title=" bearing capacity factor Nγ"> bearing capacity factor Nγ</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20foundations" title=" irregular foundations"> irregular foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20factor" title=" shape factor"> shape factor</a> </p> <a href="https://publications.waset.org/abstracts/134905/a-review-on-bearing-capacity-factor-ngh-of-foundations-with-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Viscoelastic Characterization of Bovine Trabecular Bone Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ramirez%20D.%20Edgar">I. Ramirez D. Edgar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Angeles%20H.%20Jos%C3%A9"> J. Angeles H. José</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruiz%20C.%20Osvaldo"> Ruiz C. Osvaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jacobo%20A.%20Victor"> H. Jacobo A. Victor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ortiz%20P.%20Armando"> Ortiz P. Armando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20viscoelasticity" title="bone viscoelasticity">bone viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20test" title=" fatigue test"> fatigue test</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relaxation%20test" title=" stress relaxation test"> stress relaxation test</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone%20properties" title=" trabecular bone properties"> trabecular bone properties</a> </p> <a href="https://publications.waset.org/abstracts/21146/viscoelastic-characterization-of-bovine-trabecular-bone-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Numerical Modeling of a Retaining Wall in Soil Reinforced by Layers of Geogrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mellas">M. Mellas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Baaziz"> S. Baaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mabrouki"> A. Mabrouki</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benmeddour"> D. Benmeddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforcement of massifs of backfill with horizontal layers of geosynthetics is an interesting economic solution, which ensures the stability of retaining walls. The mechanical behavior of reinforced soil by geosynthetic is complex, and requires studies and research to understand the mechanisms of rupture. The behavior of reinforcements in the soil and the behavior of the main elements of the system: reinforcement-wall-soil. The present study is interested in numerical modeling of a retaining wall in soil reinforced by horizontal layers of geogrids. This modeling makes use of the software FLAC3D. This work aims to analyze the effect of the length of the geogrid "L" where the soil massif is supporting a uniformly distributed surcharge "Q", taking into account the fixing elements rather than the layers of geogrids to the wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a> </p> <a href="https://publications.waset.org/abstracts/1335/numerical-modeling-of-a-retaining-wall-in-soil-reinforced-by-layers-of-geogrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Effect of Slope Height and Horizontal Forces on the Bearing Capacity of Strip Footings near Slopes in Cohesionless Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sven%20Krabbenhoft">Sven Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristian%20Krabbenhoft"> Kristian Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Damkilde"> Lars Damkilde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable for design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=footings" title="footings">footings</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=slopes" title=" slopes"> slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionnless%20soil" title=" cohesionnless soil"> cohesionnless soil</a> </p> <a href="https://publications.waset.org/abstracts/12708/effect-of-slope-height-and-horizontal-forces-on-the-bearing-capacity-of-strip-footings-near-slopes-in-cohesionless-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Study of Debonding of Composite Material from a Deforming Concrete Beam Using Infrared Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Shardakov">Igor Shardakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Bykov"> Anton Bykov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Shestakov"> Alexey Shestakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Glot"> Irina Glot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article focuses on the cycle of experimental studies of the formation of cracks and debondings in the concrete reinforced with carbon fiber. This research was carried out in Perm National Research Polytechnic University. A series of CFRP-strengthened RC beams was tested to investigate the influence of preload and crack repairing factors on CFRP debonding. IRT was applied to detect the early stage of IC debonding during the laboratory bending tests. It was found that for the beams strengthened under load after crack injecting, СFRP debonding strain is 4-65% lower than for the preliminary strengthened beams. The beams strengthened under the load had a relative area of debonding of 2 times higher than preliminary strengthened beams. The СFRP debonding strain is weakly dependent on the strength of the concrete substrate. For beams with a transverse wrapping anchorage in support sections FRP debonding is not a failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IC%20debonding" title="IC debonding">IC debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing%20methods" title=" non-destructive testing methods"> non-destructive testing methods</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/52619/study-of-debonding-of-composite-material-from-a-deforming-concrete-beam-using-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Numerical Modelling of a Vacuum Consolidation Project in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Trong%20Nghia">Nguyen Trong Nghia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Uy%20Vu"> Nguyen Huu Uy Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dang%20Huu%20Phuoc"> Dang Huu Phuoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Shukla"> Sanjay Kumar Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Gia%20Lam"> Le Gia Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Cuong"> Nguyen Van Cuong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a matching scheme for selection of soil/drain properties in analytical solution and numerical modelling (axisymmetric and plane strain conditions) of a ground improvement project by using Prefabricated Vertical Drains (PVD) in combination with vacuum and surcharge preloading. In-situ monitoring data from a case history of a road construction project in Vietnam was adopted in the back-analysis. Analytical solution and axisymmetric analysis can approximate well the field data meanwhile the horizontal permeability need to be adjusted in plane strain scenario to achieve good agreement. In addition, the influence zone of the ground treatment was examined. The residual settlement was investigated to justify the long-term settlement in compliance with the design code. Moreover, the degree of consolidation of non-PVD sub-layers was also studied by means of two different approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title="numerical modelling">numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20vertical%20drains" title=" prefabricated vertical drains"> prefabricated vertical drains</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20consolidation" title=" vacuum consolidation"> vacuum consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/96963/numerical-modelling-of-a-vacuum-consolidation-project-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faci%20Youcef">Faci Youcef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Maalem%20Badredine"> Maalem Badredine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination" title=" inclination"> inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=analyzed" title=" analyzed"> analyzed</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/182410/study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Mohammadi"> Saeideh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel" title="tunnel">tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC2D" title=" FLAC2D"> FLAC2D</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/118483/a-seismic-study-on-the-settlement-of-superstructures-due-to-the-tunnel-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Predicting Mixing Patterns of Overflows from a Square Manhole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modupe%20O.%20Jimoh">Modupe O. Jimoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During manhole overflows, its contents pollute the immediate environment. Understanding the pollutant transfer characteristics between manhole’s incoming sewer and the overflow is therefore of great importance. A square manhole with sides 388 mm by 388 mm and height 700 mm with an overflow facility was used in the laboratory to carry out overflow concentration measurements. Two scenarios were investigated using three flow rates. The first scenario corresponded to when the exit of the pipe becomes blocked and the only exit for the flow is the manhole. The second scenario is when there is an overflow in combination with a pipe exit. The temporal concentration measurements showed that the peak concentration of pollutants in the flow was attenuated between the inlet and the overflow. A deconvolution software was used to predict the Residence time distribution (RTD) and consequently the Cumulative Residence time distribution (CRTD). The CRTDs suggest that complete mixing is occurring between the pipe inlet and the overflow, like what is obtained in a low surcharged manhole. The results also suggest that an instantaneous stirred tank reactor model can describe the mixing characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRTDs" title="CRTDs">CRTDs</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20stirred%20tank%20reactor%20model" title=" instantaneous stirred tank reactor model"> instantaneous stirred tank reactor model</a>, <a href="https://publications.waset.org/abstracts/search?q=overflow" title=" overflow"> overflow</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20manholes" title=" square manholes"> square manholes</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge" title=" surcharge"> surcharge</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20concentration%20profiles" title=" temporal concentration profiles"> temporal concentration profiles</a> </p> <a href="https://publications.waset.org/abstracts/97743/predicting-mixing-patterns-of-overflows-from-a-square-manhole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Faci">Youcef Faci</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Badredine%20Maalem"> Badredine Maalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=bolt%20inclination%20angle" title=" bolt inclination angle"> bolt inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/182322/an-experimental-study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Mahfouz">Ali H. Mahfouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20E.%20M.%20Sallam"> Hossam E. M. Sallam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulwali%20Wazir"> Abdulwali Wazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamod%20H.%20Kharezi"> Hamod H. Kharezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20foundation%20soil" title="soft foundation soil">soft foundation soil</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20ramps" title=" bridge ramps"> bridge ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title=" soil improvement"> soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=PCC%20piles" title=" PCC piles"> PCC piles</a> </p> <a href="https://publications.waset.org/abstracts/43863/geotechnical-investigation-of-soil-foundation-for-ramps-of-dawar-el-tawheed-bridge-in-jizan-city-kingdom-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Acoustic Analysis of Ball Bearings to Identify Localised Race Defect </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Solairaju">M. Solairaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Nithin%20J.%20Thomas"> Nithin J. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ganesan"> S. Ganesan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole" title=" dipole"> dipole</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=sound" title=" sound"> sound</a> </p> <a href="https://publications.waset.org/abstracts/56495/acoustic-analysis-of-ball-bearings-to-identify-localised-race-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Lai"> Yu-Sheng Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzuo-Liang%20Luo"> Tzuo-Liang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ji%20Zhan"> Yun-Ji Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stiffness" title="dynamic stiffness">dynamic stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle-tool%20holder" title=" spindle-tool holder"> spindle-tool holder</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20stiffness" title=" interface stiffness"> interface stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=drawbar%20force" title=" drawbar force"> drawbar force</a> </p> <a href="https://publications.waset.org/abstracts/10212/effect-of-the-drawbar-force-on-the-dynamic-characteristics-of-a-spindle-tool-holder-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Significance of Transient Data and Its Applications in Turbine Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Gupt%20Porwal">Chandra Gupt Porwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20C.%20Porwal"> Preeti C. Porwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20data" title="transient data">transient data</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state-data" title=" steady-state-data"> steady-state-data</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20-pressure-turbine" title=" intermediate -pressure-turbine"> intermediate -pressure-turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=high-points" title=" high-points"> high-points</a> </p> <a href="https://publications.waset.org/abstracts/180678/significance-of-transient-data-and-its-applications-in-turbine-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chuenchooklin">S. Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title="HEC-RAS">HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HMS" title=" HMS"> HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping%20stations" title=" pumping stations"> pumping stations</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20weirs" title=" cascade weirs "> cascade weirs </a> </p> <a href="https://publications.waset.org/abstracts/12884/river-analysis-system-model-for-proposed-weirs-at-downstream-of-large-dam-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Full-Scale Test of a Causeway Embankment Supported by Raft-Aggregate Column Foundation on Soft Clay Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tri%20Harianto">Tri Harianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawalenna%20Samang"> Lawalenna Samang</a>, <a href="https://publications.waset.org/abstracts/search?q=St.%20Hijraini%20Nur"> St. Hijraini Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Arwin"> Arwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, a port development is constructed in Makassar city, South Sulawesi Province, Indonesia. Makassar city is located in lowland area that dominated by soft marine clay deposit. A two kilometers causeway construction was built which is situated on the soft clay layer. In order to investigate the behavior of causeway embankment, a full-scale test was conducted of high embankment built on a soft clay deposit. The embankment with 3,5 m high was supported by two types of reinforcement such as raft and raft-aggregate column foundation. Since the ground was undergoing consolidation due to the preload, the raft and raft-aggregate column foundations were monitored in order to analyze the vertical ground movement by inducing the settlement of the foundation. In this study, two types of foundation (raft and raft-aggregate column) were tested to observe the effectiveness of raft-aggregate column compare to raft foundation in reducing the settlement. The settlement monitored during the construction stage by using the settlement plates, which is located in the center and toe of the embankment. Measurements were taken every day for each embankment construction stage (4 months). In addition, an analytical calculation was conducted in this study to compare the full-scale test result. The result shows that the raft-aggregate column foundation significantly reduces the settlement by 30% compared to the raft foundation. A raft-aggregate column foundation also reduced the time period of each loading stage. The Good agreement of analytical calculation compared to the full-scale test result also found in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full-scale" title="full-scale">full-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=preloading" title=" preloading"> preloading</a>, <a href="https://publications.waset.org/abstracts/search?q=raft-aggregate%20column" title=" raft-aggregate column"> raft-aggregate column</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/57034/full-scale-test-of-a-causeway-embankment-supported-by-raft-aggregate-column-foundation-on-soft-clay-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20Munoz">Henry Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsan"> Muhammad Mohsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kiyota"> Takashi Kiyota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus%20degradation" title=" shear modulus degradation"> shear modulus degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a> </p> <a href="https://publications.waset.org/abstracts/78982/shear-modulus-degradation-of-a-liquefiable-sand-deposit-by-shaking-table-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Hydration Matters: Impact on 3 km Running Performance in Trained Male Athletes Under Heat Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoqi%20He">Zhaoqi He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research Context: Endurance performance in hot environments is influenced by the interplay of hydration status and physiological responses. This study aims to investigate how dehydration, up to 2.11% body weight loss, affects the 3 km running performance of trained male athletes under conditions mimicking high temperatures. Methodology: In a randomized crossover design, five male athletes participated in two trials – euhydrated (EU) and dehydrated (HYPO). Both trials included a 70-minute preload run at 55-60% VO2max in 32°C and 50% humidity, followed by a 3-kilometer time trial. Fluid intake was restricted in HYPO to induce a 2.11% body weight loss. Physiological metrics, including heart rate, core temperature, and oxygen uptake, were measured, along with perceptual metrics like perceived exertion and thirst sensation. Findings: The 3-kilometer run completion times showed no significant differences between EU and HYPO trials (p=0.944). Physiological indicators, including heart rate, core temperature, and oxygen uptake, did not significantly vary (p>0.05). Thirst sensation was markedly higher in HYPO (p=0.013), confirming successful induction of dehydration. Other perceptual metrics and gastrointestinal comfort remained consistent. Conclusion: Contrary to the hypothesis, the study reveals that dehydration, inducing up to 2.11% body weight loss, does not significantly impair 3 km running performance in trained male athletes under hot conditions. Thirst sensation was notably higher in the dehydrated state, emphasizing the importance of considering perceptual factors in hydration strategies. The findings suggest that trained runners can maintain performance despite moderate dehydration, highlighting the need for nuanced hydration guidelines in hot-weather running. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypohydration" title="hypohydration">hypohydration</a>, <a href="https://publications.waset.org/abstracts/search?q=euhydration" title=" euhydration"> euhydration</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20environment" title=" hot environment"> hot environment</a>, <a href="https://publications.waset.org/abstracts/search?q=3km%20running%20time%20trial" title=" 3km running time trial"> 3km running time trial</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance%20performance" title=" endurance performance"> endurance performance</a>, <a href="https://publications.waset.org/abstracts/search?q=trained%20athletes" title=" trained athletes"> trained athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20metrics" title=" perceptual metrics"> perceptual metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration%20impact" title=" dehydration impact"> dehydration impact</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20responses" title=" physiological responses"> physiological responses</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration%20strategies" title=" hydration strategies"> hydration strategies</a> </p> <a href="https://publications.waset.org/abstracts/182418/hydration-matters-impact-on-3-km-running-performance-in-trained-male-athletes-under-heat-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The TarMed Reform of 2014: A Causal Analysis of the Effects on the Behavior of Swiss Physicians</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20Plaza">Camila Plaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Felder"> Stefan Felder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In October 2014, the TARMED reform was implemented in Switzerland. In an effort to even out the financial standing of general practitioners (including pediatricians) relative to that of specialists in the outpatient sector, the reform tackled two aspects: on the one hand, GPs would be able to bill an additional 9 CHF per patient, once per consult per day. This is referred to as the surcharge position. As a second measure, it reduced the fees for certain technical services targeted to specialists (e.g., imaging, surgical technical procedures, etc.). Given the fee-for-service reimbursement system in Switzerland, we predict that physicians reacted to the economic incentives of the reform by increasing the consults per patient and decreasing the average amount of time per consult. Within this framework, our treatment group is formed by GPs and our control group by those specialists who were not affected by the reform. Using monthly insurance claims panel data aggregated at the physician praxis level (provided by SASIS AG), for the period of January 2013-December 2015, we run difference in difference panel data models with physician and time fixed effects in order to test for the causal effects of the reform. We account for seasonality, and control for physician characteristics such as age, gender, specialty, and physician experience. Furthermore, we run the models on subgroups of physicians within our sample so as to account for heterogeneity and treatment intensities. Preliminary results support our hypothesis. We find evidence of an increase in consults per patients and a decrease in time per consult. Robustness checks do not significantly alter the results for our outcome variable of consults per patient. However, we do find a smaller effect of the reform for time per consult. Thus, the results of this paper could provide policymakers a better understanding of physician behavior and their sensitivity to financial incentives of reforms (both past and future) under the current reimbursement system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference%20in%20differences" title="difference in differences">difference in differences</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20incentives" title=" financial incentives"> financial incentives</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20reform" title=" health reform"> health reform</a>, <a href="https://publications.waset.org/abstracts/search?q=physician%20behavior" title=" physician behavior"> physician behavior</a> </p> <a href="https://publications.waset.org/abstracts/108615/the-tarmed-reform-of-2014-a-causal-analysis-of-the-effects-on-the-behavior-of-swiss-physicians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Effectiveness of Prefabricated Vertical Drains for Accelerating Consolidation of Tunis Soft Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Ben%20Khalifa">Marwa Ben Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Ben%20Salem"> Zeineb Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Frikha"> Wissem Frikha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work is to study the consolidation behavior of highly compressible Tunis soft soil “TSS” by means of prefabricated vertical drains (PVD’s) associated to preloading based on laboratory and field investigations. In the first hand, the field performance of PVD’s on the layer of Tunis soft soil was analysed based on the case study of the construction of embankments of “Radès la Goulette” bridge project. PVD’s Geosynthetics drains types were installed with triangular grid pattern until 10 m depth associated with step-by-step surcharge. The monitoring of the soil settlement during preloading stage for Radès La Goulette Bridge project was provided by an instrumentation composed by various type of tassometer installed in the soil. The distribution of water pressure was monitored through piezocone penetration. In the second hand, a laboratory reduced tests are performed on TSS subjected also to preloading and improved with PVD's Mebradrain 88 (Mb88) type. A specific test apparatus was designed and manufactured to study the consolidation. Two series of consolidation tests were performed on TSS specimens. The first series included consolidation tests for soil improved by one central drain. In thesecond series, a triangular mesh of three geodrains was used. The evolution of degree of consolidation and measured settlements versus time derived from laboratory tests and field data were presented and discussed. The obtained results have shown that PVD’s have considerably accelerated the consolidation of Tunis soft soil by shortening the drainage path. The model with mesh of three drains gives results more comparative to field one. A longer consolidation time is observed for the cell improved by a single central drain. A comparison with theoretical analysis, basically that of Barron (1948) and Carillo (1942), was presented. It’s found that these theories overestimate the degree of consolidation in the presence of PVD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunis%20soft%20soil" title="tunis soft soil">tunis soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20vertical%20drains" title=" prefabricated vertical drains"> prefabricated vertical drains</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration%20of%20consolidation" title=" acceleration of consolidation"> acceleration of consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20of%20excess%20pore%20water%20pressures" title=" dissipation of excess pore water pressures"> dissipation of excess pore water pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=rad%C3%A8s%20bridge%20project" title=" radès bridge project"> radès bridge project</a>, <a href="https://publications.waset.org/abstracts/search?q=barron%20and%20carillo%E2%80%99s%20theories" title=" barron and carillo’s theories"> barron and carillo’s theories</a> </p> <a href="https://publications.waset.org/abstracts/146148/the-effectiveness-of-prefabricated-vertical-drains-for-accelerating-consolidation-of-tunis-soft-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Influence of Active Breaks on the Attention/Concentration Performance in Eighth-Graders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Andr%C3%A4">Christian Andrä</a>, <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Zimmermann"> Luisa Zimmermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20M%C3%BCller"> Christina Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The positive relation between physical activity and cognition is commonly known. Relevant studies show that in everyday school life active breaks can lead to improvement in certain abilities (e.g. attention and concentration). A beneficial effect is in particular attributed to moderate activity. It is still unclear whether active breaks are beneficial after relatively short phases of cognitive load and whether the postulated effects of activity really have an immediate impact. The objective of this study was to verify whether an active break after 18 minutes of cognitive load leads to enhanced attention/concentration performance, compared to inactive breaks with voluntary mobile phone activity. Methodology: For this quasi-experimental study, 36 students [age: 14.0 (mean value) ± 0.3 (standard deviation); male/female: 21/15] of a secondary school were tested. In week 1, every student’s maximum heart rate (Hfmax) was determined through maximum effort tests conducted during physical education classes. The task was to run 3 laps of 300 m with increasing subjective effort (lap 1: 60%, lap 2: 80%, lap 3: 100% of the maximum performance capacity). Furthermore, first attention/concentration tests (D2-R) took place (pretest). The groups were matched on the basis of the pretest results. During week 2 and 3, crossover testing was conducted, comprising of 18 minutes of cognitive preload (test for concentration performance, KLT-R), a break and an attention/concentration test after a 2-minutes transition. Different 10-minutes breaks (active break: moderate physical activity with 65% Hfmax or inactive break: mobile phone activity) took place between preloading and transition. Major findings: In general, there was no impact of the different break interventions on the concentration test results (symbols processed after physical activity: 185.2 ± 31.3 / after inactive break: 184.4 ± 31.6; errors after physical activity: 5.7 ± 6.3 / after inactive break: 7.0. ± 7.2). There was, however, a noticeable development of the values over the testing periods. Although no difference in the number of processed symbols was detected (active/inactive break: period 1: 49.3 ± 8.8/46.9 ± 9.0; period 2: 47.0 ± 7.7/47.3 ± 8.4; period 3: 45.1 ± 8.3/45.6 ± 8.0; period 4: 43.8 ± 7.8/44.6 ± 8.0), error rates decreased successively after physical activity and increased gradually after an inactive break (active/inactive break: period 1: 1.9 ± 2.4/1.2 ± 1.4; period 2: 1.7 ± 1.8/ 1.5 ± 2.0, period 3: 1.2 ± 1.6/1.8 ± 2.1; period 4: 0.9 ± 1.5/2.5 ± 2.6; p= .012). Conclusion: Taking into consideration only the study’s overall results, the hypothesis must be dismissed. However, more differentiated evaluation shows that the error rates decreased after active breaks and increased after inactive breaks. Obviously, the effects of active intervention occur with a delay. The 2-minutes transition (regeneration time) used for this study seems to be insufficient due to the longer adaptation time of the cardio-vascular system in untrained individuals, which might initially affect the concentration capacity. To use the positive effects of physical activity for teaching and learning processes, physiological characteristics must also be considered. Only this will ensure optimum ability to perform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20breaks" title="active breaks">active breaks</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%2Fconcentration%20test" title=" attention/concentration test"> attention/concentration test</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20performance%20capacity" title=" cognitive performance capacity"> cognitive performance capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a> </p> <a href="https://publications.waset.org/abstracts/42576/the-influence-of-active-breaks-on-the-attentionconcentration-performance-in-eighth-graders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maher%20Z.%20Mohammed">Maher Z. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Barry%20G.%20Clarke"> Barry G. Clarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrokinetic%20treatment" title="electrokinetic treatment">electrokinetic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20consolidation" title=" electroosmotic consolidation"> electroosmotic consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=electroosmosis%20permeability%20ratio" title=" electroosmosis permeability ratio"> electroosmosis permeability ratio</a> </p> <a href="https://publications.waset.org/abstracts/102675/laboratory-assessment-of-electrical-vertical-drains-in-composite-soils-using-kaolin-and-bentonite-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surcharge%20preload&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surcharge%20preload&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10