CINXE.COM

Search results for: shaking table

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shaking table</title> <meta name="description" content="Search results for: shaking table"> <meta name="keywords" content="shaking table"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shaking table" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shaking table"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 631</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shaking table</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20viscous%20damper" title=" spring viscous damper"> spring viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/97455/shaking-table-test-and-seismic-performance-evaluation-of-spring-viscous-damper-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Seismic Response of Structure Using a Three Degree of Freedom Shake Table</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketan%20N.%20Bajad">Ketan N. Bajad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20V.%20Waghmare"> Manisha V. Waghmare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title="accelerometer">accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20degree%20of%20freedom%20shake%20table" title=" three degree of freedom shake table"> three degree of freedom shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20industrial%20shed" title=" steel industrial shed"> steel industrial shed</a> </p> <a href="https://publications.waset.org/abstracts/98669/seismic-response-of-structure-using-a-three-degree-of-freedom-shake-table" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117054/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-window" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gee-Cheol%20Kim">Gee-Cheol Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Won%20Kang"> Joo-Won Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arch%20structure" title="arch structure">arch structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20structure" title=" spatial structure"> spatial structure</a> </p> <a href="https://publications.waset.org/abstracts/51316/natural-frequency-analysis-of-small-scale-arch-structure-by-shaking-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door &ndash; specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117055/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-door" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Experimental Simulation of Soil Boundary Condition for Dynamic Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Qaftan">Omar S. Qaftan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Sabbagh"> T. T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/74384/experimental-simulation-of-soil-boundary-condition-for-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Seismic Evaluation of Connected and Disconnected Piled Raft Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fallah%20Yeznabad">Ali Fallah Yeznabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Baziar"> Mohammad H. Baziar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Saedi%20Azizkandi"> Alireza Saedi Azizkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piled%20Rafts%20%28PR%29" title="Piled Rafts (PR)">Piled Rafts (PR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Disconnected%20Piled%20Rafts%20%28DPR%29" title=" Disconnected Piled Rafts (DPR)"> Disconnected Piled Rafts (DPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20loading" title=" dynamic loading"> dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance "> seismic performance </a> </p> <a href="https://publications.waset.org/abstracts/37165/seismic-evaluation-of-connected-and-disconnected-piled-raft-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Hybrid Diagrid System for High-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Saeid%20Tabaee">Seyed Saeid Tabaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Afshari"> Mohammad Afshari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahador%20Ziaeemehr"> Bahador Ziaeemehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Bahar"> Omid Bahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using modern structural systems with specific capabilities, like Diagrid, is emerging around the world. In this paper, a new resisting system, a combination of both Diagrid axial behavior and proper seismic performance of regular moment frames in tall buildings, named 'Hybrid Diagrid' is presented. The scaled specimen of the suggested hybrid system was built and tested using IIEES shaking table. The natural frequency and structural response of the analytical model were updated with the real experimental results. In order to compare its performance with the traditional Diagrid and moment frame systems, time history analysis was carried out. Extensive analysis shows the efficient seismic responses and economical behavior of Hybrid Diagrid structure with respect to the other two systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20diagrid%20system" title="hybrid diagrid system">hybrid diagrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20frame" title=" moment frame"> moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/83299/hybrid-diagrid-system-for-high-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20Munoz">Henry Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsan"> Muhammad Mohsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kiyota"> Takashi Kiyota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus%20degradation" title=" shear modulus degradation"> shear modulus degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a> </p> <a href="https://publications.waset.org/abstracts/78982/shear-modulus-degradation-of-a-liquefiable-sand-deposit-by-shaking-table-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Damage Localization of Deterministic-Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Po%20Wang">Yen-Po Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chih%20Huang"> Ming-Chih Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Lian%20Chang"> Ming-Lian Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20locating%20vectors" title="damage locating vectors">damage locating vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic-stochastic%20subspace%20system" title=" deterministic-stochastic subspace system"> deterministic-stochastic subspace system</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20tests" title=" shaking table tests"> shaking table tests</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/5097/damage-localization-of-deterministic-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Shaking Force Balancing of Mechanisms: An Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vigen%20Arakelian">Vigen Arakelian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism&#39;s architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20forces" title="inertial forces">inertial forces</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20forces" title=" shaking forces"> shaking forces</a>, <a href="https://publications.waset.org/abstracts/search?q=balancing" title=" balancing"> balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20design" title=" mechanism design"> mechanism design</a> </p> <a href="https://publications.waset.org/abstracts/124788/shaking-force-balancing-of-mechanisms-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Zhelyazkov">Aleksandar Zhelyazkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Zonta"> Daniele Zonta</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmut%20Wenzel"> Helmut Wenzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Furtner"> Peter Furtner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/99423/a-procedure-for-post-earthquake-damage-estimation-based-on-detection-of-high-frequency-transients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> System Identification of Timber Masonry Walls Using Shaking Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timir%20Baran%20Roy">Timir Baran Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Guerreiro"> Luis Guerreiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition%20%28fdd%29" title="frequency domain decomposition (fdd)">frequency domain decomposition (fdd)</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20parameters" title=" modal parameters"> modal parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification%20%28ssi%29" title=" stochastic subspace identification (ssi)"> stochastic subspace identification (ssi)</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20decomposition" title=" time domain decomposition "> time domain decomposition </a> </p> <a href="https://publications.waset.org/abstracts/53765/system-identification-of-timber-masonry-walls-using-shaking-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Qaftan">Omar Qaftan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure" title="structure">structure</a>, <a href="https://publications.waset.org/abstracts/search?q=raft" title=" raft"> raft</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/82343/simulation-of-scaled-model-of-tall-multistory-structure-raft-foundation-for-experimental-and-numerical-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura">Naohiro Nakamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20analysis" title="three-dimensional analysis">three-dimensional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=E-defense" title=" E-defense"> E-defense</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20experimen" title=" full-scale experimen"> full-scale experimen</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control%20damper" title=" vibration control damper"> vibration control damper</a> </p> <a href="https://publications.waset.org/abstracts/99518/simulation-analysis-of-a-full-scale-five-story-building-with-vibration-control-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Numerical Modeling and Experimental Analysis of a Pallet Isolation Device to Protect Selective Type Industrial Storage Racks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Sanhueza%20Cartes">Marcelo Sanhueza Cartes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Maureira%20Carsalade"> Nelson Maureira Carsalade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research evaluates the effectiveness of a pallet isolation device for the protection of selective-type industrial storage racks. The device works only in the longitudinal direction of the aisle, and it is made up of a platform installed on the rack beams. At both ends, the platform is connected to the rack structure by means of a spring-damper system working in parallel. A system of wheels is arranged between the isolation platform and the rack beams in order to reduce friction, decoupling of the movement and improve the effectiveness of the device. The latter is evaluated by the reduction of the maximum dynamic responses of basal shear load and story drift in relation to those corresponding to the same rack with the traditional construction system. In the first stage, numerical simulations of industrial storage racks were carried out with and without the pallet isolation device. The numerical results allowed us to identify the archetypes in which it would be more appropriate to carry out experimental tests, thus limiting the number of trials. In the second stage, experimental tests were carried out on a shaking table to a select group of full-scale racks with and without the proposed device. The movement simulated by the shaking table was based on the Mw 8.8 magnitude earthquake of February 27, 2010, in Chile, registered at the San Pedro de la Paz station. The peak ground acceleration (PGA) was scaled in the frequency domain to fit its response spectrum with the design spectrum of NCh433. The experimental setup contemplates the installation of sensors to measure relative displacement and absolute acceleration. The movement of the shaking table with respect to the ground, the inter-story drift of the rack and the pallets with respect to the rack structure were recorded. Accelerometers redundantly measured all of the above in order to corroborate measurements and adequately capture low and high-frequency vibrations, whereas displacement and acceleration sensors are respectively more reliable. The numerical and experimental results allowed us to identify that the pallet isolation period is the variable with the greatest influence on the dynamic responses considered. It was also possible to identify that the proposed device significantly reduces both the basal cut and the maximum inter-story drift by up to one order of magnitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pallet%20isolation%20system" title="pallet isolation system">pallet isolation system</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20storage%20racks" title=" industrial storage racks"> industrial storage racks</a>, <a href="https://publications.waset.org/abstracts/search?q=basal%20shear%20load" title=" basal shear load"> basal shear load</a>, <a href="https://publications.waset.org/abstracts/search?q=interstory%20drift." title=" interstory drift."> interstory drift.</a> </p> <a href="https://publications.waset.org/abstracts/162468/numerical-modeling-and-experimental-analysis-of-a-pallet-isolation-device-to-protect-selective-type-industrial-storage-racks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kausar%20Alam">Md. Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yazdi"> Mohammad Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiman%20Zogh"> Peiman Zogh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title="foundation settlement">foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/152038/1-g-shake-table-tests-to-study-the-impact-of-pga-on-foundation-settlement-in-liquefiable-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> A Survey on Compression Methods for Table Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gharbi">N. Gharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constraint Satisfaction problems are mathematical problems that are often used to model many real-world problems for which we look if there exists a solution satisfying all its constraints. Table constraints are important for modeling parts of many problems since they list all combinations of allowed or forbidden values. However, they admit practical limitations because they are sometimes too large to be represented in a direct way. In this paper, we present a survey of the different categories of the proposed approaches to compress table constraints in order to reduce both space and time complexities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20constraints" title=" table constraints"> table constraints</a> </p> <a href="https://publications.waset.org/abstracts/49933/a-survey-on-compression-methods-for-table-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-San%20Shin">Young-San Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee"> Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1&deg;. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hall%20sensor" title="hall sensor">hall sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20measurement" title=" angle measurement"> angle measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=lookup%20table" title=" lookup table"> lookup table</a>, <a href="https://publications.waset.org/abstracts/search?q=arctangent" title=" arctangent"> arctangent</a> </p> <a href="https://publications.waset.org/abstracts/60862/lookup-table-reduction-and-its-error-analysis-of-hall-sensor-based-rotation-angle-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Shi">Zhiguo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Ning%20Loong"> Cheng Ning Loong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazeng%20Shan"> Jiazeng Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Weichao%20Wu">Weichao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20damping" title=" eddy current damping"> eddy current damping</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/119732/equivalent-circuit-model-for-the-eddy-current-damping-with-frequency-dependence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Synthesis of Balanced 3-RRR Planar Parallel Manipulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arakelian%20Vigen">Arakelian Vigen</a>, <a href="https://publications.waset.org/abstracts/search?q=Geng%20Jing"> Geng Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Baron%20Jean-Paul"> Le Baron Jean-Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the design of parallel manipulators with balanced inertia forces and moments. The balancing of the resultant of the inertia forces of 3-RRR planar parallel manipulators is carried out through mass redistribution and centre of mass acceleration minimization. The proposed balancing technique is achieved in two steps: at first, optimal redistribution of the masses of input links is accomplished, which ensures the similarity of the end-effector trajectory and the manipulator’s common centre of mass trajectory, then, optimal trajectory planning of the end-effector by 'bang-bang' profile is reached. In such a way, the minimization of the magnitude of the acceleration of the centre of mass of the manipulator brings about a minimization of shaking force. To minimize the resultant of the inertia moments (shaking moment), the active balancing via inertia flywheel is applied. However, in this case, the active balancing is quite different from previous applications because it provides only a partial cancellation of the shaking moment due to the incomplete balancing of shaking force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balancing" title="dynamic balancing">dynamic balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%20force%20minimization" title=" inertia force minimization"> inertia force minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%20moment%20minimization" title=" inertia moment minimization"> inertia moment minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=3-RRR%20planar%20parallel%20manipulator" title=" 3-RRR planar parallel manipulator"> 3-RRR planar parallel manipulator</a> </p> <a href="https://publications.waset.org/abstracts/70145/synthesis-of-balanced-3-rrr-planar-parallel-manipulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junehyuck%20Lee">Junehyuck Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmin%20Lee"> Dongmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunhee%20Cho"> Hunhee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-In%20Kang"> Kyung-In Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20form" title="table form">table form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/61287/derivation-of-technology-element-for-automation-in-table-formwork-in-a-tall-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> The Effect of Static Balance Enhance by Table Tennis Training Intervening on Deaf Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Chun%20Chang">Yi-Chun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ting%20Hsu"> Ching-Ting Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hua%20Ho"> Wei-Hua Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueh-Tung%20Kuo"> Yueh-Tung Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with hearing impairment have deficits of balance and motors. Although most of parents teach deaf children communication skills in early life, but rarely teach the deficits of balance. The purpose of this study was to investigate whether static balance improved after table tennis training. Table tennis training was provided four times a week for eight weeks to two 12-year-old deaf children. The table tennis training included crossover footwork, sideway attack, backhand block-sideways-flutter forehand attack, and one-on-one tight training. Data were gathered weekly and statistical comparisons were made with a paired t-test. We observed that the dominant leg is better than the non-dominant leg in static balance and girl balance ability is better than boy. The final result shows that table tennis training significantly improves the deaf children’s static balance performance. It indicates that table tennis training on deaf children helps the static balance ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deaf%20children" title="deaf children">deaf children</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title=" static balance"> static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis" title=" table tennis"> table tennis</a>, <a href="https://publications.waset.org/abstracts/search?q=vestibular%20structure" title=" vestibular structure"> vestibular structure</a> </p> <a href="https://publications.waset.org/abstracts/45989/the-effect-of-static-balance-enhance-by-table-tennis-training-intervening-on-deaf-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Preparation of Regional Input-Output Table for Fars Province in 2011: GRIT1Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Akbarzadeh">Maryam Akbarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Poostvar"> A. Poostvar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manuchehri"> M. Manuchehri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparation of regional input-output tables requires statistical methods combined with high costs and too much time. Obtained estimates by non-statistical methods have low confidence coefficient. Therefore, integrated methods for this purpose are suggested by recent input–output studies. In this study, first GRIT method is introduced as an appropriate integrated method for preparation of input-output table of Fars province. Next, input-output table is prepared for Fars province using this method. Therefore, this study is based on input-output table of national economy in 2001. Necessary modifications performed in the field of changes at level of prices and differences of regional trade compared with other areas at national level. Moreover, up to date statistics and information and technical experts view on the various economic sectors along with input-output table 33 was used in 2011 followed by investigation of general structure of the province economy based on the amounts of added value obtained from this table. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grit" title="grit">grit</a>, <a href="https://publications.waset.org/abstracts/search?q=input-output" title=" input-output"> input-output</a>, <a href="https://publications.waset.org/abstracts/search?q=table" title=" table"> table</a>, <a href="https://publications.waset.org/abstracts/search?q=regional" title=" regional "> regional </a> </p> <a href="https://publications.waset.org/abstracts/3237/preparation-of-regional-input-output-table-for-fars-province-in-2011-grit1method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Correlation between Physical Fitness and Performance and Grade of Table Tennis of Middle School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yisong%20Cong">Yisong Cong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingming%20Guo"> Mingming Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaozan%20Wang"> Xiaozan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yizhi%20Zhang"> Yizhi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Yuan"> Qingqing Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to test the correlation between the Physical Fitness (PF) of middle school students and their performance and sports grade of table tennis. Methods: 398 middle school students from Shanghai Tongji No.2 Middle School participated in the study, including 232 boys and 166 girls. Each participant participated in the Chinese Students’ Physical Fitness Test (CSPFT), including BMI, 50-meter running, vital capacity, sitting body flexion, standing long jump, 800-meter running, 1000-meter running, pull-ups, and sit-ups. Test scores were converted to a percentage score according to the CSPFT guidelines. In addition, each student participated in the Nation Junior Table Tennis grade test, and completed the table tennis sports grade assessment of 1-9. Results: There is a significant positive correlation between the scores of multiple PF tests and the total scores of table tennis, such as BMI (r = 0.15, p < 0.01), standing long jump (r = 0.15, p < 0.05), 800-meter run (r = 0.02, p <0.01); The scores of multiple PF are positively correlated with table tennis grade, such as vital capacity (r = 0.1, p < 0.01) and 50-meter running (r = 0.18, p < 0.05). At the same time, the sit-ups performance showed a significant negative correlation with the table tennis performance (r = -0.08, p < 0.01); There is no significant correlation between the other PF indicators and the performance and grade of table tennis. Conclusions: This study shows that there is a corresponding relationship between some PF indicators of middle school students and their table tennis performance and table tennis grade,but the specific form and reason of the relationship need to be further explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=middle%20school%20students" title="middle school students">middle school students</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title=" physical fitness"> physical fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis%20grade" title=" table tennis grade"> table tennis grade</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis%20performance" title=" table tennis performance"> table tennis performance</a> </p> <a href="https://publications.waset.org/abstracts/126554/correlation-between-physical-fitness-and-performance-and-grade-of-table-tennis-of-middle-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liping%20Qiu">Liping Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Zhang"> Xiaofeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20chromatography" title="ion chromatography">ion chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=tomb" title=" tomb"> tomb</a>, <a href="https://publications.waset.org/abstracts/search?q=anion%20%28F%E2%81%BB" title=" anion (F⁻"> anion (F⁻</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%E2%81%BB" title=" Cl⁻"> Cl⁻</a>, <a href="https://publications.waset.org/abstracts/search?q=SO%E2%82%84%C2%B2%E2%81%BB" title=" SO₄²⁻"> SO₄²⁻</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%E2%82%83%E2%81%BB%29" title=" NO₃⁻)"> NO₃⁻)</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a> </p> <a href="https://publications.waset.org/abstracts/157325/determination-of-four-anions-in-the-ground-layer-of-tomb-murals-by-ion-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kausar%20Alam">Md. Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20water%20pressure" title="excess pore water pressure">excess pore water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title=" foundation settlement"> foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=press-in%20sheet%20pile" title=" press-in sheet pile"> press-in sheet pile</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20liquefaction" title=" soil liquefaction"> soil liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/152041/experimental-evaluation-of-foundation-settlement-mitigations-in-liquefiable-soils-using-press-in-sheet-piling-technique-1-g-shake-table-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Association Between Hip Internal and External Rotation Range of Motion and Low Back Pain in Table Tennis Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaili%20Wang">Kaili Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Botao%20Zhang"> Botao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Enming%20Zhang"> Enming Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Low back pain (LBP) is a common problem affecting athletes' training and competition. Although the association between a limited hip range of motion and prevalence of low back pain has been studied extensively, it has not been studied in table tennis. Aim: The main purposes of this study in table tennis players were (1) to investigate if there is a difference in hip internal rotation (HIR) and external rotation (HER) range of motion (ROM) between players with LBP and players without LBP and (2) to analyze the association between HIR and HER ROM and LBP. Methods: Forty-six table tennis players from the Chinese table tennis team were evaluated for passive maximum HIR and HER ROM. LBP was retrospectively recorded for the last 12 months before the date of ROM assessment by a physical therapist. The data were analyzed the difference in HIR and HER ROM between players with LBP and players without LBP by Mann-Whitney U test, and the association between the difference in HIR and HER ROM and LBP was analyzed via a binary logistic regression. Results: The 54% of players had developed LBP during the retrospective study period. Significant difference between LBP group and the asymptomatic group for HIR ROM (z=4.007, p<0.001) was observed. Difference between LBP group and asymptomatic group for HER ROM (z=1.117, p=0.264) was not significant. Players who had HIR ROM deficit had an increased risk of LBP compared with players without HIR ROM deficit (OR=5.344, 95%CI: 1.006-28.395, P=0.049). Conclusion: HIR ROM of a table tennis player with LBP was less than a table tennis player without LBP. Compared with player whose HIR ROM was normal, player who had HIR ROM deficit appeared to have a higher risk for LBP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=injury%20prevention" title=" injury prevention"> injury prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back%20pain" title=" low back pain"> low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis%20players" title=" table tennis players"> table tennis players</a> </p> <a href="https://publications.waset.org/abstracts/154477/association-between-hip-internal-and-external-rotation-range-of-motion-and-low-back-pain-in-table-tennis-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kausar%20Alam">Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yazdi"> Mohammad Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiman%20Zogh"> Peiman Zogh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title="foundation settlement">foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20table" title=" ground water table"> ground water table</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hake%20table%20test" title=" hake table test"> hake table test</a> </p> <a href="https://publications.waset.org/abstracts/152050/effectiveness-of-lowering-the-water-table-as-a-mitigation-measure-for-foundation-settlement-in-liquefiable-soils-using-1-g-scale-shake-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Improve B-Tree Index’s Performance Using Lock-Free Hash Table</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanfeng%20Ma">Zhanfeng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiping%20Xiong"> Zhiping Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Yin"> Hu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengwei%20She"> Zhengwei She</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20P.%20Gurajada"> Aditya P. Gurajada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianlun%20Chen"> Tianlun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Li"> Ying Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many RDBMS vendors use B-tree index to achieve high performance for point queries and range queries, and some of them also employ hash index to further enhance the performance as hash table is more efficient for point queries. However, there are extra overheads to maintain a separate hash index, for example, hash mapping for all data records must always be maintained, which results in more memory space consumption; locking, logging and other mechanisms are needed to guarantee ACID, which affects the concurrency and scalability of the system. To relieve the overheads, Hash Cached B-tree (HCB) index is proposed in this paper, which consists of a standard disk-based B-tree index and an additional in-memory lock-free hash table. Initially, only the B-tree index is constructed for all data records, the hash table is built on the fly based on runtime workload, only data records accessed by point queries are indexed using hash table, this helps reduce the memory footprint. Changes to hash table are done using compare-and-swap (CAS) without performing locking and logging, this helps improve the concurrency and avoid contention. The hash table is also optimized to be cache conscious. HCB index is implemented in SAP ASE database, compared with the standard B-tree index, early experiments and customer adoptions show significant performance improvement. This paper provides an overview of the design of HCB index and reports the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-tree" title="B-tree">B-tree</a>, <a href="https://publications.waset.org/abstracts/search?q=compare-and-swap" title=" compare-and-swap"> compare-and-swap</a>, <a href="https://publications.waset.org/abstracts/search?q=lock-free%20hash%20table" title=" lock-free hash table"> lock-free hash table</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20queries" title=" point queries"> point queries</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20queries" title=" range queries"> range queries</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%20ASE%20database" title=" SAP ASE database"> SAP ASE database</a> </p> <a href="https://publications.waset.org/abstracts/72665/improve-b-tree-indexs-performance-using-lock-free-hash-table" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shaking%20table&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10