CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;32 of 32 results for author: <span class="mathjax">Malaney, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Malaney%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Malaney, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Malaney%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Malaney, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18737">arXiv:2305.18737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18737">pdf</a>, <a href="https://arxiv.org/format/2305.18737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Phase Correction using Deep Learning for Satellite-to-Ground CV-QKD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Long%2C+N+K">Nathan K. Long</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Grant%2C+K+J">Kenneth J. Grant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18737v1-abstract-short" style="display: inline;"> Coherent measurement of quantum signals used for continuous-variable (CV) quantum key distribution (QKD) across satellite-to-ground channels requires compensation of phase wavefront distortions caused by atmospheric turbulence. One compensation technique involves multiplexing classical reference pulses (RPs) and the quantum signal, with direct phase measurements on the RPs then used to modulate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18737v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18737v1-abstract-full" style="display: none;"> Coherent measurement of quantum signals used for continuous-variable (CV) quantum key distribution (QKD) across satellite-to-ground channels requires compensation of phase wavefront distortions caused by atmospheric turbulence. One compensation technique involves multiplexing classical reference pulses (RPs) and the quantum signal, with direct phase measurements on the RPs then used to modulate a real local oscillator (RLO) on the ground - a solution that also removes some known attacks on CV-QKD. However, this is a cumbersome task in practice - requiring substantial complexity in equipment requirements and deployment. As an alternative to this traditional practice, here we introduce a new method for estimating phase corrections for an RLO by using only intensity measurements from RPs as input to a convolutional neural network, mitigating completely the necessity to measure phase wavefronts directly. Conventional wisdom dictates such an approach would likely be fruitless. However, we show that the phase correction accuracy needed to provide for non-zero secure key rates through satellite-to-ground channels is achieved by our intensity-only measurements. Our work shows, for the first time, how artificial intelligence algorithms can replace phase-measuring equipment in the context of CV-QKD delivered from space, thereby delivering an alternate deployment paradigm for this global quantum-communication application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18737v1-abstract-full').style.display = 'none'; document.getElementById('2305.18737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08418">arXiv:2108.08418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.08418">pdf</a>, <a href="https://arxiv.org/ps/2108.08418">ps</a>, <a href="https://arxiv.org/format/2108.08418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Optimised Multithreaded CV-QKD Reconciliation for Global Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ai%2C+X">Xiaoyu Ai</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08418v4-abstract-short" style="display: inline;"> Designing a practical Continuous Variable (CV) Quantum Key Distribution (QKD) system requires an estimation of the quantum channel characteristics and the extraction of secure key bits based on a large number of distributed quantum signals. Meeting this requirement in short timescales is difficult. On standard processors, it can take several hours to reconcile the required number of quantum signal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08418v4-abstract-full').style.display = 'inline'; document.getElementById('2108.08418v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08418v4-abstract-full" style="display: none;"> Designing a practical Continuous Variable (CV) Quantum Key Distribution (QKD) system requires an estimation of the quantum channel characteristics and the extraction of secure key bits based on a large number of distributed quantum signals. Meeting this requirement in short timescales is difficult. On standard processors, it can take several hours to reconcile the required number of quantum signals. This problem is exacerbated in the context of Low Earth Orbit (LEO) satellite CV-QKD, in which the satellite flyover time is constrained to be less than a few minutes. A potential solution to this problem is massive parallelisation of the classical reconciliation process in which a large-code block is subdivided into many shorter blocks for individual decoding. However, the penalty of this procedure on the important final secured key rate is non-trivial to determine and hitherto has not been formally analysed. Ideally, a determination of the optimal reduced block size, maximising the final key rate, would be forthcoming in such an analysis. In this work, we fill this important knowledge gap via detailed analyses and experimental verification of a CV-QKD sliced reconciliation protocol that uses large block-length low-density parity-check decoders. Our new solution results in a significant increase in the final key rate relative to non-optimised reconciliation. In addition, it allows for the acquisition of quantum secured messages between terrestrial stations and LEO satellites within a flyover timescale even using off-the-shelf processors. Our work points the way to optimised global quantum networks secured via fundamental physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08418v4-abstract-full').style.display = 'none'; document.getElementById('2108.08418v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated References</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13693">arXiv:2106.13693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13693">pdf</a>, <a href="https://arxiv.org/format/2106.13693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LCOMM.2021.3130895">10.1109/LCOMM.2021.3130895 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal Modes of Light in Satellite-to-Earth Quantum Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Ziqing Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Aguinaldo%2C+R">Ryan Aguinaldo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13693v1-abstract-short" style="display: inline;"> The photonic Temporal Mode (TM) represents a possible candidate for the delivery of viable multidimensional quantum communications. However, relative to other multidimensional quantum information carriers such as the Orbital Angular Momentum (OAM), the TM has received less attention. Moreover, in the context of the emerging quantum internet and satellite-based quantum communications, the TM has re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13693v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13693v1-abstract-full" style="display: none;"> The photonic Temporal Mode (TM) represents a possible candidate for the delivery of viable multidimensional quantum communications. However, relative to other multidimensional quantum information carriers such as the Orbital Angular Momentum (OAM), the TM has received less attention. Moreover, in the context of the emerging quantum internet and satellite-based quantum communications, the TM has received no attention. In this work, we remedy this situation by considering the traversal through the satellite-to-Earth channel of single photons encoded in TM space. Our results indicate that for anticipated atmospheric conditions the photonic TM offers a promising avenue for the delivery of high-throughput quantum communications from a satellite to a terrestrial receiver. In particular, we show how these modes can provide for improved multiplexing performance and superior quantum key distribution in the satellite-to-Earth channel, relative to OAM single-photon states. The levels of TM discrimination that guarantee this outcome are outlined and implications of our results for the emerging satellite-based quantum internet are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13693v1-abstract-full').style.display = 'none'; document.getElementById('2106.13693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Communications Letters, vol. 26, no. 2, pp. 311-315, Feb. 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13018">arXiv:2009.13018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13018">pdf</a>, <a href="https://arxiv.org/format/2009.13018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/COMST.2021.3093615">10.1109/COMST.2021.3093615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> De-anonymisation attacks on Tor: A Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Karunanayake%2C+I">Ishan Karunanayake</a>, <a href="/search/cs?searchtype=author&amp;query=Ahmed%2C+N">Nadeem Ahmed</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+R">Rafiqul Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Jha%2C+S">Sanjay Jha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13018v3-abstract-short" style="display: inline;"> Anonymity networks are becoming increasingly popular in today&#39;s online world as more users attempt to safeguard their online privacy. Tor is currently the most popular anonymity network in use and provides anonymity to both users and services (hidden services). However, the anonymity provided by Tor is also being misused in various ways. Hosting illegal sites for selling drugs, hosting command and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13018v3-abstract-full').style.display = 'inline'; document.getElementById('2009.13018v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13018v3-abstract-full" style="display: none;"> Anonymity networks are becoming increasingly popular in today&#39;s online world as more users attempt to safeguard their online privacy. Tor is currently the most popular anonymity network in use and provides anonymity to both users and services (hidden services). However, the anonymity provided by Tor is also being misused in various ways. Hosting illegal sites for selling drugs, hosting command and control servers for botnets, and distributing censored content are but a few such examples. As a result, various parties, including governments and law enforcement agencies, are interested in attacks that assist in de-anonymising the Tor network, disrupting its operations, and bypassing its censorship circumvention mechanisms. In this survey paper, we review known Tor attacks and identify current techniques for the de-anonymisation of Tor users and hidden services. We discuss these techniques and analyse the practicality of their execution method. We conclude by discussing improvements to the Tor framework that help prevent the surveyed de-anonymisation attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13018v3-abstract-full').style.display = 'none'; document.getElementById('2009.13018v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work is published in IEEE Communications Surveys &amp; Tutorials and is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. Link to the article https://ieeexplore.ieee.org/abstract/document/9471821</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Communications Surveys &amp; Tutorials, vol. 23, no. 4, pp. 2324-2350, Fourthquarter 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10306">arXiv:2006.10306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10306">pdf</a>, <a href="https://arxiv.org/format/2006.10306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ACCESS.2020.3010226">10.1109/ACCESS.2020.3010226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Survey of COVID-19 Contact Tracing Apps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ahmed%2C+N">Nadeem Ahmed</a>, <a href="/search/cs?searchtype=author&amp;query=Michelin%2C+R+A">Regio A. Michelin</a>, <a href="/search/cs?searchtype=author&amp;query=Xue%2C+W">Wanli Xue</a>, <a href="/search/cs?searchtype=author&amp;query=Ruj%2C+S">Sushmita Ruj</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Kanhere%2C+S+S">Salil S. Kanhere</a>, <a href="/search/cs?searchtype=author&amp;query=Seneviratne%2C+A">Aruna Seneviratne</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+W">Wen Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Janicke%2C+H">Helge Janicke</a>, <a href="/search/cs?searchtype=author&amp;query=Jha%2C+S">Sanjay Jha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10306v3-abstract-short" style="display: inline;"> The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some remain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many gov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10306v3-abstract-full').style.display = 'inline'; document.getElementById('2006.10306v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10306v3-abstract-full" style="display: none;"> The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some remain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10306v3-abstract-full').style.display = 'none'; document.getElementById('2006.10306v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper has been accepted for publication in IEEE Access. Currently available on IEEE ACCESS early access (see DOI)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.08443">arXiv:1906.08443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.08443">pdf</a>, <a href="https://arxiv.org/ps/1906.08443">ps</a>, <a href="https://arxiv.org/format/1906.08443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Physical Layer Security for Ultra-Reliable and Low-Latency Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+R">Riqing Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+C">Chunhui Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.08443v1-abstract-short" style="display: inline;"> Ultra-reliable and low-latency communication (URLLC) is one category of service to be provided by next-generation wireless networks. Motivated by increasing security concerns in such networks, this article focuses on physical layer security (PLS) in the context of URLLC. The PLS technique mainly uses transmission designs based on the intrinsic randomness of the wireless medium to achieve secrecy.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08443v1-abstract-full').style.display = 'inline'; document.getElementById('1906.08443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.08443v1-abstract-full" style="display: none;"> Ultra-reliable and low-latency communication (URLLC) is one category of service to be provided by next-generation wireless networks. Motivated by increasing security concerns in such networks, this article focuses on physical layer security (PLS) in the context of URLLC. The PLS technique mainly uses transmission designs based on the intrinsic randomness of the wireless medium to achieve secrecy. As such, PLS is of lower complexity and incurs less latency than traditional cryptography. In this article, we first introduce appropriate performance metrics for evaluating PLS in URLLC, illustrating the tradeoff between latency, reliability, and security. We then identify the key challenging problems for achieving PLS for URLLC, and discuss the role that channel state information can have in providing potential solutions to these problems. Finally, we present our recommendations on future research directions in this emerging area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08443v1-abstract-full').style.display = 'none'; document.getElementById('1906.08443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures; Accepted by IEEE Wireless Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.09175">arXiv:1902.09175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.09175">pdf</a>, <a href="https://arxiv.org/format/1902.09175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICC.2019.8762003">10.1109/ICC.2019.8762003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photonic Engineering for CV-QKD over Earth-Satellite Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=He%2C+M">Mingjian He</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Green%2C+J">Jonathan Green</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.09175v3-abstract-short" style="display: inline;"> Quantum Key Distribution (QKD) via satellite offers up the possibility of unconditionally secure communications on a global scale. Increasing the secret key rate in such systems, via photonic engineering at the source, is a topic of much ongoing research. In this work we investigate the use of photon-added states and photon-subtracted states, derived from two mode squeezed vacuum states, as exampl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.09175v3-abstract-full').style.display = 'inline'; document.getElementById('1902.09175v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.09175v3-abstract-full" style="display: none;"> Quantum Key Distribution (QKD) via satellite offers up the possibility of unconditionally secure communications on a global scale. Increasing the secret key rate in such systems, via photonic engineering at the source, is a topic of much ongoing research. In this work we investigate the use of photon-added states and photon-subtracted states, derived from two mode squeezed vacuum states, as examples of such photonic engineering. Specifically, we determine which engineered-photonic state provides for better QKD performance when implemented over channels connecting terrestrial receivers with Low-Earth-Orbit satellites. We quantify the impact the number of photons that are added or subtracted has, and highlight the role played by the adopted model for atmospheric turbulence and loss on the predicted key rates. Our results are presented in terms of the complexity of deployment used, with the simplest deployments ignoring any estimate of the channel, and the more sophisticated deployments involving a feedback loop that is used to optimize the key rate for each channel estimation. The optimal quantum state is identified for each deployment scenario investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.09175v3-abstract-full').style.display = 'none'; document.getElementById('1902.09175v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated reference list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07921">arXiv:1902.07921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07921">pdf</a>, <a href="https://arxiv.org/format/1902.07921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICC.2019.8761168">10.1109/ICC.2019.8761168 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inter-satellite Quantum Key Distribution at Terahertz Frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Ziqing Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Green%2C+J">Jonathan Green</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07921v1-abstract-short" style="display: inline;"> Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this work we explore the use of THz frequencies as a means to achieve quantum communication within a constellation of micro-satellites in Low-Earth-Orbit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07921v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07921v1-abstract-full" style="display: none;"> Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this work we explore the use of THz frequencies as a means to achieve quantum communication within a constellation of micro-satellites in Low-Earth-Orbit (LEO). Quantum communication between the micro-satellite constellation and high-altitude terrestrial stations is also investigated. Our work demonstrates that THz quantum entanglement distribution and THz quantum key distribution are viable deployment options in the micro-satellite context. We discuss how such deployment opens up the possibility for simpler integration of global quantum and wireless networks. The possibility of using THz frequencies for quantum-radar applications in the context of LEO deployments is briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07921v1-abstract-full').style.display = 'none'; document.getElementById('1902.07921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2019 IEEE International Conference on Communications (ICC) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03001">arXiv:1901.03001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03001">pdf</a>, <a href="https://arxiv.org/format/1901.03001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOBECOM38437.2019.9014171">10.1109/GLOBECOM38437.2019.9014171 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial Intelligence and Location Verification in Vehicular Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ihsan%2C+U">Ullah Ihsan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Ziqing Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Dempster%2C+A">Andrew Dempster</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03001v2-abstract-short" style="display: inline;"> Location information claimed by devices will play an ever-increasing role in future wireless networks such as 5G, the Internet of Things (IoT). Against this background, the verification of such claimed location information will be an issue of growing importance. A formal information-theoretic Location Verification System (LVS) can address this issue to some extent, but such a system usually operat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03001v2-abstract-full').style.display = 'inline'; document.getElementById('1901.03001v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03001v2-abstract-full" style="display: none;"> Location information claimed by devices will play an ever-increasing role in future wireless networks such as 5G, the Internet of Things (IoT). Against this background, the verification of such claimed location information will be an issue of growing importance. A formal information-theoretic Location Verification System (LVS) can address this issue to some extent, but such a system usually operates within the limits of idealistic assumptions on a-priori information on the proportion of genuine users in the field. In this work we address this critical limitation by using a Neural Network (NN) showing how such a NN based LVS is capable of efficiently functioning even when the proportion of genuine users is completely unknown a-priori. We demonstrate the improved performance of this new form of LVS based on Time of Arrival measurements from multiple verifying base stations within the context of vehicular networks, quantifying how our NN-LVS outperforms the stand-alone information-theoretic LVS in a range of anticipated real-world conditions. We also show the efficient performance for the NN-LVS when the users&#39; signals have added Non-Line-of-Site (NLoS) bias in them. This new LVS can be applied to a range of location-centric applications within the domain of the IoT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03001v2-abstract-full').style.display = 'none'; document.getElementById('1901.03001v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09722">arXiv:1712.09722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.09722">pdf</a>, <a href="https://arxiv.org/format/1712.09722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/COMST.2018.2864557">10.1109/COMST.2018.2864557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hosseinidehaj%2C+N">Nedasadat Hosseinidehaj</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Ng%2C+S+X">Soon Xin Ng</a>, <a href="/search/cs?searchtype=author&amp;query=Hanzo%2C+L">Lajos Hanzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09722v2-abstract-short" style="display: inline;"> The recent launch of the Micius quantum-enabled satellite heralds a major step forward for long-range quantum communication. Using single-photon discrete-variable quantum states, this exciting new development proves beyond any doubt that all of the quantum protocols previously deployed over limited ranges in terrestrial experiments can, in fact, be translated to global distances via the use of low&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09722v2-abstract-full').style.display = 'inline'; document.getElementById('1712.09722v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09722v2-abstract-full" style="display: none;"> The recent launch of the Micius quantum-enabled satellite heralds a major step forward for long-range quantum communication. Using single-photon discrete-variable quantum states, this exciting new development proves beyond any doubt that all of the quantum protocols previously deployed over limited ranges in terrestrial experiments can, in fact, be translated to global distances via the use of low-orbit satellites. In this work, we survey the imminent extension of space-based quantum communication to the continuous-variable regime - the quantum regime perhaps most closely related to classical wireless communications. The CV regime offers the potential for increased communication performance and represents the next major step forward for quantum communications and the development of the global quantum internet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09722v2-abstract-full').style.display = 'none'; document.getElementById('1712.09722v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE Communications Surveys and Tutorials. Contains updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in IEEE Communications Surveys &amp; Tutorials 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.07533">arXiv:1705.07533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.07533">pdf</a>, <a href="https://arxiv.org/ps/1705.07533">ps</a>, <a href="https://arxiv.org/format/1705.07533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOCOM.2018.8647137">10.1109/GLOCOM.2018.8647137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Note on the Information-Theoretic-(in)Security of Fading Generated Secret Keys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.07533v1-abstract-short" style="display: inline;"> In this work we explore the security of secret keys generated via the electromagnetic reciprocity of the wireless fading channel. Identifying a new sophisticated colluding attack, we explore the information-theoretic-security for such keys in the presence of an all-powerful adversary constrained only by the laws of quantum mechanics. Specifically, we calculate the reduction in the conditional mutu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.07533v1-abstract-full').style.display = 'inline'; document.getElementById('1705.07533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.07533v1-abstract-full" style="display: none;"> In this work we explore the security of secret keys generated via the electromagnetic reciprocity of the wireless fading channel. Identifying a new sophisticated colluding attack, we explore the information-theoretic-security for such keys in the presence of an all-powerful adversary constrained only by the laws of quantum mechanics. Specifically, we calculate the reduction in the conditional mutual information between transmitter and receiver that can occur when an adversary with unlimited computational and communication resources places directional antenna interceptors at chosen locations. Such locations, in principal, can be arbitrarily far from the intended receiver yet still influence the secret key rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.07533v1-abstract-full').style.display = 'none'; document.getElementById('1705.07533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures. This work has been submitted to the IEEE for possible publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in: 2018 IEEE Global Communications Conference (GLOBECOM) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07307">arXiv:1608.07307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.07307">pdf</a>, <a href="https://arxiv.org/format/1608.07307">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICC.2014.6884183">10.1109/ICC.2014.6884183 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low Complexity Power Allocation Schemes in Regenerative Multi-user Relay Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chakrapani%2C+A">Arvind Chakrapani</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07307v1-abstract-short" style="display: inline;"> In relay assisted wireless communications, the multi-source, single relay and single destination system (an $M$-1-1 system) is of growing importance, due to the increased demand for higher network throughput and connectivity. Previously, power allocation in $M$-1-1 systems have assumed availability of instantaneous channel state information (CSI), which is rather idealistic. In this paper we consi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07307v1-abstract-full').style.display = 'inline'; document.getElementById('1608.07307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07307v1-abstract-full" style="display: none;"> In relay assisted wireless communications, the multi-source, single relay and single destination system (an $M$-1-1 system) is of growing importance, due to the increased demand for higher network throughput and connectivity. Previously, power allocation in $M$-1-1 systems have assumed availability of instantaneous channel state information (CSI), which is rather idealistic. In this paper we consider an $M$-1-1 Decode-and-Forward (DF), Full-Duplex, orthogonal frequencey division multiple access (OFDMA) based relay system with statistical-CSI and analyze the achievable rate $R$ of such a system. We show how $R$ can only be maximized by numerical power allocation schemes which has a high-complexity of order $\mathcal O(M^3)$. By introducing a rational approximation in the achievable rate analysis, we develop two low-complexity power allocation schemes that can obtain a system achievable rate very close to the maximum $R$. Most importantly, we show that the complexity of our power allocation schemes is of order $\mathcal O(M\log M)$. We then show how our power allocation schemes are suitable for a multi-user relay system, where either the priority is to maximize system throughput, or where lower computations in power allocation scheme are essential. The work we present in this paper will be of value to the design and implementation of real-time multi-user relay systems operating under realistic channel conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07307v1-abstract-full').style.display = 'none'; document.getElementById('1608.07307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05188">arXiv:1608.05188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05188">pdf</a>, <a href="https://arxiv.org/ps/1608.05188">ps</a>, <a href="https://arxiv.org/format/1608.05188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/VTCSpring.2017.8108494">10.1109/VTCSpring.2017.8108494 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hosseinidehaj%2C+N">Nedasadat Hosseinidehaj</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05188v1-abstract-short" style="display: inline;"> In this work we analyze the distribution of quantum entanglement over communication channels in the millimeter-wave regime. The motivation for such a study is the possibility for next-generation wireless networks (beyond 5G) to accommodate such a distribution directly - without the need to integrate additional optical communication hardware into the transceivers. Future wireless communication syst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05188v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05188v1-abstract-full" style="display: none;"> In this work we analyze the distribution of quantum entanglement over communication channels in the millimeter-wave regime. The motivation for such a study is the possibility for next-generation wireless networks (beyond 5G) to accommodate such a distribution directly - without the need to integrate additional optical communication hardware into the transceivers. Future wireless communication systems are bound to require some level of quantum communications capability. We find that direct quantum-entanglement distribution in the millimeter-wave regime is indeed possible, but that its implementation will be very demanding from both a system-design perspective and a channel-requirement perspective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05188v1-abstract-full').style.display = 'none'; document.getElementById('1608.05188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06143">arXiv:1604.06143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.06143">pdf</a>, <a href="https://arxiv.org/ps/1604.06143">ps</a>, <a href="https://arxiv.org/format/1604.06143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Location-Based Beamforming and Physical Layer Security in Rician Wiretap Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+C">Chenxi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06143v2-abstract-short" style="display: inline;"> We propose a new location-based beamforming (LBB) scheme for wiretap channels, where a multi-antenna source communicates with a single-antenna legitimate receiver in the presence of a multi-antenna eavesdropper. We assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06143v2-abstract-full').style.display = 'inline'; document.getElementById('1604.06143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06143v2-abstract-full" style="display: none;"> We propose a new location-based beamforming (LBB) scheme for wiretap channels, where a multi-antenna source communicates with a single-antenna legitimate receiver in the presence of a multi-antenna eavesdropper. We assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information on the eavesdropper available at the source is her location. We first describe how the optimal beamforming vector that minimizes the secrecy outage probability of the system is obtained, illustrating its dependence on the eavesdropper&#39;s location. We then derive an easy-to-compute expression for the secrecy outage probability when our proposed LBB scheme is adopted. We also consider the positive impact a friendly jammer can have on our beamforming solution, showing how the path to optimality remains the same. Finally, we investigate the impact of location uncertainty on the secrecy outage probability, showing how our solution can still allow for secrecy even when the source only has a noisy estimate of the eavesdropper&#39;s location. Our work demonstrates how a multi-antenna array, operating in the most general channel conditions and most likely system set-up, can be configured rapidly in the field so as to deliver an optimal physical layer security solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06143v2-abstract-full').style.display = 'none'; document.getElementById('1604.06143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures. Accepted for publication in IEEE Transactions on Wireless Communications. arXiv admin note: substantial text overlap with arXiv:1510.08567</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.05022">arXiv:1604.05022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.05022">pdf</a>, <a href="https://arxiv.org/format/1604.05022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOCOM.2016.7842191">10.1109/GLOCOM.2016.7842191 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Geo-Encryption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.05022v1-abstract-short" style="display: inline;"> In this work we introduce the concept of quantum geo-encryption - a protocol that invokes direct quantum encryption of messages coupled to quantum location monitoring of the intended receiver. By obfuscating the quantum information required by both the decrypting process and the location verification process, a communication channel is created in which the encrypted data can only be decrypted at a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05022v1-abstract-full').style.display = 'inline'; document.getElementById('1604.05022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.05022v1-abstract-full" style="display: none;"> In this work we introduce the concept of quantum geo-encryption - a protocol that invokes direct quantum encryption of messages coupled to quantum location monitoring of the intended receiver. By obfuscating the quantum information required by both the decrypting process and the location verification process, a communication channel is created in which the encrypted data can only be decrypted at a specific geographic locale. Classical wireless communications can be invoked to unlock the quantum encryption process thereby allowing for any deployment scenario regardless of the channel conditions. Quantum geo-encryption can also be used to realize quantum-computing instructions that can only be implemented at a specific location, and allow for a specified geographical data-route through a distributed network. Here we consider the operational aspects of quantum geo-encryption in generic Rician channels, demonstrating that the likelihood of a successful spoofing attack approaches zero as the adversary moves away from the allowed decrypting location. The work introduced here resolves a long-standing quest to directly deliver information which can only be decrypted at a given location free of assumptions on the physical security of a receiver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05022v1-abstract-full').style.display = 'none'; document.getElementById('1604.05022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.03521">arXiv:1512.03521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.03521">pdf</a>, <a href="https://arxiv.org/ps/1512.03521">ps</a>, <a href="https://arxiv.org/format/1512.03521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LWC.2016.2607740">10.1109/LWC.2016.2607740 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Quantum Car </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.03521v1-abstract-short" style="display: inline;"> I explore the use of quantum information as a security enabler for the future driverless vehicle. Specifically, I investigate the role combined classical and quantum information can have on the most important characteristic of the driverless vehicle paradigm - the vehicle location. By using information-theoretic verification frameworks, coupled with emerging quantum-based location-verification pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03521v1-abstract-full').style.display = 'inline'; document.getElementById('1512.03521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.03521v1-abstract-full" style="display: none;"> I explore the use of quantum information as a security enabler for the future driverless vehicle. Specifically, I investigate the role combined classical and quantum information can have on the most important characteristic of the driverless vehicle paradigm - the vehicle location. By using information-theoretic verification frameworks, coupled with emerging quantum-based location-verification procedures, I show how vehicle positions can be authenticated with a probability of error simply not attainable in classical-only networks. I also discuss how other quantum applications can be seamlessly encapsulated within the same vehicular communication infrastructure required for location verification. The two technology enablers required for the driverless quantum vehicle are an increase in current quantum memory timescales (likely) and wide-scale deployment of classical vehicular communication infrastructure (underway). I argue the enhanced safety features delivered by the `Quantum Car&#39; mean its eventual deployment is inevitable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03521v1-abstract-full').style.display = 'none'; document.getElementById('1512.03521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published IEEE Wireless Communications Letters ( Volume: 5, Issue: 6, Dec. 2016 ) Page(s): 624 - 627 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.08567">arXiv:1510.08567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.08567">pdf</a>, <a href="https://arxiv.org/ps/1510.08567">ps</a>, <a href="https://arxiv.org/format/1510.08567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Location-Based Beamforming for Rician Wiretap Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+C">Chenxi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.08567v1-abstract-short" style="display: inline;"> We propose a location-based beamforming scheme for wiretap channels, where a source communicates with a legitimate receiver in the presence of an eavesdropper. We assume that the source and the eavesdropper are equipped with multiple antennas, while the legitimate receiver is equipped with a single antenna. We also assume that all channels are in a Rician fading environment, the channel state info&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08567v1-abstract-full').style.display = 'inline'; document.getElementById('1510.08567v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.08567v1-abstract-full" style="display: none;"> We propose a location-based beamforming scheme for wiretap channels, where a source communicates with a legitimate receiver in the presence of an eavesdropper. We assume that the source and the eavesdropper are equipped with multiple antennas, while the legitimate receiver is equipped with a single antenna. We also assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information on the eavesdropper available at the source is her location. We first describe how the beamforming vector that minimizes the secrecy outage probability of the system is obtained, illustrating its dependence on the eavesdropper&#39;s location. We then derive an easy-to-compute expression for the secrecy outage probability when our proposed location-based beamforming is adopted. Finally, we investigate the impact location uncertainty has on the secrecy outage probability, showing how our proposed solution can still allow for secrecy even when the source has limited information on the eavesdropper&#39;s location. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08567v1-abstract-full').style.display = 'none'; document.getElementById('1510.08567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.07223">arXiv:1509.07223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.07223">pdf</a>, <a href="https://arxiv.org/ps/1509.07223">ps</a>, <a href="https://arxiv.org/format/1509.07223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOCOMW.2015.7414069">10.1109/GLOCOMW.2015.7414069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Secure Transmission for Relay Wiretap Channels in the Presence of Spatially Random Eavesdroppers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+C">Chenxi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.07223v1-abstract-short" style="display: inline;"> We propose a secure transmission scheme for a relay wiretap channel, where a source communicates with a destination via a decode-and-forward relay in the presence of spatially random-distributed eavesdroppers. We assume that the source is equipped with multiple antennas, whereas the relay, the destination, and the eavesdroppers are equipped with a single antenna each. In the proposed scheme, in ad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.07223v1-abstract-full').style.display = 'inline'; document.getElementById('1509.07223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.07223v1-abstract-full" style="display: none;"> We propose a secure transmission scheme for a relay wiretap channel, where a source communicates with a destination via a decode-and-forward relay in the presence of spatially random-distributed eavesdroppers. We assume that the source is equipped with multiple antennas, whereas the relay, the destination, and the eavesdroppers are equipped with a single antenna each. In the proposed scheme, in addition to information signals, the source transmits artificial noise signals in order to confuse the eavesdroppers. With the target of maximizing the secrecy throughput of the relay wiretap channel, we derive a closed-form expression for the transmission outage probability and an easy-to-compute expression for the secrecy outage probability. Using these expressions, we determine the optimal power allocation factor and wiretap code rates that guarantee the maximum secrecy throughput, while satisfying a secrecy outage probability constraint. Furthermore, we examine the impact of source antenna number on the secrecy throughput, showing that adding extra transmit antennas at the source brings about a significant increase in the secrecy throughput. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.07223v1-abstract-full').style.display = 'none'; document.getElementById('1509.07223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, accepted by IEEE Globecom 2015 Workshop on Trusted Communications with Physical Layer Security</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.05486">arXiv:1509.05486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.05486">pdf</a>, <a href="https://arxiv.org/ps/1509.05486">ps</a>, <a href="https://arxiv.org/format/1509.05486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Artificial-Noise-Aided Transmission in Multi-Antenna Relay Wiretap Channels with Spatially Random Eavesdroppers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+C">Chenxi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.05486v2-abstract-short" style="display: inline;"> We design a new secure transmission scheme in the relay wiretap channel where a source communicates with a destination through a decode-and-forward relay in the presence of spatially random-distributed eavesdroppers. For the sake of practicality, we consider a general antenna configuration in which the source, relay, destination, and eavesdroppers are equipped with multiple antennas. In order to c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05486v2-abstract-full').style.display = 'inline'; document.getElementById('1509.05486v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.05486v2-abstract-full" style="display: none;"> We design a new secure transmission scheme in the relay wiretap channel where a source communicates with a destination through a decode-and-forward relay in the presence of spatially random-distributed eavesdroppers. For the sake of practicality, we consider a general antenna configuration in which the source, relay, destination, and eavesdroppers are equipped with multiple antennas. In order to confuse the eavesdroppers, we assume that both the source and the relay transmit artificial noise signals in addition to information signals. We first derive a closed-form expression for the transmission outage probability and an easy-to-compute expression for the secrecy outage probability. Notably, these expressions are valid for an arbitrary number of antennas at the source, relay, and destination. We then derive simple yet valuable expressions for the asymptotic transmission outage probability and the asymptotic secrecy outage probability, which reveal the secrecy performance when the number of antennas at the source grows sufficiently large. Using our expressions, we quantify a practical performance metric, namely the secrecy throughput, under a secrecy outage probability constraint. We further determine the system and channel parameters that maximize the secrecy throughput, leading to analytical security solutions suitable for real-world deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05486v2-abstract-full').style.display = 'none'; document.getElementById('1509.05486v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.03729">arXiv:1507.03729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.03729">pdf</a>, <a href="https://arxiv.org/ps/1507.03729">ps</a>, <a href="https://arxiv.org/format/1507.03729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TWC.2015.2453260">10.1109/TWC.2015.2453260 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimization of Code Rates in SISOME Wiretap Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Geraci%2C+G">Giovanni Geraci</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.03729v1-abstract-short" style="display: inline;"> We propose a new framework for determining the wiretap code rates of single-input single-output multi-antenna eavesdropper (SISOME) wiretap channels when the capacity of the eavesdropper&#39;s channel is not available at the transmitter. In our framework we introduce the effective secrecy throughput (EST) as a new performance metric that explicitly captures the two key features of wiretap channels, na&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03729v1-abstract-full').style.display = 'inline'; document.getElementById('1507.03729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.03729v1-abstract-full" style="display: none;"> We propose a new framework for determining the wiretap code rates of single-input single-output multi-antenna eavesdropper (SISOME) wiretap channels when the capacity of the eavesdropper&#39;s channel is not available at the transmitter. In our framework we introduce the effective secrecy throughput (EST) as a new performance metric that explicitly captures the two key features of wiretap channels, namely, reliability and secrecy. Notably, the EST measures the average rate of the confidential information transmitted from the transmitter to the intended receiver without being eavesdropped on. We provide easy-to-implement methods to determine the wiretap code rates for two transmission schemes: 1) adaptive transmission scheme in which the capacity of the main channel is available at the transmitter and 2) fixed-rate transmission scheme in which the capacity of the main channel is not available at the transmitter. Such determinations are further extended into an absolute-passive eavesdropping scenario where even the average signal-to-noise ratio of the eavesdropper&#39;s channel is not available at the transmitter. Notably, our solutions for the wiretap code rates do not require us to set reliability or secrecy constraints for the transmission within wiretap channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03729v1-abstract-full').style.display = 'none'; document.getElementById('1507.03729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, accepted by IEEE Transactions on Wireless Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6882">arXiv:1412.6882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.6882">pdf</a>, <a href="https://arxiv.org/ps/1412.6882">ps</a>, <a href="https://arxiv.org/format/1412.6882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TWC.2015.2510635">10.1109/TWC.2015.2510635 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Secrecy Performance Analysis of Location-Based Beamforming in Rician Wiretap Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6882v1-abstract-short" style="display: inline;"> We propose a new optimal Location-Based Beamforming (LBB) scheme for the wiretap channel, where both the main channel and the eavesdropper&#39;s channel are subject to Rician fading. In our LBB scheme the two key inputs are the location of the legitimate receiver and the location of the potential eavesdropper. Notably, our scheme does not require as direct inputs any channel state information of the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6882v1-abstract-full').style.display = 'inline'; document.getElementById('1412.6882v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6882v1-abstract-full" style="display: none;"> We propose a new optimal Location-Based Beamforming (LBB) scheme for the wiretap channel, where both the main channel and the eavesdropper&#39;s channel are subject to Rician fading. In our LBB scheme the two key inputs are the location of the legitimate receiver and the location of the potential eavesdropper. Notably, our scheme does not require as direct inputs any channel state information of the main channel or the eavesdropper&#39;s channel, making it easy to deploy in a host of application settings in which the location inputs are known. Our beamforming solution assumes a multiple-antenna transmitter, a multiple-antenna eavesdropper, and a single-antenna receiver, and its aim is to maximize the physical layer security of the channel. To obtain our solution we first derive the secrecy outage probability of the LBB scheme in a closed-form expression that is valid for arbitrary values of the Rician K-factors of the main channel and the eavesdropper&#39;s channel. Using this expression we then determine the location-based beamformer solution that minimizes the secrecy outage probability. To assess the usefulness of our new scheme, and to quantify the value of the location information to the beamformer, we compare our scheme to other schemes, some of which do not utilize any location information. Our new beamformer solution provides optimal physical layer security for a wide range of location-based applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6882v1-abstract-full').style.display = 'none'; document.getElementById('1412.6882v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2455">arXiv:1412.2455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.2455">pdf</a>, <a href="https://arxiv.org/ps/1412.2455">ps</a>, <a href="https://arxiv.org/format/1412.2455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TVT.2015.2453160">10.1109/TVT.2015.2453160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Location Verification Systems for VANETs in Rician Fading Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Nevat%2C+I">Ido Nevat</a>, <a href="/search/cs?searchtype=author&amp;query=Peters%2C+G+W">Gareth W. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2455v1-abstract-short" style="display: inline;"> In this work we propose and examine Location Verification Systems (LVSs) for Vehicular Ad Hoc Networks (VANETs) in the realistic setting of Rician fading channels. In our LVSs, a single authorized Base Station (BS) equipped with multiple antennas aims to detect a malicious vehicle that is spoofing its claimed location. We first determine the optimal attack strategy of the malicious vehicle, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2455v1-abstract-full').style.display = 'inline'; document.getElementById('1412.2455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2455v1-abstract-full" style="display: none;"> In this work we propose and examine Location Verification Systems (LVSs) for Vehicular Ad Hoc Networks (VANETs) in the realistic setting of Rician fading channels. In our LVSs, a single authorized Base Station (BS) equipped with multiple antennas aims to detect a malicious vehicle that is spoofing its claimed location. We first determine the optimal attack strategy of the malicious vehicle, which in turn allows us to analyze the optimal LVS performance as a function of the Rician $K$-factor of the channel between the BS and a legitimate vehicle. Our analysis also allows us to formally prove that the LVS performance limit is independent of the properties of the channel between the BS and the malicious vehicle, provided the malicious vehicle&#39;s antenna number is above a specified value. We also investigate how tracking information on a vehicle quantitatively improves the detection performance of an LVS, showing how optimal performance is obtained under the assumption of the tracking length being randomly selected. The work presented here can be readily extended to multiple BS scenarios, and therefore forms the foundation for all optimal location authentication schemes within the context of Rician fading channels. Our study closes important gaps in the current understanding of LVS performance within the context of VANETs, and will be of practical value to certificate revocation schemes within IEEE 1609.2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2455v1-abstract-full').style.display = 'none'; document.getElementById('1412.2455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.5499">arXiv:1410.5499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.5499">pdf</a>, <a href="https://arxiv.org/ps/1410.5499">ps</a>, <a href="https://arxiv.org/format/1410.5499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TWC.2016.2535303">10.1109/TWC.2016.2535303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Location Verification Systems Under Spatially Correlated Shadowing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Nevat%2C+I">Ido Nevat</a>, <a href="/search/cs?searchtype=author&amp;query=Peters%2C+G+W">Gareth W. Peters</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.5499v1-abstract-short" style="display: inline;"> The verification of the location information utilized in wireless communication networks is a subject of growing importance. In this work we formally analyze, for the first time, the performance of a wireless Location Verification System (LVS) under the realistic setting of spatially correlated shadowing. Our analysis illustrates that anticipated levels of correlated shadowing can lead to a dramat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.5499v1-abstract-full').style.display = 'inline'; document.getElementById('1410.5499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.5499v1-abstract-full" style="display: none;"> The verification of the location information utilized in wireless communication networks is a subject of growing importance. In this work we formally analyze, for the first time, the performance of a wireless Location Verification System (LVS) under the realistic setting of spatially correlated shadowing. Our analysis illustrates that anticipated levels of correlated shadowing can lead to a dramatic performance improvement of a Received Signal Strength (RSS)-based LVS. We also analyze the performance of an LVS that utilizes Differential Received Signal Strength (DRSS), formally proving the rather counter-intuitive result that a DRSS-based LVS has identical performance to that of an RSS-based LVS, for all levels of correlated shadowing. Even more surprisingly, the identical performance of RSS and DRSS-based LVSs is found to hold even when the adversary does not optimize his true location. Only in the case where the adversary does not optimize all variables under her control, do we find the performance of an RSS-based LVS to be better than a DRSS-based LVS. The results reported here are important for a wide range of emerging wireless communication applications whose proper functioning depends on the authenticity of the location information reported by a transceiver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.5499v1-abstract-full').style.display = 'none'; document.getElementById('1410.5499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.2960">arXiv:1410.2960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.2960">pdf</a>, <a href="https://arxiv.org/ps/1410.2960">ps</a>, <a href="https://arxiv.org/format/1410.2960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Location Spoofing Detection for VANETs by a Single Base Station in Rician Fading Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Nevat%2C+I">Ido Nevat</a>, <a href="/search/cs?searchtype=author&amp;query=Peters%2C+G+W">Gareth W. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.2960v2-abstract-short" style="display: inline;"> In this work we examine the performance of a Location Spoofing Detection System (LSDS) for vehicular networks in the realistic setting of Rician fading channels. In the LSDS, an authorized Base Station (BS) equipped with multiple antennas utilizes channel observations to identify a malicious vehicle, also equipped with multiple antennas, that is spoofing its location. After deriving the optimal tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.2960v2-abstract-full').style.display = 'inline'; document.getElementById('1410.2960v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.2960v2-abstract-full" style="display: none;"> In this work we examine the performance of a Location Spoofing Detection System (LSDS) for vehicular networks in the realistic setting of Rician fading channels. In the LSDS, an authorized Base Station (BS) equipped with multiple antennas utilizes channel observations to identify a malicious vehicle, also equipped with multiple antennas, that is spoofing its location. After deriving the optimal transmit power and the optimal directional beamformer of a potentially malicious vehicle, robust theoretical analysis and detailed simulations are conducted in order to determine the impact of key system parameters on the LSDS performance. Our analysis shows how LSDS performance increases as the Rician K-factor of the channel between the BS and legitimate vehicles increases, or as the number of antennas at the BS or legitimate vehicle increases. We also obtain the counter-intuitive result that the malicious vehicle&#39;s optimal number of antennas conditioned on its optimal directional beamformer is equal to the legitimate vehicle&#39;s number of antennas. The results we provide here are important for the verification of location information reported in IEEE 1609.2 safety messages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.2960v2-abstract-full').style.display = 'none'; document.getElementById('1410.2960v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, Added further clarification on constraints imposed on the detection minimization strategy. Minor typos fixed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.3348">arXiv:1307.3348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.3348">pdf</a>, <a href="https://arxiv.org/ps/1307.3348">ps</a>, <a href="https://arxiv.org/format/1307.3348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3939/j.issn.1673-5188.2013.03.001">10.3939/j.issn.1673-5188.2013.03.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Location Verification Systems in Emerging Wireless Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.3348v1-abstract-short" style="display: inline;"> As location-based techniques and applications become ubiquitous in emerging wireless networks, the verification of location information will become of growing importance. This has led in recent years to an explosion of activity related to location verification techniques in wireless networks, with a specific focus on Intelligent Transport Systems (ITS) being evident. Such focus is largely due to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.3348v1-abstract-full').style.display = 'inline'; document.getElementById('1307.3348v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.3348v1-abstract-full" style="display: none;"> As location-based techniques and applications become ubiquitous in emerging wireless networks, the verification of location information will become of growing importance. This has led in recent years to an explosion of activity related to location verification techniques in wireless networks, with a specific focus on Intelligent Transport Systems (ITS) being evident. Such focus is largely due to the mission-critical nature of vehicle location verification within the ITS scenario. In this work we review recent research in wireless location verification related to the vehicular network scenario. We particularly focus on location verification systems that rely on formal mathematical classification frameworks, showing how many systems are either partially or fully encompassed by such frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.3348v1-abstract-full').style.display = 'none'; document.getElementById('1307.3348v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.5157">arXiv:1303.5157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.5157">pdf</a>, <a href="https://arxiv.org/ps/1303.5157">ps</a>, <a href="https://arxiv.org/format/1303.5157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOCOM.2013.6831148">10.1109/GLOCOM.2013.6831148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transmit Antenna Selection with Alamouti Scheme in MIMO Wiretap Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.5157v1-abstract-short" style="display: inline;"> This paper proposes a new transmit antenna selection (TAS) scheme which provides enhanced physical layer security in multiple-input multiple-output (MIMO) wiretap channels. The practical passive eavesdropping scenario we consider is where channel state information (CSI) from the eavesdropper is not available at the transmitter. Our new scheme is carried out in two steps. First, the transmitter sel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.5157v1-abstract-full').style.display = 'inline'; document.getElementById('1303.5157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.5157v1-abstract-full" style="display: none;"> This paper proposes a new transmit antenna selection (TAS) scheme which provides enhanced physical layer security in multiple-input multiple-output (MIMO) wiretap channels. The practical passive eavesdropping scenario we consider is where channel state information (CSI) from the eavesdropper is not available at the transmitter. Our new scheme is carried out in two steps. First, the transmitter selects the first two strongest antennas based on the feedback from the receiver, which maximizes the instantaneous signal-to-noise ratio (SNR) of the transmitter-receiver channel. Second, the Alamouti scheme is employed at the selected antennas in order to perform data transmission. At the receiver and the eavesdropper, maximal-ratio combining is applied in order to exploit the multiple antennas.We derive a new closed-form expression for the secrecy outage probability in nonidentical Rayleigh fading, and using this result, we then present the probability of non-zero secrecy capacity in closed form and the 蔚-outage secrecy capacity in numerical form. We demonstrate that our proposed TAS-Alamouti scheme offers lower secrecy outage probability than a single TAS scheme when the SNR of the transmitter-receiver channel is above a specific value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.5157v1-abstract-full').style.display = 'none'; document.getElementById('1303.5157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, submitted to GlobeCom 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.0737">arXiv:1211.0737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.0737">pdf</a>, <a href="https://arxiv.org/ps/1211.0737">ps</a>, <a href="https://arxiv.org/format/1211.0737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TVT.2014.2302022">10.1109/TVT.2014.2302022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal Information-Theoretic Wireless Location Verification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Nevat%2C+I">Ido Nevat</a>, <a href="/search/cs?searchtype=author&amp;query=Peters%2C+G+W">Gareth W. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.0737v2-abstract-short" style="display: inline;"> We develop a new Location Verification System (LVS) focussed on network-based Intelligent Transport Systems and vehicular ad hoc networks. The algorithm we develop is based on an information-theoretic framework which uses the received signal strength (RSS) from a network of base-stations and the claimed position. Based on this information we derive the optimal decision regarding the verification o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.0737v2-abstract-full').style.display = 'inline'; document.getElementById('1211.0737v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.0737v2-abstract-full" style="display: none;"> We develop a new Location Verification System (LVS) focussed on network-based Intelligent Transport Systems and vehicular ad hoc networks. The algorithm we develop is based on an information-theoretic framework which uses the received signal strength (RSS) from a network of base-stations and the claimed position. Based on this information we derive the optimal decision regarding the verification of the user&#39;s location. Our algorithm is optimal in the sense of maximizing the mutual information between its input and output data. Our approach is based on the practical scenario in which a non-colluding malicious user some distance from a highway optimally boosts his transmit power in an attempt to fool the LVS that he is on the highway. We develop a practical threat model for this attack scenario, and investigate in detail the performance of the LVS in terms of its input/output mutual information. We show how our LVS decision rule can be implemented straightforwardly with a performance that delivers near-optimality under realistic threat conditions, with information-theoretic optimality approached as the malicious user moves further from the highway. The practical advantages our new information-theoretic scheme delivers relative to more traditional Bayesian verification frameworks are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.0737v2-abstract-full').style.display = 'none'; document.getElementById('1211.0737v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected typos and introduced new threat models</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.4585">arXiv:1204.4585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.4585">pdf</a>, <a href="https://arxiv.org/format/1204.4585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOCOM.2012.6503982">10.1109/GLOCOM.2012.6503982 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Information Theoretic Location Verification System for Wireless Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shihao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Nevat%2C+I">Ido Nevat</a>, <a href="/search/cs?searchtype=author&amp;query=Peters%2C+G+W">Gareth W. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.4585v1-abstract-short" style="display: inline;"> As location-based applications become ubiquitous in emerging wireless networks, Location Verification Systems (LVS) are of growing importance. In this paper we propose, for the first time, a rigorous information-theoretic framework for an LVS. The theoretical framework we develop illustrates how the threshold used in the detection of a spoofed location can be optimized in terms of the mutual infor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4585v1-abstract-full').style.display = 'inline'; document.getElementById('1204.4585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.4585v1-abstract-full" style="display: none;"> As location-based applications become ubiquitous in emerging wireless networks, Location Verification Systems (LVS) are of growing importance. In this paper we propose, for the first time, a rigorous information-theoretic framework for an LVS. The theoretical framework we develop illustrates how the threshold used in the detection of a spoofed location can be optimized in terms of the mutual information between the input and output data of the LVS. In order to verify the legitimacy of our analytical framework we have carried out detailed numerical simulations. Our simulations mimic the practical scenario where a system deployed using our framework must make a binary Yes/No &#34;malicious decision&#34; to each snapshot of the signal strength values obtained by base stations. The comparison between simulation and analysis shows excellent agreement. Our optimized LVS framework provides a defence against location spoofing attacks in emerging wireless networks such as those envisioned for Intelligent Transport Systems, where verification of location information is of paramount importance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4585v1-abstract-full').style.display = 'none'; document.getElementById('1204.4585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.4223">arXiv:1204.4223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.4223">pdf</a>, <a href="https://arxiv.org/ps/1204.4223">ps</a>, <a href="https://arxiv.org/format/1204.4223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved Quantum LDPC Decoding Strategies For The Misidentified Quantum Depolarizing Channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xie%2C+Y">Yixuan Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.4223v2-abstract-short" style="display: inline;"> Quantum cryptography via key distribution mechanisms that utilize quantum entanglement between sender-receiver pairs will form the basis of future large-scale quantum networks. A key engineering challenge in such networks will be the ability to correct for decoherence effects in the distributed entanglement resources. It is widely believed that sophisticated quantum error correction codes, such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4223v2-abstract-full').style.display = 'inline'; document.getElementById('1204.4223v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.4223v2-abstract-full" style="display: none;"> Quantum cryptography via key distribution mechanisms that utilize quantum entanglement between sender-receiver pairs will form the basis of future large-scale quantum networks. A key engineering challenge in such networks will be the ability to correct for decoherence effects in the distributed entanglement resources. It is widely believed that sophisticated quantum error correction codes, such as quantum low-density parity-check (LDPC) codes, will be pivotal in such a role. However, recently the importance of the channel mismatch effect in degrading the performance of deployed quantum LDPC codes has been pointed out. In this work we help remedy this situation by proposing new quantum LDPC decoding strategies that can significantly reduce performance degradation by as much as $50\%$. Our new strategies for the quantum LDPC decoder are based on previous insights from classical LDPC decoders in mismatched channels, where an asymmetry in performance is known as a function of the estimated channel noise. We show how similar asymmetries carry over to the quantum depolarizing channel, and how an estimate of the depolarization flip parameter weighted to larger values leads to significant performance improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4223v2-abstract-full').style.display = 'none'; document.getElementById('1204.4223v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:arXiv:1202.0357</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.0357">arXiv:1202.0357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.0357">pdf</a>, <a href="https://arxiv.org/ps/1202.0357">ps</a>, <a href="https://arxiv.org/format/1202.0357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Channel Identification and its Impact on Quantum LDPC Code Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xie%2C+Y">Yixuan Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.0357v1-abstract-short" style="display: inline;"> In this work we probe the impact of channel estimation on the performance of quantum LDPC codes. Our channel estimation is based on an optimal estimate of the relevant decoherence parameter via its quantum Fisher information. Using state-of-the art quantum LDPC codes designed for the quantum depolarization channel, and utilizing various quantum probes with different entanglement properties, we sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.0357v1-abstract-full').style.display = 'inline'; document.getElementById('1202.0357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.0357v1-abstract-full" style="display: none;"> In this work we probe the impact of channel estimation on the performance of quantum LDPC codes. Our channel estimation is based on an optimal estimate of the relevant decoherence parameter via its quantum Fisher information. Using state-of-the art quantum LDPC codes designed for the quantum depolarization channel, and utilizing various quantum probes with different entanglement properties, we show how the performance of such codes can deteriorate by an order of magnitude when optimal channel identification is fed into a belief propagation decoding algorithm. Our work highlights the importance in quantum communications of a viable channel identification campaign prior to decoding, and highlights the trade-off between entanglement consumption and quantum LDPC code performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.0357v1-abstract-full').style.display = 'none'; document.getElementById('1202.0357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.4689">arXiv:1004.4689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.4689">pdf</a>, <a href="https://arxiv.org/ps/1004.4689">ps</a>, <a href="https://arxiv.org/format/1004.4689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/GLOCOM.2010.5684009">10.1109/GLOCOM.2010.5684009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Location Verification in Noisy Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R+A">Robert A Malaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.4689v1-abstract-short" style="display: inline;"> Recently it has been shown how the use of quantum entanglement can lead to the creation of real-time communication channels whose viability can be made location dependent. Such functionality leads to new security paradigms that are not possible in classical communication networks. Key to these new security paradigms are quantum protocols that can unconditionally determine that a receiver is in fac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4689v1-abstract-full').style.display = 'inline'; document.getElementById('1004.4689v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.4689v1-abstract-full" style="display: none;"> Recently it has been shown how the use of quantum entanglement can lead to the creation of real-time communication channels whose viability can be made location dependent. Such functionality leads to new security paradigms that are not possible in classical communication networks. Key to these new security paradigms are quantum protocols that can unconditionally determine that a receiver is in fact at an a priori assigned location. A limiting factor of such quantum protocols will be the decoherence of states held in quantum memory. Here we investigate the performance of quantum location verification protocols under decoherence effects. More specifically, we address the issue of how decoherence impacts the verification using N = 2 qubits entangled as Bell states, as compared to N &gt; 2 qubits entangled as GHZ states. We study the original quantum location verification protocol, as well as a variant protocol, introduced here, which utilizes teleportation. We find that the performance of quantum location verification is in fact similar for Bell states and some N &gt; 2 GHZ states, even though quantum decoherence degrades larger-qubit entanglements faster. Our results are important for the design and implementation of location-dependent communications in emerging quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4689v1-abstract-full').style.display = 'none'; document.getElementById('1004.4689v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.1145">arXiv:0910.1145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.1145">pdf</a>, <a href="https://arxiv.org/ps/0910.1145">ps</a>, <a href="https://arxiv.org/format/0910.1145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Design of network-coding based multi-edge type LDPC codes for multi-source relaying systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Azmi%2C+M+H">Marwan H. Azmi</a>, <a href="/search/cs?searchtype=author&amp;query=Malaney%2C+R">Robert. Malaney</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+J">Jinhong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.1145v1-abstract-short" style="display: inline;"> In this paper we investigate a multi-source LDPC scheme for a Gaussian relay system, where M sources communicate with the destination under the help of a single relay (M-1-1 system). Since various distributed LDPC schemes in the cooperative single-source system, e.g. bilayer LDPC and bilayer multi-edge type LDPC (BMET-LDPC), have been designed to approach the Shannon limit, these schemes can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.1145v1-abstract-full').style.display = 'inline'; document.getElementById('0910.1145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.1145v1-abstract-full" style="display: none;"> In this paper we investigate a multi-source LDPC scheme for a Gaussian relay system, where M sources communicate with the destination under the help of a single relay (M-1-1 system). Since various distributed LDPC schemes in the cooperative single-source system, e.g. bilayer LDPC and bilayer multi-edge type LDPC (BMET-LDPC), have been designed to approach the Shannon limit, these schemes can be applied to the $M-1-1$ system by the relay serving each source in a round-robin fashion. However, such a direct application is not optimal due to the lack of potential joint processing gain. In this paper, we propose a network coded multi-edge type LDPC (NCMET-LDPC) scheme for the multi-source scenario. Through an EXIT analysis, we conclude that the NCMET-LDPC scheme achieves higher extrinsic mutual information, relative to a separate application of BMET-LDPC to each source. Our new NCMET-LDPC scheme thus achieves a higher threshold relative to existing schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.1145v1-abstract-full').style.display = 'none'; document.getElementById('0910.1145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 8figure. conference</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10