CINXE.COM
Search results for: microchannel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microchannel</title> <meta name="description" content="Search results for: microchannel"> <meta name="keywords" content="microchannel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microchannel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microchannel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microchannel</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Simultaneous Reaction-Separation in a Microchannel Reactor with the Aid of a Guideline Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Salah%20Aljbour">Salah Aljbour</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Yamada"> Hiroshi Yamada</a>, <a href="https://publications.waset.org/search?q=Tomohiko%20Tagawa"> Tomohiko Tagawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A microchannel with two inlets and two outlets was tested as a potential reactor to carry out two-phase catalytic phase transfer reaction with phase separation at the exit of the microchannel. The catalytic phase transfer reaction between benzyl chloride and sodium sulfide was chosen as a model reaction. The effect of operational time on the conversion was studied. By utilizing a multiphase parallel flow inside the microchannel reactor with the aid of a guideline structure, the catalytic phase reaction followed by phase separation could be ensured. The organic phase could be separated completely from one exit and part of the aqueous phase was separated purely and could be reused with slightly affecting the catalytic phase transfer reaction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Green%20engineering" title="Green engineering">Green engineering</a>, <a href="https://publications.waset.org/search?q=microchannel%20reactor" title=" microchannel reactor"> microchannel reactor</a>, <a href="https://publications.waset.org/search?q=multiphase%20reaction" title=" multiphase reaction"> multiphase reaction</a>, <a href="https://publications.waset.org/search?q=process%20intensification." title=" process intensification."> process intensification.</a> </p> <a href="https://publications.waset.org/7493/simultaneous-reaction-separation-in-a-microchannel-reactor-with-the-aid-of-a-guideline-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7493/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7493/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7493/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7493/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7493/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7493/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7493/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7493/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7493/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7493/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1601</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rahim%20Jafari">Rahim Jafari</a>, <a href="https://publications.waset.org/search?q=Tuba%20Okutucu-%C3%96zyurt"> Tuba Okutucu-Özyurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared well with the available experimental data in the literature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microchannel" title="Microchannel">Microchannel</a>, <a href="https://publications.waset.org/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/search?q=Cahn-Hilliard%20method" title=" Cahn-Hilliard method"> Cahn-Hilliard method</a>, <a href="https://publications.waset.org/search?q=Two-phase%0D%0Aflow" title=" Two-phase flow"> Two-phase flow</a>, <a href="https://publications.waset.org/search?q=Simulation." title=" Simulation."> Simulation.</a> </p> <a href="https://publications.waset.org/10001158/cfd-modeling-of-boiling-in-a-microchannel-based-on-phase-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001158/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001158/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001158/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001158/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001158/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001158/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001158/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001158/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001158/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001158/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3847</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20F.%20Khadrawi">A. F. Khadrawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as increases. Also, the slip in the thermal boundary condition increases as decreases especially the early stage of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=free%20convection" title="free convection">free convection</a>, <a href="https://publications.waset.org/search?q=hyperbolic%20heat%20conduction" title=" hyperbolic heat conduction"> hyperbolic heat conduction</a>, <a href="https://publications.waset.org/search?q=macroscopic%20heat%20conduction%20models%20in%20microchannel" title=" macroscopic heat conduction models in microchannel"> macroscopic heat conduction models in microchannel</a>, <a href="https://publications.waset.org/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/search?q=vertical%20microchannel" title=" vertical microchannel"> vertical microchannel</a>, <a href="https://publications.waset.org/search?q=microchannel%20thermal" title=" microchannel thermal"> microchannel thermal</a>, <a href="https://publications.waset.org/search?q=hydrodynamic%20behavior." title=" hydrodynamic behavior."> hydrodynamic behavior.</a> </p> <a href="https://publications.waset.org/3433/transient-hydrodynamic-and-thermal-behaviors-of-fluid-flow-in-a-vertical-porous-microchannel-under-the-effect-of-hyperbolic-heat-conduction-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3433/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3433/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3433/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3433/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3433/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3433/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3433/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3433/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3433/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3433/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1927</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Numerical Optimization of Trapezoidal Microchannel Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yue-Tzu%20Yang">Yue-Tzu Yang</a>, <a href="https://publications.waset.org/search?q=Shu-Ching%20Liao"> Shu-Ching Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm<sup>2 </sup>≦<strong><em>q"</em></strong>≦ 40W/cm<sup>2</sup>. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microchannel%20heat%20sinks" title="Microchannel heat sinks">Microchannel heat sinks</a>, <a href="https://publications.waset.org/search?q=Conjugate%20heat%20transfer" title=" Conjugate heat transfer"> Conjugate heat transfer</a>, <a href="https://publications.waset.org/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/search?q=Genetic%20algorithm%20method." title=" Genetic algorithm method. "> Genetic algorithm method. </a> </p> <a href="https://publications.waset.org/9999022/numerical-optimization-of-trapezoidal-microchannel-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999022/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999022/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999022/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999022/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999022/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999022/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999022/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999022/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999022/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999022/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2159</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Numerical Study of MHD Effects on Drop Formation in a T-Shaped Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Aghajani%20Haghighi">M. Aghajani Haghighi</a>, <a href="https://publications.waset.org/search?q=H.%20Emdad"> H. Emdad</a>, <a href="https://publications.waset.org/search?q=K.%20Jafarpur"> K. Jafarpur</a>, <a href="https://publications.waset.org/search?q=A.%20N.%20Ziaei"> A. N. Ziaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of a uniform magnetic field on the formation of drops of specific size has been investigated numerically in a T-shaped microchannel. Previous researches indicated that the drop sizes of secondary stream decreases, with increasing main stream flow rate and decreasing interfacial tension. In the present study the effect of a uniform magnetic field on the main stream is considered, and it is proposed that by increasing the Hartmann number, the size of the drops of the secondary stream will be decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Drop%20formation" title="Drop formation">Drop formation</a>, <a href="https://publications.waset.org/search?q=Magnetohydrodynamics" title=" Magnetohydrodynamics"> Magnetohydrodynamics</a>, <a href="https://publications.waset.org/search?q=Microchannel" title=" Microchannel"> Microchannel</a>, <a href="https://publications.waset.org/search?q=Volume-of-Fluid" title=" Volume-of-Fluid"> Volume-of-Fluid</a> </p> <a href="https://publications.waset.org/12401/numerical-study-of-mhd-effects-on-drop-formation-in-a-t-shaped-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12401/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12401/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12401/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12401/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12401/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12401/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12401/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12401/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12401/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12401/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1695</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Streamwise Conduction of Nanofluidic Flow in Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yew%20Mun%20Hung">Yew Mun Hung</a>, <a href="https://publications.waset.org/search?q=Ching%20Sze%20Lim"> Ching Sze Lim</a>, <a href="https://publications.waset.org/search?q=Tiew%20Wei%20Ting"> Tiew Wei Ting</a>, <a href="https://publications.waset.org/search?q=Ningqun%20Guo"> Ningqun Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=fin%20approach" title="fin approach">fin approach</a>, <a href="https://publications.waset.org/search?q=microchannel%20heat%20sink" title=" microchannel heat sink"> microchannel heat sink</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=streamwise%20conduction" title=" streamwise conduction"> streamwise conduction</a> </p> <a href="https://publications.waset.org/1215/streamwise-conduction-of-nanofluidic-flow-in-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1215/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1215/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1215/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1215/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1215/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1215/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1215/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1215/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1215/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1215/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1740</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Numerical Analysis on the Performance of Heatsink with Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jer-Huan%20Jang">Jer-Huan Jang</a>, <a href="https://publications.waset.org/search?q=Han-Chieh%20Chiu"> Han-Chieh Chiu</a>, <a href="https://publications.waset.org/search?q=Wei-Chung%20Yeih"> Wei-Chung Yeih</a>, <a href="https://publications.waset.org/search?q=Jia-Jui%20Yang"> Jia-Jui Yang</a>, <a href="https://publications.waset.org/search?q=Chien-Sheng%20Huang"> Chien-Sheng Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, numerical simulation is used to investigate the thermal performance of liquid cooling heatsink with microchannels due to geometric arrangement. Commercial software ICEPAK is utilized for the analysis. The considered parameters include aspect ratio, porosity and the length and height of microchannel. The aspect ratio varies from 3 to 16 and the length of microchannel is 10mm, 14mm, and 18mm. The height of microchannel is 2mm, 3mm and 4mm. It is found short channel have better thermal efficiency than long channel at 490Pa. No matter the length of channel the best aspect ratio is 4. It is also noted that pressure difference at 2940Pa the best aspect ratio from 4 to 8, it means pressure difference affect aspect ratio, effective thermal resistance at low pressure difference but lower effective thermal resistance at high pressure difference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=thermal%20resistance" title="thermal resistance">thermal resistance</a>, <a href="https://publications.waset.org/search?q=liquid%20cooling" title=" liquid cooling"> liquid cooling</a>, <a href="https://publications.waset.org/search?q=microchannels" title=" microchannels"> microchannels</a>, <a href="https://publications.waset.org/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/search?q=pressure%20difference" title=" pressure difference"> pressure difference</a> </p> <a href="https://publications.waset.org/3189/numerical-analysis-on-the-performance-of-heatsink-with-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3189/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3189/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3189/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3189/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3189/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3189/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3189/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3189/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3189/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3189/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2160</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Numerical Simulation of Thermo-Fluid Behavior in Wavy Microchannel Used in Microelectronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Balabel">A. Balabel</a>, <a href="https://publications.waset.org/search?q=A.%20F.%20Khadrawi"> A. F. Khadrawi</a>, <a href="https://publications.waset.org/search?q=Ali%20S.%20Al-Osaimy"> Ali S. Al-Osaimy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamic and thermal behaviors of fluid flow in wavy microchannel are investigated numerically. Effects of Reynolds number on the hydrodynamics and thermal behaviors are investigated. Three cases of Reynolds number (580, 1244, and 1910) are adopted in this study. It is found that the separation zone begin appears when Reynolds number is greater than 1910 at the endsection of the wave. Also it is found that dimensionless maximum velocity at the mid-section of the wave decreases and becomes as a turbulent behavior as Reynolds numbers increases. The maximum temperature at the center line at the mid-section of the wave increases as Reynolds number increases until it reaches the turbulent behavior when Reynolds number is equal or greater than 1244, while this behavior will be achieved at very high velocities at the end section of the wave. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermo-Fluid%20Behavior" title="Thermo-Fluid Behavior">Thermo-Fluid Behavior</a>, <a href="https://publications.waset.org/search?q=Microelectronic%20Devices" title=" Microelectronic Devices"> Microelectronic Devices</a>, <a href="https://publications.waset.org/search?q=Numerical%20Simulation" title=" Numerical Simulation"> Numerical Simulation</a>, <a href="https://publications.waset.org/search?q=Wavy%20Microchannel." title=" Wavy Microchannel."> Wavy Microchannel.</a> </p> <a href="https://publications.waset.org/10002621/numerical-simulation-of-thermo-fluid-behavior-in-wavy-microchannel-used-in-microelectronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002621/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002621/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002621/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002621/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002621/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002621/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002621/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002621/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002621/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002621/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1355</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Al-Shyyab">A. Al-Shyyab</a>, <a href="https://publications.waset.org/search?q=A.%20F.%20Khadrawi"> A. F. Khadrawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Converging%20plates" title="Converging plates">Converging plates</a>, <a href="https://publications.waset.org/search?q=hydrodynamic%20behavior" title=" hydrodynamic behavior"> hydrodynamic behavior</a>, <a href="https://publications.waset.org/search?q=microplates" title=" microplates"> microplates</a>, <a href="https://publications.waset.org/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/search?q=slip%20velocity" title=" slip velocity"> slip velocity</a> </p> <a href="https://publications.waset.org/11370/semi-analytic-solution-and-hydrodynamics-behavior-of-fluid-flow-in-micro-converging-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11370/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11370/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11370/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11370/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11370/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11370/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11370/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11370/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11370/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11370/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1598</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abhishek%20Kumar%20Chandra">Abhishek Kumar Chandra</a>, <a href="https://publications.waset.org/search?q=Kaushal%20Kishor"> Kaushal Kishor</a>, <a href="https://publications.waset.org/search?q=Wasim%20Khan"> Wasim Khan</a>, <a href="https://publications.waset.org/search?q=Dhananjay%20Singh"> Dhananjay Singh</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20Alam"> M. S. Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contraction-expansion%20flow" title="Contraction-expansion flow">Contraction-expansion flow</a>, <a href="https://publications.waset.org/search?q=integrated%20microchannel" title=" integrated microchannel"> integrated microchannel</a>, <a href="https://publications.waset.org/search?q=microchannel%20network" title=" microchannel network"> microchannel network</a>, <a href="https://publications.waset.org/search?q=single%20phase%20flow." title=" single phase flow."> single phase flow.</a> </p> <a href="https://publications.waset.org/10007899/single-phase-fluid-flow-in-series-of-microchannel-connected-via-converging-diverging-section-with-or-without-throat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007899/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007899/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007899/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007899/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007899/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007899/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007899/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007899/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007899/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007899/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">909</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Numerical Investigation into Mixing Performance of Electrokinetically-Driven Power-Law Fluids in Microchannel with Patterned Trapezoid Blocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cha%E2%80%99o-Kuang%20Chen">Cha’o-Kuang Chen</a>, <a href="https://publications.waset.org/search?q=Ching-Chang%20Cho"> Ching-Chang Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study investigates the mixing performance of electrokinetically-driven power-law fluids in a microchannel containing patterned trapezoid blocks. The effects of the geometry parameters of the patterned trapezoid blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are explored. The results show that the mixing efficiency can be improved by increasing the width of the blocks and extending the length of upper surface of the blocks. In addition, the results show that the mixing efficiency increases with an increasing flow behavior index. Furthermore, it is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the trapezoid blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. Consequently, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non-Newtonian%20fluid" title="Non-Newtonian fluid">Non-Newtonian fluid</a>, <a href="https://publications.waset.org/search?q=Power-law%20fluid" title=" Power-law fluid"> Power-law fluid</a>, <a href="https://publications.waset.org/search?q=Electroosmotic%20flow" title=" Electroosmotic flow"> Electroosmotic flow</a>, <a href="https://publications.waset.org/search?q=Passive%20mixer" title=" Passive mixer"> Passive mixer</a>, <a href="https://publications.waset.org/search?q=Mixing" title=" Mixing"> Mixing</a>, <a href="https://publications.waset.org/search?q=Micromixer." title=" Micromixer."> Micromixer.</a> </p> <a href="https://publications.waset.org/16389/numerical-investigation-into-mixing-performance-of-electrokinetically-driven-power-law-fluids-in-microchannel-with-patterned-trapezoid-blocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16389/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16389/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16389/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16389/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16389/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16389/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16389/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16389/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16389/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16389/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1516</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Manay%20E.">Manay E.</a>, <a href="https://publications.waset.org/search?q=Sahin%20B."> Sahin B.</a>, <a href="https://publications.waset.org/search?q=Yilmaz%20M."> Yilmaz M.</a>, <a href="https://publications.waset.org/search?q=Gelis%20K."> Gelis K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microchannel%20Heat%20Sink" title="Microchannel Heat Sink">Microchannel Heat Sink</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer%0D%0Aenhancement" title=" Heat transfer enhancement"> Heat transfer enhancement</a>, <a href="https://publications.waset.org/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/4624/thermal-performance-analysis-of-nanofluids-in-microchannel-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4624/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4624/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4624/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4624/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4624/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4624/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4624/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4624/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4624/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4624/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3578</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Mohammadpour">J. Mohammadpour</a>, <a href="https://publications.waset.org/search?q=G.%20E.%20Lau"> G. E. Lau</a>, <a href="https://publications.waset.org/search?q=S.%20Cheng"> S. Cheng</a>, <a href="https://publications.waset.org/search?q=A.%20Lee"> A. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Synthetic%20jets" title="Synthetic jets">Synthetic jets</a>, <a href="https://publications.waset.org/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/search?q=electronic%20cooling" title=" electronic cooling"> electronic cooling</a>, <a href="https://publications.waset.org/search?q=computational%20fluid%20dynamics." title=" computational fluid dynamics."> computational fluid dynamics.</a> </p> <a href="https://publications.waset.org/10011826/thermal-performance-of-a-pair-of-synthetic-jets-equipped-in-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011826/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011826/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011826/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011826/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011826/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011826/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011826/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011826/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011826/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011826/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">812</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rub%C3%A9n%20B%C3%A3nos">Rubén Bãnos</a>, <a href="https://publications.waset.org/search?q=Jos%C3%A9%20Arcos"> José Arcos</a>, <a href="https://publications.waset.org/search?q=Oscar%20Bautista"> Oscar Bautista</a>, <a href="https://publications.waset.org/search?q=Federico%20M%C3%A9ndez"> Federico Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H¨uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Reω, the electrokinetic parameter, ¯κ, defined as the ratio of the characteristic length scale to the Debye length, the parameter λ which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Reω and ¯κ are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Oscillatory%20electroosmotic%20flow" title="Oscillatory electroosmotic flow">Oscillatory electroosmotic flow</a>, <a href="https://publications.waset.org/search?q=Non-Newtonian%0D%0Afluids" title=" Non-Newtonian fluids"> Non-Newtonian fluids</a>, <a href="https://publications.waset.org/search?q=power-law%20model" title=" power-law model"> power-law model</a>, <a href="https://publications.waset.org/search?q=low%20zeta%20potentials." title=" low zeta potentials."> low zeta potentials.</a> </p> <a href="https://publications.waset.org/10009307/oscillatory-electroosmotic-flow-of-power-law-fluids-in-a-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009307/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009307/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009307/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009307/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009307/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009307/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009307/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009307/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009307/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009307/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">884</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Azadeh%20Ranjbar">V. Azadeh Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DSMC" title="DSMC">DSMC</a>, <a href="https://publications.waset.org/search?q=Thermal%20transpiration" title=" Thermal transpiration"> Thermal transpiration</a>, <a href="https://publications.waset.org/search?q=Thermal%20creep" title=" Thermal creep"> Thermal creep</a>, <a href="https://publications.waset.org/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/search?q=Knudsen%20Compressor." title=" Knudsen Compressor."> Knudsen Compressor.</a> </p> <a href="https://publications.waset.org/7522/particle-simulation-of-rarefied-gas-flows-witha-superimposed-wall-surface-temperature-gradient-in-microgeometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7522/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7522/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7522/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7522/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7522/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7522/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7522/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7522/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7522/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7522/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1253</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Huei%20Chu%20Weng">Huei Chu Weng</a>, <a href="https://publications.waset.org/search?q=Chien-Hung%20Liu"> Chien-Hung Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidics" title="Microfluidics">Microfluidics</a>, <a href="https://publications.waset.org/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/search?q=gas%20rarefaction" title=" gas rarefaction"> gas rarefaction</a>, <a href="https://publications.waset.org/search?q=second-order%20boundary%20conditions." title=" second-order boundary conditions."> second-order boundary conditions.</a> </p> <a href="https://publications.waset.org/10002313/second-order-slip-flow-and-heat-transfer-in-a-long-isothermal-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002313/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002313/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002313/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002313/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002313/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002313/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002313/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002313/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002313/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002313/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2080</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Huei%20Chu%20Weng">Huei Chu Weng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidics" title="Microfluidics">Microfluidics</a>, <a href="https://publications.waset.org/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/search?q=thermal%20creep" title=" thermal creep"> thermal creep</a>, <a href="https://publications.waset.org/search?q=second-order%20boundary%20conditions." title=" second-order boundary conditions."> second-order boundary conditions.</a> </p> <a href="https://publications.waset.org/9999152/second-order-slip-flow-and-heat-transfer-in-a-long-isoflux-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2358</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> An Active Mixer with Vertical Flow Placement via a Series of Inlets for Micromixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pil%20Woo%20Heo">Pil Woo Heo</a>, <a href="https://publications.waset.org/search?q=In%20Sub%20Park"> In Sub Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Flows in a microchannel are laminar, which means that mixing depends on only inter-diffusion. A micromixer plays an important role in obtaining fast diagnosis results in the fields of m-TAS (total analysis system), Bio-MEMS and LOC (lab-on-a-chip).</p> <p>In this paper, we propose a new active mixer with vertical flow placement via a series of inlets for micromixing. This has two inlets on the same axis, one of which is located before the other. The sample input by the first inlet flows into the down-position, while the other sample by the second inlet flows into the up-position. In the experiment, the samples were located vertically in up-down positions in a micro chamber. PZT was attached below a chamber, and ultrasonic waves were radiated in the down to up direction towards the samples in the micro chamber in order to accelerate the mixing. The mixing process was measured by the change of color in a micro chamber using phenolphthalein and NaOH. The results of the experiment showed that the samples in the microchamber were efficiently mixed and that our new active mixer was superior to the horizontal type of active mixers in view of the grey levels and the standard deviation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Active%20mixer" title="Active mixer">Active mixer</a>, <a href="https://publications.waset.org/search?q=vertical%20flow%20placement" title=" vertical flow placement"> vertical flow placement</a>, <a href="https://publications.waset.org/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/search?q=bio-MEMS" title=" bio-MEMS"> bio-MEMS</a>, <a href="https://publications.waset.org/search?q=LOC." title=" LOC."> LOC.</a> </p> <a href="https://publications.waset.org/9996805/an-active-mixer-with-vertical-flow-placement-via-a-series-of-inlets-for-micromixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996805/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996805/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996805/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996805/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996805/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996805/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996805/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996805/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996805/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996805/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1763</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Microfluidic Manipulation for Biomedical and Biohealth Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/search?q=Sevda%20Givtaj"> Sevda Givtaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title="Microfluidic">Microfluidic</a>, <a href="https://publications.waset.org/search?q=nano%2Fmicro%20actuator" title=" nano/micro actuator"> nano/micro actuator</a>, <a href="https://publications.waset.org/search?q=AC%20electrothermal" title=" AC electrothermal"> AC electrothermal</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/search?q=biomedical%20applications." title=" biomedical applications."> biomedical applications.</a> </p> <a href="https://publications.waset.org/10013705/microfluidic-manipulation-for-biomedical-and-biohealth-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013705/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013705/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013705/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013705/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013705/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013705/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013705/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013705/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013705/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013705/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Reducing Pressure Drop in Microscale Channel Using Constructal Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20X.%20Cheng">K. X. Cheng</a>, <a href="https://publications.waset.org/search?q=A.%20L.%20Goh"> A. L. Goh</a>, <a href="https://publications.waset.org/search?q=K.%20T.%20Ooi"> K. T. Ooi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Constructal%20theory" title="Constructal theory">Constructal theory</a>, <a href="https://publications.waset.org/search?q=enhanced%20heat%20transfer" title=" enhanced heat transfer"> enhanced heat transfer</a>, <a href="https://publications.waset.org/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/search?q=pressure%20drop." title=" pressure drop."> pressure drop.</a> </p> <a href="https://publications.waset.org/10003507/reducing-pressure-drop-in-microscale-channel-using-constructal-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003507/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003507/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003507/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003507/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003507/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003507/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003507/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003507/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003507/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003507/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1493</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/search?q=Aysan%20Madanpasandi"> Aysan Madanpasandi</a>, <a href="https://publications.waset.org/search?q=Behrooz%20Zare%20Desari"> Behrooz Zare Desari</a>, <a href="https://publications.waset.org/search?q=Seyedmohammad%20Mousavi"> Seyedmohammad Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Integration" title="Integration">Integration</a>, <a href="https://publications.waset.org/search?q=electrokinetic" title=" electrokinetic"> electrokinetic</a>, <a href="https://publications.waset.org/search?q=on-chip" title=" on-chip"> on-chip</a>, <a href="https://publications.waset.org/search?q=fluid%20pumping" title=" fluid pumping"> fluid pumping</a>, <a href="https://publications.waset.org/search?q=microfluidic." title=" microfluidic. "> microfluidic. </a> </p> <a href="https://publications.waset.org/10007738/electrode-engineering-for-on-chip-liquid-driving-by-using-electrokinetic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">844</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.Toghraie">D.Toghraie</a>, <a href="https://publications.waset.org/search?q=A.R.Azimian"> A.R.Azimian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lennard-Jones%20Potential" title="Lennard-Jones Potential">Lennard-Jones Potential</a>, <a href="https://publications.waset.org/search?q=Molecular%20DynamicsSimulation" title=" Molecular DynamicsSimulation"> Molecular DynamicsSimulation</a>, <a href="https://publications.waset.org/search?q=Periodic%20Boundary%20Conditions%20%28PBC%29" title=" Periodic Boundary Conditions (PBC)"> Periodic Boundary Conditions (PBC)</a>, <a href="https://publications.waset.org/search?q=Non-EquilibriumMolecular%20Dynamics%20%28NEMD%29" title=" Non-EquilibriumMolecular Dynamics (NEMD)"> Non-EquilibriumMolecular Dynamics (NEMD)</a>, <a href="https://publications.waset.org/search?q=Annular%20Flow%20Boiling" title=" Annular Flow Boiling"> Annular Flow Boiling</a> </p> <a href="https://publications.waset.org/9905/molecular-dynamics-simulation-of-annular-flow-boiling-in-a-microchannel-with-70000-atoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9905/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9905/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9905/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9905/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9905/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9905/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9905/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9905/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9905/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9905/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2185</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ehsan%20Yazdanpanah%20Moghadam">Ehsan Yazdanpanah Moghadam</a>, <a href="https://publications.waset.org/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title="Microfluidic">Microfluidic</a>, <a href="https://publications.waset.org/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/search?q=MEMS." title=" MEMS."> MEMS.</a> </p> <a href="https://publications.waset.org/10008327/increase-of-sensitivity-in-3d-suspended-polymeric-microfluidic-platform-through-lateral-misalignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008327/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008327/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008327/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008327/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008327/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008327/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008327/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008327/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008327/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008327/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">887</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liu%20Xuedong">Liu Xuedong</a>, <a href="https://publications.waset.org/search?q=Liu%20Hanpeng"> Liu Hanpeng</a>, <a href="https://publications.waset.org/search?q=Zhou%20Ling"> Zhou Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cross-corrugated%20surface" title="Cross-corrugated surface">Cross-corrugated surface</a>, <a href="https://publications.waset.org/search?q=Primary%20surface" title=" Primary surface"> Primary surface</a>, <a href="https://publications.waset.org/search?q=Numerical%20simulation" title="Numerical simulation">Numerical simulation</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer." title=" Heat transfer."> Heat transfer.</a> </p> <a href="https://publications.waset.org/1759/numerical-simulation-of-heat-transfer-in-primary-surface-with-corrugations-recuperators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1759/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1759/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1759/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1759/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1759/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1759/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1759/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1759/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1759/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1759/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2251</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Ruenin">J. Ruenin</a>, <a href="https://publications.waset.org/search?q=S.%20Sukprasong"> S. Sukprasong</a>, <a href="https://publications.waset.org/search?q=R.%20Phatthanakun"> R. Phatthanakun</a>, <a href="https://publications.waset.org/search?q=N.%20Chomnawang"> N. Chomnawang</a>, <a href="https://publications.waset.org/search?q=P.%20Kuntanawat"> P. Kuntanawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Algal%20cells" title="Algal cells">Algal cells</a>, <a href="https://publications.waset.org/search?q=microfluidic%20device" title=" microfluidic device"> microfluidic device</a>, <a href="https://publications.waset.org/search?q=X-ray%20LIGA" title=" X-ray LIGA"> X-ray LIGA</a>, <a href="https://publications.waset.org/search?q=X-ray%0D%0Alithography" title=" X-ray lithography"> X-ray lithography</a>, <a href="https://publications.waset.org/search?q=metallic%20mold" title=" metallic mold"> metallic mold</a>, <a href="https://publications.waset.org/search?q=synchrotron%20light" title=" synchrotron light"> synchrotron light</a>, <a href="https://publications.waset.org/search?q=PDMS" title=" PDMS"> PDMS</a> </p> <a href="https://publications.waset.org/13109/fabrication-of-microfluidic-device-for-quantitative-monitoring-of-algal-cell-behavior-using-x-ray-liga-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13109/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13109/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13109/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13109/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13109/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13109/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13109/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13109/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13109/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13109/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2430</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Andy%20Tirta">Andy Tirta</a>, <a href="https://publications.waset.org/search?q=Yus%20Prasetyo"> Yus Prasetyo</a>, <a href="https://publications.waset.org/search?q=Eung-Ryul.%20Baek"> Eung-Ryul. Baek</a>, <a href="https://publications.waset.org/search?q=Chul-Jin.%20Choi"> Chul-Jin. Choi </a>, <a href="https://publications.waset.org/search?q=Hye-Moon.%20Lee"> Hye-Moon. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Micromanufacturing" title="Micromanufacturing">Micromanufacturing</a>, <a href="https://publications.waset.org/search?q=Nano%20PIM" title=" Nano PIM"> Nano PIM</a>, <a href="https://publications.waset.org/search?q=PDMS%20micro%0Amould." title=" PDMS micro mould."> PDMS micro mould.</a> </p> <a href="https://publications.waset.org/356/advanced-micromanufacturing-for-ultra-precision-part-by-soft-lithography-and-nano-powder-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2063</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Virendra%20J.%20Majarikar">Virendra J. Majarikar</a>, <a href="https://publications.waset.org/search?q=Harikrishnan%20N.%20Unni"> Harikrishnan N. Unni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m<sup>3</sup> and 0 mol/m<sup>3</sup>, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=COMSOL" title="COMSOL">COMSOL</a>, <a href="https://publications.waset.org/search?q=electrokinetic" title=" electrokinetic"> electrokinetic</a>, <a href="https://publications.waset.org/search?q=electroosmotic" title=" electroosmotic"> electroosmotic</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=zeta%20potential." title=" zeta potential."> zeta potential.</a> </p> <a href="https://publications.waset.org/10007901/modeling-of-electrokinetic-mixing-in-lab-on-chip-microfluidic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007901/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007901/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007901/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007901/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007901/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007901/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007901/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007901/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007901/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007901/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1210</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mrinalini%20Amritkar">Mrinalini Amritkar</a>, <a href="https://publications.waset.org/search?q=Disha%20Patil"> Disha Patil</a>, <a href="https://publications.waset.org/search?q=Swapna%20Kulkarni"> Swapna Kulkarni</a>, <a href="https://publications.waset.org/search?q=Sukratu%20Barve"> Sukratu Barve</a>, <a href="https://publications.waset.org/search?q=Suresh%20Gosavi"> Suresh Gosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lab-on-chip" title="Lab-on-chip">Lab-on-chip</a>, <a href="https://publications.waset.org/search?q=micro-mixer" title=" micro-mixer"> micro-mixer</a>, <a href="https://publications.waset.org/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/search?q=PDMS." title=" PDMS."> PDMS.</a> </p> <a href="https://publications.waset.org/10010130/unsteady-flow-simulations-for-microchannel-design-and-its-fabrication-for-nanoparticle-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010130/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010130/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010130/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010130/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010130/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010130/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010130/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010130/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010130/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010130/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">789</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>