CINXE.COM

Search results for: amperometry

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amperometry</title> <meta name="description" content="Search results for: amperometry"> <meta name="keywords" content="amperometry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amperometry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amperometry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amperometry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Refrigerated Condition for the Storage of Glucose Test Strips at Health Promoting Hospitals: An Implication for Hospitals with Limited Air Conditioners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanutchaya%20Duanginta">Wanutchaya Duanginta</a>, <a href="https://publications.waset.org/abstracts/search?q=Napaporn%20Apiratmateekul"> Napaporn Apiratmateekul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tippawan%20Sangkaew"> Tippawan Sangkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunaree%20Wekinhirun"> Sunaree Wekinhirun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunchit%20Kongros"> Kunchit Kongros</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanvisa%20Treebuphachatsakul"> Wanvisa Treebuphachatsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thailand has a tropical climate with an average outdoor ambient air temperature of over 30°C, which can exceed manufacturer recommendations for the storage of glucose test strips. This study monitored temperature and humidity at actual sites of five sub-district health promoting hospitals (HPH) in Phitsanulok Province for the storage of glucose test strips in refrigerated conditions. Five calibrated data loggers were placed at the actual sites for glucose test strip storage at five HPHs for 8 weeks between April and June. For the stress test, two lot numbers of glucose test strips, each with two glucose meters, were kept in a plastic box with desiccants and placed in a refrigerator with the temperature calibrated to 4°C and at room temperature (RT). Temperature and humidity in the refrigerator and at RT were measured every hour for 30 days. The mean temperature for storing test strips at the five HPHs ranged from 29°C to 33°C, and three of the five HPHs (60%) had a mean temperature above 30°C. The refrigerator temperatures were 3.8 ± 2.0°C (2.0°C to 6.5°C), and relative humidity was 51 ± 2% (42 to 54%). The maximum of blood glucose testing by glucose meters when the test strips were stored in a refrigerator were not significantly different (p > 0.05) from unstressed test strips for both glucose meters using amperometry-GDH-PQQ and amperometry-GDH-FAD principles. Opening the test strip vial daily resulted in higher variation than when refrigerated after a single-use. However, the variations were still within an acceptable range. This study concludes that glucose tested strips can be stored in plastic boxes in a refrigerator if it is well-controlled for temperature and humidity. Storage of glucose-tested strips in the refrigerator during hot and humid weather may be useful for HPHs with limited air conditioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20stressed%20test" title="environmental stressed test">environmental stressed test</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stressed%20test" title=" thermal stressed test"> thermal stressed test</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20testing" title=" point-of-care testing"> point-of-care testing</a> </p> <a href="https://publications.waset.org/abstracts/137562/a-refrigerated-condition-for-the-storage-of-glucose-test-strips-at-health-promoting-hospitals-an-implication-for-hospitals-with-limited-air-conditioners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Bagtache">Radia Bagtache</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Boudjedien"> Karima Boudjedien</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Malek%20Djaballah"> Ahmed Malek Djaballah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Trari"> Mohamed Trari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=junction%20Ag%2FCuCo%E2%82%82O%E2%82%84" title="junction Ag/CuCo₂O₄">junction Ag/CuCo₂O₄</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=sunlight" title=" sunlight"> sunlight</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=depollution" title=" depollution"> depollution</a> </p> <a href="https://publications.waset.org/abstracts/164474/preparation-physical-and-photoelectrochemical-characterization-of-agcuco2o4-application-to-solar-light-oxidation-of-methyl-orange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Development of Sulfite Biosensor Based on Sulfite Oxidase Immobilized on 3-Aminoproplytriethoxysilane Modified Indium Tin Oxide Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawasuth%20Saengdee">Pawasuth Saengdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamras%20Promptmas"> Chamras Promptmas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Zeng"> Ting Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Silke%20Leimk%C3%BChler"> Silke Leimkühler</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulla%20Wollenberger"> Ulla Wollenberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfite has been used as a versatile preservative to limit the microbial growth and to control the taste in some food and beverage. However, it has been reported to cause a wide spectrum of severe adverse reactions. Therefore, it is important to determine the amount of sulfite in food and beverage to ensure consumer safety. An efficient electrocatalytic biosensor for sulfite detection was developed by immobilizing of human sulfite oxidase (hSO) on 3-aminoproplytriethoxysilane (APTES) modified indium tin oxide (ITO) electrode. Cyclic voltammetry was employed to investigate the electrochemical characteristics of the hSO modified ITO electrode for various pretreatment and binding conditions. Amperometry was also utilized to demonstrate the current responses of the sulfite sensor toward sodium sulfite in an aqueous solution at a potential of 0 V (vs. Ag/AgCl 1 M KCl). The proposed sulfite sensor has a linear range between 0.5 to 2 mM with a correlation coefficient 0.972. Then, the additional polymer layer of PVA was introduced to extend the linear range of sulfite sensor and protect the enzyme. The linear range of sulfite sensor with 5% coverage increases from 2.8 to 20 mM at a correlation coefficient of 0.983. In addition, the stability of sulfite sensor with 5% PVA coverage increases until 14 days when kept in 0.5 mM Tris-buffer, pH 7.0 at 4 8C. Therefore, this sensor could be applied for the detection of sulfite in the real sample, especially in food and beverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfite%20oxidase" title="sulfite oxidase">sulfite oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectrocatalytsis" title=" bioelectrocatalytsis"> bioelectrocatalytsis</a>, <a href="https://publications.waset.org/abstracts/search?q=indium%20tin%20oxide" title=" indium tin oxide"> indium tin oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20electrochemistry" title=" direct electrochemistry"> direct electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfite%20sensor" title=" sulfite sensor"> sulfite sensor</a> </p> <a href="https://publications.waset.org/abstracts/67534/development-of-sulfite-biosensor-based-on-sulfite-oxidase-immobilized-on-3-aminoproplytriethoxysilane-modified-indium-tin-oxide-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shekher%20Kummari">Shekher Kummari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sunil%20Kumar"> V. Sunil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vengatajalabathy%20Gobi"> K. Vengatajalabathy Gobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amperometry" title="amperometry">amperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title=" electrochemical detection"> electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20blood%20serum" title=" human blood serum"> human blood serum</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=SWV" title=" SWV"> SWV</a> </p> <a href="https://publications.waset.org/abstracts/86857/electrochemical-detection-of-the-chemotherapy-agent-methotrexate-in-vitro-from-physiological-fluids-using-functionalized-carbon-nanotube-past-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title="redox enzyme">redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20communication" title=" electrical communication"> electrical communication</a> </p> <a href="https://publications.waset.org/abstracts/24276/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-cross-linked-redox-enzymenanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title=" redox enzyme"> redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol-modified%20Au%20surface" title=" thiol-modified Au surface"> thiol-modified Au surface</a> </p> <a href="https://publications.waset.org/abstracts/16147/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-crosslinked-redox-enzymecarbon-nanotube-on-a-thiol-modified-au-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abdul%20Aziz">Md. Abdul Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amperometry" title="amperometry">amperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=chronocoulometry" title=" chronocoulometry"> chronocoulometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalytic%20properties" title=" electrocatalytic properties"> electrocatalytic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ITO-nanoparticle-modified%20ITO" title=" ITO-nanoparticle-modified ITO"> ITO-nanoparticle-modified ITO</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfide%20sensor" title=" sulfide sensor"> sulfide sensor</a> </p> <a href="https://publications.waset.org/abstracts/85921/preparation-of-indium-tin-oxide-nanoparticle-modified-3-aminopropyltrimethoxysilane-functionalized-indium-tin-oxide-electrode-for-electrochemical-sulfide-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudeshna%20Chandra">Sudeshna Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20G%C3%A4bler"> Christian Gäbler</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Schliebe"> Christian Schliebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Heinrich%20Lang"> Heinrich Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocenyl%20dendrimers" title="ferrocenyl dendrimers">ferrocenyl dendrimers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20immunosensors" title=" electrochemical immunosensors"> electrochemical immunosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoglobulin" title=" immunoglobulin"> immunoglobulin</a>, <a href="https://publications.waset.org/abstracts/search?q=amperometry" title=" amperometry"> amperometry</a> </p> <a href="https://publications.waset.org/abstracts/63703/electroactive-ferrocenyl-dendrimers-as-transducers-for-fabrication-of-label-free-electrochemical-immunosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10