CINXE.COM

Search results for: redox enzyme

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: redox enzyme</title> <meta name="description" content="Search results for: redox enzyme"> <meta name="keywords" content="redox enzyme"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="redox enzyme" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="redox enzyme"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1066</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: redox enzyme</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title="redox enzyme">redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20communication" title=" electrical communication"> electrical communication</a> </p> <a href="https://publications.waset.org/abstracts/24276/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-cross-linked-redox-enzymenanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title=" redox enzyme"> redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol-modified%20Au%20surface" title=" thiol-modified Au surface"> thiol-modified Au surface</a> </p> <a href="https://publications.waset.org/abstracts/16147/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-crosslinked-redox-enzymecarbon-nanotube-on-a-thiol-modified-au-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> High-Performance Non-aqueous Organic Redox Flow Battery in Ambient Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mohapatra">S. K. Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramanujam"> K. Ramanujam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sankararaman"> S. Sankararaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Redox flow battery (RFB) is a preferred energy storage option for grid stabilisation and energy arbitrage as it offers energy and power decoupling. In contrast to aqueous RFBs (ARFBs), nonaqueous RFBs (NARFBs) could offer high energy densities due to the wider electrochemical window of the solvents used, which could handle high and low voltage organic redox couples without undergoing electrolysis. In this study, a RFB based on benzyl viologen hexafluorophosphate [BV(PF6)2] as anolyte and N-hexyl phenothiazine [HPT] as catholyte demonstrated. A cell operated with mixed electrolyte (1:1) containing 0.2 M [BV(PF₆)₂] and 0.2 M [HPT] delivered a coulombic efficiency (CE) of 95.3 % and energy efficiency (EE) 53%, with nearly 68.9% material utilisation at 40 mA cm-2 current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-aqueous%20redox%20flow%20battery" title="non-aqueous redox flow battery">non-aqueous redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=benzyl%20viologen" title=" benzyl viologen"> benzyl viologen</a>, <a href="https://publications.waset.org/abstracts/search?q=N-hexyl%20phenothiazine" title=" N-hexyl phenothiazine"> N-hexyl phenothiazine</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20electrolyte" title=" mixed electrolyte"> mixed electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/165857/high-performance-non-aqueous-organic-redox-flow-battery-in-ambient-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> The Enzyme Inhibitory Potentials of Different Extracts from Linaria genistifolia subsp. genistifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Zengin">Gokhan Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Aktumsek"> Abdurrahman Aktumsek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key enzyme inhibitory theory is one of the most accepted strategies in the treatment of global health problems including Alzheimer’s Disease and Diabetes mellitus. For this reason, the enzyme inhibitory potentials of different solvent extracts from Linaria genistifolia subsp. genistifolia were investigated against cholinesterase, and tyrosinase. The in vitro enzyme inhibitory potentials were measured with a microplate reader. The acetone and methanol extracts exhibited the strongest enzyme inhibitory effects on cholinesterase. However, the water extract was only active on tyrosinase. The results suggested that Linaria genistifolia subsp. genistifolia could be considered as a source of natural enzyme inhibitors for the treatment of major health problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20inhibitors" title="enzyme inhibitors">enzyme inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase" title=" cholinesterase"> cholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase" title=" tyrosinase"> tyrosinase</a>, <a href="https://publications.waset.org/abstracts/search?q=linaria" title=" linaria"> linaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/46806/the-enzyme-inhibitory-potentials-of-different-extracts-from-linaria-genistifolia-subsp-genistifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Cytotoxic Effect of Purified and Crude Hyaluronidase Enzyme on Hep G2 Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Furqan%20M.%20Kadhum">Furqan M. Kadhum</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20A.%20Hussein"> Asmaa A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Maysaa%20Ch.%20Hatem"> Maysaa Ch. Hatem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyaluronidase enzyme was purified from the clinical isolate Staphyloccus aureus in three purification steps, first by precipitation with 90% saturated ammonium sulfate, ion exchange chromatography on DEAE-Cellulose, and gel filtration chromatography throughout Sephacryl S-300. Specific activity of the purified enzyme was reached 930 U/mg protein with 7.4 folds of purification and 46.5% recovery. The enzyme has an average molecular weight of about 69 kDa, with an optimum pH of enzyme activity and stability at pH 7, also the optimum temperature for activity was 37oC. The enzyme was stable with full activity at a temperature ranged between 30-40 oC. Metal ions showed variable inhibitory degree with the strongest effect for Fe+3, however, the chelating and reducing agents had no or little effects. Cytotoxic studies for purified and crude hyaluronidase against cancer cell Hep G2 type at different enzyme concentrations and exposure times showed that the inhibition effect of both crude and purified enzyme increased by increasing the enzyme concentration with no change was observed at 24hr, while at 48 and 72 hrs the same inhibition rate were observed for purified enzyme and differ for the crude filtrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyaluronidase" title="hyaluronidase">hyaluronidase</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/16485/cytotoxic-effect-of-purified-and-crude-hyaluronidase-enzyme-on-hep-g2-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> Production of Linamarase from Lactobacillus delbrueckii NRRL B-763</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogbonnaya%20Nwokoro">Ogbonnaya Nwokoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20O.%20Anya"> Florence O. Anya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutritional factors relating to the production of linamarase from Lactobacillus delbrueckii NRRL B–763 were investigated. The microorganism was cultivated in a medium containing 1% linamarin. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in the presence of salicin (522 U/ml) after 48 h while the lowest yield was observed with CM cellulose (38 U/ml) after 72 h. Enzyme was not produced in the presence of cellobiose. Among a variety of nitrogen substrates tested, peptone supported maximum enzyme production (412 U/ml) after 48 h. Lowest enzyme production was observed with urea (40 U/ml). Organic nitrogen substrates generally supported higher enzyme productivity than inorganic nitrogen substrates. Enzyme activity was observed in the presence of Mn2+ (% relative activity = 216) while Hg2+ was inhibitory (% relative activity = 28). Locally-formulated media were comparable to MRS broth in supporting linamarase production by the bacterium. Higher enzyme activity was produced in media with surfactant than in media without surfactant. The enzyme may be useful in enhanced degradation of cassava cyanide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linamarase" title="linamarase">linamarase</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20formulated%20media" title=" locally formulated media"> locally formulated media</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20substrates" title=" carbon substrates"> carbon substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20substrates" title=" nitrogen substrates"> nitrogen substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions "> metal ions </a> </p> <a href="https://publications.waset.org/abstracts/14419/production-of-linamarase-from-lactobacillus-delbrueckii-nrrl-b-763" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1060</span> Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lekhavat">S. Lekhavat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kajsongkram"> T. Kajsongkram</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sang-han"> S. Sang-han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a> </p> <a href="https://publications.waset.org/abstracts/53148/effect-of-ethanol-concentration-and-enzyme-pre-treatment-on-bioactive-compounds-from-ginger-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Khor">A. C. Khor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Mohamed"> M. R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sulaiman"> M. H. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Daud"> M. R. Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20flow%20battery" title=" redox flow battery"> redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/10696/packaging-improvement-for-unit-cell-vanadium-redox-flow-battery-v-rfb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Lin%20Yueh">Pei-Lin Yueh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bor-Yann%20Chen"> Bor-Yann Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Chung%20Hsueh"> Chuan-Chung Hsueh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This first-attempt study revealed that decolorized intermediates of azo dyes could act as redox mediators to assist wastewater (WW) decolorization due to enhancement of electron-transport phenomena. Electrochemical impedance spectra indicated that hydroxyl and amino-substituent(s) were functional group(s) as redox-mediator(s). As azo dyes are usually multiple benzene rings structured, their derived decolorized intermediates are likely to play roles of electron shuttles due to lower barrier of energy gap for electron shuttling. According to cyclic voltammetric profiles, redox-mediating characteristics of decolorized intermediates of azo dyes (e.g., RBu171, RR198, RR141, and RBk5) were clearly disclosed. With supplementation of biodecolorized metabolites of RR141 and 198, decolorization performance of could be evidently augmented. This study also suggested the optimal modes of microbial fuel cell (MFC)-assisted WW decolorization would be plug-flow or batch mode of operation with no mix. Single chamber-MFCs would be more favourable than double chamber MFCs due to non-mixing contacting reactor scheme for operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20mediators" title="redox mediators">redox mediators</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20decolorization" title=" dye decolorization"> dye decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity%20generation" title=" bioelectricity generation"> bioelectricity generation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cells" title=" microbial fuel cells"> microbial fuel cells</a> </p> <a href="https://publications.waset.org/abstracts/39399/unraveling-biostimulation-of-decolorized-mediators-for-microbial-fuel-cell-aided-textile-dye-decontamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> Dimensionally Stable Anode as a Bipolar Plate for Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaejin%20Han">Jaejin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsub%20Choi"> Jinsub Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vanadium redox flow battery (VRFB) is a type of redox flow battery which uses vanadium ionic solution as electrolyte. Inside the VRFB, 2.5mm thickness of graphite is generally used as bipolar plate for anti-corrosion of current collector. In this research, thick graphite bipolar plate was substituted by 0.126mm thickness of dimensionally stable anode which was coated with IrO2 on an anodic nanotubular TiO2 substrate. It can provide dimensional advantage over the conventional graphite when the VRFB is used as multi-stack. Ir was coated by using spray coating method in order to enhance electric conductivity. In this study, various electrochemical characterizations were carried out. Cyclic voltammetry data showed activation of Ir in the positive electrode of VRFB. In addition, polarization measurements showed Ir-coated DSA had low overpotential in the positive electrode of VRFB. In cell test results, the DSA-used VRFB showed better efficiency than graphite-used VRFB in voltage and overall efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar%20plate" title="bipolar plate">bipolar plate</a>, <a href="https://publications.waset.org/abstracts/search?q=DSA%20%28dimensionally%20stable%20anode%29" title=" DSA (dimensionally stable anode)"> DSA (dimensionally stable anode)</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium%20oxide%20coating" title=" iridium oxide coating"> iridium oxide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotubes" title=" TiO2 nanotubes"> TiO2 nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=VRFB%20%28vanadium%20redox%20flow%20battery%29" title=" VRFB (vanadium redox flow battery)"> VRFB (vanadium redox flow battery)</a> </p> <a href="https://publications.waset.org/abstracts/36558/dimensionally-stable-anode-as-a-bipolar-plate-for-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20E.%20Sukovataya">Irina E. Sukovataya</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20S.%20Sutormin"> Oleg S. Sutormin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20A.%20Kratasyuk"> Valentina A. Kratasyuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research, and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20enzyme%20system%20of%20bioluminescence%20bacteria%20NAD%28P%29H%3AFMN-oxidoreductase%E2%80%93luciferase" title="coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase">coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization%20of%20enzymes" title=" stabilization of enzymes"> stabilization of enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=sucrose" title=" sucrose"> sucrose</a> </p> <a href="https://publications.waset.org/abstracts/2372/the-modeling-of-viscous-microenvironment-for-the-coupled-enzyme-system-of-bioluminescence-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1055</span> Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barun%20Chakrabarti">Barun Chakrabarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Nir"> Dan Nir</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Yufit"> Vladimir Yufit</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Aravind"> P. V. Aravind</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Brandon"> Nigel Brandon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N&rsquo;-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-vanadium%20redox%20flow%20batteries" title="all-vanadium redox flow batteries">all-vanadium redox flow batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20paper%20electrodes" title=" carbon paper electrodes"> carbon paper electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoretic%20deposition" title=" electrophoretic deposition"> electrophoretic deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/71118/enhanced-performance-of-an-all-vanadium-redox-flow-battery-employing-graphene-modified-carbon-paper-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1054</span> Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Mukherjee">Niranjan Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Burga%20Braun"> Burga Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Szewzyk"> Ulrich Szewzyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iopromide" title="iopromide">iopromide</a>, <a href="https://publications.waset.org/abstracts/search?q=hyporheic%20zone" title=" hyporheic zone"> hyporheic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=recalcitrant%20pharmaceutical" title=" recalcitrant pharmaceutical"> recalcitrant pharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20gradients" title=" redox gradients"> redox gradients</a> </p> <a href="https://publications.waset.org/abstracts/114009/transformation-of-iopromide-due-to-redox-gradients-in-sediments-of-the-hyporheic-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> Quality of Low Fat Traditional Pork Sausage Containing Transglutaminase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiraporn%20Burakorn">Jiraporn Burakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Pran%20Pinthong"> Pran Pinthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Supida%20Hutabaedya"> Supida Hutabaedya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercial traditional pork sausages (Moo Yaw) were produced by added more than 30% of pork fat for appetite customer. The pork sausages texture were softness, firmness, juiciness and smooth. If the pork sausages contained less fat, their textures were hardness, dryness and incoherence. This research investigated production of low fat traditional pork sausage containing transglutaminase for improved its sensory properties and nutritive values. The enzyme pork sausage composed of transglutaminase, soybean cake, rice bran oil and other ingredients. Consumer acceptance test was done by comparing the enzyme pork sausage with the 3 commercial pork sausage with 95 consumer. The enzyme pork sausage was accepted 92.6% and was preferred in all attributes over the 3 commercial pork sausages such as appearance, color, flavor, taste, firmness and overall liking. The enzyme pork sausage was high protein but low total calories, calories from fat, total fat, saturated fat, cholesterol and carbohydrate. The enzyme pork sausage was lower calorie (90 kcal) than the commercial reference pork sausage (150 kcal) 64%. The morphological texture of the enzyme pork sausage was smooth and consistency when analyzed by SEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20fat" title="low fat">low fat</a>, <a href="https://publications.waset.org/abstracts/search?q=Moo%20Yaw" title=" Moo Yaw"> Moo Yaw</a>, <a href="https://publications.waset.org/abstracts/search?q=pork%20sausage" title=" pork sausage"> pork sausage</a>, <a href="https://publications.waset.org/abstracts/search?q=transglutaminase" title=" transglutaminase"> transglutaminase</a> </p> <a href="https://publications.waset.org/abstracts/58317/quality-of-low-fat-traditional-pork-sausage-containing-transglutaminase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vadim%20V.%20Zefirov">Vadim V. Zefirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20E.%20Sizov"> Victor E. Sizov</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20A.%20Pigaleva"> Marina A. Pigaleva</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20V.%20Elmanovich"> Igor V. Elmanovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Kondratenko"> Mikhail S. Kondratenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Marat%20O.%20Gallyamov"> Marat O. Gallyamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20membrane" title=" polymer membrane"> polymer membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20flow%20batteries" title=" redox flow batteries"> redox flow batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid" title=" supercritical fluid "> supercritical fluid </a> </p> <a href="https://publications.waset.org/abstracts/122125/modification-of-polyolefin-membrane-using-supercritical-carbon-dioxide-for-redox-flow-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mailin%20Misson">Mailin Misson</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Jin"> Bo Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng%20Dai"> Sheng Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Zhang"> Hu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilization" title="immobilization">immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/15802/enzyme-immobilization-on-functionalized-polystyrene-nanofibersfor-bioprocessing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Salim%20Reza">K. M. Salim Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin"> M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Cc%20Complex" title=" Fe-Cc Complex"> Fe-Cc Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect"> pH effect</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title=" redox interaction"> redox interaction</a> </p> <a href="https://publications.waset.org/abstracts/19175/electrochemical-behavior-of-iron-iii-complexes-with-catechol-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Preparation and Performance of Polyphenylene Oxide-Based Anion Exchange Membrane for Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mi-Jung%20Park">Mi-Jung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hwa%20Lim"> Min-Hwa Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Young%20Jung"> Ho-Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A polyphenylene oxide (PPO)-based anion exchange membrane based on the functionalization of bromomethylated PPO using 1-methylimdazole was fabricated for vanadium redox flow application. The imidazolium-bromomethylated PPO (Im-bPPO) showed lower permeability VO2+ ions (2.9×10⁻¹⁴ m²/sec), compared to Nafion 212 (2.3×10⁻¹² m²/sec) and FAP-450 (7.9×10⁻¹⁴ m²/sec). Even though the Im-bPPO membrane has higher permeability, the energy efficiency of the VRFB with the Im-bPPO membrane was slightly lower than that of Nafion and FAP-450. The Im-bPPO membrane exhibits good voltage efficiency compared to FAP-450 and Nafion 212 because of its better ion conductivity. The Im-bPPo membrane showed up good performance, but a decline in performance at later cycles was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anion%20exchange%20membranes" title="anion exchange membranes">anion exchange membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium%20redox%20flow%20battery" title=" vanadium redox flow battery"> vanadium redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenylene%20oxide" title=" polyphenylene oxide"> polyphenylene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20%28EE%29" title=" energy efficiency (EE)"> energy efficiency (EE)</a> </p> <a href="https://publications.waset.org/abstracts/49988/preparation-and-performance-of-polyphenylene-oxide-based-anion-exchange-membrane-for-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malory%20Beaujolais">Malory Beaujolais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioelectrochemistry" title="bioelectrochemistry">bioelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=chlordecone" title=" chlordecone"> chlordecone</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20swamp" title=" mangrove swamp"> mangrove swamp</a> </p> <a href="https://publications.waset.org/abstracts/186572/reduction-of-chlordecone-rates-in-bioelectrochemicals-systems-from-water-and-sediment-swamp-mangrove-in-absence-of-a-redox-mediator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> Comparative Electrochemical Studies of Enzyme-Based and Enzyme-less Graphene Oxide-Based Nanocomposite as Glucose Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetna%20Tyagi.%20G.%20B.%20V.%20S.%20Lakshmi">Chetna Tyagi. G. B. V. S. Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambuj%20Tripathi"> Ambuj Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Avasthi"> D. K. Avasthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide provides a good host matrix for preparing nanocomposites due to the different functional groups attached to its edges and planes. Being biocompatible, it is used in therapeutic applications. As enzyme-based biosensor requires complicated enzyme purification procedure, high fabrication cost and special storage conditions, we need enzyme-less biosensors for use even in a harsh environment like high temperature, varying pH, etc. In this work, we have prepared both enzyme-based and enzyme-less graphene oxide-based biosensors for glucose detection using glucose-oxidase as enzyme and gold nanoparticles, respectively. These samples were characterized using X-ray diffraction, UV-visible spectroscopy, scanning electron microscopy, and transmission electron microscopy to confirm the successful synthesis of the working electrodes. Electrochemical measurements were performed for both the working electrodes using a 3-electrode electrochemical cell. Cyclic voltammetry curves showed the homogeneous transfer of electron on the electrodes in the scan range between -0.2V to 0.6V. The sensing measurements were performed using differential pulse voltammetry for the glucose concentration varying from 0.01 mM to 20 mM, and sensing was improved towards glucose in the presence of gold nanoparticles. Gold nanoparticles in graphene oxide nanocomposite played an important role in sensing glucose in the absence of enzyme, glucose oxidase, as evident from these measurements. The selectivity was tested by measuring the current response of the working electrode towards glucose in the presence of the other common interfering agents like cholesterol, ascorbic acid, citric acid, and urea. The enzyme-less working electrode also showed storage stability for up to 15 weeks, making it a suitable glucose biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-less" title=" enzyme-less"> enzyme-less</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/123186/comparative-electrochemical-studies-of-enzyme-based-and-enzyme-less-graphene-oxide-based-nanocomposite-as-glucose-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> In-House Enzyme Blends from Polyporus ciliatus CBS 366.74 for Enzymatic Saccharification of Pretreated Corn Stover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20A.%20Bentil">Joseph A. Bentil</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Thygesen"> Anders Thygesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lene%20Langea"> Lene Langea</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Mensah"> Moses Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Meyer"> Anne Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the saccharification potential of in-house enzymes produced from a white-rot basidiomycete strain, Polyporus ciliatus CBS 366.74. The in-house enzymes were produced by growing the fungus on mono and composite substrates of cocoa pod husk (CPH) and green seaweed (GS) (Ulva lactuca sp.) with and without the addition of 25mM ammonium nitrate at 4%w/v substrate concentration in submerged condition for 144 hours. The crude enzyme extracts preparations (CEE 1-5 and CEE 1-5+AN) obtained from the fungal cultivation process were sterile-filtered and used as enzyme sources for enzymatic hydrolysis of hydrothermally pretreated corn stover using a commercial cocktail enzyme, Cellic Ctec3, as benchmark. The hydrolysis was conducted at 50ᵒC with 50mM sodium acetate buffer, pH 5 based on enzyme dosages of 5 and 10 CMCase Units/g biomass at 1%w/v dry weight substrate concentration at time points of 6, 24, and 72 hours. The enzyme activity profile of the in-house enzymes varied among the growth substrates with the composite substrates (50-75% GS and AN inclusion), yielding better enzyme activities, especially endoglucanases (0.4-0.5U/mL), β-glucosidases (0.1-0.2 U/mL), and xylanases (3-10 U/mL). However, nitrogen supplementation had no significant effect on enzyme activities of crude extracts from 100% GS substituted substrates. From the enzymatic hydrolysis, it was observed that the in-house enzymes were capable of hydrolysing the pretreated corn stover at varying degrees; however, the saccharification yield was less than 10%. Consequently, theoretical glucose yield was ten times lower than Cellic Ctec3 at both dosage levels. There was no linear correlation between glucose yield and enzyme dosage for the in-house enzymes, unlike the benchmark enzyme. It is therefore recommended that the in-house enzymes are used to complement the dosage of commercial enzymes to reduce the cost of biomass saccharification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20production" title="enzyme production">enzyme production</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis%20yield" title=" hydrolysis yield"> hydrolysis yield</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock" title=" feedstock"> feedstock</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20blend" title=" enzyme blend"> enzyme blend</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyporus%20ciliatus" title=" Polyporus ciliatus"> Polyporus ciliatus</a> </p> <a href="https://publications.waset.org/abstracts/138804/in-house-enzyme-blends-from-polyporus-ciliatus-cbs-36674-for-enzymatic-saccharification-of-pretreated-corn-stover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hwa%20Lim">Min-Hwa Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Jeong%20Park"> Mi-Jeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Young%20Jung"> Ho-Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vanadium%20redox%20flow%20battery" title="vanadium redox flow battery">vanadium redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20membrane" title=" ion exchange membrane"> ion exchange membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20stability" title=" chemical stability"> chemical stability</a> </p> <a href="https://publications.waset.org/abstracts/44968/chemical-stability-and-characterization-of-ion-exchange-membranes-for-vanadium-redox-flow-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Majidzadeh%20Heravi">R. Majidzadeh Heravi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sankian"> M. Sankian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kermanshahi"> H. Kermanshahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Nassiri"> M. R. Nassiri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Heravi%20Moussavi"> A. Heravi Moussavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Lari"> S. A. Lari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Varasteh"> A. R. Varasteh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (<em>appA</em>) from <em>E. coli</em> was cloned and transformed into two probiotic bacteria <em>Lactobacillus salivarius</em> and <em>Lactococcus lactis</em>. <em>L. salivarous</em> showed plasmid instability, unable to express the gene. The expression of <em>appA</em> gene in <em>L. lactis</em> was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant <em>L. lactis, </em>showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of <em>L. lactis</em>. The growth of native and recombinant <em>L. lactis</em> was similar in the presence of two concentrations of ox bile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20salivarus" title="Lactobacillus salivarus">Lactobacillus salivarus</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactococcuslactis" title=" Lactococcuslactis"> Lactococcuslactis</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant" title=" recombinant"> recombinant</a>, <a href="https://publications.waset.org/abstracts/search?q=phytase" title=" phytase"> phytase</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry" title=" poultry"> poultry</a> </p> <a href="https://publications.waset.org/abstracts/30949/the-construction-of-a-probiotic-lactic-acid-bacterium-expressing-acid-resistant-phytase-enzyme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitali%20Saha">Mitali Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Soma%20Das"> Soma Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20oil" title="coconut oil">coconut oil</a>, <a href="https://publications.waset.org/abstracts/search?q=CCNT" title=" CCNT"> CCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor "> biosensor </a> </p> <a href="https://publications.waset.org/abstracts/45096/synthesis-of-carbon-nanotubes-from-coconut-oil-and-fabrication-of-a-non-enzymatic-cholesterol-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Wodaje%20Bayeh">Anteneh Wodaje Bayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Manaye%20Kabtamu"> Daniel Manaye Kabtamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Hao%20Wang"> Chen-Hao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VRFB" title="VRFB">VRFB</a>, <a href="https://publications.waset.org/abstracts/search?q=VO%C2%B2%E2%81%BA%2FVO%E2%82%82%20%2B%20and%20V%C2%B3%E2%81%BA%2FV%C2%B2%E2%81%BA%20redox%20couples" title=" VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples"> VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20felt" title=" graphite felt"> graphite felt</a>, <a href="https://publications.waset.org/abstracts/search?q=heteroatom-doping" title=" heteroatom-doping"> heteroatom-doping</a> </p> <a href="https://publications.waset.org/abstracts/162449/heteroatom-doped-binary-metal-oxide-modified-carbon-as-a-bifunctional-electrocatalysts-for-all-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Interaction of Histone H1 with Chromatin-associated Protein HMGB1 Studied by Microscale Thermophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20%C5%A0tros">Michal Štros</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Polansk%C3%A1"> Eva Polanská</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%A0%C3%A1rka%20Posp%C3%AD%C5%A1ilov%C3%A1"> Šárka Pospíšilová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. MALDI-TOF analysis revealed that mild oxidization of HMGB1 resulted in a conformational change of the protein due to formation of an intramolecular disulphide bond by opposing Cys23 and Cys45 residues. We have demonstrated that redox state of HMGB1 could significantly modulate the ability of the protein to bind and bend DNA. We have also shown that reduced HMGB1 could easily displace histone H1 from DNA, while oxidized HMGB1 had limited capacity for H1 displacement. Using microscale thermophoresis (MST) we have further studied mechanism of HMGB1 interaction with histone H1 in free solution or when histone H1 was bound to DNA. Our MST analysis indicated that reduced HMGB1 exhibited in free solution > 1000 higher affinity of for H1 (KD ~ 4.5 nM) than oxidized HMGB1 (KD <10 M). Finally, we present a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMGB1" title="HMGB1">HMGB1</a>, <a href="https://publications.waset.org/abstracts/search?q=histone%20H1" title=" histone H1"> histone H1</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20state" title=" redox state"> redox state</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20bending" title=" DNA bending"> DNA bending</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20end-joining" title=" DNA end-joining"> DNA end-joining</a>, <a href="https://publications.waset.org/abstracts/search?q=microscale%20thermophoresis" title=" microscale thermophoresis"> microscale thermophoresis</a> </p> <a href="https://publications.waset.org/abstracts/17609/interaction-of-histone-h1-with-chromatin-associated-protein-hmgb1-studied-by-microscale-thermophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Shukla">Ashish Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mishra"> K. P. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushplata%20Tripathi"> Pushplata Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-galactosidase" title="β-galactosidase">β-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20disintegration" title=" cell disintegration"> cell disintegration</a>, <a href="https://publications.waset.org/abstracts/search?q=permeabilized" title=" permeabilized"> permeabilized</a>, <a href="https://publications.waset.org/abstracts/search?q=SSF" title=" SSF"> SSF</a>, <a href="https://publications.waset.org/abstracts/search?q=SmF" title=" SmF"> SmF</a> </p> <a href="https://publications.waset.org/abstracts/4358/medium-design-and-optimization-for-high-b-galactosidase-producing-microbial-strains-from-dairy-waste-through-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Degradation of Poly -β- Hydroxybutyrate by Trichoderma asperellum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuha%20Mansour%20Alhazmi">Nuha Mansour Alhazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replacement of petro-based plastics by a biodegradable plastic are vastly growing process. Poly-β-hydroxybutyrate (PHB) is a biodegradable biopolymer, synthesized by some bacterial genera. The objective of the current study is to explore the ability of some fungi to biodegrade PHB. The degradation of (PHB) was detected in Petri dish by the formation of a clear zone around the fungal colonies due to the production of depolymerase enzyme which has an interesting role in the PHB degradation process. Among 10 tested fungi, the most active PHB biodegraded fungi were identified as Trichoderma asperellum using morphological and molecular characters. The highest PHB degradation was at 25°C, pH 7.5 after 7 days of incubation for the tested fungi. Finally, the depolymerase enzyme was isolated, purified using column chromatography and characterized. In conclusion, PHB can be biodegraded in solid and liquid medium using depolymerase enzyme from T. asperellum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=depolymerase%20enzyme" title=" depolymerase enzyme"> depolymerase enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=PHB" title=" PHB"> PHB</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20asperellum" title=" Trichoderma asperellum"> Trichoderma asperellum</a> </p> <a href="https://publications.waset.org/abstracts/107715/degradation-of-poly-v-hydroxybutyrate-by-trichoderma-asperellum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Effect of Ultrasound on the Hydrolysis of Soy Oil Catalyzed by 1,3-Specific Lipase Abstract </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Abd%20Awadallak">Jamal Abd Awadallak</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Olinek%20Reinehr"> Thiago Olinek Reinehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Raizer"> Eduardo Raizer</a>, <a href="https://publications.waset.org/abstracts/search?q=Deise%20Molinari"> Deise Molinari</a>, <a href="https://publications.waset.org/abstracts/search?q=Edson%20Antonio"> Edson Antonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20da%20Silva%20da%20Silva"> Camila da Silva da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrolysis of soy oil catalyzed by 1,3-specific enzyme (Lecitase Ultra) in a well-stirred bioreactor was studied. Two forms of applications of the ultrasound were evaluated aiming to increase reaction rates, wherein the use of probe ultrasound associated with the use of surfactant to pre-emulsify the substrate showed the best results. Two different reaction periods were found: the first where the ultrasound has great influence on reaction rates, and the second where ultrasound influence is minimal. Studies on the time of pre-emulsification, surfactant concentration and enzyme concentration showed that the initial rate of hydrolysis depends on the interfacial area between the oil phase and the aqueous phase containing the enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20enzyme" title="specific enzyme">specific enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrolysis" title=" Hydrolysis"> Hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lecitase%20ultra" title=" lecitase ultra"> lecitase ultra</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/20337/effect-of-ultrasound-on-the-hydrolysis-of-soy-oil-catalyzed-by-13-specific-lipase-abstract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misha%20Ali">Misha Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Qayyum%20Husain"> Qayyum Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nida%20Alam"> Nida Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20%20Ahmad"> Masood Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20yellow%2042" title="acid yellow 42">acid yellow 42</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20peroxidase" title=" ginger peroxidase"> ginger peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a> </p> <a href="https://publications.waset.org/abstracts/57680/high-catalytic-activity-and-stability-of-ginger-peroxidase-immobilized-on-amino-functionalized-silica-coated-titanium-dioxide-nanocomposite-a-promising-tool-for-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=redox%20enzyme&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10