CINXE.COM
Starlet #5 MetisFL - the blazing-fast and developer-friendly federated learning framework
<!DOCTYPE html><html lang="en"> <head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width"/><link rel="icon" href="/assets/favicon.ico"/><script defer="" data-domain="star-history.com" src="https://plausible.io/js/script.js"></script><meta name="next-head-count" content="4"/><link data-next-font="size-adjust" rel="preconnect" href="/" crossorigin="anonymous"/><link rel="preload" href="/_next/static/css/f94657194d4c857a.css" as="style" crossorigin=""/><link rel="stylesheet" href="/_next/static/css/f94657194d4c857a.css" crossorigin="" data-n-g=""/><noscript data-n-css=""></noscript><script defer="" crossorigin="" nomodule="" src="/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js"></script><script src="/_next/static/chunks/webpack-38cee4c0e358b1a3.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/framework-fda0a023b274c574.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/main-001c9e19b1894c7d.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/pages/_app-915effad870aa62e.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/6c86d9ce-d8b7531786dd65a5.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/472-8057db644de3d496.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/590-d0a3c67c09cc0662.js" defer="" crossorigin=""></script><script src="/_next/static/chunks/pages/blog/%5Bslug%5D-7b378153203b51eb.js" defer="" crossorigin=""></script><script src="/_next/static/xKX4ZiOi_N7h3OBOEsSZu/_buildManifest.js" defer="" crossorigin=""></script><script src="/_next/static/xKX4ZiOi_N7h3OBOEsSZu/_ssgManifest.js" defer="" crossorigin=""></script></head><body><div id="__next"><div class="relative w-full h-auto min-h-screen overflow-auto flex flex-col"><title>Starlet #5 MetisFL - the blazing-fast and developer-friendly federated learning framework</title><meta name="description" content="MetisFL is an open-source federated learning framework that makes it easy for developers and enterprises to train their models on distributed data sources."/><meta property="og:type" content="website"/><meta property="og:url" content="https://star-history.com/blog/metisfl"/><meta property="og:title" content="Starlet #5 MetisFL - the blazing-fast and developer-friendly federated learning framework"/><meta property="og:description" content="MetisFL is an open-source federated learning framework that makes it easy for developers and enterprises to train their models on distributed data sources."/><meta property="og:image" content="https://star-history.com/assets/blog/metisfl/banner.webp"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:url" content="https://star-history.com/blog/metisfl"/><meta name="twitter:title" content="Starlet #5 MetisFL - the blazing-fast and developer-friendly federated learning framework"/><meta name="twitter:description" content="MetisFL is an open-source federated learning framework that makes it easy for developers and enterprises to train their models on distributed data sources."/><meta name="twitter:image" content="https://star-history.com/assets/blog/metisfl/banner.webp"/><nav><div class="flex justify-center items-center gap-x-6 bg-green-600 px-6 py-1 sm:px-3.5 "><p class="text-sm leading-6 text-white"><a href="/blog/list-your-open-source-project">Want to promote your open source project? Be on our ⭐️Starlet List⭐️ for FREE →</a></p></div></nav><header class="w-full h-14 shrink-0 flex flex-row justify-center items-center bg-[#363636] text-light"><div class="w-full md:max-w-5xl lg:max-w-7xl h-full flex flex-row justify-between items-center px-0 sm:px-4"><div class="h-full bg-dark flex flex-row justify-start items-center"><a class="h-full flex flex-row justify-center items-center px-3 hover:bg-zinc-800" href="/"><img class="w-7 h-auto" src="/assets/icon.png" alt="Logo"/></a><a class="h-full flex flex-row justify-center items-center text-base px-3 hover:bg-zinc-800" href="/blog"><span class="text-white font-semibold -2">Blog</span></a><span class="h-full flex flex-row justify-center items-center cursor-pointer text-white text-base px-3 font-semibold mr-2 hover:bg-zinc-800">Add Access Token</span></div><div class="hidden h-full md:flex flex-row justify-start items-center"><a target="_blank" rel="noopener noreferrer" class="h-full flex text-white text-base flex-row justify-center items-center px-4 hover:bg-zinc-800" href="https://www.bytebase.com/?source=star-history"><img class="h-6 mt-1 mr-2" src="/assets/craft-by-bytebase.webp" alt=""/></a></div><div class="h-full hidden md:flex flex-row justify-end items-center space-x-2"><a class="h-full flex flex-row justify-center items-center px-2 hover:bg-zinc-800" href="https://twitter.com/StarHistoryHQ" target="_blank" rel="noopener noreferrer"><i class="fab fa-twitter text-2xl text-blue-300"></i></a></div><div class="h-full flex md:hidden flex-row justify-end items-center"><span class="relative h-full w-10 px-3 flex flex-row justify-center items-center cursor-pointer font-semibold text-light hover:bg-zinc-800"><span class="w-4 transition-all h-px bg-light absolute top-1/2 -mt-1"></span><span class="w-4 transition-all h-px bg-light absolute top-1/2 "></span><span class="w-4 transition-all h-px bg-light absolute top-1/2 mt-1"></span></span></div></div></header><div class="w-full h-auto py-2 flex md:hidden flex-col justify-start items-start shadow-lg border-b hidden"><a class="h-12 text-base px-3 w-full flex flex-row justify-start items-center cursor-pointer font-semibold text-dark mr-2 hover:bg-gray-100 hover:text-blue-500" href="/blog/how-to-use-github-star-history">📕 How to use this site</a><span class="h-12 px-3 text-base w-full flex flex-row justify-start items-center cursor-pointer font-semibold text-dark mr-2 hover:bg-gray-100 hover:text-blue-500">Add Access Token</span><span class="h-12 text-base px-3 w-full flex flex-row justify-start items-center"><a class="github-button -mt-1" href="https://github.com/star-history/star-history" data-show-count="true" aria-label="Star star-history/star-history on GitHub" target="_blank" rel="noopener noreferrer">Star</a></span></div><div class="w-full h-auto grow lg:grid lg:grid-cols-[256px_1fr_256px]"><div class="w-full hidden lg:block"><div class="flex flex-col justify-start items-start w-full mt-2 p-4 pl-8"><a class="hover:opacity-75" href="/blog/list-your-open-source-project"><img class="w-auto max-w-full" src="/assets/starlet-icon.webp"/></a><div><div class="w-full flex flex-row justify-between items-center my-2"><h3 class="text-sm font-medium text-gray-400 leading-6">Playbook</h3></div><ul class="list-disc list-inside"><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/how-to-use-github-star-history"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">📕 How to Use this Site</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/playbook-for-more-github-stars"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">⭐️ How to Get More Stars</span></a></li></ul></div><div><div class="w-full flex flex-row justify-between items-center my-2"><h3 class="text-sm font-medium text-gray-400 leading-6">Monthly Pick</h3></div><ul class="list-disc list-inside"><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/ai-devtools"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Nov (AI DevTools)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/homelab"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Oct (Homelab)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/ai-agents"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Sep (AI Agents)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/rag-frameworks"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Aug (RAG frameworks)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/ai-generators"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Jul (AI Generators)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/ai-search"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Jun (AI Searches)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/ai-web-scraper"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 May (AI Web Scraper)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/prompt-engineering"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Apr (AI Prompt)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/non-ai"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Mar (Non-AI)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/most-underrated"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Feb (Most Underrated)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/text2sql"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2024 Jan (Text2SQL)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/gpt-wrappers"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Dec (GPT Wrappers)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/tts"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Nov (TTS)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/ai-for-postgres"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Oct (AI for Postgres)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/coding-ai"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Sept (Coding AI)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/cli-tool-for-llm"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Aug (CLI tool for LLMs)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/llama2"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 July (Llama 2 Edition)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202306"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 June</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202305"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 May</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202304"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Apr</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202303"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Mar (ChatGPT Edition)</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202302"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Feb</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202301"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023 Jan</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-monthly-pick-202212"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2022 Dec</span></a></li></ul></div><div><div class="w-full flex flex-row justify-between items-center my-2"><h3 class="text-sm font-medium text-gray-400 leading-6">Yearly Pick</h3></div><ul class="list-disc list-inside"><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/best-of-2023"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2023</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-yearly-pick-2022-data-infra-devtools"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2022 Data, Infra & DevTools</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-open-source-2022-platform-engineering"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2022 Platform Engineering</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-open-source-2022-open-source-alternatives"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2022 OSS Alternatives</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/star-history-yearly-pick-2022-frontend"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">2022 Front-end</span></a></li></ul></div><div><div class="w-full flex flex-row justify-between items-center my-2"><h3 class="text-sm font-medium text-gray-400 leading-6">Starlet List</h3></div><ul class="list-disc list-inside"><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/list-your-open-source-project"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">🎁 Prompt yours for FREE</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/trench"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #28 - Trench</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/langfuse"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #27 - langfuse</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/thepipe"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #26 - thepi.pe</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/taipy"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #25 - Taipy</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/superlinked"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #24 - Superlinked</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/tea-tasting"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #23 - tea-tasting</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/giskard"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #22 - Giskard</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/khoj"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #21 - Khoj</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/paradedb"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #20 - ParadeDB</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/skyvern"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #19 - Skyvern</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/prisma"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #18 - Prisma</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/spicedb"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #17 - SpiceDB</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/answer"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #16 - Apache Answer</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/infinity"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #15 - Infinity</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/proton"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #14 - Proton</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/earthly"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #13 - Earthly</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/wasp"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #12 - Wasp</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/libsql"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #11 - libSQL</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/postgresml"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #10 - PostgresML</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/electricsql"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #9 - ElectricSQL</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/prompt-flow"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #8 - Prompt flow</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/clipboard"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #7 - Clipboard</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/hoppscotch"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #6 - Hoppscotch</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/metisfl"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #5 - MetisFL</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/chatgpt-js"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #4 - chatgpt.js</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/mockoon"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #3 - Mockoon</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/dlta-ai"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #2 - DLTA-AI</span></a></li><li class="mb-2 leading-3"><a class="cursor-pointer" rel="noopener noreferrer" href="/blog/sniffnet"><span class="inline -ml-2 text-sm text-blue-700 hover:underline">Issue #1 - Sniffnet</span></a></li></ul></div></div></div><div class="w-full flex flex-col justify-start items-center"><div class="w-full p-4 md:p-0 mt-6 md:w-5/6 lg:max-w-6xl h-full flex flex-col justify-start items-center self-center"><img class="hidden md:block w-auto max-w-full object-scale-down" src="/assets/blog/metisfl/banner.webp" alt=""/><div class="w-auto max-w-6xl mt-4 md:mt-12 prose prose-indigo prose-xl md:prose-2xl flex flex-col justify-center items-center"><h1 class="leading-16">Starlet #5 MetisFL - the blazing-fast and developer-friendly federated learning framework</h1></div><div class="w-full mt-8 mb-2 max-w-6xl px-2 flex flex-row items-center justify-center text-sm text-gray-900 font-semibold trackingwide uppercase"><div class="flex space-x-1 text-gray-500"><span class="text-gray-900">Panagiotis Kyriakis</span><span aria-hidden="true"> · </span><time dateTime="2023-08-28T00:00:00.000Z">Aug 28, 2023</time><span aria-hidden="true"> · </span><span> <!-- -->4<!-- --> min read </span></div></div><div class="mt-8 w-full max-w-5xl prose prose-indigo prose-xl md:prose-2xl"><p><em>This is the fifth issue of The Starlet List. If you want to prompt your open source project on star-history.com for free, please check out our <a href="/blog/list-your-open-source-project">announcement</a>.</em></p> <hr> <h2>The Vision</h2> <p>Machine learning has reached an inflection point. The models have become so big and powerful that the current data sources are not enough to train them. ChatGPT was trained on the entire <strong>public</strong> internet. Our current data sources are dangerously running out of data leading the so called <strong>AI Data Starvation</strong> problem. Additionally, end-users are becoming more and more privacy-cautious and are reluctant to share their data with third parties. This makes it harder for companies to use the data they need to train their models. The solution to this problem is to train the models on distributed data sources. However, the current federated learning solutions are still in their beginnings and not suitable for production use-cases. We are set out to change that!</p> <p><img src="/assets/blog/metisfl/transition.webp" alt="Transition to Federated Learning"></p> <p>Our vision is to drive this transition from machine learning to federated learning. We want to make it easy for developers and enterprises to train their models on distributed data sources. We believe that such a transition will eventually happen and will be beneficial for everyone. The end-users will be able to keep their data private and secure, while the enterprises will be able to train better models and provide better services to their customers.</p> <h2>What is MetisFL?</h2> <p><img src="/assets/blog/metisfl/internal.webp" alt="MetisFL Architecture"></p> <p><a href="https://github.com/nevronAI/metisfl/">MetisFL</a> is an open-source federated learning framework that allows developer to train machine learning models on distributed data sources. Currently, the project is transitioning from a private, experimental version to a public, beta phase. We are actively encouraging developers, researchers and data scientists to experiment with the framework and contribute to the codebase.Please have a look at our <a href="https://docs.nevron.ai/metisfl/">draft documentation</a> and <a href="https://github.com/nevronAI/metisfl/">GitHub repository</a> to get a better understanding of the framework and how to use it.</p> <h2>Why MetisFL?</h2> <ul> <li><p><strong>Scalability</strong>: MetisFL is the only federated learning framework with the core controller developed purely in C++. This allows for the system to scale and support up to 100K+ learners!</p> </li> <li><p><strong>Speed</strong>: The core operations at the controller as well as the controller-learner communication overhead has been optimized for efficiency. This allows MetisFL to achieve improvements of up to 1000x on the federation round time compared to other federated learning frameworks.</p> </li> <li><p><strong>Efficiency and Flexibility</strong>: MetisFL supports synchronous, semi-synchronous and asynchronous protocols. The different choices make our framework flexible enough to adapt to the needs of each use-case. Additionally, the support of fully asynchronous protocol makes MetisFL a highly efficient solution for use-cases with high heterogeneity on the compute/communication capabilities of the learners.</p> </li> <li><p><strong>Strong Security</strong>: MetisFL supports secure aggregations with fully homomorphic encryption using the <a href="https://gitlab.com/palisade/palisade-release">Palisade</a> C++ cryptographic library. This ensures that the weights of the produced models remain private and secure in transit.</p> </li> <li><p><strong>Developer-Friendly</strong>: MetisFL is designed to be developer-friendly. It provides a simple API that allows developers to federate their machine learning workflows with minimal effort. Additionally, it provides a set of tools that allow developers to easily monitor and debug their federated learning experiments.</p> </li> </ul> <h2>MetisFL History</h2> <p>MetisFL sprung up from the Information and Science Institute (ISI) in the University of Southern California (USC). It was initially built as a research prototype to support research efforts in the field of federated learning. The mastermind behind the project is <a href="https://www.linkedin.com/in/dstripelis/">Dimitris Stripelis</a>, a Federated Learning expert, who has been working on the project for several years as part of his Ph.D. research. At its current state, the source code has been re-engineered and open-sourced to support a wide range of use-cases and to be easily extensible to support new federated learning algorithms and protocols.</p> <h2>Applications</h2> <p>MetisFL is a general purpose federated learning framework. It provides out-of-the box support for different communication protocols (synchronous, semi-synchronous, asynchronous) and federated algorithmic optimizations (e.g., FedAvg, FedOPT, FedProx) and it can be extended to support any type of federated learning topology (centralized, peer-to-peer). The framework has been used</p> <p>The framework has been used to produce extensive research results and train models in academia across different application domains such as in Computer Vision, Natural Language Processing and Neuroimaging. Further use-cases and applications are currently being explored.</p> <h2>Future Development</h2> <p>MetisFL is currently in its beta phase. We are actively working on improving the framework and adding new features. We are actively inviting developers to contribute to the <a href="https://github.com/nevronAI/metisfl/">repository</a>.</p> </div></div><div class="mt-12"><iframe src="https://embeds.beehiiv.com/2803dbaa-d8dd-4486-8880-4b843f3a7da6?slim=true" data-test-id="beehiiv-embed" height="52" frameBorder="0" scrolling="no" style="margin:0;border-radius:0px !important;background-color:transparent"></iframe></div></div><div class="w-full hidden lg:block"></div></div><footer class="relative w-full shrink-0 h-auto mt-6 flex flex-col justify-end items-center"><div class="w-full py-2 px-3 md:w-5/6 lg:max-w-7xl flex flex-row flex-wrap justify-between items-center text-neutral-700 border-t"><div class="text-sm leading-8 flex flex-row flex-wrap justify-start items-center"><div class="h-full text-gray-600">The missing GitHub star history graph</div><a class="h-full flex flex-row justify-center items-center ml-3 text-lg hover:opacity-80" href="https://twitter.com/StarHistoryHQ" target="_blank" rel="noopener noreferrer"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 512 512" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path></svg></a><a class="h-full flex flex-row justify-center items-center mx-3 text-lg hover:opacity-80" href="mailto:star@bytebase.com" target="_blank" rel="noopener noreferrer"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 512 512" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"></path></svg></a><a class="h-full flex flex-row justify-center items-center mr-3 text-lg hover:opacity-80" href="https://github.com/star-history/star-history" target="_blank" rel="noopener noreferrer"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 496 512" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg></a></div><div class="flex flex-row flex-wrap items-center space-x-4"><div class="flex flex-row text-sm leading-8 underline text-blue-700 hover:opacity-80"><img class="h-6 mt-1 mr-2" src="/assets/sqlchat.webp" alt="SQL Chat"/><a href="https://sqlchat.ai" target="_blank" rel="noopener noreferrer"> <!-- -->SQL Chat<!-- --> </a></div><div class="flex flex-row text-sm leading-8 underline text-blue-700 hover:opacity-80"><img class="h-6 mt-1 mr-2" src="/assets/dbcost.webp" alt="DB Cost"/><a href="https://dbcost.com" target="_blank" rel="noopener noreferrer">DB Cost</a></div></div><div class="text-xs leading-8 flex flex-row flex-nowrap justify-end items-center"><span class="text-gray-600">Maintained by<!-- --> <a class="text-blue-500 font-bold hover:opacity-80" href="https://bytebase.com" target="_blank" rel="noopener noreferrer">Bytebase</a>, originally built by<!-- --> <a class="bg-blue-400 text-white p-1 pl-2 pr-2 rounded-l-2xl rounded-r-2xl hover:opacity-80" href="https://twitter.com/tim_qian" target="_blank" rel="noopener noreferrer">@tim_qian</a></span></div></div></footer><div class="fixed right-0 top-32 hidden lg:flex flex-col justify-start items-start transition-all bg-white w-48 xl:w-56 p-2 z-10 "><div class="w-full flex justify-between items-center mb-2"><p class="text-xs text-gray-400">Sponsors (random order)</p><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 352 512" class="fas fa-times text-xs text-gray-400 cursor-pointer hover:text-gray-500" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M242.72 256l100.07-100.07c12.28-12.28 12.28-32.19 0-44.48l-22.24-22.24c-12.28-12.28-32.19-12.28-44.48 0L176 189.28 75.93 89.21c-12.28-12.28-32.19-12.28-44.48 0L9.21 111.45c-12.28 12.28-12.28 32.19 0 44.48L109.28 256 9.21 356.07c-12.28 12.28-12.28 32.19 0 44.48l22.24 22.24c12.28 12.28 32.2 12.28 44.48 0L176 322.72l100.07 100.07c12.28 12.28 32.2 12.28 44.48 0l22.24-22.24c12.28-12.28 12.28-32.19 0-44.48L242.72 256z"></path></svg></div><a href="https://dify.ai/?utm_source=star-history" class="bg-gray-50 p-2 rounded w-full flex flex-col justify-center items-center mb-2 text-zinc-600 hover:opacity-80 hover:text-blue-600 hover:underline" target="_blank"><img class="w-auto max-w-full" src="/assets/sponsors/dify/logo.webp" alt="Dify"/><span class="text-xs mt-2">Dify: Open-source platform for building LLM apps, from agents to AI workflows.</span></a><a href="https://bytebase.com?utm_source=star-history" class="bg-gray-50 p-2 rounded w-full flex flex-col justify-center items-center mb-2 text-zinc-600 hover:opacity-80 hover:text-blue-600 hover:underline" target="_blank"><img class="w-auto max-w-full" src="/assets/sponsors/bytebase/logo.webp" alt="Bytebase"/><span class="text-xs mt-2">Bytebase: Database DevOps and CI/CD for MySQL, PG, Oracle, SQL Server, Snowflake, ClickHouse, Mongo, Redis</span></a><a href="mailto:star@bytebase.com?subject=I'm interested in sponsoring star-history.com" target="_blank" class="w-full p-2 text-center bg-gray-50 text-xs leading-6 text-gray-400 rounded hover:underline hover:text-blue-600">Your logo</a></div></div></div><script id="__NEXT_DATA__" type="application/json" crossorigin="">{"props":{"pageProps":{"blog":{"title":"Starlet #5 MetisFL - the blazing-fast and developer-friendly federated learning framework","slug":"metisfl","author":"Panagiotis Kyriakis","featured":true,"featureImage":"/assets/blog/metisfl/banner.webp","publishedDate":"2023-08-28T00:00:00.000Z","excerpt":"MetisFL is an open-source federated learning framework that makes it easy for developers and enterprises to train their models on distributed data sources.","readingTime":4},"parsedBlogHTML":"\u003cp\u003e\u003cem\u003eThis is the fifth issue of The Starlet List. If you want to prompt your open source project on star-history.com for free, please check out our \u003ca href=\"/blog/list-your-open-source-project\"\u003eannouncement\u003c/a\u003e.\u003c/em\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003eThe Vision\u003c/h2\u003e\n\u003cp\u003eMachine learning has reached an inflection point. The models have become so big and powerful that the current data sources are not enough to train them. ChatGPT was trained on the entire \u003cstrong\u003epublic\u003c/strong\u003e internet. Our current data sources are dangerously running out of data leading the so called \u003cstrong\u003eAI Data Starvation\u003c/strong\u003e problem. Additionally, end-users are becoming more and more privacy-cautious and are reluctant to share their data with third parties. This makes it harder for companies to use the data they need to train their models. The solution to this problem is to train the models on distributed data sources. However, the current federated learning solutions are still in their beginnings and not suitable for production use-cases. We are set out to change that!\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"/assets/blog/metisfl/transition.webp\" alt=\"Transition to Federated Learning\"\u003e\u003c/p\u003e\n\u003cp\u003eOur vision is to drive this transition from machine learning to federated learning. We want to make it easy for developers and enterprises to train their models on distributed data sources. We believe that such a transition will eventually happen and will be beneficial for everyone. The end-users will be able to keep their data private and secure, while the enterprises will be able to train better models and provide better services to their customers.\u003c/p\u003e\n\u003ch2\u003eWhat is MetisFL?\u003c/h2\u003e\n\u003cp\u003e\u003cimg src=\"/assets/blog/metisfl/internal.webp\" alt=\"MetisFL Architecture\"\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/nevronAI/metisfl/\"\u003eMetisFL\u003c/a\u003e is an open-source federated learning framework that allows developer to train machine learning models on distributed data sources. Currently, the project is transitioning from a private, experimental version to a public, beta phase. We are actively encouraging developers, researchers and data scientists to experiment with the framework and contribute to the codebase.Please have a look at our \u003ca href=\"https://docs.nevron.ai/metisfl/\"\u003edraft documentation\u003c/a\u003e and \u003ca href=\"https://github.com/nevronAI/metisfl/\"\u003eGitHub repository\u003c/a\u003e to get a better understanding of the framework and how to use it.\u003c/p\u003e\n\u003ch2\u003eWhy MetisFL?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cp\u003e\u003cstrong\u003eScalability\u003c/strong\u003e: MetisFL is the only federated learning framework with the core controller developed purely in C++. This allows for the system to scale and support up to 100K+ learners!\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003cp\u003e\u003cstrong\u003eSpeed\u003c/strong\u003e: The core operations at the controller as well as the controller-learner communication overhead has been optimized for efficiency. This allows MetisFL to achieve improvements of up to 1000x on the federation round time compared to other federated learning frameworks.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003cp\u003e\u003cstrong\u003eEfficiency and Flexibility\u003c/strong\u003e: MetisFL supports synchronous, semi-synchronous and asynchronous protocols. The different choices make our framework flexible enough to adapt to the needs of each use-case. Additionally, the support of fully asynchronous protocol makes MetisFL a highly efficient solution for use-cases with high heterogeneity on the compute/communication capabilities of the learners.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003cp\u003e\u003cstrong\u003eStrong Security\u003c/strong\u003e: MetisFL supports secure aggregations with fully homomorphic encryption using the \u003ca href=\"https://gitlab.com/palisade/palisade-release\"\u003ePalisade\u003c/a\u003e C++ cryptographic library. This ensures that the weights of the produced models remain private and secure in transit.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003cp\u003e\u003cstrong\u003eDeveloper-Friendly\u003c/strong\u003e: MetisFL is designed to be developer-friendly. It provides a simple API that allows developers to federate their machine learning workflows with minimal effort. Additionally, it provides a set of tools that allow developers to easily monitor and debug their federated learning experiments.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003eMetisFL History\u003c/h2\u003e\n\u003cp\u003eMetisFL sprung up from the Information and Science Institute (ISI) in the University of Southern California (USC). It was initially built as a research prototype to support research efforts in the field of federated learning. The mastermind behind the project is \u003ca href=\"https://www.linkedin.com/in/dstripelis/\"\u003eDimitris Stripelis\u003c/a\u003e, a Federated Learning expert, who has been working on the project for several years as part of his Ph.D. research. At its current state, the source code has been re-engineered and open-sourced to support a wide range of use-cases and to be easily extensible to support new federated learning algorithms and protocols.\u003c/p\u003e\n\u003ch2\u003eApplications\u003c/h2\u003e\n\u003cp\u003eMetisFL is a general purpose federated learning framework. It provides out-of-the box support for different communication protocols (synchronous, semi-synchronous, asynchronous) and federated algorithmic optimizations (e.g., FedAvg, FedOPT, FedProx) and it can be extended to support any type of federated learning topology (centralized, peer-to-peer). The framework has been used\u003c/p\u003e\n\u003cp\u003eThe framework has been used to produce extensive research results and train models in academia across different application domains such as in Computer Vision, Natural Language Processing and Neuroimaging. Further use-cases and applications are currently being explored.\u003c/p\u003e\n\u003ch2\u003eFuture Development\u003c/h2\u003e\n\u003cp\u003eMetisFL is currently in its beta phase. We are actively working on improving the framework and adding new features. We are actively inviting developers to contribute to the \u003ca href=\"https://github.com/nevronAI/metisfl/\"\u003erepository\u003c/a\u003e.\u003c/p\u003e\n"},"__N_SSG":true},"page":"/blog/[slug]","query":{"slug":"metisfl"},"buildId":"xKX4ZiOi_N7h3OBOEsSZu","isFallback":false,"gsp":true,"scriptLoader":[]}</script></body></html>