CINXE.COM

Search

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-fa87d2fbdbef47d2.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Chen, Gang"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture &amp; Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Chen, Gang"</h1><input type="hidden" name="q" value="author:Chen, Gang"/><div class="c-filter__results">85<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->76<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->9<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->84<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->13<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->17<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->40<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->4<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture &amp; Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-bcoe" class="c-checkbox__input" name="departments" value="bcoe"/><label for="departments-bcoe" class="c-checkbox__label">Bourns College of Engineering<!-- --> (<!-- -->5<!-- -->)</label><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-bcoe_cert" class="c-checkbox__input" name="departments" value="bcoe_cert"/><label for="departments-bcoe_cert" class="c-checkbox__label">Center for Environmental Research and Technology<!-- --> (<!-- -->2<!-- -->)</label></li></ul></li><li class=""><input type="checkbox" id="departments-lbnl_es" class="c-checkbox__input" name="departments" value="lbnl_es"/><label for="departments-lbnl_es" class="c-checkbox__label">Energy Sciences<!-- --> (<!-- -->4<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-ucb_chemistry" class="c-checkbox__input" name="departments" value="ucb_chemistry"/><label for="departments-ucb_chemistry" class="c-checkbox__label">College of Chemistry<!-- --> (<!-- -->3<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-ucla_ece" class="c-checkbox__input" name="departments" value="ucla_ece"/><label for="departments-ucla_ece" class="c-checkbox__label">Electrical and Computer Engineering<!-- --> (<!-- -->3<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-uci_eng" class="c-checkbox__input" name="departments" value="uci_eng"/><label for="departments-uci_eng" class="c-checkbox__label">Samueli School of Engineering<!-- --> (<!-- -->3<!-- -->)</label><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-uci_eng_mse" class="c-checkbox__input" name="departments" value="uci_eng_mse"/><label for="departments-uci_eng_mse" class="c-checkbox__label">Materials Science and Engineering<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-uci_eng_mae" class="c-checkbox__input" name="departments" value="uci_eng_mae"/><label for="departments-uci_eng_mae" class="c-checkbox__label">Mechanical and Aerospace Engineering<!-- --> (<!-- -->3<!-- -->)</label></li></ul></li></ul><div id="facetModalBase-departments"><button class="c-facetbox__show-more">Show more</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"><li class=""><input type="checkbox" id="journals-doj" class="c-checkbox__input" name="journals" value="doj"/><label for="journals-doj" class="c-checkbox__label">Dermatology Online Journal<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"><li class=""><input type="checkbox" id="disciplines-Life_Sciences" class="c-checkbox__input" name="disciplines" value="Life Sciences"/><label for="disciplines-Life_Sciences" class="c-checkbox__label">Life Sciences<!-- --> (<!-- -->17<!-- -->)</label></li><li class=""><input type="checkbox" id="disciplines-Engineering" class="c-checkbox__input" name="disciplines" value="Engineering"/><label for="disciplines-Engineering" class="c-checkbox__label">Engineering<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="disciplines-Medicine_and_Health_Sciences" class="c-checkbox__input" name="disciplines" value="Medicine and Health Sciences"/><label for="disciplines-Medicine_and_Health_Sciences" class="c-checkbox__label">Medicine and Health Sciences<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="disciplines-Physical_Sciences_and_Mathematics" class="c-checkbox__input" name="disciplines" value="Physical Sciences and Mathematics"/><label for="disciplines-Physical_Sciences_and_Mathematics" class="c-checkbox__label">Physical Sciences and Mathematics<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->16<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc"><input type="checkbox" id="rights-CC_BY-NC" class="c-checkbox__input" name="rights" value="CC BY-NC"/><label for="rights-CC_BY-NC" class="c-checkbox__label">BY-NC - Attribution; NonCommercial use only<!-- --> (<!-- -->2<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc-nd"><input type="checkbox" id="rights-CC_BY-NC-ND" class="c-checkbox__input" name="rights" value="CC BY-NC-ND"/><label for="rights-CC_BY-NC-ND" class="c-checkbox__label">BY-NC-ND - Attribution; NonCommercial use; No derivatives<!-- --> (<!-- -->2<!-- -->)</label></li><li class="c-checkbox__attrib-cc-0"><input type="checkbox" id="rights-CC_0" class="c-checkbox__input" name="rights" value="CC 0"/><label for="rights-CC_0" class="c-checkbox__label">CC 0<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->85 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div><div class="o-input__droplist1 c-sort__page-input"><label for="c-sort2">Show:</label><select name="rows" id="c-sort2" form="facetForm"><option selected="" value="10">10</option><option value="20">20</option><option value="30">30</option><option value="40">40</option><option value="50">50</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/><nav class="c-pagination--next"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li><li><a href="" aria-label="go to result set 4" class="c-pagination__item">4</a></li><li><a href="" aria-label="go to result set 9" class="c-pagination__item">9</a></li><li class="c-pagination__next"><a href="" aria-label="go to Next result set">Next</a></li></ul></nav></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9vg1n5hr"><div class="c-clientmarkup">Evaluating the Uncertainties in the Shifts of Atmospheric Rivers (ARs) over Recent Decades in the Southern Hemisphere</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AShi%2C%20Zhan">Shi, Zhan</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_etd">UCLA Electronic Theses and Dissertations</a> (<!-- -->2023<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>In this study, we investigate the uncertainties mainly in the trends of frequency and shifts of ARs on the choice of AR detection algorithm and reanalysis data, and also analyze the causes of trends at various temporal and spatial scales using two ensembles from Community Earth System Model (CESM) simulations and decomposition covering the period of 1980-2016. Meteorological reanalyses show all-seasonal poleward shifts over the Pacific, in contrast to statistically insignificant equatorward shifts during MAM and SON over the Atlantic and Indian Ocean sectors throughout decades. The spatial patterns of intensification and shifts of ARs are largely driven by the changes in atmospheric circulation while anthropogenic forcing enhances the increase in moisture-driven AR frequency with nearly uniform warming over the Southern Ocean. Sea surface temperature (SST) variability characterized by the negative phase of the Interdecadal Pacific Oscillation (IPO) could generate dynamically-driven patterns of ARs to compensate for the poleward shift driven by thermodynamics.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/9vg1n5hr"><img src="/cms-assets/29dbf38c5926de7504b4bb6bd392f6d8d068ae2b52d07f0d50f7dc8753953dd4" alt="Cover page: Evaluating the Uncertainties in the Shifts of Atmospheric Rivers (ARs) over Recent Decades in the Southern Hemisphere"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/6zk9c7n0"><div class="c-clientmarkup">TGF-beta1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AKhalil%2C%20Nasreen">Khalil, Nasreen</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucr_postprints">UC Riverside Previously Published Works</a> (<!-- -->2006<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>Airway remodeling in asthma is the result of increased expression of connective tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-beta1 has been found to increase ASMC proliferation. The activation of mitogen-activated protein kinases (MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation. In the present study, we determined the role of phosphorylated MAPKs in TGF-beta1 induced ASMC proliferation.</p><p>Confluent and growth-arrested bovine ASMCs were treated with TGF-beta1. Proliferation was measured by [3H]-thymidine incorporation and cell counting. Expressions of phosphorylated p38, ERK1/2, and JNK were determined by Western analysis.</p><p>In a concentration-dependent manner, TGF-beta1 increased [3H]-thymidine incorporation and cell number of ASMCs. TGF-beta1 also enhanced serum-induced ASMC proliferation. Although ASMCs cultured with TGF-beta1 had a significant increase in phosphorylated p38, ERK1/2, and JNK, the maximal phosphorylation of each MAPK had a varied onset after incubation with TGF-beta1. TGF-beta1 induced DNA synthesis was inhibited by SB 203580 or PD 98059, selective inhibitors of p38 and MAP kinase kinase (MEK), respectively. Antibodies against EGF, FGF-2, IGF-I, and PDGF did not inhibit the TGF-beta1 induced DNA synthesis.</p><p>Our data indicate that ASMCs proliferate in response to TGF-beta1, which is mediated by phosphorylation of p38 and ERK1/2. These findings suggest that TGF-beta1 which is expressed in airways of asthmatics may contribute to irreversible airway remodeling by enhancing ASMC proliferation.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/7vs7g0rc"><div class="c-clientmarkup">In vitro wounding of airway smooth muscle cell monolayers increases expression of TGF-β receptors</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AKhalil%2C%20Nasreen">Khalil, Nasreen</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucr_postprints">UC Riverside Previously Published Works</a> (<!-- -->2002<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">During an exacerbation of asthma, there is bronchial epithelial cell injury and influx of inflammatory cells. In these instances, the release of proteases and various cytokines could lead to injury of the airway smooth muscle cells (ASMCs). Airway remodeling is a characteristic finding in asthma but the role of ASMC injury in remodeling is unknown. Previously, we demonstrated that mechanical wounding of confluent monolayers of bovine ASMCs resulted in the release of biologically active transforming growth factor-beta1 (TGF-beta1), which in turn, induced collagen I expression. In the present study, we demonstrate that after mechanical wounding, ASMCs had an increased expression of the signal transducing TGF-beta receptors TbetaR-I and TbetaR-II as detected by flow cytometry and Western analysis. Corticosteroids are standard therapy in asthma and the presence of dexamethasone decreased wound-induced release of TGF-beta1 and the expression of collagen I, fibronectin, and TbetaR-II. These results suggest that ASMC injury may play an important role in airway fibrosis mediated by TGF-beta1, which can be prevented by the use of corticosteroids.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/7vs7g0rc"><img src="/cms-assets/c394b3c0e590d9a7587d28b00e9fd7c7186a8c5f7ad54b94a2a22c4dce7c4365" alt="Cover page: In vitro wounding of airway smooth muscle cell monolayers increases expression of TGF-β receptors"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/91w9z4sp"><div class="c-clientmarkup">The Variability of Atmospheric Rivers on Different Time Scales and Their Representation in Reanalyses and Observations</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AMa%2C%20Weiming">Ma, Weiming</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_etd">UCLA Electronic Theses and Dissertations</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>Atmospheric rivers (ARs) are filaments of enhanced water vapor transport in the atmosphere. Globally, ARs play a key role in the meridional moisture transport. Regionally,ARs can either serve as freshwater suppliers or culprits behind many of the weather hazards. ARs and their impacts have been studied extensively. However, what controls the variability of ARs on different time scales remains largely unknown. In particular, further studies are especially needed to better understand the relative role of circulation (dynamic) variability versus moisture (thermodynamic) variability, internal variability versus sea surface temperature (SST)/ sea ice variability and anthropogenic forcing versus internal variability originated from SST/sea ice variability in controlling the variability of ARs and their associated precipitation on different time scales. In addition, reanalyses have long been used as proxies of observations in AR studies. Yet, the representation of ARs and their associated precipitation in reanalyses remain unknown. Although satellite observations have also been used to study ARs, previous satellite-based AR studies used only the moisture component (integrated water vapor or IWV) to detect ARs. While ARs have been defined as filaments of enhanced moisture transport in the atmosphere, detecting ARs with only the moisture field would inevitably run the risk of detecting those filamentary features with high moisture content, but relatively weak transport component. In this dissertation, we will address the research gaps above from five different angles. First, we investigate the relative role of SST/sea ice versus internal variability in driving the interannual variability of winter AR activities over the North Hemisphere. We show that, while both SST/sea ice and internal variability play roles in driving the interannual AR variability, their roles differ across ocean basins. Over the North Pacific, SST/sea ice variability exerts substantially stronger control on the AR variability compared to interval variability. However, both SST/sea ice and internal variability play comparable roles in modulating the AR variability over the North Atlantic. Second, on longer time scale, we discover that ARs over the Southern Hemisphere have been shifting poleward in the past four decades. Using a simple scaling method, we find that this poleward shift in the ARs is mostly driven by the poleward shift of the westerly jet (dynamic) while the contribution from the changes in the moisture field is relatively minor. Using two ensembles from the Community Earth System Model (CESM), one with fully coupled oceans and another one driven by observed SST/sea ice, we show that anthropogenic forcing is mainly responsible for the observed poleward shift. However, the negative phase of Interdecadal Pacific Oscillation (IPO) in recent decades also further drives the poleward shift in ARs. Third, ARs are expected to change under a warmer climate. However, the AR response to warming is determined by numerous factors. Two of the most prominent factors are the warming of the tropical upper troposphere, which can drive the poleward shift of the westerly jet, and the amplified warming of the polar regions, which can drive the equatorward shift of the westerly jet. Using nine models participated in the Polar Amplification Model Intercomparison Project (PAMIP), we investigate how Arctic Amplification and its associated sea ice loss would affect the boreal winter AR activities over the Northern Hemisphere. We find that, in response to Arctic sea ice loss, ARs extend northeastward over North Pacific and shift equatorward over North Atlantic. We further demonstrate that these response patterns are mostly determined by the responses in the circulation. Fourth, using a moisture budget approach, the relative contribution of dynamic change versus thermodynamic change to the intensification of extreme precipitation along the North American West Coast (predominantly driven by ARs) is also quantified. We show the intensification of the extreme precipitation along the North American West Coast is mostly driven by the increase in moisture while the contribution from the dynamic change is minor. Lastly, we develop a novel method to detect ARs in satellite observations using both IWV and wind information based on the geostrophic winds. Using this method, we create satellite-based AR statistics and use these statistics to evaluate the performance of seven commonly used reanalyses in representing ARs and their associated precipitation. We show that both satellite observation and reanalyses show high agreement with each other in representing the AR frequency distribution. In terms of AR precipitation, ARs in reanalyses tend to precipitate too lightly and too often. Our studies shed light on the mechanisms driving the variability of ARs across different time scales. These findings have important implications. First, given the more important role SST/sea ice variability in controlling the AR interannual variability, ARs in the North Pacific are likely more predictable than those over the North Atlantic. Better SST forecast can thus likely lead to better AR forecast along the North American West Coast. Second, on the interdecadal time scale, internal variability related to ocean processes still plays an important role in modulating AR variability. Internal variability should thus be taken into consideration when studying future AR response under warming. Third, our results indicate that the thermodynamic aspect of the AR and AR precipitation response is quite robust. We thus need to constrain the response in circulation to reduce the AR response uncertainty. Lastly, the finding that ARs in reanalyses tend to precipitate too often and too lightly directly questions the use of reanalysis-based precipitation in AR studies.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/91w9z4sp"><img src="/cms-assets/5ba60b5ef0a2371ca67959e512b7c41a923dd17ae0e5eee2cf93d41e6e8aad70" alt="Cover page: The Variability of Atmospheric Rivers on Different Time Scales and Their Representation in Reanalyses and Observations"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/3pk8h87b"><div class="c-clientmarkup">Linkage Between Stratospheric Variability and North American Surface Air Temperature</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ADing%2C%20Xiuyuan">Ding, Xiuyuan</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_etd">UCLA Electronic Theses and Dissertations</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>North American (NA) surface air temperatures in winter have been suggested to be associated with stratospheric variability, such as sudden stratospheric warmings (SSWs) or extreme stratospheric waves. However, the robustness and underlying mechanisms are not well understood. In particular, further studies are needed to better understand the dynamical processes underlying extreme stratospheric wave events. Yet, analysis is hindered by the limited sample sizes and the difficulty of identifying these wave events. In this dissertation, we show that extreme stratospheric wave activity is accompanied by subseasonal fluctuations between warm and cold spells over North America with reanalyses and a hierarchy of climate models. Our study identifies a robust precursor of strong stratospheric wave activity for NA cold extremes on subseasonal timescales. Our findings shed light on the dynamical processes underlying extreme stratospheric wave variability, highlighting the role of vertical wave structure in stratosphere-troposphere coupling.First, we demonstrate that the vertical coupling of extreme stratospheric wave activity is distinct from the well-known anomalous polar vortex events. We measure the stratospheric wave activity using empirical orthogonal function (EOF) analysis of 10 hPa geopotential height. In contrast to the increased persistence of weather regimes following SSWs, we show that extreme stratospheric wave events feature weather transitions between warm and cold spells over North America in reanalyses and climate models with various configurations. Particularly, strong stratospheric wave events are followed by an increased risk of cold extremes over North America 5–25 days later. The NA coldness is more robust following strong stratospheric wave activity than a weak polar vortex. We further examine the causality between stratospheric wave activity and NA cold extremes with idealized nudging experiments in a climate model with a well-resolved stratosphere. The stratosphere in the nudging run is fully relaxed to its counterpart in a free-running control simulation. By comparing the strong wave events between the two runs, we attribute the observed NA cold anomalies to the strong stratospheric wave activity. Moreover, vertical wave coupling is found to be key to the temperature transition during strong wave events. Further examinations of Coupled Model Intercomparison Project Phase 6 (CMIP6) reveal large uncertainty in the wave event evolution across individual models. It is found that models with a degraded representation of stratospheric wave structure also show biases in the troposphere during strong wave events. In order to investigate the role of the Quasi-biennial Oscillation (QBO) in the linkage between extreme stratospheric wave activity and NA temperature, we compare strong wave events during the westerly phase (wQBO) with those during the easterly phase (eQBO). We show that, in contrast to strong stratospheric wave events under wQBO, strong wave events under eQBO do not change the cold risk over North America nor alter the vertical wave structure in the observation. We further examine this QBO dependence in QBO-resolving CMIP6 models, finding that the strong wave events in models are largely insensitive to QBO phases, a possible bias in numerical models.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/3pk8h87b"><img src="/cms-assets/432fb3953bd83c86d305741238d35b71ac47a12a7ee94e36c7ab07dc91f76b79" alt="Cover page: Linkage Between Stratospheric Variability and North American Surface Air Temperature"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/0bx747fn"><div class="c-clientmarkup">TGF-beta1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AKhalil%2C%20Nasreen">Khalil, Nasreen</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucr_postprints">UC Riverside Previously Published Works</a> (<!-- -->2006<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>Airway remodeling in asthma is the result of increased expression of connective tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-beta1 has been found to increase ASMC proliferation. The activation of mitogen-activated protein kinases (MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation. In the present study, we determined the role of phosphorylated MAPKs in TGF-beta1 induced ASMC proliferation.</p><p>Confluent and growth-arrested bovine ASMCs were treated with TGF-beta1. Proliferation was measured by [3H]-thymidine incorporation and cell counting. Expressions of phosphorylated p38, ERK1/2, and JNK were determined by Western analysis.</p><p>In a concentration-dependent manner, TGF-beta1 increased [3H]-thymidine incorporation and cell number of ASMCs. TGF-beta1 also enhanced serum-induced ASMC proliferation. Although ASMCs cultured with TGF-beta1 had a significant increase in phosphorylated p38, ERK1/2, and JNK, the maximal phosphorylation of each MAPK had a varied onset after incubation with TGF-beta1. TGF-beta1 induced DNA synthesis was inhibited by SB 203580 or PD 98059, selective inhibitors of p38 and MAP kinase kinase (MEK), respectively. Antibodies against EGF, FGF-2, IGF-I, and PDGF did not inhibit the TGF-beta1 induced DNA synthesis.</p><p>Our data indicate that ASMCs proliferate in response to TGF-beta1, which is mediated by phosphorylation of p38 and ERK1/2. These findings suggest that TGF-beta1 which is expressed in airways of asthmatics may contribute to irreversible airway remodeling by enhancing ASMC proliferation.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/87p8p8p9"><div class="c-clientmarkup">The Voice Source in Speech Production: from Models to Applications</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AALWAN%2C%20ABEER">ALWAN, ABEER</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_etd">UCLA Electronic Theses and Dissertations</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>The voice source contains important lexical and non-lexical information. The non-lexical information can convey, for example, prosodic events, emotional status, as well as cues pertaining to the uniqueness of the speaker's voice. A better understanding, and eventually a better model of the voice source, would benefit various speech applications, such as speech recognition, speech synthesis, speaker identification, age/gender classification, as well as clinical assessments.</p><p>This dissertation has three main goals. The first is to better understand the voice source through analyzing images of the vocal folds using laryngeal high-speed videoendoscopy (HSV) recordings. A new automatic method is proposed to compactly summarize the overall spatial synchronization pattern of vocal fold vibration for the entire laryngeal area from HSV data. Additionally, a new measure is proposed to adequately capture perceptually-important variations in glottal area pulse shapes, which are extracted from HSV data.</p><p>The second goal is to study the acoustic consequence of a physiological vocal-fold vibration pattern---the glottal gap effect, and apply our findings to a gender classification task of children's voices. Voice source related measures are found to improve classification accuracy, especially for younger (10-15 year old) speakers.</p><p>The third goal is to propose new voice source models and evaluate them in different applications. In the first application, a new source model and a noise-robust automatic source estimation algorithm are proposed to estimate the voice source from speech signals. Results in both clean and noisy conditions show that the proposed model and algorithm are robust in accurately estimating the voice source signal. The second application is to use the proposed source model for vowel synthesis. Perceptual listening experiments show that the proposed model provides a better perceptual match to the target voice than do traditional models.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/87p8p8p9"><img src="/cms-assets/a9ea8ba1abfbbe44b7ae16974583949777ee1d975206a8dbc498f095562f3823" alt="Cover page: The Voice Source in Speech Production: from Models to Applications"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/96n6f1w4"><div class="c-clientmarkup">The Inflammasome in Host Defense</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APedra%2C%20Joao%20H.F.">Pedra, Joao H.F.</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucr_postprints">UC Riverside Previously Published Works</a> (<!-- -->2009<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/8ns9q9vp"><div class="c-clientmarkup">The glottaltopogram: A method of analyzing high-speed images of the vocal folds</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a>; </li><li><a href="/search/?q=author%3AKreiman%2C%20Jody">Kreiman, Jody</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AAlwan%2C%20Abeer">Alwan, Abeer</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Laryngeal high-speed videoendoscopy is a state-of-the-art technique to examine physiological vibrational patterns of the vocal folds. With sampling rates of thousands of frames per second, high-speed videoendoscopy produces a large amount of data that is difficult to analyze subjectively. In order to visualize high-speed video in a straightforward and intuitive way, many methods have been proposed to condense the three-dimensional data into a few static images that preserve characteristics of the underlying vocal fold vibratory patterns. In this paper, we propose the "glottaltopogram," which is based on principal component analysis of changes over time in the brightness of each pixel in consecutive video images. This method reveals the overall synchronization of the vibrational patterns of the vocal folds over the entire laryngeal area. Experimental results showed that this method is effective in visualizing pathological and normal vocal fold vibratory patterns.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/8ns9q9vp"><img src="/cms-assets/ec5b4931b978a19df543e42279e933f677bd14427575af60488e596e797ecf9e" alt="Cover page: The glottaltopogram: A method of analyzing high-speed images of the vocal folds"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/4wc4n1pw"><div class="c-clientmarkup">Formal interpretation of cyber-physical system performance with temporal logic</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a>; </li><li><a href="/search/?q=author%3ASabato%2C%20Zachary">Sabato, Zachary</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AKong%2C%20Zhaodan">Kong, Zhaodan</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucd_postprints">UC Davis Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">The inherent and increasing complexity of many cyber-physical systems (CPSs) makes it challenging for human users or designers to comprehend and interpret their performance. This issue, without proper attention paid, may lead to unwanted and even catastrophic consequences, particularly with safety-critical CPSs. This paper presents a new methodology of enabling (i) a human to interrogate a CPS by inquiring with questions written in formal logic and (ii) the CPS to interpret its performance precisely in the context of the inquiry. This formal interpretation problem is first formulated as temporal logic inference problem, which, aided by the concept of robustness degree, can be converted into an optimisation problem with probably approximately correct solutions. A new Gaussian-process-based active learning algorithm is then proposed to address the potential computational budget issue arising from solving the optimisation problem. Both theoretical and empirical analyses are carried out to demonstrate the performance of the proposed algorithm. Finally, a detailed case study on automotive mechatronic design is provided to showcase the proposed formal interpretation methodology.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/4wc4n1pw"><img src="/cms-assets/01829dfdba71fea37835a8cd284f1d2946d2081dbc94b31b5b36b92bd47b8431" alt="Cover page: Formal interpretation of cyber-physical system performance with temporal logic"/></a></div></section><nav class="c-pagination--next"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li><li><a href="" aria-label="go to result set 4" class="c-pagination__item">4</a></li><li><a href="" aria-label="go to result set 9" class="c-pagination__item">9</a></li><li class="c-pagination__next"><a href="" aria-label="go to Next result set">Next</a></li></ul></nav></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-4477d7630fb8c6f70662.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10