CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 54 results for author: <span class="mathjax">Nag, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Nag, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Nag%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Nag, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Nag%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Nag%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Nag%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16034">arXiv:2501.16034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16034">pdf</a>, <a href="https://arxiv.org/format/2501.16034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Circular dichroism in resonant inelastic x-ray scattering from birefringence in CuO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perren%2C+G+S">G茅rard Sylvester Perren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">M. Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16034v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) has become a prominent technique to study quasiparticle excitations. With advances in polarization analysis capabilities at different facilities, RIXS offers exceptional potential for investigating symmetry-broken quasiparticles like chiral phonons and magnons. At optical wavelengths birefringence can severely affect polarization states in low-symmetry sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16034v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16034v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) has become a prominent technique to study quasiparticle excitations. With advances in polarization analysis capabilities at different facilities, RIXS offers exceptional potential for investigating symmetry-broken quasiparticles like chiral phonons and magnons. At optical wavelengths birefringence can severely affect polarization states in low-symmetry systems. Here we show its importance for soft x-ray resonances. Given the growing interest in Circular Dichroism (CD) in RIXS, it is important to evaluate how birefringence may affect the RIXS spectra of anisotropic systems. We investigate CuO, a well-known anisotropic material, using Cu $L_3$-edge RIXS and detect significant CD in both magnetic and orbital excitations in the collinear antiferromagnetic phase. We demonstrate that the CD can be modeled by a proper treatment of RIXS scattering amplitudes derived from single-ion calculations with birefringence. Recognizing these effects is crucial for unambiguous identification of subtle dichroic effects induced by symmetry-broken quasiparticles. Furthermore, the combined sensitivity of RIXS and birefringence to local symmetry presents an opportunity to study microscopic changes driven by external perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16034v1-abstract-full').style.display = 'none'; document.getElementById('2501.16034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text of 7 Pages including references and 4 figures. Supplementary of 6 pages appended</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00423">arXiv:2501.00423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00423">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Defect-mediated electron-phonon coupling in halide double perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Joshi%2C+A">Aprajita Joshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saikia%2C+S">Sajid Saikia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badola%2C+S">Shalini Badola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Angshuman Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+S">Surajit Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00423v1-abstract-short" style="display: inline;"> Optically active defects often play a crucial role in governing the light emission as well as the electronic properties of materials. Moreover, defect-mediated states in the mid-gap region can trap electrons, thus opening a path for the recombination of electrons and holes in lower energy states that may require phonons in the process. Considering this, we have probed electron-phonon interaction i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00423v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00423v1-abstract-full" style="display: none;"> Optically active defects often play a crucial role in governing the light emission as well as the electronic properties of materials. Moreover, defect-mediated states in the mid-gap region can trap electrons, thus opening a path for the recombination of electrons and holes in lower energy states that may require phonons in the process. Considering this, we have probed electron-phonon interaction in halide perovskite systems with the introduction of defects and investigated the thermal effect on this interaction. Here, we report Raman spectroscopy study of the thermal evolution of electron-phonon coupling, which is tunable with the crystal growth conditions, in the halide perovskite systems Cs2AgInCl6 and Cs2NaInCl6. The signature of electron-phonon coupling is observed as a Fano anomaly in the lowest frequency phonon mode (51 cm-1) which evolves with temperature. In addition, we observe a broad band in the photoluminescence (PL) measurements for the defect-mediated systems, which is otherwise absent in defect-free halide perovskite. The simultaneous observation of the Fano anomaly in the Raman spectrum and the emergence of the PL band suggests the defect-mediated mid-gap states and the consequent existence of electron-phonon coupling in the double perovskite. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00423v1-abstract-full').style.display = 'none'; document.getElementById('2501.00423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, Accepted in Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19263">arXiv:2410.19263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19263">pdf</a>, <a href="https://arxiv.org/format/2410.19263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast selective mid-infrared sublattice manipulation in the ferrimagnet $FeCr_2S_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soranzio%2C+D">Davide Soranzio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">Matteo Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+F">Fabian Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winkler%2C+R+T">Rafael T. Winkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohgushi%2C+K">Kenya Ohgushi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Yoshinori Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+S+L">Steven L. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19263v2-abstract-short" style="display: inline;"> $FeCr_2S_4&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19263v2-abstract-full').style.display = 'inline'; document.getElementById('2410.19263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19263v2-abstract-full" style="display: none;"> $FeCr_2S_4$ is a ferrimagnet with two oppositely ordered spin sublattices (Fe and Cr), connected via superexchange interaction, giving a non-zero net magnetic moment. We show, using time-resolved measurements of the magneto-optic Kerr effect, how the magnetic dynamics of the sublattices can be selectively manipulated by resonantly perturbing the Fe sublattice with ultrashort laser pulses. The mid-infrared excitation through intra-atomic Fe $d$-$d$ transitions triggers markedly slower dynamics in comparison to an off-resonant pumping affecting both of the two sublattices simultaneously. By changing probe wavelength to move in and out of resonance with the Fe $d$-$d$ transitions, we also show the specific contributions of the Fe sublattice to these dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19263v2-abstract-full').style.display = 'none'; document.getElementById('2410.19263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15750">arXiv:2407.15750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15750">pdf</a>, <a href="https://arxiv.org/format/2407.15750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unified Description of Charge Density Waves in Electron- and Hole-doped Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+S">Sijia Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tippireddy%2C+S">Sahil Tippireddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zefeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15750v1-abstract-short" style="display: inline;"> High-temperature cuprates superconductors are characterised by the complex interplay between superconductivity (SC) and charge density wave (CDW) in the context of intertwined competing orders. In contrast to abundant studies for hole-doped cuprates, the exact nature of CDW and its relationship to SC was much less explored in electron-doped counterparts. Here, we performed resonant inelastic x-ray&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15750v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15750v1-abstract-full" style="display: none;"> High-temperature cuprates superconductors are characterised by the complex interplay between superconductivity (SC) and charge density wave (CDW) in the context of intertwined competing orders. In contrast to abundant studies for hole-doped cuprates, the exact nature of CDW and its relationship to SC was much less explored in electron-doped counterparts. Here, we performed resonant inelastic x-ray scattering (RIXS) experiments to investigate the relationship between CDW and SC in electron-doped La$_{2-x}$Ce$_x$CuO$_4$. The short-range CDW order with a correlation length $\sim35$~脜~was found in a wide range of temperature and doping concentration. Near the optimal doping, the CDW order is weakened inside the SC phase, implying an intimate relationship between the two orders. This interplay has been commonly reported in hole-doped La-based cuprates near the optimal doping. We reconciled the diverging behaviour of CDW across the superconducting phase in various cuprate materials by introducing the CDW correlation length as a key parameter. Our study paves the way for establishing a unified picture to describe the phenomenology of CDW and its relationship with SC in the cuprate family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15750v1-abstract-full').style.display = 'none'; document.getElementById('2407.15750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages 5 figures; Supplementary Materials available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15692">arXiv:2407.15692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15692">pdf</a>, <a href="https://arxiv.org/format/2407.15692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043184">10.1103/PhysRevResearch.6.043184 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of electron correlations on two-particle charge response in electron- and hole-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zinni%2C+L">Luciano Zinni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+S">Sijia Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zefeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">M. Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15692v2-abstract-short" style="display: inline;"> Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15692v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15692v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15692v2-abstract-full" style="display: none;"> Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as plasmons, which have been variously treated with either weak or strong correlation models. In this work, we demonstrate the hybridised nature of collective valence charge fluctuations leading to dispersing acoustic-like plasmons in hole-doped La$_{1.84}$Sr$_{0.16}$CuO$_{4}$ and electron-doped La$_{1.84}$Ce$_{0.16}$CuO$_{4}$ using the two-particle probe, resonant inelastic x-ray scattering. We then describe the plasmon dispersions in both systems, within both the weak mean-field Random Phase Approximation (RPA) and strong coupling $t$-$J$-$V$ models. The $t$-$J$-$V$ model, which includes the correlation effects implicitly, accurately describes the plasmon dispersions as resonant excitations outside the single-particle intra-band continuum. In comparison, a quantitative description of the plasmon dispersion in the RPA approach is obtained only upon explicit consideration of re-normalized electronic band parameters. Our comparative analysis shows that electron correlations significantly impact the low-energy plasmon excitations across the cuprate doping phase diagram, even at long wavelengths. Thus, complementary information on the evolution of electron correlations, influenced by the rich electronic phases in condensed matter systems, can be extracted through the study of two-particle charge response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15692v2-abstract-full').style.display = 'none'; document.getElementById('2407.15692v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043184 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19410">arXiv:2404.19410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19410">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/pnasnexus/pgae100">10.1093/pnasnexus/pgae100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite antiferromagnetic and orbital order with altermagnetic properties at a cuprate/manganite interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+S">Subhrangsu Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capu%2C+R">Roxana Capu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pashkevich%2C+Y+G">Yurii G. Pashkevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knobel%2C+J">Jonas Knobel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cantarino%2C+M+R">Marli R. Cantarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betto%2C+D">Davide Betto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sant%2C+R">Roberto Sant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicholson%2C+C+W">Christopher W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khmaladze%2C+J">Jarji Khmaladze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-jin. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monney%2C+C">Claude Monney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernhard%2C+C">Christian Bernhard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19410v1-abstract-short" style="display: inline;"> Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high-Tc cuprates and manganites. A key role is played here by the interfacial CuO2 layer whose distinct properties remain to be fully understood. Here, we study with reso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19410v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19410v1-abstract-full" style="display: none;"> Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high-Tc cuprates and manganites. A key role is played here by the interfacial CuO2 layer whose distinct properties remain to be fully understood. Here, we study with resonant inelastic X-ray scattering (RIXS) the magnon excitations of this interfacial CuO2 layer. In particular, we show that the underlying antiferromagnetic exchange interaction at the interface is strongly suppressed to J ~ 70 meV, as compared to J ~ 130 meV for the CuO2 layers away from the interface. Moreover, we observe an anomalous momentum dependence of the intensity of the interfacial magnon mode and show that it suggests that the antiferromagnetic order is accompanied by a particular kind of orbital order that yields a so-called altermagnetic state. Such a two-dimensional altermagnet has recently been predicted to enable new spintronic applications and superconducting proximity effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19410v1-abstract-full').style.display = 'none'; document.getElementById('2404.19410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS Nexus, Volume 3, Issue 4, April 2024, pgae100 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01916">arXiv:2403.01916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01916">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Enhancing thermoelectric performance of 2D Janus ISbTe by strain engineering: A first principle study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumari%2C+A">Anuja Kumari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhinav Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maiti%2C+S+K">Santanu K. Maiti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+J">Jagdish Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01916v1-abstract-short" style="display: inline;"> Recent developments in the 2D materials laid emphasis on finding the materials with robust properties for variety of applications including the energy harvesting. The recent discovery of Janus monolayers with broken symmetry has opened up new options for engineering the properties of 2D layered materials. Present study focuses on enhancing thermoelectric properties of 2H-ISbTe 2D Janus monolayer.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01916v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01916v1-abstract-full" style="display: none;"> Recent developments in the 2D materials laid emphasis on finding the materials with robust properties for variety of applications including the energy harvesting. The recent discovery of Janus monolayers with broken symmetry has opened up new options for engineering the properties of 2D layered materials. Present study focuses on enhancing thermoelectric properties of 2H-ISbTe 2D Janus monolayer. All the calculations have been performed using fully relaxed unit cell and employing the pseudo potential based quantum espresso code. Calculated structural parameters are in good agreement with previous literature reports. The lattice dynamics calculations predicts this monolayer can withstand a strain of up to 4% beyond which imaginary frequencies appear in the phonon dispersion curves. Computed electronic structure reveals that the monolayer is an indirect wide bandgap material and the bandgap decreases with tensile strain. Furthermore, the computed thermoelectric properties show that the studied monolayer has high Seebeck coefficient of ~ 300 渭V/K and low thermal conductivity which yields reasonably high ZT of ~ 1.31 for a strain of 2% at 300 K with p-type doping. Therefore, our study signifies the fact that tensile strain and p-type doping of 2D Janus monolayer ISbTe can enhance ZT from 0.87 to 1.31 at room temperature which makes it a promising candidate for thermoelectric applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01916v1-abstract-full').style.display = 'none'; document.getElementById('2403.01916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, Comments are Welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01683">arXiv:2401.01683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01683">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Thermoelectric Properties of 2D Janus Ferromagnetic LaBrI with Strain-induced Valley Degeneracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumari%2C+A">Anuja Kumari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhinav Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maiti%2C+S+K">Santanu K. Maiti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+J">Jagdish Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01683v1-abstract-short" style="display: inline;"> Since the successful synthesis of the MoSSe monolayer, which violated the out-of-plane mirror symmetry of TMDs monolayers, considerable and systematic research has been conducted on Janus monolayer materials. By systematically analyzing the LaBrI monolayer, we are able to learn more about the novel Janus material by focusing on the halogen family next to group VIA (S, Se, Te). The structural optim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01683v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01683v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01683v1-abstract-full" style="display: none;"> Since the successful synthesis of the MoSSe monolayer, which violated the out-of-plane mirror symmetry of TMDs monolayers, considerable and systematic research has been conducted on Janus monolayer materials. By systematically analyzing the LaBrI monolayer, we are able to learn more about the novel Janus material by focusing on the halogen family next to group VIA (S, Se, Te). The structural optimizations have been carried out using the FP-LAPW (Full Potential Linear Augmented Plane Wave) basis, as implemented in the ELK using tb-mBJ exchange correlation potential. Computed structural parameters are in good comparison with literature reports. Further, optimized crystal structures were used for computing effect of strain on electronic and thermoelectric properties using pseudo potential based Quantum espresso code. Dynamical stability predicts material can withstand strain upto 10% strain. Computed electronic structure reveals material to be indirect wide bandgap ferromagnetic material with magnetic moment 1渭B. With increase in the biaxial tensile strain the band gap increases. Furthermore, the computed magneto-thermoelectric properties predicts high Seebeck coefficient of ~ 400 渭V/K and low thermal conductivity of ~ 1.13 X 1014 W/msK in LaBrI which results high ZT of ~ 1.92 with 8% strain at 800 K with p-type doping. Thus, present study supports the fact that tensile strain on ferromagnetic LaBrI material can further enhance TE properties and making it to be a promising material for TE applications at higher temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01683v1-abstract-full').style.display = 'none'; document.getElementById('2401.01683v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, Comments are Welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13569">arXiv:2307.13569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13569">pdf</a>, <a href="https://arxiv.org/format/2307.13569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Reply to &#34;Comment on newly found Charge Density Waves in infinite layer Nickelates&#39;&#39; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13569v1-abstract-short" style="display: inline;"> Charge density waves (CDW) have been reported in NdNiO$_2$ and LaNiO$_2$ thin films grown on SrTiO$_3$ substrates using Ni-$L_3$ resonant x-ray scattering in Refs. [1-3]. In their comment [arXiv:2306.15086] on these reports, Pelliciari et al. found no evidence for a CDW in a NdNiO$_2$ film by performing fixed-momentum energy-dependent measurements. Instead, they observed a nearby non-resonant scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13569v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13569v1-abstract-full" style="display: none;"> Charge density waves (CDW) have been reported in NdNiO$_2$ and LaNiO$_2$ thin films grown on SrTiO$_3$ substrates using Ni-$L_3$ resonant x-ray scattering in Refs. [1-3]. In their comment [arXiv:2306.15086] on these reports, Pelliciari et al. found no evidence for a CDW in a NdNiO$_2$ film by performing fixed-momentum energy-dependent measurements. Instead, they observed a nearby non-resonant scattering peak, attributed to the (101) substrate reflection, made accessible at Ni-$L_3$ due to third harmonic light contamination. Here we present fixed-momentum energy-dependent resonant inelastic x-ray scattering measurements across Ni-$L_3$ on NdNiO$_2$, used in the preceding study [1]. We see intrinsic Ni-$L_3$ energy profiles at all measured \textbf{Q} values, including a strong resonance effect at $\mathbf{Q}_\mathrm{CDW} = (-1/3, 0, 0.316)$ reciprocal lattice units. Attempts to measure the (101) substrate peak using third harmonic light at Ni-$L_3$ at I21, Diamond were unfruitful. Our results clearly demonstrate the electronic origin of the scattering peak published in Ref. [1] and lack of a detectable structural component in the peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13569v1-abstract-full').style.display = 'none'; document.getElementById('2307.13569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02676">arXiv:2306.02676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02676">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43581-9">10.1038/s41467-023-43581-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium dynamics of spin-lattice coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">Roman Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+M">Mathias Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Yunpei Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Biaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leroy%2C+L">Ludmila Leroy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skoropata%2C+E">Elizabeth Skoropata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ukleev%2C+C+W+V">Chennan Wang Victor Ukleev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perren%2C+G+S">G茅rard Sylvester Perren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ssegger%2C+J">Janine D枚ssegger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+S">Sabina Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abreu%2C+E">Elsa Abreu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">Matteo Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+T">Tsuyoshi Kimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patthey%2C+L">Luc Patthey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">Elia Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H+T">Henrik Till Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+S+L">Steven Lee Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02676v1-abstract-short" style="display: inline;"> Interactions between the different degrees of freedom form the basis of many manifestations of intriguing physics in condensed matter. In this respect, quantifying the dynamics of normal modes that themselves arise from these interactions and how they interact with other excitations is of central importance. Of the different types of coupling that are often important, spin-lattice coupling is rele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02676v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02676v1-abstract-full" style="display: none;"> Interactions between the different degrees of freedom form the basis of many manifestations of intriguing physics in condensed matter. In this respect, quantifying the dynamics of normal modes that themselves arise from these interactions and how they interact with other excitations is of central importance. Of the different types of coupling that are often important, spin-lattice coupling is relevant to several sub-fields of condensed matter physics; examples include spintronics, high-TC superconductivity, and topological materials. While theories of materials where spin-lattice coupling is relevant can sometimes be used to infer the magnitude and character of this interaction, experimental approaches that can directly measure it are rare and incomplete. Here we use time-resolved X-ray diffraction to directly access the spin-lattice coupling by measuring both ultrafast atomic motion and the associated spin dynamics following the excitation of a coherent electromagnon by an intense THz pulse in a multiferroic hexaferrite. Comparing the dynamics of the two different components, one striking outcome is the different phase shifts relative to the driving field. This phase shift provides insight into the excitation process of such a coupled mode. This direct observation of combined lattice and magnetization dynamics paves the way to access the mode-selective spin-lattice coupling strength, which remains a missing fundamental parameter for ultrafast control of magnetism and is relevant to a wide variety of correlated electron physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02676v1-abstract-full').style.display = 'none'; document.getElementById('2306.02676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07637">arXiv:2301.07637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07637">pdf</a>, <a href="https://arxiv.org/format/2301.07637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202307515">10.1002/adma.202307515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stripe Symmetry of Short-range Charge Density Waves in Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H">Hannah Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07637v1-abstract-short" style="display: inline;"> The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios has been challenging for the short-range CDW in bismu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07637v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07637v1-abstract-full" style="display: none;"> The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios has been challenging for the short-range CDW in bismuth-based cuprates. Here, we employed high-resolution resonant inelastic x-ray scattering to uncover the spatial symmetry of the CDW in Bi$_2$Sr$_{2-x}$La$_{x}$CuO$_{6+未}$. Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes were found in reciprocal space. Based on Fourier transform analysis of real-space models, we interpret the results as evidence of unidirectional charge stripes, hosted by mutually 90$^\circ$-rotated anisotropic domains. Our work paves the way for a unified symmetry and microscopic description of CDW order in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07637v1-abstract-full').style.display = 'none'; document.getElementById('2301.07637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures and Supplementary Information; Under peer review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 36, 2307515 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07299">arXiv:2301.07299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07299">pdf</a>, <a href="https://arxiv.org/format/2301.07299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L121108">10.1103/PhysRevB.107.L121108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of orbital excitations from insulating to superconducting MgTi$_2$O$_4$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fucong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jie Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07299v1-abstract-short" style="display: inline;"> Spinel oxides are well-known functional materials but rarely show superconductivity. Recently, emergent superconductivity was discovered in MgTi$_2$O$_4$, which is attributed to the increase of electron doping and the suppression of orbital order. Here, we utilized Ti $L$-edge resonant inelastic X-ray scattering to study the orbital excitations in superconducting (SC) and insulating MgTi$_2$O$_4$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07299v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07299v1-abstract-full" style="display: none;"> Spinel oxides are well-known functional materials but rarely show superconductivity. Recently, emergent superconductivity was discovered in MgTi$_2$O$_4$, which is attributed to the increase of electron doping and the suppression of orbital order. Here, we utilized Ti $L$-edge resonant inelastic X-ray scattering to study the orbital excitations in superconducting (SC) and insulating MgTi$_2$O$_4$ films. We find that the spectral weight of orbital excitations is enhanced and the energy of $t_{2g}$ intra-band excitation is softened in the SC film compared to the insulating one, suggesting higher electron doping and suppressed orbital order gap in the SC sample. These observations were further supported by our multiplet calculations using minimal two-site model. Our results provide spectroscopic evidence for the competition between orbital order and superconductivity in MgTi$_2$O$_4$ and shed light on searching for novel superconductors in spinel oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07299v1-abstract-full').style.display = 'none'; document.getElementById('2301.07299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107, L121108 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15292">arXiv:2211.15292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15292">pdf</a>, <a href="https://arxiv.org/format/2211.15292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34933-y">10.1038/s41467-022-34933-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation driven near-flat band Stoner excitations in a Kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Q">Qiangwei Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15292v1-abstract-short" style="display: inline;"> Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as `flat&#39; dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15292v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15292v1-abstract-full" style="display: none;"> Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as `flat&#39; dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands are one of the important components that can result in unusual magnetic and transport behaviour. To date, characterisation of flat bands and their magnetism is scarce, hindering the design of novel materials. Here, we investigate the ferromagnetic Kagom茅 semimetal Co$_3$Sn$_2$S$_2$ using resonant inelastic X-ray scattering. Remarkably, nearly non-dispersive Stoner spin excitation peaks are observed, sharply contrasting with the featureless Stoner continuum expected in conventional ferromagnetic metals. Our band structure and dynamic spin susceptibility calculations, and thermal evolution of the excitations, confirm the nearly non-dispersive Stoner excitations as unique signatures of correlations and spin-polarized electronic flat bands in Co$_3$Sn$_2$S$_2$. These observations serve as a cornerstone for further exploration of band-induced symmetry-breaking orders in topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15292v1-abstract-full').style.display = 'none'; document.getElementById('2211.15292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, and Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 7317 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10201">arXiv:2210.10201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10201">pdf</a>, <a href="https://arxiv.org/ps/2210.10201">ps</a>, <a href="https://arxiv.org/format/2210.10201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.155109">10.1103/PhysRevB.106.155109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of a Critical Doping for Charge Order Phenomena in Bi-2212 Cuprates via RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishida%2C+S">Shigeyuki Ishida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10201v1-abstract-short" style="display: inline;"> Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10201v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10201v1-abstract-full" style="display: none;"> Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducting state. To gain more insight about the interplay between CO and superconductivity, here we investigate the doping dependence of this phenomenon throughout the Bi-2212 cuprate phase diagram using resonant inelastic x-ray scattering (RIXS) at the Cu L3- edge. As doping increases, the CO wavevector decreases, saturating at a commensurate value of 0.25 r.l.u. beyond a characteristic doping pc, where the correlation length becomes shorter than the apparent periodicity (4a0). Such behavior is indicative of the fluctuating nature of the CO; and the proliferation of CO excitations in the superconducting state also appears strongest at pc, consistent with expected behavior at a CO QCP. Intriguingly, pc appears to be near optimal doping, where the superconducting transition temperature Tc is maximal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10201v1-abstract-full').style.display = 'none'; document.getElementById('2210.10201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a submitted version of the manuscript. The revised manuscript is now published on Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 155109 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13918">arXiv:2208.13918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13918">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42961-5">10.1038/s41467-023-42961-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of quantum criticality in cuprates by charge density fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">R. Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caprara%2C+S">S. Caprara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camisa%2C+P">P. Camisa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauch%2C+T">T. Bauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y+Y">Y. Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Castro%2C+C">C. Di Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grilli%2C+M">M. Grilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lombardi%2C+F">F. Lombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">L. Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13918v3-abstract-short" style="display: inline;"> The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13918v3-abstract-full').style.display = 'inline'; document.getElementById('2208.13918v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13918v3-abstract-full" style="display: none;"> The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to $p$=0.22). At $p^*\approx$0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy $螖$ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13918v3-abstract-full').style.display = 'none'; document.getElementById('2208.13918v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 4 figures, 9 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 7198 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03198">arXiv:2208.03198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03198">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38341-8">10.1038/s41467-023-38341-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel magnetic excitations beyond the single- and double-magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Elnaggar%2C+H">Hebatalla Elnaggar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03198v1-abstract-short" style="display: inline;"> Conventional wisdom suggests that one photon that carries one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (delta Ms = +-1) at most. This would imply that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Here we examine the fundamental limit of the photon-driven transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03198v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03198v1-abstract-full" style="display: none;"> Conventional wisdom suggests that one photon that carries one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (delta Ms = +-1) at most. This would imply that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Here we examine the fundamental limit of the photon-driven transport of angular momentum by studying the magnon spectrum of 伪-Fe2O3 using resonant inelastic x-ray scattering. We discovered a cascade of higher-rank magnons carrying double, triple, quadruple, and quintuple the spin angular momentum of a single-magnon. Guided by theoretical calculations, we reveal how a two-photons scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03198v1-abstract-full').style.display = 'none'; document.getElementById('2208.03198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work presented as an invited talk by Hebatalla Elnaggar at the IXS conference 2021 https://www.bnl.gov/rixsrexs2021/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14083">arXiv:2206.14083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14083">pdf</a>, <a href="https://arxiv.org/format/2206.14083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.047001">10.1103/PhysRevLett.129.047001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gapped collective charge excitations and interlayer hopping in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coppola%2C+N">N. Coppola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betto%2C+D">D. Betto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falter%2C+C">C. Falter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sacco%2C+C">C. Sacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maritato%2C+L">L. Maritato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orgiani%2C+P">P. Orgiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H+I">H. I. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galdi%2C+A">A. Galdi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14083v1-abstract-short" style="display: inline;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14083v1-abstract-full" style="display: none;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered $t$-$J$-$V$ model calculations. A similar analysis performed on recent RIXS data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping $t_z$. Our work signifies the three-dimensionality of the charge dynamics in layered cuprates and provides a new method to determine $t_z$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'none'; document.getElementById('2206.14083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, includes Supplemental Material. Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 047001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11692">arXiv:2112.11692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.11692">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Multiferroic-enabled magnetic exciton in 2D quantum entangled van der Waals antiferromagnet NiI2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+S">Suhan Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Youjin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+H">Jae Ha Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+H">Beom Hyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+W">Woongki Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+H">Hwiin Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sudong Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+Y">Young-Woo Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeongdo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+W">Woo-Suk Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jae-Hoon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+S">Jong Seok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+H">Hyeonsik Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+H">Jae Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11692v1-abstract-short" style="display: inline;"> Matter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction. Here, we report that the broken inversion symmetry of multiferroicity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11692v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11692v1-abstract-full" style="display: none;"> Matter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction. Here, we report that the broken inversion symmetry of multiferroicity can act as an external knob enabling the magnetic exciton in van der Waals antiferromagnet NiI2. We further discover that this magnetic exciton arises from a transition between Zhang-Rice-triplet and Zhang-Rice-singlet&#39;s fundamentally quantum entangled states. This quantum entanglement produces an ultra-sharp optical exciton peak at 1.384 eV with a 5 meV linewidth. Our work demonstrates that NiI2 is two-dimensional magnetically ordered with an intrinsically quantum entangled ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11692v1-abstract-full').style.display = 'none'; document.getElementById('2112.11692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures. Accepted for publication in Advanced Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04440">arXiv:2112.04440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04440">pdf</a>, <a href="https://arxiv.org/format/2112.04440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01330-1">10.1038/s41563-022-01330-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge density waves in infinite-layer NdNiO$_2$ nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04440v2-abstract-short" style="display: inline;"> In materials science, much effort has been devoted to reproduce superconductivity in chemical compositions analogous to cuprate superconductors since their discovery over thirty years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest infi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04440v2-abstract-full').style.display = 'inline'; document.getElementById('2112.04440v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04440v2-abstract-full" style="display: none;"> In materials science, much effort has been devoted to reproduce superconductivity in chemical compositions analogous to cuprate superconductors since their discovery over thirty years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest infinite-layer nickelates have a propensity to various symmetry-breaking orders that populate the cuprates. Here we report the observation of charge density waves (CDWs) in infinite-layer NdNiO$_2$ films using Ni-$L_3$ resonant x-ray scattering. Remarkably, CDWs form in Nd 5$d$ and Ni 3$d$ orbitals at the same commensurate wavevector $(0.333, 0)\;r.l.u.$, with non-negligible out-of-plane dependence, and an in-plane correlation length up to $\sim$ 60 Angstrom. Spectroscopic studies reveal a strong connection between CDWs and the Nd 5$d$ - Ni 3$d$ orbital hybridisation. Upon entering the superconducting state at 20\% Sr doping, the CDWs disappear. Our work demonstrates the existence of CDWs in infinite-layer nickelates with a multi-orbital character distinct from cuprates, which establishes their low-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04440v2-abstract-full').style.display = 'none'; document.getElementById('2112.04440v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, and Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02484">arXiv:2112.02484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01660-6">10.1038/s41567-022-01660-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Broken Translational Symmetry State in an Infinite-Layer Nickelate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+C">Cheng-Tai Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sang-Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02484v1-abstract-short" style="display: inline;"> A defining signature of strongly correlated electronic systems is the existence of competing phases with similar ground state energies, resulting in a rich phase diagram. While in the recently discovered nickelate superconductors, a high antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations, signatures of competing phases have not yet be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02484v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02484v1-abstract-full" style="display: none;"> A defining signature of strongly correlated electronic systems is the existence of competing phases with similar ground state energies, resulting in a rich phase diagram. While in the recently discovered nickelate superconductors, a high antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations, signatures of competing phases have not yet been observed. Here, we uncover a charge order (CO) in infinite-layer nickelates La1-xSrxNiO2 using resonant x-ray scattering across the Ni L-edge. In the parent compound, the CO arranges along the Ni-O bond direction with an incommensurate wave vector (0.344+/-0.002, 0) r.l.u., distinct from the stripe order in other nickelates which propagates along a direction 45 degree to the Ni-O bond. The CO resonance profile indicates that CO originates from the Ni 3d states and induces a parasitic charge modulation of La electrons. Upon doping, the CO diminishes and the ordering wave vector shifts toward a commensurate value of 1/3 r.l.u., indicating that the CO likely arises from strong correlation effects and not from Fermi surface nesting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02484v1-abstract-full').style.display = 'none'; document.getElementById('2112.02484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 18, 869 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05533">arXiv:2111.05533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05533">pdf</a>, <a href="https://arxiv.org/format/2111.05533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.115105">10.1103/PhysRevB.105.115105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping-dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrano%2C+M">Matteo Mitrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Luca%2C+G+M">Gabriella Maria De Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">Andi Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salluzzo%2C+M">Marco Salluzzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05533v1-abstract-short" style="display: inline;"> While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-$T_c$ superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen $K$-edge, we studied the EPC in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) and Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-未}$ (NBCO) at different doping levels ranging from heavily underdoped (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05533v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05533v1-abstract-full" style="display: none;"> While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-$T_c$ superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen $K$-edge, we studied the EPC in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) and Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-未}$ (NBCO) at different doping levels ranging from heavily underdoped ($p =0.07$) to overdoped ($p=0.21$). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO$_3$ chains and the CuO$_2$ planes. Combining the results from the two families, we find the EPC strength decreases with doping at $\mathbf{q_\parallel}=(-0.25, 0)$ r.l.u., but has a non-monotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave (CDW) excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in $d$-wave pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05533v1-abstract-full').style.display = 'none'; document.getElementById('2111.05533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 115105 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03625">arXiv:2111.03625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03625">pdf</a>, <a href="https://arxiv.org/format/2111.03625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30065-5">10.1038/s41467-022-30065-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nocera%2C+A">A. Nocera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03625v1-abstract-short" style="display: inline;"> The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin $\mathbf{S} \boldsymbol{\ge} \mathbf{1}$. Unfortunately, sinc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03625v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03625v1-abstract-full" style="display: none;"> The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin $\mathbf{S} \boldsymbol{\ge} \mathbf{1}$. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic $\mathbf{S}\boldsymbol{=}\mathbf{1}$ Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic $\mathbf{S}\boldsymbol{=}\mathbf{1}$ Haldane chain material Y$_\mathbf{2}$BaNiO$_\mathbf{5}$ using Ni $\mathbf{L_3}$-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y$_\mathbf{2}$BaNiO$_\mathbf{5}$ show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03625v1-abstract-full').style.display = 'none'; document.getElementById('2111.03625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 2327 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09572">arXiv:2110.09572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09572">pdf</a>, <a href="https://arxiv.org/format/2110.09572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.041052">10.1103/PhysRevX.11.041052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geondzhian%2C+A">A. Geondzhian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pakpour-Tabrizi%2C+A+C">A. C. Pakpour-Tabrizi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Howard%2C+C+A">C. A. Howard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+S+G">S. G. Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicolaou%2C+A">A. Nicolaou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jackman%2C+R+B">R. B. Jackman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">K. Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09572v2-abstract-short" style="display: inline;"> Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (e-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09572v2-abstract-full').style.display = 'inline'; document.getElementById('2110.09572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09572v2-abstract-full" style="display: none;"> Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (e-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We performed carbon $K$-edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the $蟺^*$ and $蟽^*$ electronic states. Our high-resolution data reveals detailed structure in the multi-phonon RIXS features that directly encodes the momentum dependence of the e-ph interaction strength. We develop a Green&#39;s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the e-ph interaction through the Brillouin zone, being concentrated at the $螕$ and $K$ points for the $蟺^*$ states, while being significant at all momenta for the $蟽^*$ states. Our results advance the interpretation of phonon excitations in RIXS, and extend its applicability as a probe of e-ph interactions to a new range of out-of-equilibrium situations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09572v2-abstract-full').style.display = 'none'; document.getElementById('2110.09572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures plus supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 041052 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03186">arXiv:2110.03186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03186">pdf</a>, <a href="https://arxiv.org/format/2110.03186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L060406">10.1103/PhysRevB.106.L060406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unraveling higher-order corrections in the spin dynamics of RIXS spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+U">Umesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saint-Martin%2C+R">R. Saint-Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Revcolevschi%2C+A">A. Revcolevschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steve Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03186v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) is an evolving tool for investigating spin dynamics of strongly correlated materials, which complements inelastic neutron scattering. Both techniques have found that non-spin-conserving (NSC) excitations in quasi-1D isotropic quantum antiferromagnets are confined to the two-spinon phase space. Outside this phase space, only spin-conserving (SC) four-spino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03186v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03186v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) is an evolving tool for investigating spin dynamics of strongly correlated materials, which complements inelastic neutron scattering. Both techniques have found that non-spin-conserving (NSC) excitations in quasi-1D isotropic quantum antiferromagnets are confined to the two-spinon phase space. Outside this phase space, only spin-conserving (SC) four-spinon excitations have been detected using O $K$-edge RIXS. Here, we investigate SrCuO$_2$ and find four-spinon excitations outside the two-spinon phase space at both O $K$- and Cu $L_3$-edges. Using the Kramers-Heisenberg formalism, we demonstrate that the four-spinon excitations arise from both SC and NSC processes at Cu $L_3$-edge. We show that these new excitations only appear in the second-order terms of the ultra-fast core-hole lifetime expansion and arise from long-range spin fluctuations. These results thus open a new window to the spin dynamics of quantum magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03186v1-abstract-full').style.display = 'none'; document.getElementById('2110.03186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08465">arXiv:2106.08465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08465">pdf</a>, <a href="https://arxiv.org/format/2106.08465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.235159">10.1103/PhysRevB.103.235159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the electronic structure in Ta$_2$NiSe$_5$ across the structural transition revealed by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+M">Matteo Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+1">1Jung-ho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yavas%2C+H">Hasan Yavas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A">Ayman Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kejin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08465v1-abstract-short" style="display: inline;"> We utilized high-energy-resolution resonant inelastic X-ray scattering (RIXS) at both the Ta and Ni $L_3$-edges to map out element-specific particle-hole excitations in Ta$_2$NiSe$_5$ across the phase transition. Our results reveal a momentum dependent gap-like feature in the low energy spectrum, which agrees well with the band gap in element-specific joint density of states calculations based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08465v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08465v1-abstract-full" style="display: none;"> We utilized high-energy-resolution resonant inelastic X-ray scattering (RIXS) at both the Ta and Ni $L_3$-edges to map out element-specific particle-hole excitations in Ta$_2$NiSe$_5$ across the phase transition. Our results reveal a momentum dependent gap-like feature in the low energy spectrum, which agrees well with the band gap in element-specific joint density of states calculations based on ab initio estimates of the electronic structure in both the low temperature monoclinic and the high temperature orthorhombic structure. Below $T_c$, the RIXS energy-momentum map shows a minimal gap at the Brillouin zone center ($\sim$ 0.16 eV), confirming that Ta$_2$NiSe$_5$ possesses a direct band gap in its low temperature ground state. However, inside the gap, no signature of anticipated collective modes with an energy scale comparable to the gap size can be identified. Upon increasing the temperature to above $T_c$, whereas the gap at the zone center closes, the RIXS map at finite momenta still possesses the gross features of the low temperature map, suggesting a substantial mixing between the Ta and Ni orbits in the conduction and valence bands, which does not change substantially across the phase transition. Our experimental observations and comparison to the theoretical calculations lend further support that the phase transition and the corresponding gap opening in Ta$_2$NiSe$_5$ is largely structural by nature with possible minor contribution from the putative exciton condensate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08465v1-abstract-full').style.display = 'none'; document.getElementById('2106.08465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript has been accepted by Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 235159 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11300">arXiv:2105.11300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.11300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abd7726">10.1126/science.abd7726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic excitations in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D+F">D. F. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">E. M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11300v1-abstract-short" style="display: inline;"> The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11300v1-abstract-full').style.display = 'inline'; document.getElementById('2105.11300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11300v1-abstract-full" style="display: none;"> The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 meV, reminiscent of strongly-coupled, antiferromagnetically aligned spins on a square lattice, despite a lack of evidence for long range magnetic order. The significant damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, while the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11300v1-abstract-full').style.display = 'none'; document.getElementById('2105.11300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the initially submitted version before revising for reviewers&#39; comments. The peer-reviewed version has been accepted at Science and will be published soon</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 373, 213-216 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08862">arXiv:2105.08862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.08862">pdf</a>, <a href="https://arxiv.org/format/2105.08862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.023108">10.1103/PhysRevResearch.4.023108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Transfer and $dd$ excitations in AgF$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bachar%2C+N">Nimrod Bachar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koteras%2C+K">Kacper Koteras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawraczynski%2C+J">Jakub Gawraczynski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trzcinski%2C+W">Waldemar Trzcinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paszula%2C+J">J贸zef Paszula</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piombo%2C+R">Riccardo Piombo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+P">Paolo Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazej%2C+Z">Zoran Mazej</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lorenzana%2C+J">Jos茅 Lorenzana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Marel%2C+D">Dirk van der Marel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grochala%2C+W">Wojciech Grochala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08862v3-abstract-short" style="display: inline;"> Charge transfer (CT) insulators are the parent phase of a large group of today&#39;s unconventional high-temperature superconductors. Here we study experimentally and theoretically the interband excitations of the CT insulator silver fluoride AgF$_2$, which has been proposed as an excellent analogue of oxocuprates. Optical conductivity and resonant inelastic X-ray scattering (RIXS) on AgF$_2$ polycrys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08862v3-abstract-full').style.display = 'inline'; document.getElementById('2105.08862v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08862v3-abstract-full" style="display: none;"> Charge transfer (CT) insulators are the parent phase of a large group of today&#39;s unconventional high-temperature superconductors. Here we study experimentally and theoretically the interband excitations of the CT insulator silver fluoride AgF$_2$, which has been proposed as an excellent analogue of oxocuprates. Optical conductivity and resonant inelastic X-ray scattering (RIXS) on AgF$_2$ polycrystalline sample show a close similarity with that measured on undoped La$_2$CuO$_4$. While the former shows a CT gap $\sim$3.4 eV, larger than in the cuprate, $dd$ excitations are nearly at the same energy in the two materials. DFT and exact diagonalization cluster computations of the multiplet spectra show that AgF$_2$ is more covalent than the cuprate, in spite of the larger fundamental gap. Furthermore, we show that AgF$_2$ is at the verge of a charge transfer instability. The overall resemblance of our data on AgF$_2$ to those published previously on La$_2$CuO$_4$ suggests that the underlying CT insulator physics is the same, while AgF$_2$ could also benefit from a proximity to a charge density wave phase as in BaBiO$_3$. Therefore, our work provides a compelling support to the future use of fluoroargentates for materials&#39; engineering of novel high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08862v3-abstract-full').style.display = 'none'; document.getElementById('2105.08862v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 Figures (including SI)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07772">arXiv:2104.07772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.07772">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03383">10.1021/acs.nanolett.2c03383 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Active Magnetoplasmonics with Transparent Conductive Oxide Nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gabbani%2C+A">Alessio Gabbani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangregorio%2C+C">Claudio Sangregorio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tandon%2C+B">Bharat Tandon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Angshuman Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurioli%2C+M">Massimo Gurioli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pineider%2C+F">Francesco Pineider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07772v1-abstract-short" style="display: inline;"> Magnetoplasmonics is highly promising to devise active optical elements: modulating the plasmon resonance condition with magnetic field can boost the performance of refractometric sensors and nanophotonic optical devices. Nevertheless, real life applications are hampered by the magnetoplasmonic trilemma: 1) a good plasmonic metal has sharp optical resonances but low magneto-optical response; 2) a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07772v1-abstract-full').style.display = 'inline'; document.getElementById('2104.07772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07772v1-abstract-full" style="display: none;"> Magnetoplasmonics is highly promising to devise active optical elements: modulating the plasmon resonance condition with magnetic field can boost the performance of refractometric sensors and nanophotonic optical devices. Nevertheless, real life applications are hampered by the magnetoplasmonic trilemma: 1) a good plasmonic metal has sharp optical resonances but low magneto-optical response; 2) a magnetic metal has strong magneto-optical response but a very broad plasmonic resonance; 3) mixing the two components degrades the quality of both features. To overcome the trilemma, we use a different class of materials, transparent conductive oxide nanocrystals (NCs) with plasmonic response in the near infrared. Although non-magnetic, they combine a large cyclotron frequency (due to small electron effective mass) with sharp plasmonic resonances. We benchmark the concept with F- and In- doped CdO (FICO) and Sn-doped In2O3 (ITO) NCs to boost the magneto-optical Faraday rotation and ellipticity, reaching the highest magneto-optical response for a non-magnetic plasmonic material, and exceeding the performance of state-of-the-art ferromagnetic nanostructures. The magnetoplasmonic response of these NCs was rationalized with analytical model based on the excitation of circular magnetoplasmonic modes. Finally, proof of concept experiments demonstrated the superior performance of FICO NCs with respect to current state of the art in magnetoplasmonic refractometric sensing, approaching the sensitivity of leading localized plasmon refractometric methods with the advantage of not requiring complex curve fitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07772v1-abstract-full').style.display = 'none'; document.getElementById('2104.07772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 9 pages, 3 figure. Supporting information: 8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10503">arXiv:2012.10503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.10503">pdf</a>, <a href="https://arxiv.org/format/2012.10503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abg7394">10.1126/sciadv.abg7394 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Order Lock-in by Electron-Phonon Coupling in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Arx%2C+K">K. von Arx</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horio%2C+M">M. Horio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukkattukavil%2C+D+J">D. John Mukkattukavil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassa%2C+Y">Y. Sassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10503v1-abstract-short" style="display: inline;"> We report an ultrahigh resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RI&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10503v1-abstract-full').style.display = 'inline'; document.getElementById('2012.10503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10503v1-abstract-full" style="display: none;"> We report an ultrahigh resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that in addition to electronic correlations, electron-phonon coupling contributes significantly to the emergence of long-range charge-stripe order in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10503v1-abstract-full').style.display = 'none'; document.getElementById('2012.10503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental Material available on request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 7, eabg7394 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05029">arXiv:2011.05029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05029">pdf</a>, <a href="https://arxiv.org/format/2011.05029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30918-z">10.1038/s41467-022-30918-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paramagnons and high-temperature superconductivity in mercury-based cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lichen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+G">Guanhong He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zichen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">Matteo Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">Matthieu Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05029v1-abstract-short" style="display: inline;"> We present a comparative study of magnetic excitations in the first two Ruddlesden-Popper members of the Hg-family of high-temperature superconducting cuprates, which are chemically nearly identical and have the highest critical temperature ($T_\mathrm{c}$) among all cuprate families. Our inelastic photon scattering experiments reveal that the two compounds&#39; paramagnon spectra are nearly identical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05029v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05029v1-abstract-full" style="display: none;"> We present a comparative study of magnetic excitations in the first two Ruddlesden-Popper members of the Hg-family of high-temperature superconducting cuprates, which are chemically nearly identical and have the highest critical temperature ($T_\mathrm{c}$) among all cuprate families. Our inelastic photon scattering experiments reveal that the two compounds&#39; paramagnon spectra are nearly identical apart from an energy scale factor of $\sim130\%$ that matches the ratio of $T_\mathrm{c}$&#39;s, as expected in magnetic Cooper pairing theories. By relating our observations to other cuprates, we infer that the strength of magnetic interactions determines how high $T_\mathrm{c}$ can reach. Our finding can be viewed as a magnetic analogue of the isotope effect, thus firmly supporting models of magnetically mediated high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05029v1-abstract-full').style.display = 'none'; document.getElementById('2011.05029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, SM available via link in pdf</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 3163 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00595">arXiv:2011.00595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00595">pdf</a>, <a href="https://arxiv.org/format/2011.00595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L220505">10.1103/PhysRevB.104.L220505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital and Spin Character of Doped Carriers in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00595v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon dopin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00595v1-abstract-full').style.display = 'inline'; document.getElementById('2011.00595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00595v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon doping, a higher energy feature in Ni $L_3$ edge XAS develops in addition to the main absorption peak. By comparing our data to atomic multiplet calculations including $D_{4h}$ crystal field, the doping induced feature is consistent with a $d^8$ spin singlet state, in which doped holes reside in the $d_{x^2-y^2}$ orbitals, similar to doped single band Hubbard models. This is further supported by orbital excitations observed in RIXS spectra, which soften upon doping, corroborating with Fermi level shift associated with increasing holes in the $d_{x^2-y^2}$ orbital. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00595v1-abstract-full').style.display = 'none'; document.getElementById('2011.00595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Supplemental material included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12289">arXiv:2010.12289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12289">pdf</a>, <a href="https://arxiv.org/format/2010.12289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.106401">10.1103/PhysRevLett.126.106401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unraveling the orbital physics in a canonical orbital system KCuF$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Lei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianshi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlfeld%2C+K">Krzysztof Wohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12289v2-abstract-short" style="display: inline;"> We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF$_3$. Using the Cu $L_3$-edge resonant inelastic X-ray scattering we show that the non-dispersive high-energy peaks result from the Cu$^{2+}$ $dd$ orbital excitations. These high-energy modes show good agreement with the {\it ab-initio} quantum chemistry calculation based on a single clust&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12289v2-abstract-full').style.display = 'inline'; document.getElementById('2010.12289v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12289v2-abstract-full" style="display: none;"> We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF$_3$. Using the Cu $L_3$-edge resonant inelastic X-ray scattering we show that the non-dispersive high-energy peaks result from the Cu$^{2+}$ $dd$ orbital excitations. These high-energy modes show good agreement with the {\it ab-initio} quantum chemistry calculation based on a single cluster, indicating that the $dd$ excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Mueller Ansatz calculations. The localized $dd$ excitations and the observation of the strongly dispersive magnetic excitations suggest that orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong {\it local} Jahn-Teller effect in KCuF$_3$, which predominantly drives orbital ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12289v2-abstract-full').style.display = 'none'; document.getElementById('2010.12289v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 106401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12925">arXiv:2009.12925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12925">pdf</a>, <a href="https://arxiv.org/format/2009.12925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.224427">10.1103/PhysRevB.103.224427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical spin susceptibility in La2CuO4 studied by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Headings%2C+N+E">N. E. Headings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12925v1-abstract-short" style="display: inline;"> Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than inelastic neutron scattering (INS). Here we report high-resolution RIXS measurements of magnetic excitations of La2CuO4, the antiferromagnetic parent o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12925v1-abstract-full').style.display = 'inline'; document.getElementById('2009.12925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12925v1-abstract-full" style="display: none;"> Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than inelastic neutron scattering (INS). Here we report high-resolution RIXS measurements of magnetic excitations of La2CuO4, the antiferromagnetic parent of one system of high-temperature superconductors. At high energies (~2 eV), the RIXS spectra show angular-dependent dd orbital excitations which are found to be in good agreement with single-site multiplet calculations. At lower energies (&lt;0.3 eV), we show that the wavevector-dependent RIXS intensities are proportional to the product of the single-ion spin-flip cross section and the dynamical susceptibility of the spin-wave excitations. When the spin-flip crosssection is dividing out, the RIXS magnon intensities show a remarkable resemblance to INS data. Our results show that RIXS is a quantitative probe the dynamical spin susceptibility in cuprate and therefore should be used for quantitative investigation of other correlated electron materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12925v1-abstract-full').style.display = 'none'; document.getElementById('2009.12925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 224427 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09618">arXiv:2008.09618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09618">pdf</a>, <a href="https://arxiv.org/format/2008.09618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-23317-3">10.1038/s41467-021-23317-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of spin excitations from bulk to monolayer FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karakuzu%2C+S">S. Karakuzu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Q. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">R. Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">T. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">R. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">D. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maier%2C+T+A">T. A. Maier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09618v2-abstract-short" style="display: inline;"> The discovery of enhanced superconductivity (SC) in FeSe films grown on SrTiO3 (FeSe/STO) has revitalized the field of Fe-based superconductors. In the ultrathin limit, the superconducting transition temperature Tc is increased by almost an order of magnitude, raising new questions on the pairing mechanism. As in other unconventional superconductors, antiferromagnetic spin fluctuations have been p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09618v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09618v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09618v2-abstract-full" style="display: none;"> The discovery of enhanced superconductivity (SC) in FeSe films grown on SrTiO3 (FeSe/STO) has revitalized the field of Fe-based superconductors. In the ultrathin limit, the superconducting transition temperature Tc is increased by almost an order of magnitude, raising new questions on the pairing mechanism. As in other unconventional superconductors, antiferromagnetic spin fluctuations have been proposed as a candidate to mediate SC in this system. Thus, it is essential to study the evolution of the spin dynamics of FeSe in the ultrathin limit to elucidate their relationship with superconductivity. Here, we investigate and compare the spin excitations in bulk and monolayer FeSe grown on STO using high-resolution resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to the bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems. The present study reveals a remarkable reconfiguration of spin excitations in FeSe/STO, which is essential to understand the role of spin fluctuations in the pairing mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09618v2-abstract-full').style.display = 'none'; document.getElementById('2008.09618v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08209">arXiv:2008.08209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.08209">pdf</a>, <a href="https://arxiv.org/format/2008.08209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.087001">10.1103/PhysRevLett.126.087001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Superexchange in a $d^{9-未}$ Nickelate Revealed by Resonant Inelastic X-Ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J+Q">J. Q. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arribi%2C+P+V">P. Villar Arribi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">J. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+S+G">S. G. Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">I. Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeland%2C+J+W">J. W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norman%2C+M+R">M. R. Norman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08209v2-abstract-short" style="display: inline;"> The discovery of superconductivity in a $d^{9-未}$ nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08209v2-abstract-full').style.display = 'inline'; document.getElementById('2008.08209v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08209v2-abstract-full" style="display: none;"> The discovery of superconductivity in a $d^{9-未}$ nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced trilayer nickelate $d^{9-1/3}$ La4Ni3O8 and associated theoretical modeling. A magnon energy scale of ~80 meV resulting from a nearest-neighbor magnetic exchange of $J = 69(4)4$ meV is observed, proving that $d^{9-未}$ nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates, and suggests that they represent a promising route towards higher-temperature nickelate superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08209v2-abstract-full').style.display = 'none'; document.getElementById('2008.08209v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages not including supplmentary material; To appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 087001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07313">arXiv:2007.07313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07313">pdf</a>, <a href="https://arxiv.org/format/2007.07313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.257002">10.1103/PhysRevLett.125.257002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">M. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bejas%2C+M">Matias Bejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamase%2C+H">Hiroyuki Yamase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petsch%2C+A+N">A. N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">D. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">Andres Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07313v2-abstract-short" style="display: inline;"> High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07313v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07313v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07313v2-abstract-full" style="display: none;"> High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07313v2-abstract-full').style.display = 'none'; document.getElementById('2007.07313v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures + Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 257002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.02464">arXiv:2007.02464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.02464">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0993-7">10.1038/s41567-020-0993-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic Evidence for Charge Order Melting via Quantum Fluctuations in a Cuprate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H">H. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nosarzewski%2C+B">B. Nosarzewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">D. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.02464v1-abstract-short" style="display: inline;"> Copper-oxide high TC superconductors possess a number of exotic orders co-existing with or proximal to superconductivity, whose quantum fluctuations may account for the unusual behaviors of the normal state, even affecting superconductivity. Yet, spectroscopic evidence about such quantum fluctuations remains elusive. Here, we reveal spectroscopic fingerprints for such fluctuations associated with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02464v1-abstract-full').style.display = 'inline'; document.getElementById('2007.02464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.02464v1-abstract-full" style="display: none;"> Copper-oxide high TC superconductors possess a number of exotic orders co-existing with or proximal to superconductivity, whose quantum fluctuations may account for the unusual behaviors of the normal state, even affecting superconductivity. Yet, spectroscopic evidence about such quantum fluctuations remains elusive. Here, we reveal spectroscopic fingerprints for such fluctuations associated with a charge order (CO) in nearly optimally-doped Bi2Sr2CaCu2O8+d, using resonant inelastic x-ray scattering (RIXS). In the superconducting state, while the quasi-elastic CO signal decreases with temperature, the interplay between CO fluctuations and bond-stretching phonons in the form of a Fano-like interference paradoxically increases, incompatible with expectations for competing orders. Invoking general principles, we argue that this behavior reflects the properties of a dissipative system near an order-disorder quantum critical point, where the dissipation varies with the opening of the pseudogap and superconducting gap at low temperatures, leading to the proliferation of quantum critical fluctuations which melt CO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02464v1-abstract-full').style.display = 'none'; document.getElementById('2007.02464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, Supplementary Information included. This is the original submitted manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 17, 53-57 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14912">arXiv:2006.14912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.14912">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2001755117">10.1073/pnas.2001755117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-orbital charge density wave excitations and concomitant phonon anomalies in Bi$_2$Sr$_2$LaCuO$_{6+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H">Hannah Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14912v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) are ubiquitous in under-doped cuprate superconductors. As a modulation of the valence electron density, CDWs in hole-doped cuprates possess both Cu-3d and O-2p orbital character owing to the strong hybridization of these orbitals near the Fermi level. Here, we investigate under-doped Bi$_2$Sr$_{1.4}$La$_{0.6}$CuO$_{6+未}$ using resonant inelastic X-ray scattering (RIXS)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14912v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14912v1-abstract-full" style="display: none;"> Charge density waves (CDWs) are ubiquitous in under-doped cuprate superconductors. As a modulation of the valence electron density, CDWs in hole-doped cuprates possess both Cu-3d and O-2p orbital character owing to the strong hybridization of these orbitals near the Fermi level. Here, we investigate under-doped Bi$_2$Sr$_{1.4}$La$_{0.6}$CuO$_{6+未}$ using resonant inelastic X-ray scattering (RIXS) and find that a short-range CDW exists at both Cu and O sublattices in the copper-oxide (CuO2) planes with a comparable periodicity and correlation length. Furthermore, we uncover bond-stretching and bond-buckling phonon anomalies concomitant to the CDWs. Comparing to slightly over-doped Bi$_2$Sr$_{1.8}$La$_{0.2}$CuO$_{6+未}$, where neither CDWs nor phonon anomalies appear, we highlight that a sharp intensity anomaly is induced in the proximity of the CDW wavevector (QCDW) for the bond-buckling phonon, in concert with the diffused intensity enhancement of the bond-stretching phonon at wavevectors much greater than QCDW. Our results provide a comprehensive picture of the quasi-static CDWs, their dispersive excitations, and associated electron-phonon anomalies, which are key for understanding the competing electronic instabilities in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14912v1-abstract-full').style.display = 'none'; document.getElementById('2006.14912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages + Supplementary Information. Proc. Natl Acad. Sci. USA, (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS July 14, 2020 117 (28) 16219-16225 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11651">arXiv:2004.11651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11651">pdf</a>, <a href="https://arxiv.org/format/2004.11651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physc.2020.1353810">10.1016/j.physc.2020.1353810 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystalline and magnetic structure of Ba2CuO3+未 investigated by x-ray absorption spectroscopy and resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fumagalli%2C+R">Roberto Fumagalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">Andrew C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betto%2C+D">Davide Betto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11651v1-abstract-short" style="display: inline;"> Motivated by the recent synthesis of Ba$_2$CuO$_{3+未}$ (BCO), a high temperature superconducting cuprate with putative $d_{3z^2-r^2}$ ground state symmetry, we investigated its electronic structure by means of Cu $L_3$ x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) at the Cu $L_3$ edge on a polycrystalline sample. We show that the XAS profile of BCO is characterised by two p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11651v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11651v1-abstract-full" style="display: none;"> Motivated by the recent synthesis of Ba$_2$CuO$_{3+未}$ (BCO), a high temperature superconducting cuprate with putative $d_{3z^2-r^2}$ ground state symmetry, we investigated its electronic structure by means of Cu $L_3$ x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) at the Cu $L_3$ edge on a polycrystalline sample. We show that the XAS profile of BCO is characterised by two peaks associated to inequivalent Cu sites, and that its RIXS response features a single, sharp peak associated to crystal-field excitations. We argue that these observations are only partially compatible with the previously proposed crystal structure of BCO. Based on our spectroscopic results and on previously published powder diffraction measurements, we propose a crystalline structure characterized by two inequivalent Cu sites located at alternated planes along the $c$ axis: nominally trivalent Cu(1) belonging to very short Cu-O chains, and divalent Cu(2) in the oxygen deficient CuO$_ {1.5}$ planes. We also analyze the low-energy region of the RIXS spectra to estimate the magnitude of the magnetic interactions in BCO and find that in-plane nearest neighbor superexchange exceeds 120~meV, similarly to that of other layered cuprates. Although these results do not support the pure $d_{3z^2-r^2}$ ground state scenario, they hint at a significant departure from the common quasi-2D electronic structure of superconducting cuprates of pure $d_{x^2-y^2}$ symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11651v1-abstract-full').style.display = 'none'; document.getElementById('2004.11651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.10312">arXiv:2001.10312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.10312">pdf</a>, <a href="https://arxiv.org/format/2001.10312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.207005">10.1103/PhysRevLett.124.207005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of the charge-density wave excitations in cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=lin%2C+J+Q">J. Q. lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">I. Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oda%2C+M">M. Oda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurosawa%2C+K">K. Kurosawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Momono%2C+N">N. Momono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">K. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.10312v1-abstract-short" style="display: inline;"> The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10312v1-abstract-full').style.display = 'inline'; document.getElementById('2001.10312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.10312v1-abstract-full" style="display: none;"> The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x = 0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross-section for phonons and CDW-induced phonon-softening. We interpret our results in terms of a CDW that is generated by strong correlations and a phonon response that is driven by the CDW-induced modification of the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10312v1-abstract-full').style.display = 'none'; document.getElementById('2001.10312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages including references in long format</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 207005 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07545">arXiv:1911.07545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07545">pdf</a>, <a href="https://arxiv.org/format/1911.07545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.224303">10.1103/PhysRevB.100.224303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution resonant inelastic x-ray scattering study of the electron-phonon coupling in honeycomb $伪$-Li$_2$IrO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">A. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pietsch%2C+I+-">I. -M. Pietsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesche%2C+A">A. Jesche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">R. Coldea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07545v2-abstract-short" style="display: inline;"> The excitations in honeycomb $伪$-Li$_2$IrO$_3$ have been investigated with high-resolution resonant inelastic x-ray scattering (RIXS) at the O K edge. The low-energy response is dominated by a fully resolved ladder of excitations, which we interpret as being due to multi-phonon processes in the presence of strong electron-phonon coupling (EPC). At higher energies, the orbital excitations are shown&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07545v2-abstract-full').style.display = 'inline'; document.getElementById('1911.07545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07545v2-abstract-full" style="display: none;"> The excitations in honeycomb $伪$-Li$_2$IrO$_3$ have been investigated with high-resolution resonant inelastic x-ray scattering (RIXS) at the O K edge. The low-energy response is dominated by a fully resolved ladder of excitations, which we interpret as being due to multi-phonon processes in the presence of strong electron-phonon coupling (EPC). At higher energies, the orbital excitations are shown to be dressed by phonons. The high quality of the data permits a quantitative test of the analytical model for the RIXS cross-section, which has been proposed to describe EPC in transition metal oxides (TMOs). We find that the magnitude of the EPC is comparable to that found for a range of 3d TMOs. This indicates that EPC may be of equal importance in determining the phenomenology displayed by corresponding 5d based systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07545v2-abstract-full').style.display = 'none'; document.getElementById('1911.07545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 224303 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02678">arXiv:1909.02678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02678">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0585-z">10.1038/s41563-019-0585-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of the parent compound of superconducting infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C+J">C. J. Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hikita%2C+Y">Y. Hikita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H+Y">H. Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D+J">D. J. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02678v1-abstract-short" style="display: inline;"> The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02678v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02678v1-abstract-full" style="display: none;"> The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprates - transition metal oxide layers separated by a rare-earth spacer layer - formal valence counting suggests that these materials have monovalent Ni1+ cations with the same 3d electron count as Cu2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly-interacting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2-y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics, well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo- or Anderson-lattice-like &#34;oxide-intermetallic&#34; replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02678v1-abstract-full').style.display = 'none'; document.getElementById('1909.02678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 19, 381 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.05163">arXiv:1908.05163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.05163">pdf</a>, <a href="https://arxiv.org/ps/1908.05163">ps</a>, <a href="https://arxiv.org/format/1908.05163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic ground state of distorted 6H perovskite Ba$_3$CdIr$_2$O$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+M+S">Md Salman Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bandyopadhyay%2C+A">Abhisek Bandyopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+V">Vinod Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahajan%2C+A+V">A. V. Mahajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ray%2C+S">Sugata Ray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.05163v1-abstract-short" style="display: inline;"> Perovskite iridates of 6H hexagonal structure present a plethora of possibilities in terms of the variety of ground states resulting from a competition between spin-orbit coupling (SOC), hopping, noncubic crystal field ($螖_{CFE}^{NC}$) and superexchange energy scales within the Ir$_2$O$_9$ dimers. Here we have investigated one such compound Ba$_3$CdIr$_2$O$_9$ by x-ray diffraction, dc magnetic sus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05163v1-abstract-full').style.display = 'inline'; document.getElementById('1908.05163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.05163v1-abstract-full" style="display: none;"> Perovskite iridates of 6H hexagonal structure present a plethora of possibilities in terms of the variety of ground states resulting from a competition between spin-orbit coupling (SOC), hopping, noncubic crystal field ($螖_{CFE}^{NC}$) and superexchange energy scales within the Ir$_2$O$_9$ dimers. Here we have investigated one such compound Ba$_3$CdIr$_2$O$_9$ by x-ray diffraction, dc magnetic susceptibility($蠂$), heat capacity($C_p$) and also ${}^{113}$Cd nuclear magnetic resonance (NMR) spectroscopy. We have established that the magnetic ground state has a small but finite magnetic moment on Ir$^{5+}$ in this system, which likely arises from intradimer Ir-Ir hopping and local crystal distortions. Our heat capacity, NMR, and dc magnetic susceptibility measurements further rule out any kind of magnetic long-/short-range ordering among the Ir moments down to at least 2K. In addition, the magnetic heat capacity data shows linear temperature dependence at low temperatures under applied high fields ($&gt;$ 30 kOe), suggesting gapless spin-density of states in the compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05163v1-abstract-full').style.display = 'none'; document.getElementById('1908.05163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 Tables, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03086">arXiv:1908.03086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03086">pdf</a>, <a href="https://arxiv.org/format/1908.03086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.214510">10.1103/PhysRevB.100.214510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic damping of the spin fluctuations in doped La2-xSrxCuO4 studied by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barthelemy%2C+M">M. Barthelemy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03086v2-abstract-short" style="display: inline;"> We report high-resolution resonant inelastic x-ray scattering (RIXS) measurements of the collective spin fluctuations in three compositions of the superconducting cuprate system La2-xSrxCuO4. We have mapped out the excitations throughout much of the 2-D (h,k) Brillouin zone. The spin fluctuations in La2-xSrxCuO4 are found to be fairly well-described by a damped harmonic oscillator model, thus our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03086v2-abstract-full').style.display = 'inline'; document.getElementById('1908.03086v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03086v2-abstract-full" style="display: none;"> We report high-resolution resonant inelastic x-ray scattering (RIXS) measurements of the collective spin fluctuations in three compositions of the superconducting cuprate system La2-xSrxCuO4. We have mapped out the excitations throughout much of the 2-D (h,k) Brillouin zone. The spin fluctuations in La2-xSrxCuO4 are found to be fairly well-described by a damped harmonic oscillator model, thus our data allows us to determine the full wavevector dependence of the damping parameter. This parameter increases with doping and is largest along the (h, h) line, where it is peaked near (0.2,0.2). We have used a new procedure to determine the absolute wavevector-dependent susceptibility for the doped compositions La2-xSrxCuO4 (x=0.12,0.16) by normalising our data to La2CuO4 measurements made with inelastic neutron scattering (INS). We find that the evolution with doping of the intensity of high-energy excitations measured by RIXS and INS is consistent. For the doped compositions, the wavevector-dependent susceptibility is much larger at (1/4,1/4) than at (1/2,0). It increases rapidly along the (h,h) line towards the antiferromagnetic wavevector of the parent compound (1/2,1/2). Thus, the strongest magnetic excitations, and those predicted to favour superconductive pairing, occur towards the (1/2,1/2) position as observed by INS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03086v2-abstract-full').style.display = 'none'; document.getElementById('1908.03086v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 214510 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.01262">arXiv:1906.01262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.01262">pdf</a>, <a href="https://arxiv.org/format/1906.01262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.017201">10.1103/PhysRevLett.123.017201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hopping induced ground-state magnetism in 6H perovskite iridates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhowal%2C+S">S. Bhowal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efimenko%2C+A">A. Efimenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dasgupta%2C+I">I. Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ray%2C+S">S. Ray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.01262v1-abstract-short" style="display: inline;"> Investigation of elementary excitations has advanced our understanding of many-body physics governing most physical properties of matter. Recently spin-orbit excitons have drawn much attention, whose condensates near phase transitions exhibit Higgs mode oscillations, a long-sought physical phenomenon [Nat. Phys. {\bf 13}, 633 (2017)]. These critical transition points resulting from competing spin-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01262v1-abstract-full').style.display = 'inline'; document.getElementById('1906.01262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.01262v1-abstract-full" style="display: none;"> Investigation of elementary excitations has advanced our understanding of many-body physics governing most physical properties of matter. Recently spin-orbit excitons have drawn much attention, whose condensates near phase transitions exhibit Higgs mode oscillations, a long-sought physical phenomenon [Nat. Phys. {\bf 13}, 633 (2017)]. These critical transition points resulting from competing spin-orbit coupling (SOC), local crystalline symmetry and exchange interactions, are not obvious in Iridium based materials, where SOC prevails in general. Here, we present results of resonant inelastic x-ray scattering on a spin-orbital liquid Ba$_3$ZnIr$_2$O$_9$ and three other 6H-hexagonal perovskite iridates which show magnetism, contrary to non-magnetic singlet ground state expected due to strong SOC. Our results show that substantial hopping between closely placed Ir$^{5+}$ ions within Ir$_2$O$_9$ dimers in these 6H-iridates, modifies spin-orbit coupled states and reduces spin-orbit excitation energies. Here, we are forced to use at least a two-site model, to match the excitation spectrum going in line with the strong intra-dimer hopping. Apart from SOC, low energy physics of iridates is thus critically dependent on hopping, and may not be ignored even for systems having moderate hopping, where the excitation spectra can be explained using an atomic model. SOC which is generally found to be 0.4-0.5~eV in iridates, is scaled in effect down to $\sim$0.26~eV for the 6H-systems, sustaining the hope to achieve quantum criticality by tuning Ir-Ir separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01262v1-abstract-full').style.display = 'none'; document.getElementById('1906.01262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 Pages, Main text has 4 figures, SI which is added at the end of the main text has 5 figures and two tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.09939">arXiv:1808.09939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.09939">pdf</a>, <a href="https://arxiv.org/format/1808.09939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.014511">10.1103/PhysRevB.100.014511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diabatic errors in Majorana braiding with bosonic bath </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Amit Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J+D">Jay D. Sau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.09939v1-abstract-short" style="display: inline;"> Majorana mode based topological qubits are potentially subject to diabatic errors that in principle can limit the utility of topological quantum computation. Using a combination of analytical and numerical methods we study the diabatic errors in Majorana-based topological Y-junction that are coupled to a Bosonic bath in the Markovian approximation. From the study we find analytically that in the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09939v1-abstract-full').style.display = 'inline'; document.getElementById('1808.09939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.09939v1-abstract-full" style="display: none;"> Majorana mode based topological qubits are potentially subject to diabatic errors that in principle can limit the utility of topological quantum computation. Using a combination of analytical and numerical methods we study the diabatic errors in Majorana-based topological Y-junction that are coupled to a Bosonic bath in the Markovian approximation. From the study we find analytically that in the absence of a bath, the error rate can be made exponentially small in the braiding time only for completely smooth pulse shapes. Thus, pristine topological systems can reach exponentially small errors even for finite braid times. The presence of a dominantly dissipative Markovian bath is found to eliminate this exponential scaling of error to a power-law scaling as $T^{-1}$ with $T$ being the braiding time. However, the inclusion of relaxation imroves this scaling slightly to go as $T^{-2}$. Thus, coupling of topological systems to Bosonic baths can lead to powerlaw in braiding time diabatic errors that might limit the speed of topologically protected operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09939v1-abstract-full').style.display = 'none'; document.getElementById('1808.09939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 014511 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.09304">arXiv:1707.09304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.09304">pdf</a>, <a href="https://arxiv.org/ps/1707.09304">ps</a>, <a href="https://arxiv.org/format/1707.09304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.014431">10.1103/PhysRevB.98.014431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of magnetic moments and presence of a resonating valence bond state in Ba$_2$YIrO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhowal%2C+S">Sayantika Bhowal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. M. Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efimenko%2C+A">A. Efimenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bert%2C+F">F. Bert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillier%2C+A+D">A. D. Hillier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+M">M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaushik%2C+S+D">S. D. Kaushik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siruguri%2C+V">V. Siruguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meneghini%2C+C">C. Meneghini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dasgupta%2C+I">I. Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ray%2C+S">Sugata Ray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.09304v2-abstract-short" style="display: inline;"> While it was speculated that 5$d^4$ systems would possess non-magnetic $J$~=~0 ground state due to strong Spin-Orbit Coupling (SOC), all such systems have invariably shown presence of magnetic moments so far. A puzzling case is that of Ba$_2$YIrO$_6$, which in spite of having a perfectly cubic structure with largely separated Ir$^{5+}$ ($d^4$) ions, has consistently shown presence of weak magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09304v2-abstract-full').style.display = 'inline'; document.getElementById('1707.09304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.09304v2-abstract-full" style="display: none;"> While it was speculated that 5$d^4$ systems would possess non-magnetic $J$~=~0 ground state due to strong Spin-Orbit Coupling (SOC), all such systems have invariably shown presence of magnetic moments so far. A puzzling case is that of Ba$_2$YIrO$_6$, which in spite of having a perfectly cubic structure with largely separated Ir$^{5+}$ ($d^4$) ions, has consistently shown presence of weak magnetic moments. Moreover, we clearly show from Muon Spin Relaxation ($渭$SR) measurements that a change in the magnetic environment of the implanted muons in Ba$_2$YIrO$_6$ occurs as temperature is lowered below 10~K. This observation becomes counterintuitive, as the estimated value of SOC obtained by fitting the RIXS spectrum of Ba$_2$YIrO$_6$ with an atomic $j-j$ model is found to be as high as 0.39~eV, meaning that the system within this model is neither expected to possess moments nor exhibit temperature dependent magnetic response. Therefore we argue that the atomic $j-j$ coupling description is not sufficient to explain the ground state of such systems, where despite having strong SOC, presence of hopping triggers delocalisation of holes, resulting in spontaneous generation of magnetic moments. Our theoretical calculations further indicate that these moments favour formation of spin-orbital singlets in the case of Ba$_2$YIrO$_6$, which is manifested in $渭$SR experiments measured down to 60~mK. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09304v2-abstract-full').style.display = 'none'; document.getElementById('1707.09304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 Pages, 7 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 014431 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01548">arXiv:1612.01548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.01548">pdf</a>, <a href="https://arxiv.org/format/1612.01548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.217701">10.1103/PhysRevLett.119.217701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathbb{Z}_3$ parafermionic zero modes without Andreev backscattering from the $2/3$ fractional quantum Hall state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alavirad%2C+Y">Yahya Alavirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clarke%2C+D">David Clarke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Amit Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J+D">Jay D. Sau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01548v1-abstract-short" style="display: inline;"> Parafermionic zero modes are a novel set of excitations displaying non-Abelian statistics somewhat richer than that of Majorana modes. These modes are predicted to occur when nearby fractional quantum Hall edge states are gapped by an interposed superconductor. Despite substantial experimental progress, we argue that the necessary crossed Andreev reflection in this arrangement is a challenging mil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01548v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01548v1-abstract-full" style="display: none;"> Parafermionic zero modes are a novel set of excitations displaying non-Abelian statistics somewhat richer than that of Majorana modes. These modes are predicted to occur when nearby fractional quantum Hall edge states are gapped by an interposed superconductor. Despite substantial experimental progress, we argue that the necessary crossed Andreev reflection in this arrangement is a challenging milestone to reach. We propose a superconducting quantum dot array structure on a fractional quantum Hall edge that can lead to parafermionic zero modes from coherent superconducting forward scattering on a quantum Hall edge. Such coherent forward scattering has already been demonstrated in recent experiments. We show that for a spin-singlet superconductor interacting with loops of spin unpolarized $2/3$ fractional quantum edge, even an array size of order ten should allow one to systematically tune into a parafermionic degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01548v1-abstract-full').style.display = 'none'; document.getElementById('1612.01548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, 5 pages of supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 217701 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.00041">arXiv:1603.00041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.00041">pdf</a>, <a href="https://arxiv.org/format/1603.00041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.035143">10.1103/PhysRevB.94.035143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How to infer non-Abelian statistics and topological invariants from tunneling conductance properties of realistic Majorana nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+S+D">S. Das Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Amit Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J+D">Jay D. Sau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.00041v3-abstract-short" style="display: inline;"> We consider a simple conceptual question with respect to Majorana zero modes in semiconductor nanowires: Can the measured non-ideal values of the zero-bias-conductance-peak in the tunneling experiments be used as a characteristic to predict the underlying topological nature of the proximity induced nanowire superconductivity? In particular, we define and calculate the topological visibility, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.00041v3-abstract-full').style.display = 'inline'; document.getElementById('1603.00041v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.00041v3-abstract-full" style="display: none;"> We consider a simple conceptual question with respect to Majorana zero modes in semiconductor nanowires: Can the measured non-ideal values of the zero-bias-conductance-peak in the tunneling experiments be used as a characteristic to predict the underlying topological nature of the proximity induced nanowire superconductivity? In particular, we define and calculate the topological visibility, which is a variation of the topological invariant associated with the scattering matrix of the system as well as the zero-bias-conductance-peak heights in the tunneling measurements, in the presence of dissipative broadening, using realistic nanowire parameters to connect the topological invariants with the zero bias tunneling conductance values. This dissipative broadening is present in both (the existing) tunneling measurements and also (any future) braiding experiments as an inevitable consequence of a finite braiding time. The connection between the topological visibility and the conductance allows us to obtain the visibility of realistic braiding experiments in nanowires, and to conclude that the current experimentally accessible systems with non-ideal zero bias conductance peaks may indeed manifest (with rather low visibility) non-Abelian statistics for the Majorana zero modes. In general, we find that large (small) superconducting gap (Majorana peak splitting) is essential for the manifestation of the non-Abelian braiding statistics, and in particular, a zero bias conductance value of around half the ideal quantized Majorana value should be sufficient for the manifestation of non-Abelian statistics in experimental nanowires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.00041v3-abstract-full').style.display = 'none'; document.getElementById('1603.00041v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, Final published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 035143 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.04312">arXiv:1506.04312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.04312">pdf</a>, <a href="https://arxiv.org/format/1506.04312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.097205">10.1103/PhysRevLett.116.097205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbital liquid state assisted by singlet-triplet excitation in $J~=~0$ ground state of Ba$_3$ZnIr$_2$O$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Middey%2C+S">Srimanta Middey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhowal%2C+S">Sayantika Bhowal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panda%2C+S">Swarup Panda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathieu%2C+R">Roland Mathieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orain%2C+J+C">J. C. Orain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bert%2C+F">F. Bert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mendels%2C+P">P. Mendels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeman%2C+P">P. Freeman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mansson%2C+M">M. Mansson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H+M">H. M. Ronnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telling%2C+M">M. Telling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">D. Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaushik%2C+S+D">S. D. Kaushik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siruguri%2C+V">Vasudeva Siruguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meneghini%2C+C">Carlo Meneghini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+D+D">D. D. Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dasgupta%2C+I">Indra Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ray%2C+S">Sugata Ray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.04312v3-abstract-short" style="display: inline;"> Strong spin-orbit coupling (SOC) effects of heavy $d$-orbital elements have long been neglected in describing the ground states of their compounds thereby overlooking a variety of fascinating and yet unexplored magnetic and electronic states, until recently. The spin-orbit entangled electrons in such compounds can get stabilized into unusual spin-orbit multiplet $J$-states which warrants severe in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.04312v3-abstract-full').style.display = 'inline'; document.getElementById('1506.04312v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.04312v3-abstract-full" style="display: none;"> Strong spin-orbit coupling (SOC) effects of heavy $d$-orbital elements have long been neglected in describing the ground states of their compounds thereby overlooking a variety of fascinating and yet unexplored magnetic and electronic states, until recently. The spin-orbit entangled electrons in such compounds can get stabilized into unusual spin-orbit multiplet $J$-states which warrants severe investigations. Here we show using detailed magnetic and thermodynamic studies and theoretical calculations the ground state of Ba$_3$ZnIr$_2$O$_9$, a 6$H$ hexagonal perovskite is a close realisation of the elusive $J$~=~0 state. However, we find that local Ir moments are spontaneously generated due to the comparable energy scales of the singlet-triplet splitting driven by SOC and the superexchange interaction mediated by strong intra-dimer hopping. While the Ir ions within the structural Ir$_2$O$_9$ dimer prefers to form a spin-orbit singlet state (SOS) with no resultant moment, substantial interdimer exchange interactions from a frustrated lattice ensure quantum fluctuations till the lowest measured temperatures and stabilize a spin-orbital liquid phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.04312v3-abstract-full').style.display = 'none'; document.getElementById('1506.04312v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text: 6 pages, 4 figures, 1 table; Supplementary: 4 pages, 2 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 097205 (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Nag%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Nag%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Nag%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10