CINXE.COM

Saeed Karbasi | Isfahan University of Medical Sciences - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Saeed Karbasi | Isfahan University of Medical Sciences - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="iTCEz0FgKfbqrab_lgE-Cdl7MB9t8aWfXLeTzfb6i8AmNhxIL-JpDMGePjIQRG7o3bjS2Yk3aoSHZxku_VGrWA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi","image":"https://0.academia-photos.com/66499940/18242626/18217629/s200_saeed.karbasi.jpg","sameAs":[]},"dateCreated":"2017-07-17T06:31:55-07:00","dateModified":"2025-01-03T20:08:45-08:00","name":"Saeed Karbasi","description":"I am full professor of biomaterial science and tissue engineering","image":"https://0.academia-photos.com/66499940/18242626/18217629/s200_saeed.karbasi.jpg","thumbnailUrl":"https://0.academia-photos.com/66499940/18242626/18217629/s65_saeed.karbasi.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/66499940/18242626/18217629/s200_saeed.karbasi.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="saeed karbasi" /> <meta name="description" content="I am full professor of biomaterial science and tissue engineering" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9744e839ffe2d813ef8b7eb988ae0a3341a6052d'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13921,"monthly_visitors":"140 million","monthly_visitor_count":140791684,"monthly_visitor_count_in_millions":140,"user_count":286030994,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743366887000); window.Aedu.timeDifference = new Date().getTime() - 1743366887000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-cf157bca4ef673abcac8051ac68ed1136134beba22a884388e7ed6391572eef4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f96ab8a6334d161855249975a57d3f3d57f65c2e7553c6d20ab43c63efb79575.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://mui.academia.edu/SaeedKarbasi" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-091a194a2533e53e1630c5cfd78813a4445aff73d16c70cdba1eafe8c0939f4a.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi","photo":"https://0.academia-photos.com/66499940/18242626/18217629/s65_saeed.karbasi.jpg","has_photo":true,"department":{"id":2159565,"name":"Advance Technology in Medicine","url":"https://mui.academia.edu/Departments/Advance_Technology_in_Medicine/Documents","university":{"id":3384,"name":"Isfahan University of Medical Sciences","url":"https://mui.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":58128,"name":"Ceramics","url":"https://www.academia.edu/Documents/in/Ceramics"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":11678,"name":"Nanocomposites","url":"https://www.academia.edu/Documents/in/Nanocomposites"},{"id":7835,"name":"Nanobiotechnology","url":"https://www.academia.edu/Documents/in/Nanobiotechnology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://mui.academia.edu/SaeedKarbasi&quot;,&quot;location&quot;:&quot;/SaeedKarbasi&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;mui.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/SaeedKarbasi&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-faf7bef1-a7cc-4bcd-9360-8f6209ca25df"></div> <div id="ProfileCheckPaperUpdate-react-component-faf7bef1-a7cc-4bcd-9360-8f6209ca25df"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Saeed Karbasi" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/66499940/18242626/18217629/s200_saeed.karbasi.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Saeed Karbasi</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://mui.academia.edu/">Isfahan University of Medical Sciences</a>, <a class="u-tcGrayDarker" href="https://mui.academia.edu/Departments/Advance_Technology_in_Medicine/Documents">Advance Technology in Medicine</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Saeed" data-follow-user-id="66499940" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="66499940"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">25</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">18</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">17</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">I am full professor of biomaterial science and tissue engineering<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/SibylleGrad"><img class="profile-avatar u-positionAbsolute" alt="Sibylle Grad related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SibylleGrad">Sibylle Grad</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ethz.academia.edu/StephenFerguson"><img class="profile-avatar u-positionAbsolute" alt="Stephen Ferguson related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ethz.academia.edu/StephenFerguson">Stephen Ferguson</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Swiss Federal Institute of Technology (ETH)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DanBader"><img class="profile-avatar u-positionAbsolute" alt="Dan Bader related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DanBader">Dan Bader</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/AndreasGoessl"><img class="profile-avatar u-positionAbsolute" alt="Andreas Goessl related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AndreasGoessl">Andreas Goessl</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/CarlHaasper"><img class="profile-avatar u-positionAbsolute" alt="Carl Haasper related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/42034416/124347033/113702937/s200_carl.haasper.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/CarlHaasper">Carl Haasper</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/SeanKohles"><img class="profile-avatar u-positionAbsolute" alt="Sean Kohles related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SeanKohles">Sean Kohles</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mui.academia.edu/HosseinRabbani"><img class="profile-avatar u-positionAbsolute" alt="Hossein Rabbani related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/7814227/3160662/10948403/s200_hossein.rabbani.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mui.academia.edu/HosseinRabbani">Hossein Rabbani</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Isfahan University of Medical Sciences</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://columbia.academia.edu/IvanaGadjanski"><img class="profile-avatar u-positionAbsolute" alt="Ivana Gadjanski related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" src="https://gravatar.com/avatar/50f497b1a6925c959aa9e9edbc9c199c?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://columbia.academia.edu/IvanaGadjanski">Ivana Gadjanski</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Columbia University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unispital-basel.academia.edu/AndreaBarbero"><img class="profile-avatar u-positionAbsolute" alt="Andrea Barbero related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unispital-basel.academia.edu/AndreaBarbero">Andrea Barbero</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Basel, University Hospital</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unispital-basel.academia.edu/IvanMartin"><img class="profile-avatar u-positionAbsolute" alt="Ivan Martin related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unispital-basel.academia.edu/IvanMartin">Ivan Martin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Basel, University Hospital</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Saeed Karbasi</h3></div><div class="js-work-strip profile--work_container" data-work-id="34032129"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold"><img alt="Research paper thumbnail of Evaluation of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold" class="work-thumbnail" src="https://attachments.academia-assets.com/53973274/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold">Evaluation of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold</a></div><div class="wp-workCard_item"><span>Ifmbe Proceedings</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the most effective parameters in articular cartilage tissue engineering is cell stimulatio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycane) content produced by chondrocytes. The isolated chondrocytes, from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely Degrapol 庐 and 4 MPa was applied to the samples for 4 h per day as a cyclic (1HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate, rate of lactate production and GAG as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a54675b1c8579ac8c8a68d909a68a8c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973274,&quot;asset_id&quot;:34032129,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973274/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032129"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032129"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032129; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032129]").text(description); $(".js-view-count[data-work-id=34032129]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032129; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032129']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a54675b1c8579ac8c8a68d909a68a8c" } } $('.js-work-strip[data-work-id=34032129]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032129,"title":"Evaluation of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold","translated_title":"","metadata":{"grobid_abstract":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycane) content produced by chondrocytes. The isolated chondrocytes, from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely Degrapol 庐 and 4 MPa was applied to the samples for 4 h per day as a cyclic (1HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate, rate of lactate production and GAG as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Ifmbe Proceedings","grobid_abstract_attachment_id":53973274},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_internal_url":"","created_at":"2017-07-25T08:47:25.738-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973274,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973274/thumbnails/1.jpg","file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk.pdf","download_url":"https://www.academia.edu/attachments/53973274/download_file","bulk_download_file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973274/Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_Hydrostatic_Pressure_on_Me.pdf\u0026Expires=1743370486\u0026Signature=CyB5r1zCk8cJE56Hdf5ZauUyLL7P99RuldfcxIyPV9emAye3hw3MMqQUSUtV9SLEL-rFZ68LS8e5JkaBaTgOSTRvWojsVEVhmZvSiWtevaV8ZZ1qHs9g-Sl2GS1HFbmkHKgK6tdg7Oz8ucnPOZCTMQmBD2c22XaxP42tvm~-jYG9uvKVo59THif~lPiMaOoNklb-nYDpXY4PD8PjSZi5q--4Hh0XRyRIS4I5~FkmDdXDYHUfcUdWvAQr694SwxXc0E~E2Mjbon~yRlZwntj74JXhcJHnc2B4BRVc49SqmdLou5C2JM-zwaAeOvf8GRkxzDpkvEYr8d3P3OMafwMMQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycane) content produced by chondrocytes. The isolated chondrocytes, from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely Degrapol 庐 and 4 MPa was applied to the samples for 4 h per day as a cyclic (1HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate, rate of lactate production and GAG as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973274,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973274/thumbnails/1.jpg","file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk.pdf","download_url":"https://www.academia.edu/attachments/53973274/download_file","bulk_download_file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973274/Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_Hydrostatic_Pressure_on_Me.pdf\u0026Expires=1743370486\u0026Signature=CyB5r1zCk8cJE56Hdf5ZauUyLL7P99RuldfcxIyPV9emAye3hw3MMqQUSUtV9SLEL-rFZ68LS8e5JkaBaTgOSTRvWojsVEVhmZvSiWtevaV8ZZ1qHs9g-Sl2GS1HFbmkHKgK6tdg7Oz8ucnPOZCTMQmBD2c22XaxP42tvm~-jYG9uvKVo59THif~lPiMaOoNklb-nYDpXY4PD8PjSZi5q--4Hh0XRyRIS4I5~FkmDdXDYHUfcUdWvAQr694SwxXc0E~E2Mjbon~yRlZwntj74JXhcJHnc2B4BRVc49SqmdLou5C2JM-zwaAeOvf8GRkxzDpkvEYr8d3P3OMafwMMQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032129-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032128"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032128/Evaluation_of_Physical_and_Mechanical_Properties_of_Hydroxyapatite_Titanium_dioxide_Composite_Scaffold_for_Tissue_Engineering_Applications"><img alt="Research paper thumbnail of Evaluation of Physical and Mechanical Properties of Hydroxyapatite/Titanium dioxide Composite Scaffold for Tissue Engineering Applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of Physical and Mechanical Properties of Hydroxyapatite/Titanium dioxide Composite Scaffold for Tissue Engineering Applications</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032128"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032128"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032128; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032128]").text(description); $(".js-view-count[data-work-id=34032128]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032128; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032128']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032128]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032128,"title":"Evaluation of Physical and Mechanical Properties of Hydroxyapatite/Titanium dioxide Composite Scaffold for Tissue Engineering Applications","translated_title":"","metadata":{"publication_date":{"day":1,"month":10,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032128/Evaluation_of_Physical_and_Mechanical_Properties_of_Hydroxyapatite_Titanium_dioxide_Composite_Scaffold_for_Tissue_Engineering_Applications","translated_internal_url":"","created_at":"2017-07-25T08:47:25.596-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_Physical_and_Mechanical_Properties_of_Hydroxyapatite_Titanium_dioxide_Composite_Scaffold_for_Tissue_Engineering_Applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032128-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032127"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032127/Electrospinning_of_aligned_medical_grade_polyurethane_nanofibres_and_evaluation_of_cell_scaffold_interaction_using_SHED_stem_cells"><img alt="Research paper thumbnail of Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell鈥搒caffold interaction using SHED stem cells" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell鈥搒caffold interaction using SHED stem cells</div><div class="wp-workCard_item"><span>Micro &amp; Nano Letters</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032127"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032127"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032127; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032127]").text(description); $(".js-view-count[data-work-id=34032127]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032127; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032127']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032127]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032127,"title":"Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell鈥搒caffold interaction using SHED stem cells","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Micro \u0026 Nano Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032127/Electrospinning_of_aligned_medical_grade_polyurethane_nanofibres_and_evaluation_of_cell_scaffold_interaction_using_SHED_stem_cells","translated_internal_url":"","created_at":"2017-07-25T08:47:14.917-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrospinning_of_aligned_medical_grade_polyurethane_nanofibres_and_evaluation_of_cell_scaffold_interaction_using_SHED_stem_cells","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032127-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032126"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032126/Evaluation_of_structural_and_mechanical_properties_of_electrospun_nano_micro_hybrid_of_poly_hydroxybutyrate_chitosan_silk_scaffold_for_cartilage_tissue_engineering"><img alt="Research paper thumbnail of Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering</div><div class="wp-workCard_item"><span>Advanced Biomedical Research</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the prop...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032126"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032126]").text(description); $(".js-view-count[data-work-id=34032126]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032126']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032126]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032126,"title":"Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering","translated_title":"","metadata":{"abstract":"One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advanced Biomedical Research"},"translated_abstract":"One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.","internal_url":"https://www.academia.edu/34032126/Evaluation_of_structural_and_mechanical_properties_of_electrospun_nano_micro_hybrid_of_poly_hydroxybutyrate_chitosan_silk_scaffold_for_cartilage_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:14.719-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_structural_and_mechanical_properties_of_electrospun_nano_micro_hybrid_of_poly_hydroxybutyrate_chitosan_silk_scaffold_for_cartilage_tissue_engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032126-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032125"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032125/Evaluate_the_growth_and_adhesion_of_osteoblast_cells_on_nanocomposite_scaffold_of_hydroxyapatite_titania_coated_with_poly_hydroxybutyrate"><img alt="Research paper thumbnail of Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate</div><div class="wp-workCard_item"><span>Advanced Biomedical Research</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The generation of bioartificial bone tissues may help to overcome the problems related to donor s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032125"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032125"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032125; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032125]").text(description); $(".js-view-count[data-work-id=34032125]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032125; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032125']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032125]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032125,"title":"Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate","translated_title":"","metadata":{"abstract":"The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advanced Biomedical Research"},"translated_abstract":"The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.","internal_url":"https://www.academia.edu/34032125/Evaluate_the_growth_and_adhesion_of_osteoblast_cells_on_nanocomposite_scaffold_of_hydroxyapatite_titania_coated_with_poly_hydroxybutyrate","translated_internal_url":"","created_at":"2017-07-25T08:47:14.571-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluate_the_growth_and_adhesion_of_osteoblast_cells_on_nanocomposite_scaffold_of_hydroxyapatite_titania_coated_with_poly_hydroxybutyrate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032125-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032124"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032124/Evaluation_of_Structural_Mechanical_and_Cellular_Behavior_of_Electrospunpoly3_hydroxybutyrate_Scaffolds_Loaded_with_Glucosamine_Sulfate_to_Develop_Cartilage_Tissue_Engineering"><img alt="Research paper thumbnail of Evaluation of Structural, Mechanical and Cellular Behavior of Electrospunpoly3-hydroxybutyrate Scaffolds Loaded with Glucosamine Sulfate to Develop Cartilage Tissue Engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of Structural, Mechanical and Cellular Behavior of Electrospunpoly3-hydroxybutyrate Scaffolds Loaded with Glucosamine Sulfate to Develop Cartilage Tissue Engineering</div><div class="wp-workCard_item"><span>International Journal of Polymeric Materials and Polymeric Biomaterials</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032124"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032124"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032124; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032124]").text(description); $(".js-view-count[data-work-id=34032124]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032124; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032124']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032124]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032124,"title":"Evaluation of Structural, Mechanical and Cellular Behavior of Electrospunpoly3-hydroxybutyrate Scaffolds Loaded with Glucosamine Sulfate to Develop Cartilage Tissue Engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"International Journal of Polymeric Materials and Polymeric Biomaterials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032124/Evaluation_of_Structural_Mechanical_and_Cellular_Behavior_of_Electrospunpoly3_hydroxybutyrate_Scaffolds_Loaded_with_Glucosamine_Sulfate_to_Develop_Cartilage_Tissue_Engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:14.403-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_Structural_Mechanical_and_Cellular_Behavior_of_Electrospunpoly3_hydroxybutyrate_Scaffolds_Loaded_with_Glucosamine_Sulfate_to_Develop_Cartilage_Tissue_Engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032124-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032123"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032123/Preparation_and_characterization_of_poly_hydroxy_butyrate_chitosan_blend_scaffolds_for_tissue_engineering_applications"><img alt="Research paper thumbnail of Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications</div><div class="wp-workCard_item"><span>Advanced Biomedical Research</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032123"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032123"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032123; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032123]").text(description); $(".js-view-count[data-work-id=34032123]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032123; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032123']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032123]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032123,"title":"Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advanced Biomedical Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032123/Preparation_and_characterization_of_poly_hydroxy_butyrate_chitosan_blend_scaffolds_for_tissue_engineering_applications","translated_internal_url":"","created_at":"2017-07-25T08:47:14.252-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparation_and_characterization_of_poly_hydroxy_butyrate_chitosan_blend_scaffolds_for_tissue_engineering_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032123-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032122"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032122/Electrospun_poly_hydroxybutyrate_chitosan_blend_fibrous_scaffolds_for_cartilage_tissue_engineering"><img alt="Research paper thumbnail of Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering</div><div class="wp-workCard_item"><span>Journal of Applied Polymer Science</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032122"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032122"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032122; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032122]").text(description); $(".js-view-count[data-work-id=34032122]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032122; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032122']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032122]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032122,"title":"Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Applied Polymer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032122/Electrospun_poly_hydroxybutyrate_chitosan_blend_fibrous_scaffolds_for_cartilage_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:14.079-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrospun_poly_hydroxybutyrate_chitosan_blend_fibrous_scaffolds_for_cartilage_tissue_engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":966213,"name":"Journal of Applied Polymer Science","url":"https://www.academia.edu/Documents/in/Journal_of_Applied_Polymer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032122-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032121"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032121/Evaluation_of_PCL_Chitosan_Electrospun_Nanofibers_for_Liver_Tissue_Engineering"><img alt="Research paper thumbnail of Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering</div><div class="wp-workCard_item"><span>International Journal of Polymeric Materials and Polymeric Biomaterials</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032121"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032121"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032121; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032121]").text(description); $(".js-view-count[data-work-id=34032121]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032121; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032121']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032121]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032121,"title":"Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"International Journal of Polymeric Materials and Polymeric Biomaterials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032121/Evaluation_of_PCL_Chitosan_Electrospun_Nanofibers_for_Liver_Tissue_Engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:13.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_PCL_Chitosan_Electrospun_Nanofibers_for_Liver_Tissue_Engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032121-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032120"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032120/Preparing_nanocomposite_fibrrous_scaffolds_of_P3HB_nHA_for_Bone_tissue_engineering"><img alt="Research paper thumbnail of Preparing nanocomposite fibrrous scaffolds of P3HB /nHA for Bone tissue engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preparing nanocomposite fibrrous scaffolds of P3HB /nHA for Bone tissue engineering</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032120"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032120"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032120; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032120]").text(description); $(".js-view-count[data-work-id=34032120]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032120; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032120']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032120]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032120,"title":"Preparing nanocomposite fibrrous scaffolds of P3HB /nHA for Bone tissue engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032120/Preparing_nanocomposite_fibrrous_scaffolds_of_P3HB_nHA_for_Bone_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:13.537-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparing_nanocomposite_fibrrous_scaffolds_of_P3HB_nHA_for_Bone_tissue_engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"}],"urls":[{"id":8233192,"url":"http://www.civilica.com/Paper-ICBME17-ICBME17_230=Preparing-nanocomposite-fibrrous-scaffolds-of-P3HB-nHA-for-Bone-tissue-engineering.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032120-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032119"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032119/Polyhydroxybutyrate_chitosan_bioglass_nanocomposite_as_a_novel_electrospun_scaffold_fabrication_and_characterization"><img alt="Research paper thumbnail of Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization</div><div class="wp-workCard_item"><span>Journal of Porous Materials</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032119"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032119"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032119; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032119]").text(description); $(".js-view-count[data-work-id=34032119]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032119; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032119']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032119]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032119,"title":"Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Porous Materials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032119/Polyhydroxybutyrate_chitosan_bioglass_nanocomposite_as_a_novel_electrospun_scaffold_fabrication_and_characterization","translated_internal_url":"","created_at":"2017-07-25T08:47:13.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Polyhydroxybutyrate_chitosan_bioglass_nanocomposite_as_a_novel_electrospun_scaffold_fabrication_and_characterization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":39499,"name":"Porous Materials","url":"https://www.academia.edu/Documents/in/Porous_Materials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032119-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032118"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032118/Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates"><img alt="Research paper thumbnail of Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO 2 -SiO 2 nano composite coatings on stainless steel substrates" class="work-thumbnail" src="https://attachments.academia-assets.com/53973272/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032118/Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates">Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO 2 -SiO 2 nano composite coatings on stainless steel substrates</a></div><div class="wp-workCard_item"><span>J Mater Sci Mater Med</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO 2 -calcinated NBG and TiO 2 -Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBGtitania films have better bioactivity than non calcinated NBG-titania films.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8a461cd2a8a6eea9610322a1981e05de" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973272,&quot;asset_id&quot;:34032118,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973272/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032118"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032118"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032118; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032118]").text(description); $(".js-view-count[data-work-id=34032118]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032118; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032118']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8a461cd2a8a6eea9610322a1981e05de" } } $('.js-work-strip[data-work-id=34032118]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032118,"title":"Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO 2 -SiO 2 nano composite coatings on stainless steel substrates","translated_title":"","metadata":{"grobid_abstract":"Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO 2 -calcinated NBG and TiO 2 -Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBGtitania films have better bioactivity than non calcinated NBG-titania films.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"J Mater Sci Mater Med","grobid_abstract_attachment_id":53973272},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032118/Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates","translated_internal_url":"","created_at":"2017-07-25T08:47:13.318-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973272/thumbnails/1.jpg","file_name":"Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3.pdf","download_url":"https://www.academia.edu/attachments/53973272/download_file","bulk_download_file_name":"Influence_of_calcinated_and_non_calcinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973272/Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_calcinated_and_non_calcinat.pdf\u0026Expires=1743370487\u0026Signature=QDvuSY5r9urtXACTo2bfnktk~PXhbnX5B~QjDJbWDl95QJCtQk4wekdmX-8fXy7vbPZx1m5MAbAy6j0y-0BvR1Gf-bv1x-cm9tJ8mdfdtpHkL-Wm0L6T5dqbQ6w9Ex~DNOEPSNoJa5PJ~4erg2ojh1oVLlh94iOf6SVXI~neI0Xbr1vX6ruf2hdDY86oE7q1rrnxxVUP5kfqPx~8RM4LDs253xuyYP56JQ0puT9ISMmiRLdtJcb9LTZ1EC0nyoW752DUrVqWvvxS39FmHVTSA-RDZmcGsMoieHFydu4cTzE54ydRKfrQZ6SzhmpEspKXVd8mYEzWhhXzTWayLTJQTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO 2 -calcinated NBG and TiO 2 -Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBGtitania films have better bioactivity than non calcinated NBG-titania films.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973272/thumbnails/1.jpg","file_name":"Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3.pdf","download_url":"https://www.academia.edu/attachments/53973272/download_file","bulk_download_file_name":"Influence_of_calcinated_and_non_calcinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973272/Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_calcinated_and_non_calcinat.pdf\u0026Expires=1743370487\u0026Signature=QDvuSY5r9urtXACTo2bfnktk~PXhbnX5B~QjDJbWDl95QJCtQk4wekdmX-8fXy7vbPZx1m5MAbAy6j0y-0BvR1Gf-bv1x-cm9tJ8mdfdtpHkL-Wm0L6T5dqbQ6w9Ex~DNOEPSNoJa5PJ~4erg2ojh1oVLlh94iOf6SVXI~neI0Xbr1vX6ruf2hdDY86oE7q1rrnxxVUP5kfqPx~8RM4LDs253xuyYP56JQ0puT9ISMmiRLdtJcb9LTZ1EC0nyoW752DUrVqWvvxS39FmHVTSA-RDZmcGsMoieHFydu4cTzE54ydRKfrQZ6SzhmpEspKXVd8mYEzWhhXzTWayLTJQTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":7742,"name":"Glass","url":"https://www.academia.edu/Documents/in/Glass"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":10650,"name":"Materials","url":"https://www.academia.edu/Documents/in/Materials"},{"id":10655,"name":"Scanning Electron Microscopy","url":"https://www.academia.edu/Documents/in/Scanning_Electron_Microscopy"},{"id":11404,"name":"Titanium","url":"https://www.academia.edu/Documents/in/Titanium"},{"id":11678,"name":"Nanocomposites","url":"https://www.academia.edu/Documents/in/Nanocomposites"},{"id":35056,"name":"Metal Nanoparticles","url":"https://www.academia.edu/Documents/in/Metal_Nanoparticles"},{"id":58906,"name":"Fourier Analysis","url":"https://www.academia.edu/Documents/in/Fourier_Analysis"},{"id":85460,"name":"Sol Gel Process","url":"https://www.academia.edu/Documents/in/Sol_Gel_Process"},{"id":128789,"name":"Stainless Steel","url":"https://www.academia.edu/Documents/in/Stainless_Steel"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":176678,"name":"Hardness","url":"https://www.academia.edu/Documents/in/Hardness"},{"id":186099,"name":"Grain size","url":"https://www.academia.edu/Documents/in/Grain_size"},{"id":186264,"name":"Surface Morphology","url":"https://www.academia.edu/Documents/in/Surface_Morphology"},{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":398650,"name":"Fourier transform infrared spectroscopy","url":"https://www.academia.edu/Documents/in/Fourier_transform_infrared_spectroscopy"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":776363,"name":"Powders","url":"https://www.academia.edu/Documents/in/Powders"},{"id":1031067,"name":"Biocompatible Materials","url":"https://www.academia.edu/Documents/in/Biocompatible_Materials"},{"id":1031069,"name":"Silicon Dioxide","url":"https://www.academia.edu/Documents/in/Silicon_Dioxide"},{"id":1035713,"name":"Simulated Body Fluid","url":"https://www.academia.edu/Documents/in/Simulated_Body_Fluid"},{"id":1146508,"name":"Body Fluids","url":"https://www.academia.edu/Documents/in/Body_Fluids"},{"id":2243423,"name":"Fourier transform infrared","url":"https://www.academia.edu/Documents/in/Fourier_transform_infrared"},{"id":2736714,"name":"Test Methods","url":"https://www.academia.edu/Documents/in/Test_Methods"}],"urls":[{"id":8233191,"url":"http://springerlink.com/index/g8734715u135u437.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032118-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032117"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032117/Cell_Attachment_and_Proliferation_of_Human_Adipose_Derived_Stem_Cells_on_PLGA_Chitosan_Electrospun_Nano_Biocomposite"><img alt="Research paper thumbnail of Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite</div><div class="wp-workCard_item"><span>Cell journal</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P&amp;lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032117"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032117"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032117; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032117]").text(description); $(".js-view-count[data-work-id=34032117]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032117; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032117']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032117]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032117,"title":"Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite","translated_title":"","metadata":{"abstract":"In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P\u0026lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Cell journal"},"translated_abstract":"In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P\u0026lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...","internal_url":"https://www.academia.edu/34032117/Cell_Attachment_and_Proliferation_of_Human_Adipose_Derived_Stem_Cells_on_PLGA_Chitosan_Electrospun_Nano_Biocomposite","translated_internal_url":"","created_at":"2017-07-25T08:47:13.180-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cell_Attachment_and_Proliferation_of_Human_Adipose_Derived_Stem_Cells_on_PLGA_Chitosan_Electrospun_Nano_Biocomposite","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P\u0026lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":107533,"name":"Cell","url":"https://www.academia.edu/Documents/in/Cell"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032117-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032116"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032116/Novel_sol_gel_synthesis_and_characterization_of_nanostructured_hydroxyapatite_powder"><img alt="Research paper thumbnail of Novel sol鈥揼el synthesis and characterization of nanostructured hydroxyapatite powder" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Novel sol鈥揼el synthesis and characterization of nanostructured hydroxyapatite powder</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032116"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032116"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032116; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032116]").text(description); $(".js-view-count[data-work-id=34032116]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032116; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032116']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032116]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032116,"title":"Novel sol鈥揼el synthesis and characterization of nanostructured hydroxyapatite powder","translated_title":"","metadata":{"abstract":"Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...","internal_url":"https://www.academia.edu/34032116/Novel_sol_gel_synthesis_and_characterization_of_nanostructured_hydroxyapatite_powder","translated_internal_url":"","created_at":"2017-07-25T08:47:13.032-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Novel_sol_gel_synthesis_and_characterization_of_nanostructured_hydroxyapatite_powder","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032116-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032115/Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering"><img alt="Research paper thumbnail of Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering" class="work-thumbnail" src="https://attachments.academia-assets.com/53973269/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032115/Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering">Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A major challenge for tissue engineers is the design of scaffolds with appropriate physical and m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A major challenge for tissue engineers is the design of scaffolds with appropriate physical and mechanical properties. The present research discusses the formation of ceramic scaffolding in tissue engineering. Hydroxyapatite (HAp) powder was made from bovine bone by thermal treatment at 900掳C; 40, 50 and 60%wt porous HAp was then produced using the polyurethane sponge replication method. Scaffolds were coated with poly-3hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold&#39;s mechanical properties. XRD, SEM and FT-IR were used to study phase structure, morphology and agent groups, respectively. In XRD and FT-IR data, established hydrogen bands between polymer and ceramic matrix confirm that the scaffold is formed as a composite. The scaffold obtained with 50%wt HAp and a 30 s coating was 90% porous, with an average diameter of 100-400 lm, and demonstrated a compressive strength and modulus of 1.46 and 21.27 MPa, respectively. Based on these results, this scaffold is optimised for the aforementioned properties and can be utilised in bone tissue engineering.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6ba86ac54912fd16cb94a3efc5fd2933" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973269,&quot;asset_id&quot;:34032115,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973269/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032115]").text(description); $(".js-view-count[data-work-id=34032115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6ba86ac54912fd16cb94a3efc5fd2933" } } $('.js-work-strip[data-work-id=34032115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032115,"title":"Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering","translated_title":"","metadata":{"grobid_abstract":"A major challenge for tissue engineers is the design of scaffolds with appropriate physical and mechanical properties. The present research discusses the formation of ceramic scaffolding in tissue engineering. Hydroxyapatite (HAp) powder was made from bovine bone by thermal treatment at 900掳C; 40, 50 and 60%wt porous HAp was then produced using the polyurethane sponge replication method. Scaffolds were coated with poly-3hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, SEM and FT-IR were used to study phase structure, morphology and agent groups, respectively. In XRD and FT-IR data, established hydrogen bands between polymer and ceramic matrix confirm that the scaffold is formed as a composite. The scaffold obtained with 50%wt HAp and a 30 s coating was 90% porous, with an average diameter of 100-400 lm, and demonstrated a compressive strength and modulus of 1.46 and 21.27 MPa, respectively. Based on these results, this scaffold is optimised for the aforementioned properties and can be utilised in bone tissue engineering.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"grobid_abstract_attachment_id":53973269},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032115/Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:12.877-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854118,"work_id":34032115,"tagging_user_id":66499940,"tagged_user_id":4222163,"co_author_invite_id":null,"email":"f***r@gmail.com","affiliation":"Isfahan University of Medical Sciences","display_order":0,"name":"Mohammad Reza Foroughi","title":"Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering"}],"downloadable_attachments":[{"id":53973269,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973269/thumbnails/1.jpg","file_name":"Physical_and_mechanical_properties_of_a_20170725-25620-1542ub.pdf","download_url":"https://www.academia.edu/attachments/53973269/download_file","bulk_download_file_name":"Physical_and_mechanical_properties_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973269/Physical_and_mechanical_properties_of_a_20170725-25620-1542ub-libre.pdf?1500997976=\u0026response-content-disposition=attachment%3B+filename%3DPhysical_and_mechanical_properties_of_a.pdf\u0026Expires=1743370487\u0026Signature=b9D8cxjGBidpPBvLz5ywU-lG6GwYpH-tSl9Nxjs3z8ft4wOLyZeuksFNONovJz4oYmaD~UHK8~tWevUO1kfqJxjrnlyHilvDSDIksDbe67kxYRG4kUKVDoCrdWTMQXdVf2oWTmPLIYR8sIY8WekVNxKx1ITnh0Q~gQV0FW3LbX4VBQi2WlRJ7UTVqU1PD1Ye3KPsiN~EoDO1Joiz~VgbgwNOlJwuYE2oKXwvyxRtbcvasRYGDHaukzZ0BjLwZuuqNgKY7X9hOeFnQQoUqskqcp3xfyyywoXzIN1u7JROisGVIQOs8Kf5c4bGy8ijmY8FXLUOKpjo9ej6yYriasCXtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"A major challenge for tissue engineers is the design of scaffolds with appropriate physical and mechanical properties. The present research discusses the formation of ceramic scaffolding in tissue engineering. Hydroxyapatite (HAp) powder was made from bovine bone by thermal treatment at 900掳C; 40, 50 and 60%wt porous HAp was then produced using the polyurethane sponge replication method. Scaffolds were coated with poly-3hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, SEM and FT-IR were used to study phase structure, morphology and agent groups, respectively. In XRD and FT-IR data, established hydrogen bands between polymer and ceramic matrix confirm that the scaffold is formed as a composite. The scaffold obtained with 50%wt HAp and a 30 s coating was 90% porous, with an average diameter of 100-400 lm, and demonstrated a compressive strength and modulus of 1.46 and 21.27 MPa, respectively. Based on these results, this scaffold is optimised for the aforementioned properties and can be utilised in bone tissue engineering.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973269,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973269/thumbnails/1.jpg","file_name":"Physical_and_mechanical_properties_of_a_20170725-25620-1542ub.pdf","download_url":"https://www.academia.edu/attachments/53973269/download_file","bulk_download_file_name":"Physical_and_mechanical_properties_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973269/Physical_and_mechanical_properties_of_a_20170725-25620-1542ub-libre.pdf?1500997976=\u0026response-content-disposition=attachment%3B+filename%3DPhysical_and_mechanical_properties_of_a.pdf\u0026Expires=1743370487\u0026Signature=b9D8cxjGBidpPBvLz5ywU-lG6GwYpH-tSl9Nxjs3z8ft4wOLyZeuksFNONovJz4oYmaD~UHK8~tWevUO1kfqJxjrnlyHilvDSDIksDbe67kxYRG4kUKVDoCrdWTMQXdVf2oWTmPLIYR8sIY8WekVNxKx1ITnh0Q~gQV0FW3LbX4VBQi2WlRJ7UTVqU1PD1Ye3KPsiN~EoDO1Joiz~VgbgwNOlJwuYE2oKXwvyxRtbcvasRYGDHaukzZ0BjLwZuuqNgKY7X9hOeFnQQoUqskqcp3xfyyywoXzIN1u7JROisGVIQOs8Kf5c4bGy8ijmY8FXLUOKpjo9ej6yYriasCXtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":39499,"name":"Porous Materials","url":"https://www.academia.edu/Documents/in/Porous_Materials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032115-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032114"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032114/Optimization_of_silk_yarn_hierarchical_structure_by_genetic_algorithm_to_design_scaffolds"><img alt="Research paper thumbnail of Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://mui.academia.edu/SaeedKarbasi">Saeed Karbasi</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://iut.academia.edu/DariushSemnani">Dariush Semnani</a></span></div><div class="wp-workCard_item"><span>Indian Journal of Fibre Textile Research</span><span>, Mar 27, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032114"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032114"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032114; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032114]").text(description); $(".js-view-count[data-work-id=34032114]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032114; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032114']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032114]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032114,"title":"Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds","translated_title":"","metadata":{"publication_date":{"day":27,"month":3,"year":2015,"errors":{}},"publication_name":"Indian Journal of Fibre Textile Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032114/Optimization_of_silk_yarn_hierarchical_structure_by_genetic_algorithm_to_design_scaffolds","translated_internal_url":"","created_at":"2017-07-25T08:47:12.657-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854111,"work_id":34032114,"tagging_user_id":66499940,"tagged_user_id":42453466,"co_author_invite_id":null,"email":"d***i@cc.iut.ac.ir","affiliation":"Isfahan University of Technology","display_order":0,"name":"Dariush Semnani","title":"Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds"}],"downloadable_attachments":[],"slug":"Optimization_of_silk_yarn_hierarchical_structure_by_genetic_algorithm_to_design_scaffolds","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":8233190,"url":"http://op.niscair.res.in/index.php/IJFTR/article/view/3697/214"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032114-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032113/A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH"><img alt="Research paper thumbnail of A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH" class="work-thumbnail" src="https://attachments.academia-assets.com/53973282/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032113/A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH">A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH</a></div><div class="wp-workCard_item"><span>Iranian Polymer Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">C artilage is a tissue that has a low potential for self-repair. One of the methods for improveme...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">C artilage is a tissue that has a low potential for self-repair. One of the methods for improvement of regeneration and metabolism in cartilge, is to stimulate physical factors on chondrocytes as cartilage based cells. In this research, two physical factors, oxygen tension and pH, were changed to measure the cell viability of chondrocytes on Degrapol庐, as a biodegradable polyurethane (DBS), and alginate scaffolds and cell viability onto these substrates are compared. The results showed that, physical factors like oxygen and pH could change cell viability. After 3 days cell culture for both types of scaffolds, the cell viability was higher with 5% O 2 and pH=7.4 and it was not dependent on the type of scaffolds. Our results showed that cell viability on alginate beads is more than DBS scaffold for different conditions. chondrocyte; physical environment; Biodegradation; polyester urethane (Degrapol庐); alginate; cell viability.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58f9470732d7ba3d65b84707973540a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973282,&quot;asset_id&quot;:34032113,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973282/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032113]").text(description); $(".js-view-count[data-work-id=34032113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58f9470732d7ba3d65b84707973540a8" } } $('.js-work-strip[data-work-id=34032113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032113,"title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH","translated_title":"","metadata":{"ai_title_tag":"Chondrocyte Viability in Biodegradable Scaffolds","grobid_abstract":"C artilage is a tissue that has a low potential for self-repair. One of the methods for improvement of regeneration and metabolism in cartilge, is to stimulate physical factors on chondrocytes as cartilage based cells. In this research, two physical factors, oxygen tension and pH, were changed to measure the cell viability of chondrocytes on Degrapol庐, as a biodegradable polyurethane (DBS), and alginate scaffolds and cell viability onto these substrates are compared. The results showed that, physical factors like oxygen and pH could change cell viability. After 3 days cell culture for both types of scaffolds, the cell viability was higher with 5% O 2 and pH=7.4 and it was not dependent on the type of scaffolds. Our results showed that cell viability on alginate beads is more than DBS scaffold for different conditions. chondrocyte; physical environment; Biodegradation; polyester urethane (Degrapol庐); alginate; cell viability.","publication_name":"Iranian Polymer Journal","grobid_abstract_attachment_id":53973282},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032113/A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH","translated_internal_url":"","created_at":"2017-07-25T08:47:12.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854075,"work_id":34032113,"tagging_user_id":66499940,"tagged_user_id":38385151,"co_author_invite_id":null,"email":"j***n@dpag.ox.ac.uk","display_order":0,"name":"J. Urban","title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH"},{"id":29854076,"work_id":34032113,"tagging_user_id":66499940,"tagged_user_id":260764066,"co_author_invite_id":696639,"email":"m***h@aut.ac.ir","display_order":4194304,"name":"Hamid Mirzadeh","title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH"},{"id":29854077,"work_id":34032113,"tagging_user_id":66499940,"tagged_user_id":null,"co_author_invite_id":6452192,"email":"s***4@aut.ac.ir","display_order":6291456,"name":"Fariba Orang","title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH"}],"downloadable_attachments":[{"id":53973282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973282/thumbnails/1.jpg","file_name":"81320050908.pdf","download_url":"https://www.academia.edu/attachments/53973282/download_file","bulk_download_file_name":"A_Comparison_between_Cell_Viability_of_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973282/81320050908-libre.pdf?1500998105=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_between_Cell_Viability_of_C.pdf\u0026Expires=1743370487\u0026Signature=SYbIoRSClaxZBI2-rjWL1QKub72kzOHM4rywVbKXYrRCRQ14jIAmTBq4YBAFhOhzlER2TONzzmMMC9KwEq8OBSilawpLF2ao~AkDCpNAURezF-kAkRzJyIgb~0JqF9Kbel70d8PtMrop5PacuhO5MdWvUkp7bHOe3rei8j-nM2QOuRovnEj0CA1G5nfjjx4jn-0HQnC7~-91f6GFGsl-8CzY4aFxAbEvmSL3O80tdrpFZRFlIWCHzlkoCoFx5oTw7Y1s~DnmF0jOiCh4sRWDMEcqGgx8ObxCXOX7o12iBOm351P1Oq7KCQ9FznAxrJc9Tmm-ZrVoj-cxVIyktIKt4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"C artilage is a tissue that has a low potential for self-repair. One of the methods for improvement of regeneration and metabolism in cartilge, is to stimulate physical factors on chondrocytes as cartilage based cells. In this research, two physical factors, oxygen tension and pH, were changed to measure the cell viability of chondrocytes on Degrapol庐, as a biodegradable polyurethane (DBS), and alginate scaffolds and cell viability onto these substrates are compared. The results showed that, physical factors like oxygen and pH could change cell viability. After 3 days cell culture for both types of scaffolds, the cell viability was higher with 5% O 2 and pH=7.4 and it was not dependent on the type of scaffolds. Our results showed that cell viability on alginate beads is more than DBS scaffold for different conditions. chondrocyte; physical environment; Biodegradation; polyester urethane (Degrapol庐); alginate; cell viability.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973282/thumbnails/1.jpg","file_name":"81320050908.pdf","download_url":"https://www.academia.edu/attachments/53973282/download_file","bulk_download_file_name":"A_Comparison_between_Cell_Viability_of_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973282/81320050908-libre.pdf?1500998105=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_between_Cell_Viability_of_C.pdf\u0026Expires=1743370487\u0026Signature=SYbIoRSClaxZBI2-rjWL1QKub72kzOHM4rywVbKXYrRCRQ14jIAmTBq4YBAFhOhzlER2TONzzmMMC9KwEq8OBSilawpLF2ao~AkDCpNAURezF-kAkRzJyIgb~0JqF9Kbel70d8PtMrop5PacuhO5MdWvUkp7bHOe3rei8j-nM2QOuRovnEj0CA1G5nfjjx4jn-0HQnC7~-91f6GFGsl-8CzY4aFxAbEvmSL3O80tdrpFZRFlIWCHzlkoCoFx5oTw7Y1s~DnmF0jOiCh4sRWDMEcqGgx8ObxCXOX7o12iBOm351P1Oq7KCQ9FznAxrJc9Tmm-ZrVoj-cxVIyktIKt4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":165002,"name":"Cell Viability","url":"https://www.academia.edu/Documents/in/Cell_Viability"},{"id":575534,"name":"Physical Environment","url":"https://www.academia.edu/Documents/in/Physical_Environment"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032113-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032112/Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold"><img alt="Research paper thumbnail of Evaluation of the Effects of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold" class="work-thumbnail" src="https://attachments.academia-assets.com/53973267/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032112/Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold">Evaluation of the Effects of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the most effective parameters in articular cartilage tissue engineering is cell stimulatio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system, which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has been demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycan) content produced by chondrocytes. The isolated chondrocytes from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely DegraPol 庐 and then, 4 MPa was applied to the samples for 4 hours per day as a cyclic (1 HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate (P&lt;0.001), rate of lactate production (P&lt;0.001) and GAG (P&lt;0.01) as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="136a89eddb647ea46c8f5cf96d96faac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973267,&quot;asset_id&quot;:34032112,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973267/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032112]").text(description); $(".js-view-count[data-work-id=34032112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "136a89eddb647ea46c8f5cf96d96faac" } } $('.js-work-strip[data-work-id=34032112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032112,"title":"Evaluation of the Effects of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold","translated_title":"","metadata":{"grobid_abstract":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system, which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has been demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycan) content produced by chondrocytes. The isolated chondrocytes from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely DegraPol 庐 and then, 4 MPa was applied to the samples for 4 hours per day as a cyclic (1 HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate (P\u003c0.001), rate of lactate production (P\u003c0.001) and GAG (P\u003c0.01) as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","grobid_abstract_attachment_id":53973267},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032112/Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_internal_url":"","created_at":"2017-07-25T08:47:12.328-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973267/thumbnails/1.jpg","file_name":"Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r.pdf","download_url":"https://www.academia.edu/attachments/53973267/download_file","bulk_download_file_name":"Evaluation_of_the_Effects_of_Hydrostatic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973267/Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r-libre.pdf?1500997983=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_the_Effects_of_Hydrostatic.pdf\u0026Expires=1743370487\u0026Signature=gdyTNDLqSMGyA9tT~v0D4Ft~YFk2twGxVWyITHLPTHO994Gnz7RAsiBuzkx8YUmNJ7cUswqQ0yren1JdYXMDyxIaqdqUic8~eOMYOKanX785AUghnS7FooxsVk7GIJTcziwZyIQTrLhzrfxyTkF0Z0xVrfk6zGUMczkCourc~JTPmurP~MboLhNuxMz6Y~LWzDF5ryKIOFPoze2SmIxC3~dCt-n8Wrwl-jjzFNmsUTHWPPKK5MRJGO4FHnm29QhRtbJkBiC0oQ2m7VnPVsncVVte4NambRmt4IlAkKPWGcyyYJYdQUOjgbnPoOAzO1oAfBC5cIi6hlfgcsUQ52IXPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system, which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has been demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycan) content produced by chondrocytes. The isolated chondrocytes from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely DegraPol 庐 and then, 4 MPa was applied to the samples for 4 hours per day as a cyclic (1 HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate (P\u003c0.001), rate of lactate production (P\u003c0.001) and GAG (P\u003c0.01) as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973267/thumbnails/1.jpg","file_name":"Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r.pdf","download_url":"https://www.academia.edu/attachments/53973267/download_file","bulk_download_file_name":"Evaluation_of_the_Effects_of_Hydrostatic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973267/Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r-libre.pdf?1500997983=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_the_Effects_of_Hydrostatic.pdf\u0026Expires=1743370487\u0026Signature=gdyTNDLqSMGyA9tT~v0D4Ft~YFk2twGxVWyITHLPTHO994Gnz7RAsiBuzkx8YUmNJ7cUswqQ0yren1JdYXMDyxIaqdqUic8~eOMYOKanX785AUghnS7FooxsVk7GIJTcziwZyIQTrLhzrfxyTkF0Z0xVrfk6zGUMczkCourc~JTPmurP~MboLhNuxMz6Y~LWzDF5ryKIOFPoze2SmIxC3~dCt-n8Wrwl-jjzFNmsUTHWPPKK5MRJGO4FHnm29QhRtbJkBiC0oQ2m7VnPVsncVVte4NambRmt4IlAkKPWGcyyYJYdQUOjgbnPoOAzO1oAfBC5cIi6hlfgcsUQ52IXPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032112-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032111/Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage"><img alt="Research paper thumbnail of Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage" class="work-thumbnail" src="https://attachments.academia-assets.com/53973268/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032111/Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage">Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorpti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorption and acts as a low friction bearing for the two surfaces of the joint. Osteoarthritis results in a wearing away of this material which results in an increase in friction, stiffness, and pain. fully saturated natural cartilage contains 70-80 percent water. Hydrogels based on polyvinyl alcohol (PVA) have excellent biocompatibility and mechanical properties, however their maximum water absorption capacity is around 40%. The objective of this research was to investigate the effect of gamma radiation grafting of acrylic acid (AA) or N-vinyl pyrollidone (NVP) on water absorption, compression modulus, and biocompatibility of semicrystalline PVA hydrogel as an artificial carthage. PVA hydrogel was prepared as follows. A 10% w/w solution of PVA with greater than 99.4% saponification was prepared in distilled boiling water to allow complete dissolution. The solution was placed in an oven at 100掳C for 2 h in order for water to evaporate. The dried films were annealed in a vacuum oven at 120掳C for 1 h at 30 mmHg pressure to induce maximum crystallization of PVA. Samples were allowed to swell in distilled water for at least 48 h. After reaching equilibrium swelling, different amounts of purified AA or NV? ranging from 5 to 30% based on PVA was added to the aqueous solution, poured in a glass vial, purged with nitrogen, sealed with plastic top, and each vial was exposed to gamma radiation. After irradiation, the samples were washed twice with distilled water to remove uncrosslinked polymer and dried in vaccu at 40掳C for 12 h. The percent grafting was determined by measuring the weight of dry sample before and after irradiation. The percent swelling was determined by measuring the weight of swollen and dry sample in phosphate buffer solution with pH 7. for biocompatibility, Cell culture was performed using the ASTM-F813 standard procedure. Samples were sterilized by UV radiation and subsequent washing with ethanol and placed in sterilized peth dishes containing the culture medium at 37掳C. Antibacterial agents Penicillin G and Streptomycin were added to the petri dish in order to deactivate any remaining bacteria. Fibroblast cells, obtained from fran Pasture Institute, with concentration of 1 .3x105 cell/mi were added to each pen-i dish and placed in a CO, incubator at 37掳C for 24 h. After cell culture, the samples were washed with PBS buffer. The remaining cells on the surface after washing were fixed with gluteraldhyde and stained with trepan blue for microscopic observation. Ungrafted PVA had about 40% by weight water absorption. When PVA was grafted with 10%, 20% and 30% AA, water absorption increased to 45%, 50% and 55%. On the other hand, when PVA was grafted with 10%, 20%, and 30% NVP, water absorption increased to 65%, 72% and 78%. As the PVA was grafted with 10%, 20% and 30% AA, cell toxicity increased significantly such that no cell growth was observed on the sample with 30% grafted AA. On the other hand, as the PVA was grafted with 10%, 20%, and 30% NVP, cell compatibility increased significantly compared with ungrafted PVA. Also, the NVP grafted PVA samples also had higher compression modulus. Therefore, the results indicate that the NV? grafted PVA is more suitable for use as artificial cartilage compared to ungrafted PVA.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4494d1f11c289886a85714bab0477e1c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973268,&quot;asset_id&quot;:34032111,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973268/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032111]").text(description); $(".js-view-count[data-work-id=34032111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4494d1f11c289886a85714bab0477e1c" } } $('.js-work-strip[data-work-id=34032111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032111,"title":"Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage","translated_title":"","metadata":{"grobid_abstract":"Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorption and acts as a low friction bearing for the two surfaces of the joint. Osteoarthritis results in a wearing away of this material which results in an increase in friction, stiffness, and pain. fully saturated natural cartilage contains 70-80 percent water. Hydrogels based on polyvinyl alcohol (PVA) have excellent biocompatibility and mechanical properties, however their maximum water absorption capacity is around 40%. The objective of this research was to investigate the effect of gamma radiation grafting of acrylic acid (AA) or N-vinyl pyrollidone (NVP) on water absorption, compression modulus, and biocompatibility of semicrystalline PVA hydrogel as an artificial carthage. PVA hydrogel was prepared as follows. A 10% w/w solution of PVA with greater than 99.4% saponification was prepared in distilled boiling water to allow complete dissolution. The solution was placed in an oven at 100掳C for 2 h in order for water to evaporate. The dried films were annealed in a vacuum oven at 120掳C for 1 h at 30 mmHg pressure to induce maximum crystallization of PVA. Samples were allowed to swell in distilled water for at least 48 h. After reaching equilibrium swelling, different amounts of purified AA or NV? ranging from 5 to 30% based on PVA was added to the aqueous solution, poured in a glass vial, purged with nitrogen, sealed with plastic top, and each vial was exposed to gamma radiation. After irradiation, the samples were washed twice with distilled water to remove uncrosslinked polymer and dried in vaccu at 40掳C for 12 h. The percent grafting was determined by measuring the weight of dry sample before and after irradiation. The percent swelling was determined by measuring the weight of swollen and dry sample in phosphate buffer solution with pH 7. for biocompatibility, Cell culture was performed using the ASTM-F813 standard procedure. Samples were sterilized by UV radiation and subsequent washing with ethanol and placed in sterilized peth dishes containing the culture medium at 37掳C. Antibacterial agents Penicillin G and Streptomycin were added to the petri dish in order to deactivate any remaining bacteria. Fibroblast cells, obtained from fran Pasture Institute, with concentration of 1 .3x105 cell/mi were added to each pen-i dish and placed in a CO, incubator at 37掳C for 24 h. After cell culture, the samples were washed with PBS buffer. The remaining cells on the surface after washing were fixed with gluteraldhyde and stained with trepan blue for microscopic observation. Ungrafted PVA had about 40% by weight water absorption. When PVA was grafted with 10%, 20% and 30% AA, water absorption increased to 45%, 50% and 55%. On the other hand, when PVA was grafted with 10%, 20%, and 30% NVP, water absorption increased to 65%, 72% and 78%. As the PVA was grafted with 10%, 20% and 30% AA, cell toxicity increased significantly such that no cell growth was observed on the sample with 30% grafted AA. On the other hand, as the PVA was grafted with 10%, 20%, and 30% NVP, cell compatibility increased significantly compared with ungrafted PVA. Also, the NVP grafted PVA samples also had higher compression modulus. Therefore, the results indicate that the NV? grafted PVA is more suitable for use as artificial cartilage compared to ungrafted PVA.","grobid_abstract_attachment_id":53973268},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032111/Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage","translated_internal_url":"","created_at":"2017-07-25T08:47:12.104-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854087,"work_id":34032111,"tagging_user_id":66499940,"tagged_user_id":32340991,"co_author_invite_id":null,"email":"j***i@engr.sc.edu","affiliation":"University of South Carolina","display_order":0,"name":"Esmaiel Jabbari","title":"Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage"}],"downloadable_attachments":[{"id":53973268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973268/thumbnails/1.jpg","file_name":"Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u.pdf","download_url":"https://www.academia.edu/attachments/53973268/download_file","bulk_download_file_name":"Effect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973268/Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u-libre.pdf?1500997978=\u0026response-content-disposition=attachment%3B+filename%3DEffect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf\u0026Expires=1743370487\u0026Signature=GETe~3Bq8Pu9l3C0m~TsbyJDNqYT~wV4mWFwEZp0i192BRqoL9AR8EI1tus2ie06UghvxB6WTLPZVauoZ4yYbYQswVZYdNAlHsC6E9qh8q0lCdZwjuFrBtMU04NdpbbEmxjMU~23UoZEcIgzaOU99u-XXExrsqFNU8yxs1jpc9eA-h-tyzeFhGwZ2qsFC1uwzXMY3wuRj5LG6XzRcb0KWAH8oUYNyAtMHz-yatDq6EoL5SUQ09PVE5zFJ8mk4hpjTrSsUowNGtGudFwDABZM84qM3FSp0VN5XXcfm2sxKjQdVi8CDfcLDCxCsMa1t26I-wvPHn9nxcEpeS9SHcgfbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorption and acts as a low friction bearing for the two surfaces of the joint. Osteoarthritis results in a wearing away of this material which results in an increase in friction, stiffness, and pain. fully saturated natural cartilage contains 70-80 percent water. Hydrogels based on polyvinyl alcohol (PVA) have excellent biocompatibility and mechanical properties, however their maximum water absorption capacity is around 40%. The objective of this research was to investigate the effect of gamma radiation grafting of acrylic acid (AA) or N-vinyl pyrollidone (NVP) on water absorption, compression modulus, and biocompatibility of semicrystalline PVA hydrogel as an artificial carthage. PVA hydrogel was prepared as follows. A 10% w/w solution of PVA with greater than 99.4% saponification was prepared in distilled boiling water to allow complete dissolution. The solution was placed in an oven at 100掳C for 2 h in order for water to evaporate. The dried films were annealed in a vacuum oven at 120掳C for 1 h at 30 mmHg pressure to induce maximum crystallization of PVA. Samples were allowed to swell in distilled water for at least 48 h. After reaching equilibrium swelling, different amounts of purified AA or NV? ranging from 5 to 30% based on PVA was added to the aqueous solution, poured in a glass vial, purged with nitrogen, sealed with plastic top, and each vial was exposed to gamma radiation. After irradiation, the samples were washed twice with distilled water to remove uncrosslinked polymer and dried in vaccu at 40掳C for 12 h. The percent grafting was determined by measuring the weight of dry sample before and after irradiation. The percent swelling was determined by measuring the weight of swollen and dry sample in phosphate buffer solution with pH 7. for biocompatibility, Cell culture was performed using the ASTM-F813 standard procedure. Samples were sterilized by UV radiation and subsequent washing with ethanol and placed in sterilized peth dishes containing the culture medium at 37掳C. Antibacterial agents Penicillin G and Streptomycin were added to the petri dish in order to deactivate any remaining bacteria. Fibroblast cells, obtained from fran Pasture Institute, with concentration of 1 .3x105 cell/mi were added to each pen-i dish and placed in a CO, incubator at 37掳C for 24 h. After cell culture, the samples were washed with PBS buffer. The remaining cells on the surface after washing were fixed with gluteraldhyde and stained with trepan blue for microscopic observation. Ungrafted PVA had about 40% by weight water absorption. When PVA was grafted with 10%, 20% and 30% AA, water absorption increased to 45%, 50% and 55%. On the other hand, when PVA was grafted with 10%, 20%, and 30% NVP, water absorption increased to 65%, 72% and 78%. As the PVA was grafted with 10%, 20% and 30% AA, cell toxicity increased significantly such that no cell growth was observed on the sample with 30% grafted AA. On the other hand, as the PVA was grafted with 10%, 20%, and 30% NVP, cell compatibility increased significantly compared with ungrafted PVA. Also, the NVP grafted PVA samples also had higher compression modulus. Therefore, the results indicate that the NV? grafted PVA is more suitable for use as artificial cartilage compared to ungrafted PVA.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973268/thumbnails/1.jpg","file_name":"Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u.pdf","download_url":"https://www.academia.edu/attachments/53973268/download_file","bulk_download_file_name":"Effect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973268/Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u-libre.pdf?1500997978=\u0026response-content-disposition=attachment%3B+filename%3DEffect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf\u0026Expires=1743370487\u0026Signature=GETe~3Bq8Pu9l3C0m~TsbyJDNqYT~wV4mWFwEZp0i192BRqoL9AR8EI1tus2ie06UghvxB6WTLPZVauoZ4yYbYQswVZYdNAlHsC6E9qh8q0lCdZwjuFrBtMU04NdpbbEmxjMU~23UoZEcIgzaOU99u-XXExrsqFNU8yxs1jpc9eA-h-tyzeFhGwZ2qsFC1uwzXMY3wuRj5LG6XzRcb0KWAH8oUYNyAtMHz-yatDq6EoL5SUQ09PVE5zFJ8mk4hpjTrSsUowNGtGudFwDABZM84qM3FSp0VN5XXcfm2sxKjQdVi8CDfcLDCxCsMa1t26I-wvPHn9nxcEpeS9SHcgfbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032111-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032110/A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH"><img alt="Research paper thumbnail of A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH" class="work-thumbnail" src="https://attachments.academia-assets.com/53973270/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032110/A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH">A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH</a></div><div class="wp-workCard_item"><span>IFMBE proceedings</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There are some different methods in the literatures that used for healing and repairing of cartil...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There are some different methods in the literatures that used for healing and repairing of cartilage. One of the methods for increasing of regeneration and metabolism in cartilage, is stimulating physicochemical parameters on cellpolymer systems, as cartilage based cells. In this research, two physicochemical parameters, oxygen tension and pH, was changed to measure the lactate production after 1, 2 and 3 days culture and GAG(glycosaminoglycan) production after 3, 7 and 14 days culture of chondrocytes on DegraPol庐, as a biodegradable polyurethane scaffold (BPUS), and alginate scaffolds. The results finally were compared on both scaffolds. The results showed that physicochemical parameters like oxygen tension and pH could change cell metabolism. In fact, the physicochemical parameters could affect lactate production and GAG content of chondrocyte cells and it does not depend on the type of scaffold. The best condition of the articular chondrocytes metabolism was for 5% O2 and pH=7.4(p&lt;0.001). The comparison between BPUS and alginate scaffold is showing that the results are better for alginate beads (p&lt;0.001). In fact, hydrophilicity of alginate causes better cell distribution and nutrition than BPUS; because the cells are able to transfer the ions and the products through the medium easily.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="745a8bf0c6aad45e2af5a36a157091a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973270,&quot;asset_id&quot;:34032110,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973270/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032110]").text(description); $(".js-view-count[data-work-id=34032110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "745a8bf0c6aad45e2af5a36a157091a1" } } $('.js-work-strip[data-work-id=34032110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032110,"title":"A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH","translated_title":"","metadata":{"grobid_abstract":"There are some different methods in the literatures that used for healing and repairing of cartilage. One of the methods for increasing of regeneration and metabolism in cartilage, is stimulating physicochemical parameters on cellpolymer systems, as cartilage based cells. In this research, two physicochemical parameters, oxygen tension and pH, was changed to measure the lactate production after 1, 2 and 3 days culture and GAG(glycosaminoglycan) production after 3, 7 and 14 days culture of chondrocytes on DegraPol庐, as a biodegradable polyurethane scaffold (BPUS), and alginate scaffolds. The results finally were compared on both scaffolds. The results showed that physicochemical parameters like oxygen tension and pH could change cell metabolism. In fact, the physicochemical parameters could affect lactate production and GAG content of chondrocyte cells and it does not depend on the type of scaffold. The best condition of the articular chondrocytes metabolism was for 5% O2 and pH=7.4(p\u003c0.001). The comparison between BPUS and alginate scaffold is showing that the results are better for alginate beads (p\u003c0.001). In fact, hydrophilicity of alginate causes better cell distribution and nutrition than BPUS; because the cells are able to transfer the ions and the products through the medium easily.","publication_name":"IFMBE proceedings","grobid_abstract_attachment_id":53973270},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032110/A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH","translated_internal_url":"","created_at":"2017-07-25T08:47:11.864-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973270,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973270/thumbnails/1.jpg","file_name":"A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7.pdf","download_url":"https://www.academia.edu/attachments/53973270/download_file","bulk_download_file_name":"A_Comparative_Study_of_Articular_Chondro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973270/A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7-libre.pdf?1500997975=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparative_Study_of_Articular_Chondro.pdf\u0026Expires=1743370487\u0026Signature=M1zLWnLNkvIhjFqLG3lQkQCftVx09IOSZ2sQSmpuHQKVcRjXqNvyL2SlibR0KudjkpxWQOjCuB0lQ2VJIQroF96kGOVdtQLyKpDr5RBLmrG5u3D7jgqBe1wHLrz~U0eoLF~Tutpw9RlnCb4vCLmWkuUcbb1ujp7nGoAWBC2FTf58VFN5e2waQT4vuuRJG5qmU95QPWLcDb0t9i7pTv-4U4o5ATTm5nh6Q2yFysPAapcr01SIXTssROe8Si39x71H~lE9zn2CwrpmLqVGUAmZCw~OsOZ1U86QRc4YfJgmgrIicjTVC2yzDugmWUvhfF68OhzIDXJ9KV3HSSlbJQ3wjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"There are some different methods in the literatures that used for healing and repairing of cartilage. One of the methods for increasing of regeneration and metabolism in cartilage, is stimulating physicochemical parameters on cellpolymer systems, as cartilage based cells. In this research, two physicochemical parameters, oxygen tension and pH, was changed to measure the lactate production after 1, 2 and 3 days culture and GAG(glycosaminoglycan) production after 3, 7 and 14 days culture of chondrocytes on DegraPol庐, as a biodegradable polyurethane scaffold (BPUS), and alginate scaffolds. The results finally were compared on both scaffolds. The results showed that physicochemical parameters like oxygen tension and pH could change cell metabolism. In fact, the physicochemical parameters could affect lactate production and GAG content of chondrocyte cells and it does not depend on the type of scaffold. The best condition of the articular chondrocytes metabolism was for 5% O2 and pH=7.4(p\u003c0.001). The comparison between BPUS and alginate scaffold is showing that the results are better for alginate beads (p\u003c0.001). In fact, hydrophilicity of alginate causes better cell distribution and nutrition than BPUS; because the cells are able to transfer the ions and the products through the medium easily.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973270,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973270/thumbnails/1.jpg","file_name":"A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7.pdf","download_url":"https://www.academia.edu/attachments/53973270/download_file","bulk_download_file_name":"A_Comparative_Study_of_Articular_Chondro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973270/A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7-libre.pdf?1500997975=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparative_Study_of_Articular_Chondro.pdf\u0026Expires=1743370487\u0026Signature=M1zLWnLNkvIhjFqLG3lQkQCftVx09IOSZ2sQSmpuHQKVcRjXqNvyL2SlibR0KudjkpxWQOjCuB0lQ2VJIQroF96kGOVdtQLyKpDr5RBLmrG5u3D7jgqBe1wHLrz~U0eoLF~Tutpw9RlnCb4vCLmWkuUcbb1ujp7nGoAWBC2FTf58VFN5e2waQT4vuuRJG5qmU95QPWLcDb0t9i7pTv-4U4o5ATTm5nh6Q2yFysPAapcr01SIXTssROe8Si39x71H~lE9zn2CwrpmLqVGUAmZCw~OsOZ1U86QRc4YfJgmgrIicjTVC2yzDugmWUvhfF68OhzIDXJ9KV3HSSlbJQ3wjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032110-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="7238883" id="papers"><div class="js-work-strip profile--work_container" data-work-id="34032129"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold"><img alt="Research paper thumbnail of Evaluation of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold" class="work-thumbnail" src="https://attachments.academia-assets.com/53973274/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold">Evaluation of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold</a></div><div class="wp-workCard_item"><span>Ifmbe Proceedings</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the most effective parameters in articular cartilage tissue engineering is cell stimulatio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycane) content produced by chondrocytes. The isolated chondrocytes, from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely Degrapol 庐 and 4 MPa was applied to the samples for 4 h per day as a cyclic (1HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate, rate of lactate production and GAG as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a54675b1c8579ac8c8a68d909a68a8c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973274,&quot;asset_id&quot;:34032129,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973274/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032129"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032129"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032129; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032129]").text(description); $(".js-view-count[data-work-id=34032129]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032129; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032129']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a54675b1c8579ac8c8a68d909a68a8c" } } $('.js-work-strip[data-work-id=34032129]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032129,"title":"Evaluation of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold","translated_title":"","metadata":{"grobid_abstract":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycane) content produced by chondrocytes. The isolated chondrocytes, from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely Degrapol 庐 and 4 MPa was applied to the samples for 4 h per day as a cyclic (1HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate, rate of lactate production and GAG as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Ifmbe Proceedings","grobid_abstract_attachment_id":53973274},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032129/Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_internal_url":"","created_at":"2017-07-25T08:47:25.738-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973274,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973274/thumbnails/1.jpg","file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk.pdf","download_url":"https://www.academia.edu/attachments/53973274/download_file","bulk_download_file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973274/Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_Hydrostatic_Pressure_on_Me.pdf\u0026Expires=1743370486\u0026Signature=CyB5r1zCk8cJE56Hdf5ZauUyLL7P99RuldfcxIyPV9emAye3hw3MMqQUSUtV9SLEL-rFZ68LS8e5JkaBaTgOSTRvWojsVEVhmZvSiWtevaV8ZZ1qHs9g-Sl2GS1HFbmkHKgK6tdg7Oz8ucnPOZCTMQmBD2c22XaxP42tvm~-jYG9uvKVo59THif~lPiMaOoNklb-nYDpXY4PD8PjSZi5q--4Hh0XRyRIS4I5~FkmDdXDYHUfcUdWvAQr694SwxXc0E~E2Mjbon~yRlZwntj74JXhcJHnc2B4BRVc49SqmdLou5C2JM-zwaAeOvf8GRkxzDpkvEYr8d3P3OMafwMMQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evaluation_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycane) content produced by chondrocytes. The isolated chondrocytes, from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely Degrapol 庐 and 4 MPa was applied to the samples for 4 h per day as a cyclic (1HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate, rate of lactate production and GAG as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973274,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973274/thumbnails/1.jpg","file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk.pdf","download_url":"https://www.academia.edu/attachments/53973274/download_file","bulk_download_file_name":"Evaluation_of_Hydrostatic_Pressure_on_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973274/Evaluation_of_Hydrostatic_Pressure_on_Me20170725-25623-j0dvgk-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_Hydrostatic_Pressure_on_Me.pdf\u0026Expires=1743370486\u0026Signature=CyB5r1zCk8cJE56Hdf5ZauUyLL7P99RuldfcxIyPV9emAye3hw3MMqQUSUtV9SLEL-rFZ68LS8e5JkaBaTgOSTRvWojsVEVhmZvSiWtevaV8ZZ1qHs9g-Sl2GS1HFbmkHKgK6tdg7Oz8ucnPOZCTMQmBD2c22XaxP42tvm~-jYG9uvKVo59THif~lPiMaOoNklb-nYDpXY4PD8PjSZi5q--4Hh0XRyRIS4I5~FkmDdXDYHUfcUdWvAQr694SwxXc0E~E2Mjbon~yRlZwntj74JXhcJHnc2B4BRVc49SqmdLou5C2JM-zwaAeOvf8GRkxzDpkvEYr8d3P3OMafwMMQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032129-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032128"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032128/Evaluation_of_Physical_and_Mechanical_Properties_of_Hydroxyapatite_Titanium_dioxide_Composite_Scaffold_for_Tissue_Engineering_Applications"><img alt="Research paper thumbnail of Evaluation of Physical and Mechanical Properties of Hydroxyapatite/Titanium dioxide Composite Scaffold for Tissue Engineering Applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of Physical and Mechanical Properties of Hydroxyapatite/Titanium dioxide Composite Scaffold for Tissue Engineering Applications</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032128"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032128"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032128; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032128]").text(description); $(".js-view-count[data-work-id=34032128]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032128; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032128']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032128]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032128,"title":"Evaluation of Physical and Mechanical Properties of Hydroxyapatite/Titanium dioxide Composite Scaffold for Tissue Engineering Applications","translated_title":"","metadata":{"publication_date":{"day":1,"month":10,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032128/Evaluation_of_Physical_and_Mechanical_Properties_of_Hydroxyapatite_Titanium_dioxide_Composite_Scaffold_for_Tissue_Engineering_Applications","translated_internal_url":"","created_at":"2017-07-25T08:47:25.596-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_Physical_and_Mechanical_Properties_of_Hydroxyapatite_Titanium_dioxide_Composite_Scaffold_for_Tissue_Engineering_Applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032128-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032127"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032127/Electrospinning_of_aligned_medical_grade_polyurethane_nanofibres_and_evaluation_of_cell_scaffold_interaction_using_SHED_stem_cells"><img alt="Research paper thumbnail of Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell鈥搒caffold interaction using SHED stem cells" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell鈥搒caffold interaction using SHED stem cells</div><div class="wp-workCard_item"><span>Micro &amp; Nano Letters</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032127"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032127"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032127; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032127]").text(description); $(".js-view-count[data-work-id=34032127]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032127; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032127']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032127]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032127,"title":"Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell鈥搒caffold interaction using SHED stem cells","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Micro \u0026 Nano Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032127/Electrospinning_of_aligned_medical_grade_polyurethane_nanofibres_and_evaluation_of_cell_scaffold_interaction_using_SHED_stem_cells","translated_internal_url":"","created_at":"2017-07-25T08:47:14.917-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrospinning_of_aligned_medical_grade_polyurethane_nanofibres_and_evaluation_of_cell_scaffold_interaction_using_SHED_stem_cells","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032127-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032126"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032126/Evaluation_of_structural_and_mechanical_properties_of_electrospun_nano_micro_hybrid_of_poly_hydroxybutyrate_chitosan_silk_scaffold_for_cartilage_tissue_engineering"><img alt="Research paper thumbnail of Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering</div><div class="wp-workCard_item"><span>Advanced Biomedical Research</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the prop...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032126"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032126]").text(description); $(".js-view-count[data-work-id=34032126]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032126']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032126]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032126,"title":"Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering","translated_title":"","metadata":{"abstract":"One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advanced Biomedical Research"},"translated_abstract":"One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.","internal_url":"https://www.academia.edu/34032126/Evaluation_of_structural_and_mechanical_properties_of_electrospun_nano_micro_hybrid_of_poly_hydroxybutyrate_chitosan_silk_scaffold_for_cartilage_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:14.719-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_structural_and_mechanical_properties_of_electrospun_nano_micro_hybrid_of_poly_hydroxybutyrate_chitosan_silk_scaffold_for_cartilage_tissue_engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032126-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032125"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032125/Evaluate_the_growth_and_adhesion_of_osteoblast_cells_on_nanocomposite_scaffold_of_hydroxyapatite_titania_coated_with_poly_hydroxybutyrate"><img alt="Research paper thumbnail of Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate</div><div class="wp-workCard_item"><span>Advanced Biomedical Research</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The generation of bioartificial bone tissues may help to overcome the problems related to donor s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032125"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032125"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032125; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032125]").text(description); $(".js-view-count[data-work-id=34032125]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032125; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032125']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032125]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032125,"title":"Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate","translated_title":"","metadata":{"abstract":"The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advanced Biomedical Research"},"translated_abstract":"The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.","internal_url":"https://www.academia.edu/34032125/Evaluate_the_growth_and_adhesion_of_osteoblast_cells_on_nanocomposite_scaffold_of_hydroxyapatite_titania_coated_with_poly_hydroxybutyrate","translated_internal_url":"","created_at":"2017-07-25T08:47:14.571-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluate_the_growth_and_adhesion_of_osteoblast_cells_on_nanocomposite_scaffold_of_hydroxyapatite_titania_coated_with_poly_hydroxybutyrate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900掳C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032125-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032124"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032124/Evaluation_of_Structural_Mechanical_and_Cellular_Behavior_of_Electrospunpoly3_hydroxybutyrate_Scaffolds_Loaded_with_Glucosamine_Sulfate_to_Develop_Cartilage_Tissue_Engineering"><img alt="Research paper thumbnail of Evaluation of Structural, Mechanical and Cellular Behavior of Electrospunpoly3-hydroxybutyrate Scaffolds Loaded with Glucosamine Sulfate to Develop Cartilage Tissue Engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of Structural, Mechanical and Cellular Behavior of Electrospunpoly3-hydroxybutyrate Scaffolds Loaded with Glucosamine Sulfate to Develop Cartilage Tissue Engineering</div><div class="wp-workCard_item"><span>International Journal of Polymeric Materials and Polymeric Biomaterials</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032124"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032124"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032124; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032124]").text(description); $(".js-view-count[data-work-id=34032124]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032124; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032124']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032124]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032124,"title":"Evaluation of Structural, Mechanical and Cellular Behavior of Electrospunpoly3-hydroxybutyrate Scaffolds Loaded with Glucosamine Sulfate to Develop Cartilage Tissue Engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"International Journal of Polymeric Materials and Polymeric Biomaterials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032124/Evaluation_of_Structural_Mechanical_and_Cellular_Behavior_of_Electrospunpoly3_hydroxybutyrate_Scaffolds_Loaded_with_Glucosamine_Sulfate_to_Develop_Cartilage_Tissue_Engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:14.403-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_Structural_Mechanical_and_Cellular_Behavior_of_Electrospunpoly3_hydroxybutyrate_Scaffolds_Loaded_with_Glucosamine_Sulfate_to_Develop_Cartilage_Tissue_Engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032124-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032123"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032123/Preparation_and_characterization_of_poly_hydroxy_butyrate_chitosan_blend_scaffolds_for_tissue_engineering_applications"><img alt="Research paper thumbnail of Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications</div><div class="wp-workCard_item"><span>Advanced Biomedical Research</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032123"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032123"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032123; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032123]").text(description); $(".js-view-count[data-work-id=34032123]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032123; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032123']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032123]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032123,"title":"Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Advanced Biomedical Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032123/Preparation_and_characterization_of_poly_hydroxy_butyrate_chitosan_blend_scaffolds_for_tissue_engineering_applications","translated_internal_url":"","created_at":"2017-07-25T08:47:14.252-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparation_and_characterization_of_poly_hydroxy_butyrate_chitosan_blend_scaffolds_for_tissue_engineering_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032123-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032122"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032122/Electrospun_poly_hydroxybutyrate_chitosan_blend_fibrous_scaffolds_for_cartilage_tissue_engineering"><img alt="Research paper thumbnail of Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering</div><div class="wp-workCard_item"><span>Journal of Applied Polymer Science</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032122"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032122"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032122; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032122]").text(description); $(".js-view-count[data-work-id=34032122]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032122; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032122']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032122]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032122,"title":"Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Applied Polymer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032122/Electrospun_poly_hydroxybutyrate_chitosan_blend_fibrous_scaffolds_for_cartilage_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:14.079-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrospun_poly_hydroxybutyrate_chitosan_blend_fibrous_scaffolds_for_cartilage_tissue_engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":966213,"name":"Journal of Applied Polymer Science","url":"https://www.academia.edu/Documents/in/Journal_of_Applied_Polymer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032122-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032121"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032121/Evaluation_of_PCL_Chitosan_Electrospun_Nanofibers_for_Liver_Tissue_Engineering"><img alt="Research paper thumbnail of Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering</div><div class="wp-workCard_item"><span>International Journal of Polymeric Materials and Polymeric Biomaterials</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032121"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032121"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032121; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032121]").text(description); $(".js-view-count[data-work-id=34032121]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032121; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032121']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032121]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032121,"title":"Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"International Journal of Polymeric Materials and Polymeric Biomaterials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032121/Evaluation_of_PCL_Chitosan_Electrospun_Nanofibers_for_Liver_Tissue_Engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:13.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_PCL_Chitosan_Electrospun_Nanofibers_for_Liver_Tissue_Engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032121-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032120"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032120/Preparing_nanocomposite_fibrrous_scaffolds_of_P3HB_nHA_for_Bone_tissue_engineering"><img alt="Research paper thumbnail of Preparing nanocomposite fibrrous scaffolds of P3HB /nHA for Bone tissue engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preparing nanocomposite fibrrous scaffolds of P3HB /nHA for Bone tissue engineering</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032120"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032120"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032120; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032120]").text(description); $(".js-view-count[data-work-id=34032120]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032120; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032120']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032120]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032120,"title":"Preparing nanocomposite fibrrous scaffolds of P3HB /nHA for Bone tissue engineering","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032120/Preparing_nanocomposite_fibrrous_scaffolds_of_P3HB_nHA_for_Bone_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:13.537-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparing_nanocomposite_fibrrous_scaffolds_of_P3HB_nHA_for_Bone_tissue_engineering","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"}],"urls":[{"id":8233192,"url":"http://www.civilica.com/Paper-ICBME17-ICBME17_230=Preparing-nanocomposite-fibrrous-scaffolds-of-P3HB-nHA-for-Bone-tissue-engineering.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032120-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032119"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032119/Polyhydroxybutyrate_chitosan_bioglass_nanocomposite_as_a_novel_electrospun_scaffold_fabrication_and_characterization"><img alt="Research paper thumbnail of Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization</div><div class="wp-workCard_item"><span>Journal of Porous Materials</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032119"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032119"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032119; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032119]").text(description); $(".js-view-count[data-work-id=34032119]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032119; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032119']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032119]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032119,"title":"Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Porous Materials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032119/Polyhydroxybutyrate_chitosan_bioglass_nanocomposite_as_a_novel_electrospun_scaffold_fabrication_and_characterization","translated_internal_url":"","created_at":"2017-07-25T08:47:13.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Polyhydroxybutyrate_chitosan_bioglass_nanocomposite_as_a_novel_electrospun_scaffold_fabrication_and_characterization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":39499,"name":"Porous Materials","url":"https://www.academia.edu/Documents/in/Porous_Materials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032119-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032118"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032118/Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates"><img alt="Research paper thumbnail of Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO 2 -SiO 2 nano composite coatings on stainless steel substrates" class="work-thumbnail" src="https://attachments.academia-assets.com/53973272/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032118/Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates">Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO 2 -SiO 2 nano composite coatings on stainless steel substrates</a></div><div class="wp-workCard_item"><span>J Mater Sci Mater Med</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO 2 -calcinated NBG and TiO 2 -Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBGtitania films have better bioactivity than non calcinated NBG-titania films.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8a461cd2a8a6eea9610322a1981e05de" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973272,&quot;asset_id&quot;:34032118,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973272/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032118"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032118"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032118; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032118]").text(description); $(".js-view-count[data-work-id=34032118]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032118; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032118']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8a461cd2a8a6eea9610322a1981e05de" } } $('.js-work-strip[data-work-id=34032118]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032118,"title":"Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO 2 -SiO 2 nano composite coatings on stainless steel substrates","translated_title":"","metadata":{"grobid_abstract":"Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO 2 -calcinated NBG and TiO 2 -Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBGtitania films have better bioactivity than non calcinated NBG-titania films.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"J Mater Sci Mater Med","grobid_abstract_attachment_id":53973272},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032118/Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates","translated_internal_url":"","created_at":"2017-07-25T08:47:13.318-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973272/thumbnails/1.jpg","file_name":"Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3.pdf","download_url":"https://www.academia.edu/attachments/53973272/download_file","bulk_download_file_name":"Influence_of_calcinated_and_non_calcinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973272/Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_calcinated_and_non_calcinat.pdf\u0026Expires=1743370487\u0026Signature=QDvuSY5r9urtXACTo2bfnktk~PXhbnX5B~QjDJbWDl95QJCtQk4wekdmX-8fXy7vbPZx1m5MAbAy6j0y-0BvR1Gf-bv1x-cm9tJ8mdfdtpHkL-Wm0L6T5dqbQ6w9Ex~DNOEPSNoJa5PJ~4erg2ojh1oVLlh94iOf6SVXI~neI0Xbr1vX6ruf2hdDY86oE7q1rrnxxVUP5kfqPx~8RM4LDs253xuyYP56JQ0puT9ISMmiRLdtJcb9LTZ1EC0nyoW752DUrVqWvvxS39FmHVTSA-RDZmcGsMoieHFydu4cTzE54ydRKfrQZ6SzhmpEspKXVd8mYEzWhhXzTWayLTJQTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_calcinated_and_non_calcinated_nanobioglass_particles_on_hardness_and_bioactivity_of_sol_gel_derived_TiO_2_SiO_2_nano_composite_coatings_on_stainless_steel_substrates","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO 2 -calcinated NBG and TiO 2 -Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBGtitania films have better bioactivity than non calcinated NBG-titania films.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973272/thumbnails/1.jpg","file_name":"Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3.pdf","download_url":"https://www.academia.edu/attachments/53973272/download_file","bulk_download_file_name":"Influence_of_calcinated_and_non_calcinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973272/Influence_of_calcinated_and_non_calcinat20170725-25620-r3j3r3-libre.pdf?1500997974=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_calcinated_and_non_calcinat.pdf\u0026Expires=1743370487\u0026Signature=QDvuSY5r9urtXACTo2bfnktk~PXhbnX5B~QjDJbWDl95QJCtQk4wekdmX-8fXy7vbPZx1m5MAbAy6j0y-0BvR1Gf-bv1x-cm9tJ8mdfdtpHkL-Wm0L6T5dqbQ6w9Ex~DNOEPSNoJa5PJ~4erg2ojh1oVLlh94iOf6SVXI~neI0Xbr1vX6ruf2hdDY86oE7q1rrnxxVUP5kfqPx~8RM4LDs253xuyYP56JQ0puT9ISMmiRLdtJcb9LTZ1EC0nyoW752DUrVqWvvxS39FmHVTSA-RDZmcGsMoieHFydu4cTzE54ydRKfrQZ6SzhmpEspKXVd8mYEzWhhXzTWayLTJQTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":7742,"name":"Glass","url":"https://www.academia.edu/Documents/in/Glass"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":10650,"name":"Materials","url":"https://www.academia.edu/Documents/in/Materials"},{"id":10655,"name":"Scanning Electron Microscopy","url":"https://www.academia.edu/Documents/in/Scanning_Electron_Microscopy"},{"id":11404,"name":"Titanium","url":"https://www.academia.edu/Documents/in/Titanium"},{"id":11678,"name":"Nanocomposites","url":"https://www.academia.edu/Documents/in/Nanocomposites"},{"id":35056,"name":"Metal Nanoparticles","url":"https://www.academia.edu/Documents/in/Metal_Nanoparticles"},{"id":58906,"name":"Fourier Analysis","url":"https://www.academia.edu/Documents/in/Fourier_Analysis"},{"id":85460,"name":"Sol Gel Process","url":"https://www.academia.edu/Documents/in/Sol_Gel_Process"},{"id":128789,"name":"Stainless Steel","url":"https://www.academia.edu/Documents/in/Stainless_Steel"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":176678,"name":"Hardness","url":"https://www.academia.edu/Documents/in/Hardness"},{"id":186099,"name":"Grain size","url":"https://www.academia.edu/Documents/in/Grain_size"},{"id":186264,"name":"Surface Morphology","url":"https://www.academia.edu/Documents/in/Surface_Morphology"},{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":398650,"name":"Fourier transform infrared spectroscopy","url":"https://www.academia.edu/Documents/in/Fourier_transform_infrared_spectroscopy"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":776363,"name":"Powders","url":"https://www.academia.edu/Documents/in/Powders"},{"id":1031067,"name":"Biocompatible Materials","url":"https://www.academia.edu/Documents/in/Biocompatible_Materials"},{"id":1031069,"name":"Silicon Dioxide","url":"https://www.academia.edu/Documents/in/Silicon_Dioxide"},{"id":1035713,"name":"Simulated Body Fluid","url":"https://www.academia.edu/Documents/in/Simulated_Body_Fluid"},{"id":1146508,"name":"Body Fluids","url":"https://www.academia.edu/Documents/in/Body_Fluids"},{"id":2243423,"name":"Fourier transform infrared","url":"https://www.academia.edu/Documents/in/Fourier_transform_infrared"},{"id":2736714,"name":"Test Methods","url":"https://www.academia.edu/Documents/in/Test_Methods"}],"urls":[{"id":8233191,"url":"http://springerlink.com/index/g8734715u135u437.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032118-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032117"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032117/Cell_Attachment_and_Proliferation_of_Human_Adipose_Derived_Stem_Cells_on_PLGA_Chitosan_Electrospun_Nano_Biocomposite"><img alt="Research paper thumbnail of Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite</div><div class="wp-workCard_item"><span>Cell journal</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P&amp;lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032117"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032117"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032117; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032117]").text(description); $(".js-view-count[data-work-id=34032117]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032117; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032117']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032117]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032117,"title":"Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite","translated_title":"","metadata":{"abstract":"In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P\u0026lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Cell journal"},"translated_abstract":"In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P\u0026lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...","internal_url":"https://www.academia.edu/34032117/Cell_Attachment_and_Proliferation_of_Human_Adipose_Derived_Stem_Cells_on_PLGA_Chitosan_Electrospun_Nano_Biocomposite","translated_internal_url":"","created_at":"2017-07-25T08:47:13.180-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cell_Attachment_and_Proliferation_of_Human_Adipose_Derived_Stem_Cells_on_PLGA_Chitosan_Electrospun_Nano_Biocomposite","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P\u0026lt;0.05). We found that CS enhanced cell adhesion and proliferation rate,...","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":107533,"name":"Cell","url":"https://www.academia.edu/Documents/in/Cell"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032117-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032116"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032116/Novel_sol_gel_synthesis_and_characterization_of_nanostructured_hydroxyapatite_powder"><img alt="Research paper thumbnail of Novel sol鈥揼el synthesis and characterization of nanostructured hydroxyapatite powder" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Novel sol鈥揼el synthesis and characterization of nanostructured hydroxyapatite powder</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032116"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032116"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032116; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032116]").text(description); $(".js-view-count[data-work-id=34032116]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032116; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032116']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032116]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032116,"title":"Novel sol鈥揼el synthesis and characterization of nanostructured hydroxyapatite powder","translated_title":"","metadata":{"abstract":"Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...","internal_url":"https://www.academia.edu/34032116/Novel_sol_gel_synthesis_and_characterization_of_nanostructured_hydroxyapatite_powder","translated_internal_url":"","created_at":"2017-07-25T08:47:13.032-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Novel_sol_gel_synthesis_and_characterization_of_nanostructured_hydroxyapatite_powder","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca (NO 3) 2路 4H 2 O and P 2 O 5 using a simple sol聳gel approach. The resultant gel precursors obtained based on the concentration of the starting solutions were either transparent or translucent. ...","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032116-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032115/Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering"><img alt="Research paper thumbnail of Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering" class="work-thumbnail" src="https://attachments.academia-assets.com/53973269/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032115/Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering">Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A major challenge for tissue engineers is the design of scaffolds with appropriate physical and m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A major challenge for tissue engineers is the design of scaffolds with appropriate physical and mechanical properties. The present research discusses the formation of ceramic scaffolding in tissue engineering. Hydroxyapatite (HAp) powder was made from bovine bone by thermal treatment at 900掳C; 40, 50 and 60%wt porous HAp was then produced using the polyurethane sponge replication method. Scaffolds were coated with poly-3hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold&#39;s mechanical properties. XRD, SEM and FT-IR were used to study phase structure, morphology and agent groups, respectively. In XRD and FT-IR data, established hydrogen bands between polymer and ceramic matrix confirm that the scaffold is formed as a composite. The scaffold obtained with 50%wt HAp and a 30 s coating was 90% porous, with an average diameter of 100-400 lm, and demonstrated a compressive strength and modulus of 1.46 and 21.27 MPa, respectively. Based on these results, this scaffold is optimised for the aforementioned properties and can be utilised in bone tissue engineering.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6ba86ac54912fd16cb94a3efc5fd2933" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973269,&quot;asset_id&quot;:34032115,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973269/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032115]").text(description); $(".js-view-count[data-work-id=34032115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6ba86ac54912fd16cb94a3efc5fd2933" } } $('.js-work-strip[data-work-id=34032115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032115,"title":"Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering","translated_title":"","metadata":{"grobid_abstract":"A major challenge for tissue engineers is the design of scaffolds with appropriate physical and mechanical properties. The present research discusses the formation of ceramic scaffolding in tissue engineering. Hydroxyapatite (HAp) powder was made from bovine bone by thermal treatment at 900掳C; 40, 50 and 60%wt porous HAp was then produced using the polyurethane sponge replication method. Scaffolds were coated with poly-3hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, SEM and FT-IR were used to study phase structure, morphology and agent groups, respectively. In XRD and FT-IR data, established hydrogen bands between polymer and ceramic matrix confirm that the scaffold is formed as a composite. The scaffold obtained with 50%wt HAp and a 30 s coating was 90% porous, with an average diameter of 100-400 lm, and demonstrated a compressive strength and modulus of 1.46 and 21.27 MPa, respectively. Based on these results, this scaffold is optimised for the aforementioned properties and can be utilised in bone tissue engineering.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"grobid_abstract_attachment_id":53973269},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032115/Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering","translated_internal_url":"","created_at":"2017-07-25T08:47:12.877-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854118,"work_id":34032115,"tagging_user_id":66499940,"tagged_user_id":4222163,"co_author_invite_id":null,"email":"f***r@gmail.com","affiliation":"Isfahan University of Medical Sciences","display_order":0,"name":"Mohammad Reza Foroughi","title":"Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering"}],"downloadable_attachments":[{"id":53973269,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973269/thumbnails/1.jpg","file_name":"Physical_and_mechanical_properties_of_a_20170725-25620-1542ub.pdf","download_url":"https://www.academia.edu/attachments/53973269/download_file","bulk_download_file_name":"Physical_and_mechanical_properties_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973269/Physical_and_mechanical_properties_of_a_20170725-25620-1542ub-libre.pdf?1500997976=\u0026response-content-disposition=attachment%3B+filename%3DPhysical_and_mechanical_properties_of_a.pdf\u0026Expires=1743370487\u0026Signature=b9D8cxjGBidpPBvLz5ywU-lG6GwYpH-tSl9Nxjs3z8ft4wOLyZeuksFNONovJz4oYmaD~UHK8~tWevUO1kfqJxjrnlyHilvDSDIksDbe67kxYRG4kUKVDoCrdWTMQXdVf2oWTmPLIYR8sIY8WekVNxKx1ITnh0Q~gQV0FW3LbX4VBQi2WlRJ7UTVqU1PD1Ye3KPsiN~EoDO1Joiz~VgbgwNOlJwuYE2oKXwvyxRtbcvasRYGDHaukzZ0BjLwZuuqNgKY7X9hOeFnQQoUqskqcp3xfyyywoXzIN1u7JROisGVIQOs8Kf5c4bGy8ijmY8FXLUOKpjo9ej6yYriasCXtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Physical_and_mechanical_properties_of_a_poly_3_hydroxybutyratecoated_nanocrystalline_Bioglass_45S5_scaffold_for_bone_tissue_engineering","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"A major challenge for tissue engineers is the design of scaffolds with appropriate physical and mechanical properties. The present research discusses the formation of ceramic scaffolding in tissue engineering. Hydroxyapatite (HAp) powder was made from bovine bone by thermal treatment at 900掳C; 40, 50 and 60%wt porous HAp was then produced using the polyurethane sponge replication method. Scaffolds were coated with poly-3hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, SEM and FT-IR were used to study phase structure, morphology and agent groups, respectively. In XRD and FT-IR data, established hydrogen bands between polymer and ceramic matrix confirm that the scaffold is formed as a composite. The scaffold obtained with 50%wt HAp and a 30 s coating was 90% porous, with an average diameter of 100-400 lm, and demonstrated a compressive strength and modulus of 1.46 and 21.27 MPa, respectively. Based on these results, this scaffold is optimised for the aforementioned properties and can be utilised in bone tissue engineering.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973269,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973269/thumbnails/1.jpg","file_name":"Physical_and_mechanical_properties_of_a_20170725-25620-1542ub.pdf","download_url":"https://www.academia.edu/attachments/53973269/download_file","bulk_download_file_name":"Physical_and_mechanical_properties_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973269/Physical_and_mechanical_properties_of_a_20170725-25620-1542ub-libre.pdf?1500997976=\u0026response-content-disposition=attachment%3B+filename%3DPhysical_and_mechanical_properties_of_a.pdf\u0026Expires=1743370487\u0026Signature=b9D8cxjGBidpPBvLz5ywU-lG6GwYpH-tSl9Nxjs3z8ft4wOLyZeuksFNONovJz4oYmaD~UHK8~tWevUO1kfqJxjrnlyHilvDSDIksDbe67kxYRG4kUKVDoCrdWTMQXdVf2oWTmPLIYR8sIY8WekVNxKx1ITnh0Q~gQV0FW3LbX4VBQi2WlRJ7UTVqU1PD1Ye3KPsiN~EoDO1Joiz~VgbgwNOlJwuYE2oKXwvyxRtbcvasRYGDHaukzZ0BjLwZuuqNgKY7X9hOeFnQQoUqskqcp3xfyyywoXzIN1u7JROisGVIQOs8Kf5c4bGy8ijmY8FXLUOKpjo9ej6yYriasCXtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":39499,"name":"Porous Materials","url":"https://www.academia.edu/Documents/in/Porous_Materials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032115-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032114"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/34032114/Optimization_of_silk_yarn_hierarchical_structure_by_genetic_algorithm_to_design_scaffolds"><img alt="Research paper thumbnail of Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://mui.academia.edu/SaeedKarbasi">Saeed Karbasi</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://iut.academia.edu/DariushSemnani">Dariush Semnani</a></span></div><div class="wp-workCard_item"><span>Indian Journal of Fibre Textile Research</span><span>, Mar 27, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032114"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032114"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032114; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032114]").text(description); $(".js-view-count[data-work-id=34032114]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032114; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032114']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=34032114]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032114,"title":"Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds","translated_title":"","metadata":{"publication_date":{"day":27,"month":3,"year":2015,"errors":{}},"publication_name":"Indian Journal of Fibre Textile Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032114/Optimization_of_silk_yarn_hierarchical_structure_by_genetic_algorithm_to_design_scaffolds","translated_internal_url":"","created_at":"2017-07-25T08:47:12.657-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854111,"work_id":34032114,"tagging_user_id":66499940,"tagged_user_id":42453466,"co_author_invite_id":null,"email":"d***i@cc.iut.ac.ir","affiliation":"Isfahan University of Technology","display_order":0,"name":"Dariush Semnani","title":"Optimization of silk yarn hierarchical structure by genetic algorithm to design scaffolds"}],"downloadable_attachments":[],"slug":"Optimization_of_silk_yarn_hierarchical_structure_by_genetic_algorithm_to_design_scaffolds","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":8233190,"url":"http://op.niscair.res.in/index.php/IJFTR/article/view/3697/214"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032114-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032113/A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH"><img alt="Research paper thumbnail of A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH" class="work-thumbnail" src="https://attachments.academia-assets.com/53973282/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032113/A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH">A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH</a></div><div class="wp-workCard_item"><span>Iranian Polymer Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">C artilage is a tissue that has a low potential for self-repair. One of the methods for improveme...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">C artilage is a tissue that has a low potential for self-repair. One of the methods for improvement of regeneration and metabolism in cartilge, is to stimulate physical factors on chondrocytes as cartilage based cells. In this research, two physical factors, oxygen tension and pH, were changed to measure the cell viability of chondrocytes on Degrapol庐, as a biodegradable polyurethane (DBS), and alginate scaffolds and cell viability onto these substrates are compared. The results showed that, physical factors like oxygen and pH could change cell viability. After 3 days cell culture for both types of scaffolds, the cell viability was higher with 5% O 2 and pH=7.4 and it was not dependent on the type of scaffolds. Our results showed that cell viability on alginate beads is more than DBS scaffold for different conditions. chondrocyte; physical environment; Biodegradation; polyester urethane (Degrapol庐); alginate; cell viability.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58f9470732d7ba3d65b84707973540a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973282,&quot;asset_id&quot;:34032113,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973282/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032113]").text(description); $(".js-view-count[data-work-id=34032113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58f9470732d7ba3d65b84707973540a8" } } $('.js-work-strip[data-work-id=34032113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032113,"title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH","translated_title":"","metadata":{"ai_title_tag":"Chondrocyte Viability in Biodegradable Scaffolds","grobid_abstract":"C artilage is a tissue that has a low potential for self-repair. One of the methods for improvement of regeneration and metabolism in cartilge, is to stimulate physical factors on chondrocytes as cartilage based cells. In this research, two physical factors, oxygen tension and pH, were changed to measure the cell viability of chondrocytes on Degrapol庐, as a biodegradable polyurethane (DBS), and alginate scaffolds and cell viability onto these substrates are compared. The results showed that, physical factors like oxygen and pH could change cell viability. After 3 days cell culture for both types of scaffolds, the cell viability was higher with 5% O 2 and pH=7.4 and it was not dependent on the type of scaffolds. Our results showed that cell viability on alginate beads is more than DBS scaffold for different conditions. chondrocyte; physical environment; Biodegradation; polyester urethane (Degrapol庐); alginate; cell viability.","publication_name":"Iranian Polymer Journal","grobid_abstract_attachment_id":53973282},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032113/A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH","translated_internal_url":"","created_at":"2017-07-25T08:47:12.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854075,"work_id":34032113,"tagging_user_id":66499940,"tagged_user_id":38385151,"co_author_invite_id":null,"email":"j***n@dpag.ox.ac.uk","display_order":0,"name":"J. Urban","title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH"},{"id":29854076,"work_id":34032113,"tagging_user_id":66499940,"tagged_user_id":260764066,"co_author_invite_id":696639,"email":"m***h@aut.ac.ir","display_order":4194304,"name":"Hamid Mirzadeh","title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH"},{"id":29854077,"work_id":34032113,"tagging_user_id":66499940,"tagged_user_id":null,"co_author_invite_id":6452192,"email":"s***4@aut.ac.ir","display_order":6291456,"name":"Fariba Orang","title":"A Comparison between Cell Viability of Chondrocytes on a Biodegradable Polyester Urethane Scaffold and Alginate Beads in Different Oxygen Tension and pH"}],"downloadable_attachments":[{"id":53973282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973282/thumbnails/1.jpg","file_name":"81320050908.pdf","download_url":"https://www.academia.edu/attachments/53973282/download_file","bulk_download_file_name":"A_Comparison_between_Cell_Viability_of_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973282/81320050908-libre.pdf?1500998105=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_between_Cell_Viability_of_C.pdf\u0026Expires=1743370487\u0026Signature=SYbIoRSClaxZBI2-rjWL1QKub72kzOHM4rywVbKXYrRCRQ14jIAmTBq4YBAFhOhzlER2TONzzmMMC9KwEq8OBSilawpLF2ao~AkDCpNAURezF-kAkRzJyIgb~0JqF9Kbel70d8PtMrop5PacuhO5MdWvUkp7bHOe3rei8j-nM2QOuRovnEj0CA1G5nfjjx4jn-0HQnC7~-91f6GFGsl-8CzY4aFxAbEvmSL3O80tdrpFZRFlIWCHzlkoCoFx5oTw7Y1s~DnmF0jOiCh4sRWDMEcqGgx8ObxCXOX7o12iBOm351P1Oq7KCQ9FznAxrJc9Tmm-ZrVoj-cxVIyktIKt4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparison_between_Cell_Viability_of_Chondrocytes_on_a_Biodegradable_Polyester_Urethane_Scaffold_and_Alginate_Beads_in_Different_Oxygen_Tension_and_pH","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"C artilage is a tissue that has a low potential for self-repair. One of the methods for improvement of regeneration and metabolism in cartilge, is to stimulate physical factors on chondrocytes as cartilage based cells. In this research, two physical factors, oxygen tension and pH, were changed to measure the cell viability of chondrocytes on Degrapol庐, as a biodegradable polyurethane (DBS), and alginate scaffolds and cell viability onto these substrates are compared. The results showed that, physical factors like oxygen and pH could change cell viability. After 3 days cell culture for both types of scaffolds, the cell viability was higher with 5% O 2 and pH=7.4 and it was not dependent on the type of scaffolds. Our results showed that cell viability on alginate beads is more than DBS scaffold for different conditions. chondrocyte; physical environment; Biodegradation; polyester urethane (Degrapol庐); alginate; cell viability.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973282/thumbnails/1.jpg","file_name":"81320050908.pdf","download_url":"https://www.academia.edu/attachments/53973282/download_file","bulk_download_file_name":"A_Comparison_between_Cell_Viability_of_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973282/81320050908-libre.pdf?1500998105=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_between_Cell_Viability_of_C.pdf\u0026Expires=1743370487\u0026Signature=SYbIoRSClaxZBI2-rjWL1QKub72kzOHM4rywVbKXYrRCRQ14jIAmTBq4YBAFhOhzlER2TONzzmMMC9KwEq8OBSilawpLF2ao~AkDCpNAURezF-kAkRzJyIgb~0JqF9Kbel70d8PtMrop5PacuhO5MdWvUkp7bHOe3rei8j-nM2QOuRovnEj0CA1G5nfjjx4jn-0HQnC7~-91f6GFGsl-8CzY4aFxAbEvmSL3O80tdrpFZRFlIWCHzlkoCoFx5oTw7Y1s~DnmF0jOiCh4sRWDMEcqGgx8ObxCXOX7o12iBOm351P1Oq7KCQ9FznAxrJc9Tmm-ZrVoj-cxVIyktIKt4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":165002,"name":"Cell Viability","url":"https://www.academia.edu/Documents/in/Cell_Viability"},{"id":575534,"name":"Physical Environment","url":"https://www.academia.edu/Documents/in/Physical_Environment"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032113-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032112/Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold"><img alt="Research paper thumbnail of Evaluation of the Effects of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold" class="work-thumbnail" src="https://attachments.academia-assets.com/53973267/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032112/Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold">Evaluation of the Effects of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the most effective parameters in articular cartilage tissue engineering is cell stimulatio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system, which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has been demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycan) content produced by chondrocytes. The isolated chondrocytes from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely DegraPol 庐 and then, 4 MPa was applied to the samples for 4 hours per day as a cyclic (1 HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate (P&lt;0.001), rate of lactate production (P&lt;0.001) and GAG (P&lt;0.01) as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="136a89eddb647ea46c8f5cf96d96faac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973267,&quot;asset_id&quot;:34032112,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973267/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032112]").text(description); $(".js-view-count[data-work-id=34032112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "136a89eddb647ea46c8f5cf96d96faac" } } $('.js-work-strip[data-work-id=34032112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032112,"title":"Evaluation of the Effects of Hydrostatic Pressure on Metabolism of the Articular Chondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold","translated_title":"","metadata":{"grobid_abstract":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system, which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has been demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycan) content produced by chondrocytes. The isolated chondrocytes from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely DegraPol 庐 and then, 4 MPa was applied to the samples for 4 hours per day as a cyclic (1 HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate (P\u003c0.001), rate of lactate production (P\u003c0.001) and GAG (P\u003c0.01) as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","grobid_abstract_attachment_id":53973267},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032112/Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_internal_url":"","created_at":"2017-07-25T08:47:12.328-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973267/thumbnails/1.jpg","file_name":"Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r.pdf","download_url":"https://www.academia.edu/attachments/53973267/download_file","bulk_download_file_name":"Evaluation_of_the_Effects_of_Hydrostatic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973267/Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r-libre.pdf?1500997983=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_the_Effects_of_Hydrostatic.pdf\u0026Expires=1743370487\u0026Signature=gdyTNDLqSMGyA9tT~v0D4Ft~YFk2twGxVWyITHLPTHO994Gnz7RAsiBuzkx8YUmNJ7cUswqQ0yren1JdYXMDyxIaqdqUic8~eOMYOKanX785AUghnS7FooxsVk7GIJTcziwZyIQTrLhzrfxyTkF0Z0xVrfk6zGUMczkCourc~JTPmurP~MboLhNuxMz6Y~LWzDF5ryKIOFPoze2SmIxC3~dCt-n8Wrwl-jjzFNmsUTHWPPKK5MRJGO4FHnm29QhRtbJkBiC0oQ2m7VnPVsncVVte4NambRmt4IlAkKPWGcyyYJYdQUOjgbnPoOAzO1oAfBC5cIi6hlfgcsUQ52IXPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evaluation_of_the_Effects_of_Hydrostatic_Pressure_on_Metabolism_of_the_Articular_Chondrocytes_Seeded_on_Biodegradable_Polyurethane_as_Tissue_Engineering_Scaffold","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"One of the most effective parameters in articular cartilage tissue engineering is cell stimulation and growth. Using a reaction system, which incorporates many of the same conditions as an articulating joint such as intermittent loading, long term culture and a suitable 3-D growth environment could stimulate chondrocytes metabolism. It has been demonstrated that hydrostatic pressure, as a physicochemical parameter, also could increase chondrocytes metabolism in tissue constructs. In this research, the effect of hydrostatic pressure was investigated on lactate production and GAG (glycosaminoglycan) content produced by chondrocytes. The isolated chondrocytes from animal joint, were seeded on a biodegradable polyesterurethane scaffold (BPUS) namely DegraPol 庐 and then, 4 MPa was applied to the samples for 4 hours per day as a cyclic (1 HZ, Sinusoidal) load. The results showed that in constant physicochemical conditions, the hydrostatic pressure could increase the amount of lactate (P\u003c0.001), rate of lactate production (P\u003c0.001) and GAG (P\u003c0.01) as a significant cartilage metabolism on BPUS. In comparison to other biodegradable polymers, this research was showed that BPUS has great potential for articular cartilage tissue engineering, in vitro.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973267/thumbnails/1.jpg","file_name":"Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r.pdf","download_url":"https://www.academia.edu/attachments/53973267/download_file","bulk_download_file_name":"Evaluation_of_the_Effects_of_Hydrostatic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973267/Evaluation_of_the_Effects_of_Hydrostatic20170725-25623-tdal2r-libre.pdf?1500997983=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_the_Effects_of_Hydrostatic.pdf\u0026Expires=1743370487\u0026Signature=gdyTNDLqSMGyA9tT~v0D4Ft~YFk2twGxVWyITHLPTHO994Gnz7RAsiBuzkx8YUmNJ7cUswqQ0yren1JdYXMDyxIaqdqUic8~eOMYOKanX785AUghnS7FooxsVk7GIJTcziwZyIQTrLhzrfxyTkF0Z0xVrfk6zGUMczkCourc~JTPmurP~MboLhNuxMz6Y~LWzDF5ryKIOFPoze2SmIxC3~dCt-n8Wrwl-jjzFNmsUTHWPPKK5MRJGO4FHnm29QhRtbJkBiC0oQ2m7VnPVsncVVte4NambRmt4IlAkKPWGcyyYJYdQUOjgbnPoOAzO1oAfBC5cIi6hlfgcsUQ52IXPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032112-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032111/Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage"><img alt="Research paper thumbnail of Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage" class="work-thumbnail" src="https://attachments.academia-assets.com/53973268/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032111/Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage">Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorpti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorption and acts as a low friction bearing for the two surfaces of the joint. Osteoarthritis results in a wearing away of this material which results in an increase in friction, stiffness, and pain. fully saturated natural cartilage contains 70-80 percent water. Hydrogels based on polyvinyl alcohol (PVA) have excellent biocompatibility and mechanical properties, however their maximum water absorption capacity is around 40%. The objective of this research was to investigate the effect of gamma radiation grafting of acrylic acid (AA) or N-vinyl pyrollidone (NVP) on water absorption, compression modulus, and biocompatibility of semicrystalline PVA hydrogel as an artificial carthage. PVA hydrogel was prepared as follows. A 10% w/w solution of PVA with greater than 99.4% saponification was prepared in distilled boiling water to allow complete dissolution. The solution was placed in an oven at 100掳C for 2 h in order for water to evaporate. The dried films were annealed in a vacuum oven at 120掳C for 1 h at 30 mmHg pressure to induce maximum crystallization of PVA. Samples were allowed to swell in distilled water for at least 48 h. After reaching equilibrium swelling, different amounts of purified AA or NV? ranging from 5 to 30% based on PVA was added to the aqueous solution, poured in a glass vial, purged with nitrogen, sealed with plastic top, and each vial was exposed to gamma radiation. After irradiation, the samples were washed twice with distilled water to remove uncrosslinked polymer and dried in vaccu at 40掳C for 12 h. The percent grafting was determined by measuring the weight of dry sample before and after irradiation. The percent swelling was determined by measuring the weight of swollen and dry sample in phosphate buffer solution with pH 7. for biocompatibility, Cell culture was performed using the ASTM-F813 standard procedure. Samples were sterilized by UV radiation and subsequent washing with ethanol and placed in sterilized peth dishes containing the culture medium at 37掳C. Antibacterial agents Penicillin G and Streptomycin were added to the petri dish in order to deactivate any remaining bacteria. Fibroblast cells, obtained from fran Pasture Institute, with concentration of 1 .3x105 cell/mi were added to each pen-i dish and placed in a CO, incubator at 37掳C for 24 h. After cell culture, the samples were washed with PBS buffer. The remaining cells on the surface after washing were fixed with gluteraldhyde and stained with trepan blue for microscopic observation. Ungrafted PVA had about 40% by weight water absorption. When PVA was grafted with 10%, 20% and 30% AA, water absorption increased to 45%, 50% and 55%. On the other hand, when PVA was grafted with 10%, 20%, and 30% NVP, water absorption increased to 65%, 72% and 78%. As the PVA was grafted with 10%, 20% and 30% AA, cell toxicity increased significantly such that no cell growth was observed on the sample with 30% grafted AA. On the other hand, as the PVA was grafted with 10%, 20%, and 30% NVP, cell compatibility increased significantly compared with ungrafted PVA. Also, the NVP grafted PVA samples also had higher compression modulus. Therefore, the results indicate that the NV? grafted PVA is more suitable for use as artificial cartilage compared to ungrafted PVA.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4494d1f11c289886a85714bab0477e1c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973268,&quot;asset_id&quot;:34032111,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973268/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032111]").text(description); $(".js-view-count[data-work-id=34032111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4494d1f11c289886a85714bab0477e1c" } } $('.js-work-strip[data-work-id=34032111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032111,"title":"Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage","translated_title":"","metadata":{"grobid_abstract":"Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorption and acts as a low friction bearing for the two surfaces of the joint. Osteoarthritis results in a wearing away of this material which results in an increase in friction, stiffness, and pain. fully saturated natural cartilage contains 70-80 percent water. Hydrogels based on polyvinyl alcohol (PVA) have excellent biocompatibility and mechanical properties, however their maximum water absorption capacity is around 40%. The objective of this research was to investigate the effect of gamma radiation grafting of acrylic acid (AA) or N-vinyl pyrollidone (NVP) on water absorption, compression modulus, and biocompatibility of semicrystalline PVA hydrogel as an artificial carthage. PVA hydrogel was prepared as follows. A 10% w/w solution of PVA with greater than 99.4% saponification was prepared in distilled boiling water to allow complete dissolution. The solution was placed in an oven at 100掳C for 2 h in order for water to evaporate. The dried films were annealed in a vacuum oven at 120掳C for 1 h at 30 mmHg pressure to induce maximum crystallization of PVA. Samples were allowed to swell in distilled water for at least 48 h. After reaching equilibrium swelling, different amounts of purified AA or NV? ranging from 5 to 30% based on PVA was added to the aqueous solution, poured in a glass vial, purged with nitrogen, sealed with plastic top, and each vial was exposed to gamma radiation. After irradiation, the samples were washed twice with distilled water to remove uncrosslinked polymer and dried in vaccu at 40掳C for 12 h. The percent grafting was determined by measuring the weight of dry sample before and after irradiation. The percent swelling was determined by measuring the weight of swollen and dry sample in phosphate buffer solution with pH 7. for biocompatibility, Cell culture was performed using the ASTM-F813 standard procedure. Samples were sterilized by UV radiation and subsequent washing with ethanol and placed in sterilized peth dishes containing the culture medium at 37掳C. Antibacterial agents Penicillin G and Streptomycin were added to the petri dish in order to deactivate any remaining bacteria. Fibroblast cells, obtained from fran Pasture Institute, with concentration of 1 .3x105 cell/mi were added to each pen-i dish and placed in a CO, incubator at 37掳C for 24 h. After cell culture, the samples were washed with PBS buffer. The remaining cells on the surface after washing were fixed with gluteraldhyde and stained with trepan blue for microscopic observation. Ungrafted PVA had about 40% by weight water absorption. When PVA was grafted with 10%, 20% and 30% AA, water absorption increased to 45%, 50% and 55%. On the other hand, when PVA was grafted with 10%, 20%, and 30% NVP, water absorption increased to 65%, 72% and 78%. As the PVA was grafted with 10%, 20% and 30% AA, cell toxicity increased significantly such that no cell growth was observed on the sample with 30% grafted AA. On the other hand, as the PVA was grafted with 10%, 20%, and 30% NVP, cell compatibility increased significantly compared with ungrafted PVA. Also, the NVP grafted PVA samples also had higher compression modulus. Therefore, the results indicate that the NV? grafted PVA is more suitable for use as artificial cartilage compared to ungrafted PVA.","grobid_abstract_attachment_id":53973268},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032111/Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage","translated_internal_url":"","created_at":"2017-07-25T08:47:12.104-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29854087,"work_id":34032111,"tagging_user_id":66499940,"tagged_user_id":32340991,"co_author_invite_id":null,"email":"j***i@engr.sc.edu","affiliation":"University of South Carolina","display_order":0,"name":"Esmaiel Jabbari","title":"Effect Of Grafting N-Vinyl Pyrollidone or Acrylic Acid on Cytotoxicity, Water Absorption, and Compression Modulus of Crosslinked Polyvinyl Alcohol as Artificial Cartilage"}],"downloadable_attachments":[{"id":53973268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973268/thumbnails/1.jpg","file_name":"Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u.pdf","download_url":"https://www.academia.edu/attachments/53973268/download_file","bulk_download_file_name":"Effect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973268/Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u-libre.pdf?1500997978=\u0026response-content-disposition=attachment%3B+filename%3DEffect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf\u0026Expires=1743370487\u0026Signature=GETe~3Bq8Pu9l3C0m~TsbyJDNqYT~wV4mWFwEZp0i192BRqoL9AR8EI1tus2ie06UghvxB6WTLPZVauoZ4yYbYQswVZYdNAlHsC6E9qh8q0lCdZwjuFrBtMU04NdpbbEmxjMU~23UoZEcIgzaOU99u-XXExrsqFNU8yxs1jpc9eA-h-tyzeFhGwZ2qsFC1uwzXMY3wuRj5LG6XzRcb0KWAH8oUYNyAtMHz-yatDq6EoL5SUQ09PVE5zFJ8mk4hpjTrSsUowNGtGudFwDABZM84qM3FSp0VN5XXcfm2sxKjQdVi8CDfcLDCxCsMa1t26I-wvPHn9nxcEpeS9SHcgfbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_Of_Grafting_N_Vinyl_Pyrollidone_or_Acrylic_Acid_on_Cytotoxicity_Water_Absorption_and_Compression_Modulus_of_Crosslinked_Polyvinyl_Alcohol_as_Artificial_Cartilage","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Articular cartilage is a thin layer covering the opposed bony faces, which aids in force absorption and acts as a low friction bearing for the two surfaces of the joint. Osteoarthritis results in a wearing away of this material which results in an increase in friction, stiffness, and pain. fully saturated natural cartilage contains 70-80 percent water. Hydrogels based on polyvinyl alcohol (PVA) have excellent biocompatibility and mechanical properties, however their maximum water absorption capacity is around 40%. The objective of this research was to investigate the effect of gamma radiation grafting of acrylic acid (AA) or N-vinyl pyrollidone (NVP) on water absorption, compression modulus, and biocompatibility of semicrystalline PVA hydrogel as an artificial carthage. PVA hydrogel was prepared as follows. A 10% w/w solution of PVA with greater than 99.4% saponification was prepared in distilled boiling water to allow complete dissolution. The solution was placed in an oven at 100掳C for 2 h in order for water to evaporate. The dried films were annealed in a vacuum oven at 120掳C for 1 h at 30 mmHg pressure to induce maximum crystallization of PVA. Samples were allowed to swell in distilled water for at least 48 h. After reaching equilibrium swelling, different amounts of purified AA or NV? ranging from 5 to 30% based on PVA was added to the aqueous solution, poured in a glass vial, purged with nitrogen, sealed with plastic top, and each vial was exposed to gamma radiation. After irradiation, the samples were washed twice with distilled water to remove uncrosslinked polymer and dried in vaccu at 40掳C for 12 h. The percent grafting was determined by measuring the weight of dry sample before and after irradiation. The percent swelling was determined by measuring the weight of swollen and dry sample in phosphate buffer solution with pH 7. for biocompatibility, Cell culture was performed using the ASTM-F813 standard procedure. Samples were sterilized by UV radiation and subsequent washing with ethanol and placed in sterilized peth dishes containing the culture medium at 37掳C. Antibacterial agents Penicillin G and Streptomycin were added to the petri dish in order to deactivate any remaining bacteria. Fibroblast cells, obtained from fran Pasture Institute, with concentration of 1 .3x105 cell/mi were added to each pen-i dish and placed in a CO, incubator at 37掳C for 24 h. After cell culture, the samples were washed with PBS buffer. The remaining cells on the surface after washing were fixed with gluteraldhyde and stained with trepan blue for microscopic observation. Ungrafted PVA had about 40% by weight water absorption. When PVA was grafted with 10%, 20% and 30% AA, water absorption increased to 45%, 50% and 55%. On the other hand, when PVA was grafted with 10%, 20%, and 30% NVP, water absorption increased to 65%, 72% and 78%. As the PVA was grafted with 10%, 20% and 30% AA, cell toxicity increased significantly such that no cell growth was observed on the sample with 30% grafted AA. On the other hand, as the PVA was grafted with 10%, 20%, and 30% NVP, cell compatibility increased significantly compared with ungrafted PVA. Also, the NVP grafted PVA samples also had higher compression modulus. Therefore, the results indicate that the NV? grafted PVA is more suitable for use as artificial cartilage compared to ungrafted PVA.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973268/thumbnails/1.jpg","file_name":"Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u.pdf","download_url":"https://www.academia.edu/attachments/53973268/download_file","bulk_download_file_name":"Effect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973268/Effect_Of_Grafting_N-Vinyl_Pyrollidone_o20170725-25623-nyov1u-libre.pdf?1500997978=\u0026response-content-disposition=attachment%3B+filename%3DEffect_Of_Grafting_N_Vinyl_Pyrollidone_o.pdf\u0026Expires=1743370487\u0026Signature=GETe~3Bq8Pu9l3C0m~TsbyJDNqYT~wV4mWFwEZp0i192BRqoL9AR8EI1tus2ie06UghvxB6WTLPZVauoZ4yYbYQswVZYdNAlHsC6E9qh8q0lCdZwjuFrBtMU04NdpbbEmxjMU~23UoZEcIgzaOU99u-XXExrsqFNU8yxs1jpc9eA-h-tyzeFhGwZ2qsFC1uwzXMY3wuRj5LG6XzRcb0KWAH8oUYNyAtMHz-yatDq6EoL5SUQ09PVE5zFJ8mk4hpjTrSsUowNGtGudFwDABZM84qM3FSp0VN5XXcfm2sxKjQdVi8CDfcLDCxCsMa1t26I-wvPHn9nxcEpeS9SHcgfbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032111-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34032110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34032110/A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH"><img alt="Research paper thumbnail of A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH" class="work-thumbnail" src="https://attachments.academia-assets.com/53973270/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34032110/A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH">A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH</a></div><div class="wp-workCard_item"><span>IFMBE proceedings</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There are some different methods in the literatures that used for healing and repairing of cartil...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There are some different methods in the literatures that used for healing and repairing of cartilage. One of the methods for increasing of regeneration and metabolism in cartilage, is stimulating physicochemical parameters on cellpolymer systems, as cartilage based cells. In this research, two physicochemical parameters, oxygen tension and pH, was changed to measure the lactate production after 1, 2 and 3 days culture and GAG(glycosaminoglycan) production after 3, 7 and 14 days culture of chondrocytes on DegraPol庐, as a biodegradable polyurethane scaffold (BPUS), and alginate scaffolds. The results finally were compared on both scaffolds. The results showed that physicochemical parameters like oxygen tension and pH could change cell metabolism. In fact, the physicochemical parameters could affect lactate production and GAG content of chondrocyte cells and it does not depend on the type of scaffold. The best condition of the articular chondrocytes metabolism was for 5% O2 and pH=7.4(p&lt;0.001). The comparison between BPUS and alginate scaffold is showing that the results are better for alginate beads (p&lt;0.001). In fact, hydrophilicity of alginate causes better cell distribution and nutrition than BPUS; because the cells are able to transfer the ions and the products through the medium easily.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="745a8bf0c6aad45e2af5a36a157091a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53973270,&quot;asset_id&quot;:34032110,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53973270/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34032110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34032110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34032110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34032110]").text(description); $(".js-view-count[data-work-id=34032110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34032110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34032110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "745a8bf0c6aad45e2af5a36a157091a1" } } $('.js-work-strip[data-work-id=34032110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34032110,"title":"A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH","translated_title":"","metadata":{"grobid_abstract":"There are some different methods in the literatures that used for healing and repairing of cartilage. One of the methods for increasing of regeneration and metabolism in cartilage, is stimulating physicochemical parameters on cellpolymer systems, as cartilage based cells. In this research, two physicochemical parameters, oxygen tension and pH, was changed to measure the lactate production after 1, 2 and 3 days culture and GAG(glycosaminoglycan) production after 3, 7 and 14 days culture of chondrocytes on DegraPol庐, as a biodegradable polyurethane scaffold (BPUS), and alginate scaffolds. The results finally were compared on both scaffolds. The results showed that physicochemical parameters like oxygen tension and pH could change cell metabolism. In fact, the physicochemical parameters could affect lactate production and GAG content of chondrocyte cells and it does not depend on the type of scaffold. The best condition of the articular chondrocytes metabolism was for 5% O2 and pH=7.4(p\u003c0.001). The comparison between BPUS and alginate scaffold is showing that the results are better for alginate beads (p\u003c0.001). In fact, hydrophilicity of alginate causes better cell distribution and nutrition than BPUS; because the cells are able to transfer the ions and the products through the medium easily.","publication_name":"IFMBE proceedings","grobid_abstract_attachment_id":53973270},"translated_abstract":null,"internal_url":"https://www.academia.edu/34032110/A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH","translated_internal_url":"","created_at":"2017-07-25T08:47:11.864-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":66499940,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53973270,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973270/thumbnails/1.jpg","file_name":"A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7.pdf","download_url":"https://www.academia.edu/attachments/53973270/download_file","bulk_download_file_name":"A_Comparative_Study_of_Articular_Chondro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973270/A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7-libre.pdf?1500997975=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparative_Study_of_Articular_Chondro.pdf\u0026Expires=1743370487\u0026Signature=M1zLWnLNkvIhjFqLG3lQkQCftVx09IOSZ2sQSmpuHQKVcRjXqNvyL2SlibR0KudjkpxWQOjCuB0lQ2VJIQroF96kGOVdtQLyKpDr5RBLmrG5u3D7jgqBe1wHLrz~U0eoLF~Tutpw9RlnCb4vCLmWkuUcbb1ujp7nGoAWBC2FTf58VFN5e2waQT4vuuRJG5qmU95QPWLcDb0t9i7pTv-4U4o5ATTm5nh6Q2yFysPAapcr01SIXTssROe8Si39x71H~lE9zn2CwrpmLqVGUAmZCw~OsOZ1U86QRc4YfJgmgrIicjTVC2yzDugmWUvhfF68OhzIDXJ9KV3HSSlbJQ3wjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparative_Study_of_Articular_Chondrocytes_Metabolism_on_a_Biodegradable_Polyesterurethane_Scaffold_and_Alginate_in_Different_Oxygen_Tension_and_pH","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"There are some different methods in the literatures that used for healing and repairing of cartilage. One of the methods for increasing of regeneration and metabolism in cartilage, is stimulating physicochemical parameters on cellpolymer systems, as cartilage based cells. In this research, two physicochemical parameters, oxygen tension and pH, was changed to measure the lactate production after 1, 2 and 3 days culture and GAG(glycosaminoglycan) production after 3, 7 and 14 days culture of chondrocytes on DegraPol庐, as a biodegradable polyurethane scaffold (BPUS), and alginate scaffolds. The results finally were compared on both scaffolds. The results showed that physicochemical parameters like oxygen tension and pH could change cell metabolism. In fact, the physicochemical parameters could affect lactate production and GAG content of chondrocyte cells and it does not depend on the type of scaffold. The best condition of the articular chondrocytes metabolism was for 5% O2 and pH=7.4(p\u003c0.001). The comparison between BPUS and alginate scaffold is showing that the results are better for alginate beads (p\u003c0.001). In fact, hydrophilicity of alginate causes better cell distribution and nutrition than BPUS; because the cells are able to transfer the ions and the products through the medium easily.","owner":{"id":66499940,"first_name":"Saeed","middle_initials":null,"last_name":"Karbasi","page_name":"SaeedKarbasi","domain_name":"mui","created_at":"2017-07-17T06:31:55.223-07:00","display_name":"Saeed Karbasi","url":"https://mui.academia.edu/SaeedKarbasi"},"attachments":[{"id":53973270,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53973270/thumbnails/1.jpg","file_name":"A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7.pdf","download_url":"https://www.academia.edu/attachments/53973270/download_file","bulk_download_file_name":"A_Comparative_Study_of_Articular_Chondro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53973270/A_Comparative_Study_of_Articular_Chondro20170725-25620-1e1vlg7-libre.pdf?1500997975=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparative_Study_of_Articular_Chondro.pdf\u0026Expires=1743370487\u0026Signature=M1zLWnLNkvIhjFqLG3lQkQCftVx09IOSZ2sQSmpuHQKVcRjXqNvyL2SlibR0KudjkpxWQOjCuB0lQ2VJIQroF96kGOVdtQLyKpDr5RBLmrG5u3D7jgqBe1wHLrz~U0eoLF~Tutpw9RlnCb4vCLmWkuUcbb1ujp7nGoAWBC2FTf58VFN5e2waQT4vuuRJG5qmU95QPWLcDb0t9i7pTv-4U4o5ATTm5nh6Q2yFysPAapcr01SIXTssROe8Si39x71H~lE9zn2CwrpmLqVGUAmZCw~OsOZ1U86QRc4YfJgmgrIicjTVC2yzDugmWUvhfF68OhzIDXJ9KV3HSSlbJQ3wjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34032110-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "fceb1f0a7fa8b9f31b96b1423741f2befb80da4c8bbe078ed7d5ac3afaa1bea8", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="07KZNYiw_2d45kWHwWU0GodWTw0_rCuxDfYaVGhx7uV8tAGy5jK_nVPV3UpHIGT7g5Wty9tq5KrWJpC3Y9rOfQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://mui.academia.edu/SaeedKarbasi" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="GK3-JmpKpath09J1vunn2_FOYXPXLL1foKq2vJHWao63q2ahBMjlUUrgSrg4rLc69Y2DtTPqckR7ejxfmn1KFg" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10