CINXE.COM
Erik Goodman - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Erik Goodman - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="IUwSyDC2fuh+IxNq2KDcaVcDrRd4MQv+x/DOinPXuPhCyYYgJWWgAprbG+qqriQHI6fn1nxfXyU4sWARrJ6XkQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="erik goodman" /> <meta name="description" content="Erik D. Goodman is PI and Director of the BEACON Center for the Study of Evolution in Action, an NSF Science and Technology Center headquartered at Michigan…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '7197f109c5c1a17ef1ecb637d00501ccfd7d8d46'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15262,"monthly_visitors":"113 million","monthly_visitor_count":113485689,"monthly_visitor_count_in_millions":113,"user_count":277854939,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733168974000); window.Aedu.timeDifference = new Date().getTime() - 1733168974000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-03f178d16639430eae047f89aec5cbfa92dfbaa38d3fa372bf401cffe767b839.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/EricGoodman3" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3","photo":"https://0.academia-photos.com/32766763/17997326/18006006/s65_eric.goodman.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":2894,"name":"Evolution of cooperation (Evolutionary Biology)","url":"https://www.academia.edu/Documents/in/Evolution_of_cooperation_Evolutionary_Biology_"},{"id":27854,"name":"Darwin","url":"https://www.academia.edu/Documents/in/Darwin"},{"id":15092,"name":"Evidence","url":"https://www.academia.edu/Documents/in/Evidence"},{"id":24262,"name":"Science and values","url":"https://www.academia.edu/Documents/in/Science_and_values"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/EricGoodman3","location":"/EricGoodman3","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/EricGoodman3","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-00183d77-3cf4-4c48-81cd-6784de50c8cf"></div> <div id="ProfileCheckPaperUpdate-react-component-00183d77-3cf4-4c48-81cd-6784de50c8cf"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Erik Goodman" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/32766763/17997326/18006006/s200_eric.goodman.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Erik Goodman</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Erik" data-follow-user-id="32766763" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32766763"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">16</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Erik D. Goodman is PI and Director of the BEACON Center for the Study of Evolution in Action, an NSF Science and Technology Center headquartered at Michigan State University, funded at $47.5 million for 2010-20, with a diverse research program and extensive education and outreach programs. BEACON now has a very diverse membership of over 600, including evolutionary biologists and computer scientists/engineers studying evolutionary computation or digital evolution. Goodman received the Ph.D., computer and communication sciences, University of Michigan, 1972. He joined MSU’s faculty in Electrical Engineering and Systems Science in 1971, was promoted to full professor in 1984, and also holds appointments in Mechanical Engineering and in Computer Science and Engineering, in which he has guided many Ph.D. students. He directed the Case Center for Computer-Aided Engineering and Manufacturing from 1983-2002, and founded and directed MSU’s Manufacturing Research Consortium from 1993-2003. He co-founded MSU’s Genetic Algorithms Research and Applications Group (GARAGe) in 1993, conducting many projects under industrial sponsorship. In 1999, he co-founded Red Cedar Technology, Inc., (now a subsidiary of Siemens) which develops design optimization software, and was Vice President for Technology until BEACON was founded in 2010. He was chosen Michigan Distinguished Professor of the Year, 2009, by the Presidents Council, State Universities of Michigan. He was given MSU’s Distinguished Faculty Award in 2011. He was Chair of the Executive Board and a Senior Fellow of the International Society for Genetic and Evolutionary Computation, 2003-2005, and was the founding chair of ACM’s SIG on Genetic and Evolutionary Computation (SIGEVO) in 2005. He also co-leads an information and communication technology for development project in Tanzania.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32766763" href="https://www.academia.edu/Documents/in/Evolution_of_cooperation_Evolutionary_Biology_"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/EricGoodman3","location":"/EricGoodman3","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/EricGoodman3","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Evolution of cooperation (Evolutionary Biology)"]}" data-trace="false" data-dom-id="Pill-react-component-dc2c2596-b678-42b8-a1ba-313b0ca56207"></div> <div id="Pill-react-component-dc2c2596-b678-42b8-a1ba-313b0ca56207"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32766763" href="https://www.academia.edu/Documents/in/Darwin"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Darwin"]}" data-trace="false" data-dom-id="Pill-react-component-4b2bd54a-7e8c-4695-b040-e7c92e04967c"></div> <div id="Pill-react-component-4b2bd54a-7e8c-4695-b040-e7c92e04967c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32766763" href="https://www.academia.edu/Documents/in/Evidence"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Evidence"]}" data-trace="false" data-dom-id="Pill-react-component-2c8503d5-f8f7-427f-97bc-0fb81e5c16b4"></div> <div id="Pill-react-component-2c8503d5-f8f7-427f-97bc-0fb81e5c16b4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32766763" href="https://www.academia.edu/Documents/in/Science_and_values"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Science and values"]}" data-trace="false" data-dom-id="Pill-react-component-926bbd6e-32bb-4ef7-835d-070da9a05807"></div> <div id="Pill-react-component-926bbd6e-32bb-4ef7-835d-070da9a05807"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32766763" href="https://www.academia.edu/Documents/in/Evolutionary_Computation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Evolutionary Computation"]}" data-trace="false" data-dom-id="Pill-react-component-2c982ae4-335f-4146-ac00-82619c1bacf2"></div> <div id="Pill-react-component-2c982ae4-335f-4146-ac00-82619c1bacf2"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Erik Goodman</h3></div><div class="js-work-strip profile--work_container" data-work-id="118154528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154528/Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors"><img alt="Research paper thumbnail of Evaluating Acoustic Warning Signals in Automobile Interiors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154528/Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors">Evaluating Acoustic Warning Signals in Automobile Interiors</a></div><div class="wp-workCard_item"><span>SAE Technical Paper Series</span><span>, Feb 1, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The use of acoustic warning signals to provide information about vehicle conditions to the driver...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The use of acoustic warning signals to provide information about vehicle conditions to the driver and passengers is now possible through application of advanced electronics in recent automobile designs. These acoustic warning signals may be tones or synthesized voice. The signals can only be effective if they are audible and distinguishable by the vehicle occupants without being at an irritating level. This paper presents a method for measuring acoustic intensity in an automobile interior using the cross-spectral technique which may assist in determining audibility of signals. Effective methods for displaying these quantitative vector measurements using computer graphics are presented along with the results of testing. Finally, an important future need of correlating acoustic intensity measurements with published human perception levels is discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154528]").text(description); $(".js-view-count[data-work-id=118154528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154528,"title":"Evaluating Acoustic Warning Signals in Automobile Interiors","translated_title":"","metadata":{"abstract":"The use of acoustic warning signals to provide information about vehicle conditions to the driver and passengers is now possible through application of advanced electronics in recent automobile designs. These acoustic warning signals may be tones or synthesized voice. The signals can only be effective if they are audible and distinguishable by the vehicle occupants without being at an irritating level. This paper presents a method for measuring acoustic intensity in an automobile interior using the cross-spectral technique which may assist in determining audibility of signals. Effective methods for displaying these quantitative vector measurements using computer graphics are presented along with the results of testing. Finally, an important future need of correlating acoustic intensity measurements with published human perception levels is discussed.","publication_date":{"day":1,"month":2,"year":1983,"errors":{}},"publication_name":"SAE Technical Paper Series"},"translated_abstract":"The use of acoustic warning signals to provide information about vehicle conditions to the driver and passengers is now possible through application of advanced electronics in recent automobile designs. These acoustic warning signals may be tones or synthesized voice. The signals can only be effective if they are audible and distinguishable by the vehicle occupants without being at an irritating level. This paper presents a method for measuring acoustic intensity in an automobile interior using the cross-spectral technique which may assist in determining audibility of signals. Effective methods for displaying these quantitative vector measurements using computer graphics are presented along with the results of testing. Finally, an important future need of correlating acoustic intensity measurements with published human perception levels is discussed.","internal_url":"https://www.academia.edu/118154528/Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors","translated_internal_url":"","created_at":"2024-04-27T05:35:43.224-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":499,"name":"Acoustics","url":"https://www.academia.edu/Documents/in/Acoustics"}],"urls":[{"id":41439149,"url":"https://doi.org/10.4271/830200"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154526/Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers"><img alt="Research paper thumbnail of Genetic Algorithm Optimized Feature Transformation — A Comparison with Different Classifiers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154526/Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers">Genetic Algorithm Optimized Feature Transformation — A Comparison with Different Classifiers</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154526]").text(description); $(".js-view-count[data-work-id=118154526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154526,"title":"Genetic Algorithm Optimized Feature Transformation — A Comparison with Different Classifiers","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154526/Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers","translated_internal_url":"","created_at":"2024-04-27T05:35:41.625-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":78540,"name":"Linear Discriminant Analysis","url":"https://www.academia.edu/Documents/in/Linear_Discriminant_Analysis"},{"id":137957,"name":"Performance Improvement","url":"https://www.academia.edu/Documents/in/Performance_Improvement"},{"id":221389,"name":"Pattern Classification","url":"https://www.academia.edu/Documents/in/Pattern_Classification"},{"id":438836,"name":"18.\tGenetic and evolutionary algorithms","url":"https://www.academia.edu/Documents/in/18._Genetic_and_evolutionary_algorithms"},{"id":1555442,"name":"Feature Space","url":"https://www.academia.edu/Documents/in/Feature_Space"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"},{"id":3905180,"name":"Linear discriminate analysis","url":"https://www.academia.edu/Documents/in/Linear_discriminate_analysis"},{"id":4112487,"name":"Feature vector","url":"https://www.academia.edu/Documents/in/Feature_vector"}],"urls":[{"id":41439148,"url":"https://doi.org/10.1007/3-540-45110-2_108"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154523/Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm"><img alt="Research paper thumbnail of Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm" class="work-thumbnail" src="https://attachments.academia-assets.com/113847194/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154523/Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm">Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm</a></div><div class="wp-workCard_item"><span>IEEE Computational Intelligence Magazine</span><span>, Feb 1, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="336ae04a4fd2cdb1b797282eca250f70" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847194,"asset_id":118154523,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847194/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154523]").text(description); $(".js-view-count[data-work-id=118154523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "336ae04a4fd2cdb1b797282eca250f70" } } $('.js-work-strip[data-work-id=118154523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154523,"title":"Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","grobid_abstract":"Combining learning techniques with data analysis to infuse intelligence and create smart worlds is current universal focus. IEEE","publication_date":{"day":1,"month":2,"year":2017,"errors":{}},"publication_name":"IEEE Computational Intelligence Magazine","grobid_abstract_attachment_id":113847194},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154523/Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm","translated_internal_url":"","created_at":"2024-04-27T05:35:40.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847194,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847194/thumbnails/1.jpg","file_name":"Issue-51-April-2017.pdf","download_url":"https://www.academia.edu/attachments/113847194/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modeling_the_Tracking_Area_Planning_Prob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847194/Issue-51-April-2017-libre.pdf?1714223559=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_Tracking_Area_Planning_Prob.pdf\u0026Expires=1733172574\u0026Signature=MwZjzleqnPZYOaMHErBgXl-8p1n7b2UxXXwJEbMCrg8l6-xfBuLzgnl1nR-HXeBo66cmUTyIu19VkVhBFaauUkeXGOJ0ozduWtLMSBKQMVx6FlaKS55YI4VLh7dZ5bQ2fZIRwz77nt1wVquMGtWs1un5PgMNW9CuPba9SUdc9iGN4IPO~LbkrBPXp7BZGLKEsPb6no8P1atqdE9uDJgUfFHVoG9hU3HyBvRdiRg8dzKs121z-8oUHs0jEfl7lpJG06VuSVOpFUzWivZrmHG0BUIsW5bSk9fKYHUyA7IKgMCBgjdiCMsviGNuxr5GaeAqfkuH72dTL3XivRWC8gsKCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847194,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847194/thumbnails/1.jpg","file_name":"Issue-51-April-2017.pdf","download_url":"https://www.academia.edu/attachments/113847194/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modeling_the_Tracking_Area_Planning_Prob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847194/Issue-51-April-2017-libre.pdf?1714223559=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_Tracking_Area_Planning_Prob.pdf\u0026Expires=1733172574\u0026Signature=MwZjzleqnPZYOaMHErBgXl-8p1n7b2UxXXwJEbMCrg8l6-xfBuLzgnl1nR-HXeBo66cmUTyIu19VkVhBFaauUkeXGOJ0ozduWtLMSBKQMVx6FlaKS55YI4VLh7dZ5bQ2fZIRwz77nt1wVquMGtWs1un5PgMNW9CuPba9SUdc9iGN4IPO~LbkrBPXp7BZGLKEsPb6no8P1atqdE9uDJgUfFHVoG9hU3HyBvRdiRg8dzKs121z-8oUHs0jEfl7lpJG06VuSVOpFUzWivZrmHG0BUIsW5bSk9fKYHUyA7IKgMCBgjdiCMsviGNuxr5GaeAqfkuH72dTL3XivRWC8gsKCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":41439145,"url":"https://doi.org/10.1109/mci.2016.2627669"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154519/Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators"><img alt="Research paper thumbnail of Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154519/Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators">Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators</a></div><div class="wp-workCard_item"><span>Journal of Bionic Engineering</span><span>, Dec 1, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work concerns biped adaptive walking control on irregular terrains with online trajectory ge...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the generated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on irregular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154519]").text(description); $(".js-view-count[data-work-id=118154519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154519,"title":"Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators","translated_title":"","metadata":{"abstract":"This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the generated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on irregular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns.","publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":2016,"errors":{}},"publication_name":"Journal of Bionic Engineering"},"translated_abstract":"This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the generated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on irregular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns.","internal_url":"https://www.academia.edu/118154519/Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators","translated_internal_url":"","created_at":"2024-04-27T05:35:39.441-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":59770,"name":"Trajectory","url":"https://www.academia.edu/Documents/in/Trajectory"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":41439141,"url":"https://doi.org/10.1016/s1672-6529(16)60329-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154514"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154514/Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving"><img alt="Research paper thumbnail of Greenhouse climate fuzzy adaptive control considering energy saving" class="work-thumbnail" src="https://attachments.academia-assets.com/113847191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154514/Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving">Greenhouse climate fuzzy adaptive control considering energy saving</a></div><div class="wp-workCard_item"><span>International Journal of Control Automation and Systems</span><span>, Jun 27, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="612a1c7d69a7ba45167a08e109fc577a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847191,"asset_id":118154514,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847191/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154514"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154514"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154514; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154514]").text(description); $(".js-view-count[data-work-id=118154514]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154514; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154514']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154514, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "612a1c7d69a7ba45167a08e109fc577a" } } $('.js-work-strip[data-work-id=118154514]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154514,"title":"Greenhouse climate fuzzy adaptive control considering energy saving","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"This paper proposes a fuzzy adaptive control approach to solve greenhouse climate control problem. The aim is to ensure the controlled environmental variables to track their desired trajectories so as to create a favorable environment for crop growth. In this method, a feedback linearization technique is first introduced to derive the control laws of heating, fogging and CO 2 injection, then to compensate for the saturation of the actuators, a fuzzy logic system (FLS) is used to approximate the differences between controller outputs and actuator outputs due to actuator constraints. A robust control term is introduced to eliminate the impact of external disturbances and model uncertainty, and finally, Lyapunov stability analysis is performed to guarantee the convergence of the closed-loop system. Taking into account the fact that the crop is usually insensitive to the change of the environment inside the greenhouse during a short time interval, a certain amount of tracking error of the environmental variables is usually acceptable, which means that the environmental variables need only be driven into the corresponding target intervals. In this case, an energy-saving management mechanism is designed to reduce the energy consumption as much as possible. The simulation results illustrate the effectiveness of the proposed control scheme.","publication_date":{"day":27,"month":6,"year":2017,"errors":{}},"publication_name":"International Journal of Control Automation and Systems","grobid_abstract_attachment_id":113847191},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154514/Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving","translated_internal_url":"","created_at":"2024-04-27T05:35:38.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847191/thumbnails/1.jpg","file_name":"s12555-016-0220-620240427-1-khwtxz.pdf","download_url":"https://www.academia.edu/attachments/113847191/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Greenhouse_climate_fuzzy_adaptive_contro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847191/s12555-016-0220-620240427-1-khwtxz-libre.pdf?1714223561=\u0026response-content-disposition=attachment%3B+filename%3DGreenhouse_climate_fuzzy_adaptive_contro.pdf\u0026Expires=1733172574\u0026Signature=BRkw4aGZ3PNDVLMZZonkDYaMtFLMwrwvGEsqO8fmdcm0iPDVk0vA0kkPokU1yYTwRsiwdmmy--~uEFvmPGMJIJdB4PqyHsDJ3FRLgNEu3zqmdLGUgpj2NyMCOmgP~jH5QHt0YHu1LVaEEdUjmkDFkdLLFGsrB77apmQaSfotPS7AvI4DapS9yu0QA~9Xukr6OIeur~hoCR2iLflDcDRvGbUg-ZSQKVkXeDAOog0GMODohdLqIppjQGBPgzLeniikGTKZf6aMedTIDFCjaUzrj4IvZOU0tr7nWAkitp8ihopf86Rjbyc2OxDbe5dUCI2hb17yVEHUgCrl9iazJqcpvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847191/thumbnails/1.jpg","file_name":"s12555-016-0220-620240427-1-khwtxz.pdf","download_url":"https://www.academia.edu/attachments/113847191/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Greenhouse_climate_fuzzy_adaptive_contro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847191/s12555-016-0220-620240427-1-khwtxz-libre.pdf?1714223561=\u0026response-content-disposition=attachment%3B+filename%3DGreenhouse_climate_fuzzy_adaptive_contro.pdf\u0026Expires=1733172574\u0026Signature=BRkw4aGZ3PNDVLMZZonkDYaMtFLMwrwvGEsqO8fmdcm0iPDVk0vA0kkPokU1yYTwRsiwdmmy--~uEFvmPGMJIJdB4PqyHsDJ3FRLgNEu3zqmdLGUgpj2NyMCOmgP~jH5QHt0YHu1LVaEEdUjmkDFkdLLFGsrB77apmQaSfotPS7AvI4DapS9yu0QA~9Xukr6OIeur~hoCR2iLflDcDRvGbUg-ZSQKVkXeDAOog0GMODohdLqIppjQGBPgzLeniikGTKZf6aMedTIDFCjaUzrj4IvZOU0tr7nWAkitp8ihopf86Rjbyc2OxDbe5dUCI2hb17yVEHUgCrl9iazJqcpvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":3414,"name":"Mechatronics","url":"https://www.academia.edu/Documents/in/Mechatronics"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":53489,"name":"Automation \u0026 Control Systems","url":"https://www.academia.edu/Documents/in/Automation_and_Control_Systems"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":195712,"name":"GREENHOUSE","url":"https://www.academia.edu/Documents/in/GREENHOUSE"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":41439137,"url":"https://doi.org/10.1007/s12555-016-0220-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154510"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154510/Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms"><img alt="Research paper thumbnail of Solving metameric variable-length optimization problems using genetic algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/113847193/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154510/Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms">Solving metameric variable-length optimization problems using genetic algorithms</a></div><div class="wp-workCard_item"><span>Genetic Programming and Evolvable Machines</span><span>, Sep 26, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="471865fb58648dceb5eec4c04cccc2d7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847193,"asset_id":118154510,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847193/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154510"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154510"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154510; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154510]").text(description); $(".js-view-count[data-work-id=118154510]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154510; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154510']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154510, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "471865fb58648dceb5eec4c04cccc2d7" } } $('.js-work-strip[data-work-id=118154510]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154510,"title":"Solving metameric variable-length optimization problems using genetic algorithms","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Variable-Length Genetic Algorithms for Optimization Problems","grobid_abstract":"In many optimization problems, one of the goals is to determine the optimal number of analogous components to include in the system. Examples include the number of sensors in a sensor coverage problem, the number of turbines in a wind farm problem, and the number of plies in a laminate stacking problem. Using standard approaches to solve these problems requires assuming a fixed number of sensors, turbines, or plies. However, if the optimal number is not known a priori this will likely lead to a sub-optimal solution. A better method is to allow the number of components to vary. As the number of components varies, so does the dimensionality of the search space, making the use of gradient-based methods difficult. A metameric genetic algorithm (MGA), which uses a segmented variablelength genome, is proposed. Traditional genetic algorithm (GA) operators, designed to work with fixed-length genomes, are no longer valid. This paper discusses the modifications required for an effective MGA, which is then demonstrated on the aforementioned problems. This includes the representation of the solution in the genome and the recombination, mutation, and selection operators. With these modifications the MGA is able to outperform the fixed-length GA on the selected problems, even if the optimal number of components is assumed to be known a priori.","publication_date":{"day":26,"month":9,"year":2016,"errors":{}},"publication_name":"Genetic Programming and Evolvable Machines","grobid_abstract_attachment_id":113847193},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154510/Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms","translated_internal_url":"","created_at":"2024-04-27T05:35:36.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847193/thumbnails/1.jpg","file_name":"s10710-016-9282-820240427-1-eqqkkm.pdf","download_url":"https://www.academia.edu/attachments/113847193/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_metameric_variable_length_optimi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847193/s10710-016-9282-820240427-1-eqqkkm-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DSolving_metameric_variable_length_optimi.pdf\u0026Expires=1733172574\u0026Signature=YoJzL-P1I7dxZ0pmr0MGdoJMT-9QVksnTw4NOPa0vVxVmNZfmaNMYUDg1~Z0MpbaBoKYZfnEIQzLcjci61SB~nd7DOTCSV-~WiYXucmTgMsKU~ruz7QExBnwvi8TRXVzzOQFE3dfzNI5DWldpS1iplTrq7H9FiO2rMfiJcdv0DaMAGaLOKo9XllqPxRe05TQUMoFsezMao8GLKa~WugR1q9a8SaBUlniIdUUkbZ~iCL8jCwlJ8wTPanxPWnOKsAGn1j~DFPjxvDGowa48-V1GuerHt5u3tmyauHmVl4iRQ3JcgHz-RzjJdO9XHIxdVdqbiemDvRQJxieQX6r2YFjFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847193/thumbnails/1.jpg","file_name":"s10710-016-9282-820240427-1-eqqkkm.pdf","download_url":"https://www.academia.edu/attachments/113847193/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_metameric_variable_length_optimi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847193/s10710-016-9282-820240427-1-eqqkkm-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DSolving_metameric_variable_length_optimi.pdf\u0026Expires=1733172574\u0026Signature=YoJzL-P1I7dxZ0pmr0MGdoJMT-9QVksnTw4NOPa0vVxVmNZfmaNMYUDg1~Z0MpbaBoKYZfnEIQzLcjci61SB~nd7DOTCSV-~WiYXucmTgMsKU~ruz7QExBnwvi8TRXVzzOQFE3dfzNI5DWldpS1iplTrq7H9FiO2rMfiJcdv0DaMAGaLOKo9XllqPxRe05TQUMoFsezMao8GLKa~WugR1q9a8SaBUlniIdUUkbZ~iCL8jCwlJ8wTPanxPWnOKsAGn1j~DFPjxvDGowa48-V1GuerHt5u3tmyauHmVl4iRQ3JcgHz-RzjJdO9XHIxdVdqbiemDvRQJxieQX6r2YFjFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":1827413,"name":"Curse of Dimensionality","url":"https://www.academia.edu/Documents/in/Curse_of_Dimensionality"},{"id":3325992,"name":"a priori and a posteriori","url":"https://www.academia.edu/Documents/in/a_priori_and_a_posteriori"}],"urls":[{"id":41439133,"url":"https://doi.org/10.1007/s10710-016-9282-8"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154495/An_improved_MOCC_with_feedback_control_structure_based_on_preference"><img alt="Research paper thumbnail of An improved MOCC with feedback control structure based on preference" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154495/An_improved_MOCC_with_feedback_control_structure_based_on_preference">An improved MOCC with feedback control structure based on preference</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn&amp;#39;t unique, so ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn&amp;#39;t unique, so it is hard for traditional method to obtain these optimal solutions in one simulation process. Based on this background, Multi-Objective Compatible Control (MOCC) algorithm was presented by Lihong Xu in [2]. MOCC is a compromise method, which hunts for suboptimal and feasible region as the control aim rather than precise optimal point. The controller of MOCC is optimized by GA in its interval, namely its controller lacks concrete controller structure. Due to the controller without concrete structure, the system model must be accurate and without input disturbance; however, it is impractical in practice. Besides, the control problem is different from the optimization. Different user has different preference and users&amp;#39; preference information plays a key role in control performance. In this paper, the feedback control law and users&amp;#39; preference information are incorporated into MOCC algorithm. An improved MOCC (IMOCC) algorithm is presented. The simulation result demonstrates its superiority and advantage over the MOCC algorithm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154495]").text(description); $(".js-view-count[data-work-id=118154495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154495, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154495,"title":"An improved MOCC with feedback control structure based on preference","translated_title":"","metadata":{"abstract":"ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn\u0026amp;#39;t unique, so it is hard for traditional method to obtain these optimal solutions in one simulation process. Based on this background, Multi-Objective Compatible Control (MOCC) algorithm was presented by Lihong Xu in [2]. MOCC is a compromise method, which hunts for suboptimal and feasible region as the control aim rather than precise optimal point. The controller of MOCC is optimized by GA in its interval, namely its controller lacks concrete controller structure. Due to the controller without concrete structure, the system model must be accurate and without input disturbance; however, it is impractical in practice. Besides, the control problem is different from the optimization. Different user has different preference and users\u0026amp;#39; preference information plays a key role in control performance. In this paper, the feedback control law and users\u0026amp;#39; preference information are incorporated into MOCC algorithm. An improved MOCC (IMOCC) algorithm is presented. The simulation result demonstrates its superiority and advantage over the MOCC algorithm.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn\u0026amp;#39;t unique, so it is hard for traditional method to obtain these optimal solutions in one simulation process. Based on this background, Multi-Objective Compatible Control (MOCC) algorithm was presented by Lihong Xu in [2]. MOCC is a compromise method, which hunts for suboptimal and feasible region as the control aim rather than precise optimal point. The controller of MOCC is optimized by GA in its interval, namely its controller lacks concrete controller structure. Due to the controller without concrete structure, the system model must be accurate and without input disturbance; however, it is impractical in practice. Besides, the control problem is different from the optimization. Different user has different preference and users\u0026amp;#39; preference information plays a key role in control performance. In this paper, the feedback control law and users\u0026amp;#39; preference information are incorporated into MOCC algorithm. An improved MOCC (IMOCC) algorithm is presented. The simulation result demonstrates its superiority and advantage over the MOCC algorithm.","internal_url":"https://www.academia.edu/118154495/An_improved_MOCC_with_feedback_control_structure_based_on_preference","translated_internal_url":"","created_at":"2024-04-27T05:35:32.623-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_improved_MOCC_with_feedback_control_structure_based_on_preference","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2200,"name":"Optimal Control","url":"https://www.academia.edu/Documents/in/Optimal_Control"},{"id":573872,"name":"Control Management","url":"https://www.academia.edu/Documents/in/Control_Management"},{"id":913924,"name":"Preference","url":"https://www.academia.edu/Documents/in/Preference"}],"urls":[{"id":41439131,"url":"https://doi.org/10.1145/1543834.1543923"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154493/Academic_Biography_of_Erik_D_Goodman"><img alt="Research paper thumbnail of Academic Biography of Erik D. Goodman" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154493/Academic_Biography_of_Erik_D_Goodman">Academic Biography of Erik D. Goodman</a></div><div class="wp-workCard_item"><span>Genetic and evolutionary computation</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This contribution summarizes the academic biography of the founding director of the NSF-funded BE...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This contribution summarizes the academic biography of the founding director of the NSF-funded BEACON Center for the Study of Evolution in Action, Dr. Erik D. Goodman, in a first person narrative.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154493]").text(description); $(".js-view-count[data-work-id=118154493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154493, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154493,"title":"Academic Biography of Erik D. Goodman","translated_title":"","metadata":{"abstract":"This contribution summarizes the academic biography of the founding director of the NSF-funded BEACON Center for the Study of Evolution in Action, Dr. Erik D. Goodman, in a first person narrative.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Genetic and evolutionary computation"},"translated_abstract":"This contribution summarizes the academic biography of the founding director of the NSF-funded BEACON Center for the Study of Evolution in Action, Dr. Erik D. Goodman, in a first person narrative.","internal_url":"https://www.academia.edu/118154493/Academic_Biography_of_Erik_D_Goodman","translated_internal_url":"","created_at":"2024-04-27T05:35:31.704-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Academic_Biography_of_Erik_D_Goodman","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":1236,"name":"Art","url":"https://www.academia.edu/Documents/in/Art"},{"id":2852,"name":"Narrative","url":"https://www.academia.edu/Documents/in/Narrative"},{"id":8265,"name":"Biography","url":"https://www.academia.edu/Documents/in/Biography"}],"urls":[{"id":41439122,"url":"https://doi.org/10.1007/978-3-030-39831-6_38"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154490/Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions"><img alt="Research paper thumbnail of Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154490/Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions">Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When using constrained multi-objective evolutionary algorithms to solve problems, most of them pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When using constrained multi-objective evolutionary algorithms to solve problems, most of them prefer infeasible solutions closer to feasible regions since they have smaller constraint violations. However, they may not work well on some problems which infeasible solutions closer to feasible regions have larger constraint violations than the ones farther away from the feasible regions. This kind of problems has not been explored so far. To help close this research gap, this paper first illustrates it by designing two new constrained multi-objective optimization problems (CMOPs) with deceptive infeasible regions. That is, in the deceptive infeasible regions, solutions farther away from a feasible region has a smaller constraint violation than the ones closer to the feasible region. We have proposed a constraint-handling technique based a set of directed weights (M2M-DW) to solve CMOPs on our previous work. However, it can not be able to solve the CMOPs with deceptive infeasible regions, since the directed weights prefer infeasible solutions with smaller constraint violations, which guides the search to the less promising regions. We improve it to solve the two proposed problems. Another set of benchmark problems, i.e., CTPs, is also used to verify the performance of the compared algorithms. Experimental results show that the proposed algorithm significantly outperforms the algorithms with which it is compared on the two proposed problems and CTPs, in terms of reliability and stability in finding a set of well-distributed optimal solutions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154490]").text(description); $(".js-view-count[data-work-id=118154490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154490,"title":"Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions","translated_title":"","metadata":{"abstract":"When using constrained multi-objective evolutionary algorithms to solve problems, most of them prefer infeasible solutions closer to feasible regions since they have smaller constraint violations. However, they may not work well on some problems which infeasible solutions closer to feasible regions have larger constraint violations than the ones farther away from the feasible regions. This kind of problems has not been explored so far. To help close this research gap, this paper first illustrates it by designing two new constrained multi-objective optimization problems (CMOPs) with deceptive infeasible regions. That is, in the deceptive infeasible regions, solutions farther away from a feasible region has a smaller constraint violation than the ones closer to the feasible region. We have proposed a constraint-handling technique based a set of directed weights (M2M-DW) to solve CMOPs on our previous work. However, it can not be able to solve the CMOPs with deceptive infeasible regions, since the directed weights prefer infeasible solutions with smaller constraint violations, which guides the search to the less promising regions. We improve it to solve the two proposed problems. Another set of benchmark problems, i.e., CTPs, is also used to verify the performance of the compared algorithms. Experimental results show that the proposed algorithm significantly outperforms the algorithms with which it is compared on the two proposed problems and CTPs, in terms of reliability and stability in finding a set of well-distributed optimal solutions.","publication_date":{"day":1,"month":12,"year":2019,"errors":{}}},"translated_abstract":"When using constrained multi-objective evolutionary algorithms to solve problems, most of them prefer infeasible solutions closer to feasible regions since they have smaller constraint violations. However, they may not work well on some problems which infeasible solutions closer to feasible regions have larger constraint violations than the ones farther away from the feasible regions. This kind of problems has not been explored so far. To help close this research gap, this paper first illustrates it by designing two new constrained multi-objective optimization problems (CMOPs) with deceptive infeasible regions. That is, in the deceptive infeasible regions, solutions farther away from a feasible region has a smaller constraint violation than the ones closer to the feasible region. We have proposed a constraint-handling technique based a set of directed weights (M2M-DW) to solve CMOPs on our previous work. However, it can not be able to solve the CMOPs with deceptive infeasible regions, since the directed weights prefer infeasible solutions with smaller constraint violations, which guides the search to the less promising regions. We improve it to solve the two proposed problems. Another set of benchmark problems, i.e., CTPs, is also used to verify the performance of the compared algorithms. Experimental results show that the proposed algorithm significantly outperforms the algorithms with which it is compared on the two proposed problems and CTPs, in terms of reliability and stability in finding a set of well-distributed optimal solutions.","internal_url":"https://www.academia.edu/118154490/Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions","translated_internal_url":"","created_at":"2024-04-27T05:35:31.018-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":2001284,"name":"Feasible Region","url":"https://www.academia.edu/Documents/in/Feasible_Region"}],"urls":[{"id":41439118,"url":"https://doi.org/10.1109/ssci44817.2019.9002763"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154485/Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems"><img alt="Research paper thumbnail of Push and Pull Search for Solving Constrained Multi-objective Optimization Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/113847112/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154485/Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems">Push and Pull Search for Solving Constrained Multi-objective Optimization Problems</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 15, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="175e0b22a8568d95502b42a13ea73b86" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847112,"asset_id":118154485,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847112/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154485]").text(description); $(".js-view-count[data-work-id=118154485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154485, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "175e0b22a8568d95502b42a13ea73b86" } } $('.js-work-strip[data-work-id=118154485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154485,"title":"Push and Pull Search for Solving Constrained Multi-objective Optimization Problems","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper proposes a push and pull search (PPS) framework for solving constrained multi-objective optimization problems (CMOPs). To be more specific, the proposed PPS divides the search process into two different stages, including the push and pull search stages. In the push stage, a multiobjective evolutionary algorithm (MOEA) is adopted to explore the search space without considering any constraints, which can help to get across infeasible regions very fast and approach the unconstrained Pareto front. Furthermore, the landscape of CMOPs with constraints can be probed and estimated in the push stage, which can be utilized to conduct the parameters setting for constraint-handling approaches applied in the pull stage. Then, a constrained multi-objective evolutionary algorithm (CMOEA) equipped with an improved epsilon constraint-handling is applied to pull the infeasible individuals achieved in the push stage to the feasible and non-dominated regions. Compared with other CMOEAs, the proposed PPS method can more efficiently get across infeasible regions and converge to the feasible and nondominated regions by applying push and pull search strategies at different stages. To evaluate the performance regarding convergence and diversity, a set of benchmark CMOPs is used to test the proposed PPS and compare with other five CMOEAs, including MOEA/D-CDP, MOEA/D-SR, C-MOEA/D, MOEA/D-Epsilon and MOEA/D-IEpsilon. The comprehensive experimental results demonstrate that the proposed PPS achieves significantly better or competitive performance than the other five CMOEAs on most of the benchmark set.","publication_date":{"day":15,"month":9,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113847112},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154485/Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems","translated_internal_url":"","created_at":"2024-04-27T05:35:30.216-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847112/thumbnails/1.jpg","file_name":"1709.pdf","download_url":"https://www.academia.edu/attachments/113847112/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Push_and_Pull_Search_for_Solving_Constra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847112/1709-libre.pdf?1714223829=\u0026response-content-disposition=attachment%3B+filename%3DPush_and_Pull_Search_for_Solving_Constra.pdf\u0026Expires=1733172574\u0026Signature=ELJYWN8I6g~3yf6nEQdZcy4~JFcGDXA2qfXjo1o~X9WGLjAs5y8UvOreTR8Yim6PwdOpQat6vY2~ewjxaROZWD5XVKtQh05D8mNXUdM4q9wZ7jFAS66lk~tHkb4oAlq2p819Jl3EysDxwreKREmuNRtLQCuaeTVkOfI-65WPacRKxouGAKLz4u6hbYxPDQpLwZ5hpjOvhboimVYoMLDnelg~2HKdkJxZhmYDVddzqPwTQFf39MZsfXa-eefbeNT3~kimvqwCLkxPgWD9Cha-qCvg5uTDm8a0AxYJysd8ZE4gADH0Q3cEZUdOZB39TYm6uFvflSVpCl0wBzZU8I94KA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847112/thumbnails/1.jpg","file_name":"1709.pdf","download_url":"https://www.academia.edu/attachments/113847112/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Push_and_Pull_Search_for_Solving_Constra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847112/1709-libre.pdf?1714223829=\u0026response-content-disposition=attachment%3B+filename%3DPush_and_Pull_Search_for_Solving_Constra.pdf\u0026Expires=1733172574\u0026Signature=ELJYWN8I6g~3yf6nEQdZcy4~JFcGDXA2qfXjo1o~X9WGLjAs5y8UvOreTR8Yim6PwdOpQat6vY2~ewjxaROZWD5XVKtQh05D8mNXUdM4q9wZ7jFAS66lk~tHkb4oAlq2p819Jl3EysDxwreKREmuNRtLQCuaeTVkOfI-65WPacRKxouGAKLz4u6hbYxPDQpLwZ5hpjOvhboimVYoMLDnelg~2HKdkJxZhmYDVddzqPwTQFf39MZsfXa-eefbeNT3~kimvqwCLkxPgWD9Cha-qCvg5uTDm8a0AxYJysd8ZE4gADH0Q3cEZUdOZB39TYm6uFvflSVpCl0wBzZU8I94KA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113847113,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847113/thumbnails/1.jpg","file_name":"1709.pdf","download_url":"https://www.academia.edu/attachments/113847113/download_file","bulk_download_file_name":"Push_and_Pull_Search_for_Solving_Constra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847113/1709-libre.pdf?1714223823=\u0026response-content-disposition=attachment%3B+filename%3DPush_and_Pull_Search_for_Solving_Constra.pdf\u0026Expires=1733172574\u0026Signature=XpCcuK52ZswL5tSj~lPu2Ev7AGJkH~4Y5pqX63TuBDzjhzz9xorebnrlbLBfUkoGc0tB8XF5h~nCiJlHgmAG4WZ5onDNY1~jsHLsyYMNmGPmW5FqgucYsASfEH4pafwgik839JIbcrWh8sqEp6At7-RhfRCgH1E63VMw964~myKqsOW2Nj~4fNOslsi3IChWU69cX2HjGwMujJOhrEjxWvGwmk~uvLvaVmIVhI7dNay1LZZ7Yco6bKmnaDBK-DoCvqR0FNBB~u0AZZWIjvziO0kz1GJMGglTJdCw~-DZBzDYgJttE~issNfbXHD16L2NMZIPJvFs5gGEDxagqi2xhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":2001284,"name":"Feasible Region","url":"https://www.academia.edu/Documents/in/Feasible_Region"}],"urls":[{"id":41439115,"url":"http://arxiv.org/pdf/1709.05915"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154482"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154482/Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition"><img alt="Research paper thumbnail of Predicting and analyzing determinants of water-mediated ligand recognition" class="work-thumbnail" src="https://attachments.academia-assets.com/113847173/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154482/Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition">Predicting and analyzing determinants of water-mediated ligand recognition</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A</span><span>, Aug 8, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2cd7e7cf4b419d6becbff76e666473b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847173,"asset_id":118154482,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847173/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154482"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154482"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154482; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154482]").text(description); $(".js-view-count[data-work-id=118154482]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154482; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154482']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154482, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2cd7e7cf4b419d6becbff76e666473b7" } } $('.js-work-strip[data-work-id=118154482]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154482,"title":"Predicting and analyzing determinants of water-mediated ligand recognition","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"C-87 the chances of success in \"bootstrapping\" from an unpromising molecular replacement starting point to a complete structure. We will also discuss the two main concems at the moment in the fields of structure refinement and validation where Bayesian methods have much to offer. namely (l) getting better reliability indicators for the final results of structure refinement and (2) ensming that these indicators are effectively optimised during refinement","publication_date":{"day":8,"month":8,"year":1996,"errors":{}},"publication_name":"Acta Crystallographica Section A","grobid_abstract_attachment_id":113847173},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154482/Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition","translated_internal_url":"","created_at":"2024-04-27T05:35:29.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847173,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847173/thumbnails/1.jpg","file_name":"a40638.pdf","download_url":"https://www.academia.edu/attachments/113847173/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_and_analyzing_determinants_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847173/a40638-libre.pdf?1714223563=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_and_analyzing_determinants_of.pdf\u0026Expires=1733172574\u0026Signature=HsUdgDFN7GmKKD5k9CWUARwTQP-zezBy0j8ibMOSQnq6lKhmpJo4zxCxT-04B4ynDN-o4BKvOArt1jjO-ADc3fm15eJVXzQ2vFTvHGgliDG~9TUGPJXTtL3y0fEut445804p0bryk5P-Syo5gpGML8un1qLVMRgFebaUD-aKXr0LvBzOLyVMXw~xaKXFM0Te9-6oCAcEPfKJxDyw3Pit1bsVW~IFCYT34rcGx8kPrHg7KV89-CaNM0lReIuetZllgDgdGnleSqa~GvpGOcNlyRCWH8~CrpRGmGww81BQ7QEulT1axjr-LtOmR4OJTOpluPCtJNSPq2lbqzd5E~AETw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847173,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847173/thumbnails/1.jpg","file_name":"a40638.pdf","download_url":"https://www.academia.edu/attachments/113847173/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_and_analyzing_determinants_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847173/a40638-libre.pdf?1714223563=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_and_analyzing_determinants_of.pdf\u0026Expires=1733172574\u0026Signature=HsUdgDFN7GmKKD5k9CWUARwTQP-zezBy0j8ibMOSQnq6lKhmpJo4zxCxT-04B4ynDN-o4BKvOArt1jjO-ADc3fm15eJVXzQ2vFTvHGgliDG~9TUGPJXTtL3y0fEut445804p0bryk5P-Syo5gpGML8un1qLVMRgFebaUD-aKXr0LvBzOLyVMXw~xaKXFM0Te9-6oCAcEPfKJxDyw3Pit1bsVW~IFCYT34rcGx8kPrHg7KV89-CaNM0lReIuetZllgDgdGnleSqa~GvpGOcNlyRCWH8~CrpRGmGww81BQ7QEulT1axjr-LtOmR4OJTOpluPCtJNSPq2lbqzd5E~AETw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"}],"urls":[{"id":41439111,"url":"https://doi.org/10.1107/s0108767396095621"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154478"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154478/NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search"><img alt="Research paper thumbnail of NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search" class="work-thumbnail" src="https://attachments.academia-assets.com/113847110/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154478/NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search">NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 20, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9bbd7084f851ec64566757d195b28607" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847110,"asset_id":118154478,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847110/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154478"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154478]").text(description); $(".js-view-count[data-work-id=118154478]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154478']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154478, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9bbd7084f851ec64566757d195b28607" } } $('.js-work-strip[data-work-id=118154478]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154478,"title":"NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper, we propose an efficient NAS algorithm for generating task-specific models that are competitive under multiple competing objectives. It comprises of two surrogates, one at the architecture level to improve sample efficiency and one at the weights level, through a supernet, to improve gradient descent training efficiency. On standard benchmark datasets (C10, C100, ImageNet), the resulting models, dubbed NSGANetV2, either match or outperform models from existing approaches with the search being orders of magnitude more sample efficient. Furthermore, we demonstrate the effectiveness and versatility of the proposed method on six diverse non-standard datasets, e.g. STL-10, Flowers102, Oxford Pets, FGVC Aircrafts etc. In all cases, NSGANetV2s improve the state-of-the-art (under mobile setting), suggesting that NAS can be a viable alternative to conventional transfer learning approaches in handling diverse scenarios such as small-scale or fine-grained datasets. Code is available at https://github.com/mikelzc1990/nsganetv2.","publication_date":{"day":20,"month":7,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113847110},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154478/NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search","translated_internal_url":"","created_at":"2024-04-27T05:35:28.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847110/thumbnails/1.jpg","file_name":"2007.10396.pdf","download_url":"https://www.academia.edu/attachments/113847110/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NSGANetV2_Evolutionary_Multi_Objective_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847110/2007.10396-libre.pdf?1714223616=\u0026response-content-disposition=attachment%3B+filename%3DNSGANetV2_Evolutionary_Multi_Objective_S.pdf\u0026Expires=1733172574\u0026Signature=ZjOyJOx9XwiCRH8~1S8P9COWYjk252srEGPrqiz3xbaKjCLibVimToecFzJy7de-QZPe254LDJ~KPkC1oOuVce0aOrxIRf2-2FUXD2ZnONln4byg8TyDItvV3rm6227uR-LBTCYvGbxYJ0MetNn8zFEo1tjLiQSBSRl6ahV6rbYJa4UN4Fs8DUAv2vkDy~0TUbzc32kj77YGFnYzDwjKG7T1JjUA5r4eXHKfqKcFdCA66g~QKZb2q420A57ZHIHJjLRXvCgWHuyUo1f4niPnWMRK-8CSb-JvVSr-87k24Ai2LvO7dvlYtnP-UIU5ij6F8GeHR7~G9W1lT3ml00hhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847110/thumbnails/1.jpg","file_name":"2007.10396.pdf","download_url":"https://www.academia.edu/attachments/113847110/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NSGANetV2_Evolutionary_Multi_Objective_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847110/2007.10396-libre.pdf?1714223616=\u0026response-content-disposition=attachment%3B+filename%3DNSGANetV2_Evolutionary_Multi_Objective_S.pdf\u0026Expires=1733172574\u0026Signature=ZjOyJOx9XwiCRH8~1S8P9COWYjk252srEGPrqiz3xbaKjCLibVimToecFzJy7de-QZPe254LDJ~KPkC1oOuVce0aOrxIRf2-2FUXD2ZnONln4byg8TyDItvV3rm6227uR-LBTCYvGbxYJ0MetNn8zFEo1tjLiQSBSRl6ahV6rbYJa4UN4Fs8DUAv2vkDy~0TUbzc32kj77YGFnYzDwjKG7T1JjUA5r4eXHKfqKcFdCA66g~QKZb2q420A57ZHIHJjLRXvCgWHuyUo1f4niPnWMRK-8CSb-JvVSr-87k24Ai2LvO7dvlYtnP-UIU5ij6F8GeHR7~G9W1lT3ml00hhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113847111,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847111/thumbnails/1.jpg","file_name":"2007.10396.pdf","download_url":"https://www.academia.edu/attachments/113847111/download_file","bulk_download_file_name":"NSGANetV2_Evolutionary_Multi_Objective_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847111/2007.10396-libre.pdf?1714223606=\u0026response-content-disposition=attachment%3B+filename%3DNSGANetV2_Evolutionary_Multi_Objective_S.pdf\u0026Expires=1733172574\u0026Signature=giTe5okvSy-EDGBphfAcnATtTChWBeD0vm5QpTjHovPnuJF1C~FU5YRjtOcRh64nZjdwGkc0UPRr4GXAPgYo3GnSMu5LiyBXIDamFjtDwqJJr0MLEu6GvMwxm5lIyFzdtN~TZJEaNbfnOojfUBW~QNalhPa5oTTkh84I3Nv~25Sve0Agfd~Rd57poq6-woCCZiTWMr35~YcUHGWkAN94iDz~evh1kirXBOH2BHdNH8fWBge1A8sO8aqgYveL0KgeOXR4ul2VJRbGzmQDmqe8TEY5rSatv7fqh5tm4gySWP8MoZfgHIuQAmb9K0dStQqevDlKdOWNzkLbWb2MtyCsUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":41439108,"url":"http://arxiv.org/pdf/2007.10396"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154474/A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems"><img alt="Research paper thumbnail of A collaboration-based particle swarm optimizer for global optimization problems" class="work-thumbnail" src="https://attachments.academia-assets.com/113847176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154474/A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems">A collaboration-based particle swarm optimizer for global optimization problems</a></div><div class="wp-workCard_item"><span>International Journal of Machine Learning and Cybernetics</span><span>, Mar 24, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="44db303239fd028496040e82daff338d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847176,"asset_id":118154474,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847176/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154474]").text(description); $(".js-view-count[data-work-id=118154474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154474, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "44db303239fd028496040e82daff338d" } } $('.js-work-strip[data-work-id=118154474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154474,"title":"A collaboration-based particle swarm optimizer for global optimization problems","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"This paper introduces a collaboration-based particle swarm optimizer (PSO) by incorporating three new strategies: a global learning strategy, a probability of learning, and a \"worst replacement\" swarm update rule. Instead of learning from the personal historical best position and the global (or local) best position which was used by the classical PSO, a target particle learns from another randomly chosen particle and the global best one in the swarm. Instead of accepting a new velocity directly, the velocity updates according to a learning probability, according to which the velocity of the target particle in each dimension updates via learning from other particles or simply inherits its previous velocity component. Since each particle has the same chance to be selected as a leader, the worst particle might influence the whole swarm's performance. Therefore, the worst particle in the swarm in each update is moved to a new better position generated from another particle. The proposed algorithm is shown to be statistically significantly better than six other state-of-the-art PSO variants on 20 typical benchmark functions with three different dimensionalities.","publication_date":{"day":24,"month":3,"year":2018,"errors":{}},"publication_name":"International Journal of Machine Learning and Cybernetics","grobid_abstract_attachment_id":113847176},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154474/A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems","translated_internal_url":"","created_at":"2024-04-27T05:35:27.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847176/thumbnails/1.jpg","file_name":"s13042-018-0810-020240427-1-2tkem8.pdf","download_url":"https://www.academia.edu/attachments/113847176/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_collaboration_based_particle_swarm_opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847176/s13042-018-0810-020240427-1-2tkem8-libre.pdf?1714223586=\u0026response-content-disposition=attachment%3B+filename%3DA_collaboration_based_particle_swarm_opt.pdf\u0026Expires=1733172574\u0026Signature=KFAl3dDAiheOBpMlECiL04VaiuZQoDk-lpsZWT8LF9HzbnxvmudB8N~tTv0LMABDkjjh45PKQ~9T3604fCDS4kAYck1grvlwC8hbua7nv4D3Yu7uxnrEXqQ0Mo0Hew28x0yws4fMW4aK16VtKlMyNrqhqBTpEODfMXmppGPtfAE5ASPAbeMfD~I8L2LpQMfZM1uYCJDAj7aHezAvS1AqYPlJSdocfDJrM~-sPlImwUVR9-8ofUQHNE4UVB4IYIafkscAtj~rfQfRKI~xqoIdIWsTwdFANfWoCsv9ajEDvtWglIJeAQrCOOBe6clq10ssUsDw8MqEBsm7Yj3FQlD-5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847176/thumbnails/1.jpg","file_name":"s13042-018-0810-020240427-1-2tkem8.pdf","download_url":"https://www.academia.edu/attachments/113847176/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_collaboration_based_particle_swarm_opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847176/s13042-018-0810-020240427-1-2tkem8-libre.pdf?1714223586=\u0026response-content-disposition=attachment%3B+filename%3DA_collaboration_based_particle_swarm_opt.pdf\u0026Expires=1733172574\u0026Signature=KFAl3dDAiheOBpMlECiL04VaiuZQoDk-lpsZWT8LF9HzbnxvmudB8N~tTv0LMABDkjjh45PKQ~9T3604fCDS4kAYck1grvlwC8hbua7nv4D3Yu7uxnrEXqQ0Mo0Hew28x0yws4fMW4aK16VtKlMyNrqhqBTpEODfMXmppGPtfAE5ASPAbeMfD~I8L2LpQMfZM1uYCJDAj7aHezAvS1AqYPlJSdocfDJrM~-sPlImwUVR9-8ofUQHNE4UVB4IYIafkscAtj~rfQfRKI~xqoIdIWsTwdFANfWoCsv9ajEDvtWglIJeAQrCOOBe6clq10ssUsDw8MqEBsm7Yj3FQlD-5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence"},{"id":5395,"name":"Swarm Intelligence","url":"https://www.academia.edu/Documents/in/Swarm_Intelligence"},{"id":25896,"name":"Particle Swarm Optimization","url":"https://www.academia.edu/Documents/in/Particle_Swarm_Optimization"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"}],"urls":[{"id":41439107,"url":"https://doi.org/10.1007/s13042-018-0810-0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154472"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154472/A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization"><img alt="Research paper thumbnail of A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154472/A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization">A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization</a></div><div class="wp-workCard_item"><span>Expert Systems With Applications</span><span>, Mar 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154472"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154472"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154472; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154472]").text(description); $(".js-view-count[data-work-id=118154472]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154472; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154472']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154472, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154472]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154472,"title":"A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":3,"year":2023,"errors":{}},"publication_name":"Expert Systems With Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154472/A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization","translated_internal_url":"","created_at":"2024-04-27T05:35:27.331-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":46254,"name":"Optimization Problem","url":"https://www.academia.edu/Documents/in/Optimization_Problem"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":1476527,"name":"Pareto principle","url":"https://www.academia.edu/Documents/in/Pareto_principle"}],"urls":[{"id":41439105,"url":"https://doi.org/10.1016/j.eswa.2022.119080"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154470"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154470/The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock"><img alt="Research paper thumbnail of The Effect of Weather on Bioenergetics of Breeding American Woodcock" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154470/The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock">The Effect of Weather on Bioenergetics of Breeding American Woodcock</a></div><div class="wp-workCard_item"><span>Journal of Wildlife Management</span><span>, Jul 1, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK&#x27; DALE L. RABE,2...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK&#x27; DALE L. RABE,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 HAROLD H. PRINCE ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154470"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154470"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154470; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154470]").text(description); $(".js-view-count[data-work-id=118154470]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154470; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154470']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154470, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154470]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154470,"title":"The Effect of Weather on Bioenergetics of Breeding American Woodcock","translated_title":"","metadata":{"abstract":"Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK\u0026#x27; DALE L. RABE,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 HAROLD H. PRINCE ...","publisher":"Wiley-Blackwell","publication_date":{"day":1,"month":7,"year":1983,"errors":{}},"publication_name":"Journal of Wildlife Management"},"translated_abstract":"Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK\u0026#x27; DALE L. RABE,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 HAROLD H. PRINCE ...","internal_url":"https://www.academia.edu/118154470/The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock","translated_internal_url":"","created_at":"2024-04-27T05:35:26.608-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":28836,"name":"Bioenergetics","url":"https://www.academia.edu/Documents/in/Bioenergetics"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":133572,"name":"Wildlife Management","url":"https://www.academia.edu/Documents/in/Wildlife_Management"}],"urls":[{"id":41439103,"url":"https://doi.org/10.2307/3808611"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154468"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154468/A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization"><img alt="Research paper thumbnail of A method for accurate simulation of robotic spray application using empirical parameterization" class="work-thumbnail" src="https://attachments.academia-assets.com/113847169/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154468/A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization">A method for accurate simulation of robotic spray application using empirical parameterization</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="76300fdd5f2bb64f6fb124404941272e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847169,"asset_id":118154468,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847169/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154468"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154468"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154468; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154468]").text(description); $(".js-view-count[data-work-id=118154468]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154468; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154468']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154468, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "76300fdd5f2bb64f6fb124404941272e" } } $('.js-work-strip[data-work-id=118154468]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154468,"title":"A method for accurate simulation of robotic spray application using empirical parameterization","translated_title":"","metadata":{"ai_title_tag":"Accurate Robotic Spray Simulation via Empirical Parameterization","grobid_abstract":"As part of the development of an accurate simulator of robotically-applied spray coatings on sculptured surfaces, a tabular technique was developed for representing with arbitrary accuracy the spray pattern from a robot sprayer. The method allows parameterization of this spray distribution using a single spray test pattern applied by the robot, without symmetry assumptions. The thickness of the test pattem is measured at a user-specified grid of points. These data are used to calculate a least-squares solution to an overdetermined set of linear equations, with optional user-scalable smoothing (via regularization) to suppress effects of measurement noise. In closed-loop testing of the parameterization and simulation process using pseudorandom noise in the measurement data, the solution table entries typically contain less noise than the individual thickness measurements on which they are based, even when measured data points are not much more numerous than table entries. 1357","publication_date":{"day":10,"month":12,"year":2002,"errors":{}},"grobid_abstract_attachment_id":113847169},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154468/A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization","translated_internal_url":"","created_at":"2024-04-27T05:35:25.425-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847169/thumbnails/1.jpg","file_name":"9682cc3b5d50accacc06b76c45e837b25f7f.pdf","download_url":"https://www.academia.edu/attachments/113847169/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_accurate_simulation_of_robo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847169/9682cc3b5d50accacc06b76c45e837b25f7f-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_accurate_simulation_of_robo.pdf\u0026Expires=1733172574\u0026Signature=GtQ17kr2DklaYmIZtTUuo3St9K1V9kvu9J6KzogVadRzV4a85iLUGg6GXyWjv41DrS43VULhTsz-gxnS9lKzKveqlc~jM8rRz4Sr-KJEK8eCQBYJYSKB3LitQ0HBg1pQA4jAe1gZ6NTcZmXIfniTkdk68rvzJU95RslQ5NZqX9iLNP8qIdJuFMXt5rhbuKcTZeYTe0HnlEW13SBBw0fo3F6--VA~Zt0AMzuSaBsTxwZBPqVJjjnj5AQmpzO-oVRCmSsFAEIsGxvjPnWtYpZYH7iIec90X6ShmFWRQjcDB6NvUyHdqv~1W6yIPrdCva0bNMRtksd7WmvltVh4EqweiQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847169/thumbnails/1.jpg","file_name":"9682cc3b5d50accacc06b76c45e837b25f7f.pdf","download_url":"https://www.academia.edu/attachments/113847169/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_accurate_simulation_of_robo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847169/9682cc3b5d50accacc06b76c45e837b25f7f-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_accurate_simulation_of_robo.pdf\u0026Expires=1733172574\u0026Signature=GtQ17kr2DklaYmIZtTUuo3St9K1V9kvu9J6KzogVadRzV4a85iLUGg6GXyWjv41DrS43VULhTsz-gxnS9lKzKveqlc~jM8rRz4Sr-KJEK8eCQBYJYSKB3LitQ0HBg1pQA4jAe1gZ6NTcZmXIfniTkdk68rvzJU95RslQ5NZqX9iLNP8qIdJuFMXt5rhbuKcTZeYTe0HnlEW13SBBw0fo3F6--VA~Zt0AMzuSaBsTxwZBPqVJjjnj5AQmpzO-oVRCmSsFAEIsGxvjPnWtYpZYH7iIec90X6ShmFWRQjcDB6NvUyHdqv~1W6yIPrdCva0bNMRtksd7WmvltVh4EqweiQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":225304,"name":"Smoothing","url":"https://www.academia.edu/Documents/in/Smoothing"},{"id":1911817,"name":"Sprayer","url":"https://www.academia.edu/Documents/in/Sprayer"}],"urls":[{"id":41439102,"url":"https://doi.org/10.1109/robot.1991.131802"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154464"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154464/Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm"><img alt="Research paper thumbnail of Discovering the Chemistry of Conserved First-Shell and Active-Site Hydration in Proteins Using Pattern Classification with a Genetic Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154464/Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm">Discovering the Chemistry of Conserved First-Shell and Active-Site Hydration in Proteins Using Pattern Classification with a Genetic Algorithm</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154464"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154464"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154464; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154464]").text(description); $(".js-view-count[data-work-id=118154464]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154464; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154464']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154464, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154464]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154464,"title":"Discovering the Chemistry of Conserved First-Shell and Active-Site Hydration in Proteins Using Pattern Classification with a Genetic Algorithm","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154464/Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm","translated_internal_url":"","created_at":"2024-04-27T05:35:24.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"}],"urls":[{"id":41439100,"url":"https://corescholar.libraries.wright.edu/knoesis/929/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154460"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154460/Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier"><img alt="Research paper thumbnail of Elucidating the Determinants of Conserved Protein Surface Solvation Using a Genetic Algorithm and Nearest Neighbor Classifier" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154460/Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier">Elucidating the Determinants of Conserved Protein Surface Solvation Using a Genetic Algorithm and Nearest Neighbor Classifier</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154460"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154460"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154460; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154460]").text(description); $(".js-view-count[data-work-id=118154460]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154460; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154460']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154460, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154460]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154460,"title":"Elucidating the Determinants of Conserved Protein Surface Solvation Using a Genetic Algorithm and Nearest Neighbor Classifier","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154460/Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier","translated_internal_url":"","created_at":"2024-04-27T05:35:23.915-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":49735,"name":"Solvation","url":"https://www.academia.edu/Documents/in/Solvation"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"},{"id":2981830,"name":" K-nearest neighbors algorithm","url":"https://www.academia.edu/Documents/in/K-nearest_neighbors_algorithm"}],"urls":[{"id":41439098,"url":"https://corescholar.libraries.wright.edu/knoesis/933/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154456/Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites"><img alt="Research paper thumbnail of Predicting Conserved Water-Mediated Interactions in Protein Active Sites" class="work-thumbnail" src="https://attachments.academia-assets.com/113847105/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154456/Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites">Predicting Conserved Water-Mediated Interactions in Protein Active Sites</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f80fea1557e01c21a56a2b4120c6365c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847105,"asset_id":118154456,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847105/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154456]").text(description); $(".js-view-count[data-work-id=118154456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154456, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f80fea1557e01c21a56a2b4120c6365c" } } $('.js-work-strip[data-work-id=118154456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154456,"title":"Predicting Conserved Water-Mediated Interactions in Protein Active Sites","translated_title":"","metadata":{"ai_title_tag":"Predicting Water-Related Interactions in Protein Active Sites","grobid_abstract":"Water bound in protein active sites is essential for processes as diverse as degradation of penicillin by-lactamase and recognition of DNA by trp repressor, yet the principles governing which waters are conserved or displaced upon ligand binding have not been characterized. While liganddependent steric eects may be involved, the chemistry of the water binding site is also likely to be important. Surprisingly, we show that even without explicit knowledge of the ligand, it is possible to predict most watermediated ligand interactions from the chemical environments of bound water molecules in the free protein structure. A k-nearest-neighbor classier coupled with a genetic algorithm was trained on 13 high-resolution protein structures' rst-shell water molecules, which could be classied as conserved or displaced by comparison with a known ligand-bound structure. When this algorithm was applied to active site water molecules in free protein structures, 70% of the water sites were correctly classied as conserved or displaced upon ligand binding. Discriminant analysis, a traditional statistical technique, was also applied to predict conservation of water sites, and proved to have a similar prediction rate to the genetic algorithm outside active sites, but a random predictive level within active sites. A valuable product of both algorithms is a set of weights for the features used to characterize water-binding sites { hydrogen bonding, neighboring atom hydrophilicity, local mobility, and surface shape { reecting the relative discriminatory ability of each feature in determining whether water is conserved or displaced. Interestingly, the features important for water conservation in active sites dier somewhat from those outside active sites. Together, our results suggest that water-mediated interactions for proteins can be predicted without knowledge of the ligand and that there is a generalizable structural chemistry for water-mediated protein:ligand interactions which can be applied to improve drug design and water modelling.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"grobid_abstract_attachment_id":113847105},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154456/Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites","translated_internal_url":"","created_at":"2024-04-27T05:35:23.144-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847105/thumbnails/1.jpg","file_name":"GARAGe95-03-02.pdf","download_url":"https://www.academia.edu/attachments/113847105/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_Conserved_Water_Mediated_Inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847105/GARAGe95-03-02-libre.pdf?1714223571=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_Conserved_Water_Mediated_Inte.pdf\u0026Expires=1733172574\u0026Signature=Xb~L2FqLRbDqg~Njy4g~0hdp9~dlTUsTX2ajXf868LeAHJsdBV~gWdEwUVvqMx59nMlZMHKV7WU547PvmqmC2dfWNKyQzk2P9DkaLlowx3Kfx0PMkuLj8tq-aNj2IDtwtFIwbVzy~5o0OlLLIrsOV3KNpB3fKXO4IyoeqoHRgZZpXkfm65E1O5Ssz0fHdg~SMl7mj6kUd3fE0OZx8cqx0TRq60krIXOiOJP-vITw9qc2FrvzRvqWGXMflY~KBO7qbQlkHnJXJxMoshNQb~EPttfcD9~6DkTeecYXD0noJlrxiAwpujUAve~sTOInOgfI77Cf~oGNhBqqC46KP2tUrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847105/thumbnails/1.jpg","file_name":"GARAGe95-03-02.pdf","download_url":"https://www.academia.edu/attachments/113847105/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_Conserved_Water_Mediated_Inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847105/GARAGe95-03-02-libre.pdf?1714223571=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_Conserved_Water_Mediated_Inte.pdf\u0026Expires=1733172574\u0026Signature=Xb~L2FqLRbDqg~Njy4g~0hdp9~dlTUsTX2ajXf868LeAHJsdBV~gWdEwUVvqMx59nMlZMHKV7WU547PvmqmC2dfWNKyQzk2P9DkaLlowx3Kfx0PMkuLj8tq-aNj2IDtwtFIwbVzy~5o0OlLLIrsOV3KNpB3fKXO4IyoeqoHRgZZpXkfm65E1O5Ssz0fHdg~SMl7mj6kUd3fE0OZx8cqx0TRq60krIXOiOJP-vITw9qc2FrvzRvqWGXMflY~KBO7qbQlkHnJXJxMoshNQb~EPttfcD9~6DkTeecYXD0noJlrxiAwpujUAve~sTOInOgfI77Cf~oGNhBqqC46KP2tUrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113847104,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847104/thumbnails/1.jpg","file_name":"GARAGe95-03-02.pdf","download_url":"https://www.academia.edu/attachments/113847104/download_file","bulk_download_file_name":"Predicting_Conserved_Water_Mediated_Inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847104/GARAGe95-03-02-libre.pdf?1714223571=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_Conserved_Water_Mediated_Inte.pdf\u0026Expires=1733172574\u0026Signature=YvM3OExgCdTK14wP6l8ly8tyFiz3XnJTgoZh6Tu4CQgr91ShipxBtedsbPzKgdWOgmBYxrTYUpr5rpvfVTp8jzc3xtCIxaPbyzgBCrK~Rqi4Y1cHhZMk3ORXNDMh9lzJxMHcaA8w~oQmJadqpdAwFBsVVn9yAXjndKzz0mx6sGNHQDUPtqmJQJjY~thaOkWrU47uplbPJ8zJ40o0qDXhJLenWFNofvybMmAjzzkyk0kJDRjwAZzxSnmb0hFkTODctLAavlEth5Egt8tI6a44nprDZITBtapZLdrRwySh7kCxOb7cMd1OFrJZlCmyvfa3tUAkrh1ShRgdv9EHDfIkgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":50487,"name":"Protein-Protein Interaction","url":"https://www.academia.edu/Documents/in/Protein-Protein_Interaction"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"}],"urls":[{"id":41439095,"url":"http://garage.cse.msu.edu/papers/GARAGe95-03-02.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154451"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154451/Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents"><img alt="Research paper thumbnail of Synthesis of Planar Mechanisms Simultaneously for Both Type and Dimensionality Using Evolutionary Search and Convertible Agents" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154451/Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents">Synthesis of Planar Mechanisms Simultaneously for Both Type and Dimensionality Using Evolutionary Search and Convertible Agents</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is deceptively complex. In this dissertation, a novel approach to automated mechanism synthesis is described which uses an evolutionary search algorithm and a technique called &quot;convertible agents&quot; to simultaneously find the most appropriate mechanism type for a given problem, while finding an optimum set of dimensions for that mechanism to realize a specified behavior. The convertible agent technique has been developed in response to the unique design challenges encountered when synthesizing a mechanism for both type and dimensionality. Several case studies are presented which demonstrate the approach&#39;s effectiveness over earlier solution strategies. In these studies, six different planar single-degree-of-freedom mechanism types are considered: a four-bar mechanism, Stephenson&#39;s six-bar-mechanisms (types I, II, and III), and Watt&#39;s six-bar-mechanisms (types I and II). The method is readily scalable to account for any number of different mechanism types and complexities. The developed convertible agent approach is well suited for evolutionary design applications outside of mechanism synthesis in which there are a small number of distinct topological design possibilities each with parametric variables to be optimized.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154451"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154451"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154451; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154451]").text(description); $(".js-view-count[data-work-id=118154451]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154451; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154451']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154451, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154451]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154451,"title":"Synthesis of Planar Mechanisms Simultaneously for Both Type and Dimensionality Using Evolutionary Search and Convertible Agents","translated_title":"","metadata":{"abstract":"In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is deceptively complex. In this dissertation, a novel approach to automated mechanism synthesis is described which uses an evolutionary search algorithm and a technique called \u0026quot;convertible agents\u0026quot; to simultaneously find the most appropriate mechanism type for a given problem, while finding an optimum set of dimensions for that mechanism to realize a specified behavior. The convertible agent technique has been developed in response to the unique design challenges encountered when synthesizing a mechanism for both type and dimensionality. Several case studies are presented which demonstrate the approach\u0026#39;s effectiveness over earlier solution strategies. In these studies, six different planar single-degree-of-freedom mechanism types are considered: a four-bar mechanism, Stephenson\u0026#39;s six-bar-mechanisms (types I, II, and III), and Watt\u0026#39;s six-bar-mechanisms (types I and II). The method is readily scalable to account for any number of different mechanism types and complexities. The developed convertible agent approach is well suited for evolutionary design applications outside of mechanism synthesis in which there are a small number of distinct topological design possibilities each with parametric variables to be optimized.","publication_date":{"day":9,"month":9,"year":2011,"errors":{}}},"translated_abstract":"In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is deceptively complex. In this dissertation, a novel approach to automated mechanism synthesis is described which uses an evolutionary search algorithm and a technique called \u0026quot;convertible agents\u0026quot; to simultaneously find the most appropriate mechanism type for a given problem, while finding an optimum set of dimensions for that mechanism to realize a specified behavior. The convertible agent technique has been developed in response to the unique design challenges encountered when synthesizing a mechanism for both type and dimensionality. Several case studies are presented which demonstrate the approach\u0026#39;s effectiveness over earlier solution strategies. In these studies, six different planar single-degree-of-freedom mechanism types are considered: a four-bar mechanism, Stephenson\u0026#39;s six-bar-mechanisms (types I, II, and III), and Watt\u0026#39;s six-bar-mechanisms (types I and II). The method is readily scalable to account for any number of different mechanism types and complexities. The developed convertible agent approach is well suited for evolutionary design applications outside of mechanism synthesis in which there are a small number of distinct topological design possibilities each with parametric variables to be optimized.","internal_url":"https://www.academia.edu/118154451/Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents","translated_internal_url":"","created_at":"2024-04-27T05:35:22.434-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":810972,"name":"Mechanism in Biology","url":"https://www.academia.edu/Documents/in/Mechanism_in_Biology"},{"id":1827413,"name":"Curse of Dimensionality","url":"https://www.academia.edu/Documents/in/Curse_of_Dimensionality"}],"urls":[{"id":41439093,"url":"https://dl.acm.org/citation.cfm?id=1970841"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3146059" id="papers"><div class="js-work-strip profile--work_container" data-work-id="118154528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154528/Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors"><img alt="Research paper thumbnail of Evaluating Acoustic Warning Signals in Automobile Interiors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154528/Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors">Evaluating Acoustic Warning Signals in Automobile Interiors</a></div><div class="wp-workCard_item"><span>SAE Technical Paper Series</span><span>, Feb 1, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The use of acoustic warning signals to provide information about vehicle conditions to the driver...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The use of acoustic warning signals to provide information about vehicle conditions to the driver and passengers is now possible through application of advanced electronics in recent automobile designs. These acoustic warning signals may be tones or synthesized voice. The signals can only be effective if they are audible and distinguishable by the vehicle occupants without being at an irritating level. This paper presents a method for measuring acoustic intensity in an automobile interior using the cross-spectral technique which may assist in determining audibility of signals. Effective methods for displaying these quantitative vector measurements using computer graphics are presented along with the results of testing. Finally, an important future need of correlating acoustic intensity measurements with published human perception levels is discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154528]").text(description); $(".js-view-count[data-work-id=118154528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154528,"title":"Evaluating Acoustic Warning Signals in Automobile Interiors","translated_title":"","metadata":{"abstract":"The use of acoustic warning signals to provide information about vehicle conditions to the driver and passengers is now possible through application of advanced electronics in recent automobile designs. These acoustic warning signals may be tones or synthesized voice. The signals can only be effective if they are audible and distinguishable by the vehicle occupants without being at an irritating level. This paper presents a method for measuring acoustic intensity in an automobile interior using the cross-spectral technique which may assist in determining audibility of signals. Effective methods for displaying these quantitative vector measurements using computer graphics are presented along with the results of testing. Finally, an important future need of correlating acoustic intensity measurements with published human perception levels is discussed.","publication_date":{"day":1,"month":2,"year":1983,"errors":{}},"publication_name":"SAE Technical Paper Series"},"translated_abstract":"The use of acoustic warning signals to provide information about vehicle conditions to the driver and passengers is now possible through application of advanced electronics in recent automobile designs. These acoustic warning signals may be tones or synthesized voice. The signals can only be effective if they are audible and distinguishable by the vehicle occupants without being at an irritating level. This paper presents a method for measuring acoustic intensity in an automobile interior using the cross-spectral technique which may assist in determining audibility of signals. Effective methods for displaying these quantitative vector measurements using computer graphics are presented along with the results of testing. Finally, an important future need of correlating acoustic intensity measurements with published human perception levels is discussed.","internal_url":"https://www.academia.edu/118154528/Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors","translated_internal_url":"","created_at":"2024-04-27T05:35:43.224-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluating_Acoustic_Warning_Signals_in_Automobile_Interiors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":499,"name":"Acoustics","url":"https://www.academia.edu/Documents/in/Acoustics"}],"urls":[{"id":41439149,"url":"https://doi.org/10.4271/830200"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154526/Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers"><img alt="Research paper thumbnail of Genetic Algorithm Optimized Feature Transformation — A Comparison with Different Classifiers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154526/Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers">Genetic Algorithm Optimized Feature Transformation — A Comparison with Different Classifiers</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154526]").text(description); $(".js-view-count[data-work-id=118154526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154526,"title":"Genetic Algorithm Optimized Feature Transformation — A Comparison with Different Classifiers","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154526/Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers","translated_internal_url":"","created_at":"2024-04-27T05:35:41.625-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Genetic_Algorithm_Optimized_Feature_Transformation_A_Comparison_with_Different_Classifiers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":78540,"name":"Linear Discriminant Analysis","url":"https://www.academia.edu/Documents/in/Linear_Discriminant_Analysis"},{"id":137957,"name":"Performance Improvement","url":"https://www.academia.edu/Documents/in/Performance_Improvement"},{"id":221389,"name":"Pattern Classification","url":"https://www.academia.edu/Documents/in/Pattern_Classification"},{"id":438836,"name":"18.\tGenetic and evolutionary algorithms","url":"https://www.academia.edu/Documents/in/18._Genetic_and_evolutionary_algorithms"},{"id":1555442,"name":"Feature Space","url":"https://www.academia.edu/Documents/in/Feature_Space"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"},{"id":3905180,"name":"Linear discriminate analysis","url":"https://www.academia.edu/Documents/in/Linear_discriminate_analysis"},{"id":4112487,"name":"Feature vector","url":"https://www.academia.edu/Documents/in/Feature_vector"}],"urls":[{"id":41439148,"url":"https://doi.org/10.1007/3-540-45110-2_108"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154523/Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm"><img alt="Research paper thumbnail of Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm" class="work-thumbnail" src="https://attachments.academia-assets.com/113847194/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154523/Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm">Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm</a></div><div class="wp-workCard_item"><span>IEEE Computational Intelligence Magazine</span><span>, Feb 1, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="336ae04a4fd2cdb1b797282eca250f70" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847194,"asset_id":118154523,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847194/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154523]").text(description); $(".js-view-count[data-work-id=118154523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "336ae04a4fd2cdb1b797282eca250f70" } } $('.js-work-strip[data-work-id=118154523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154523,"title":"Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","grobid_abstract":"Combining learning techniques with data analysis to infuse intelligence and create smart worlds is current universal focus. IEEE","publication_date":{"day":1,"month":2,"year":2017,"errors":{}},"publication_name":"IEEE Computational Intelligence Magazine","grobid_abstract_attachment_id":113847194},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154523/Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm","translated_internal_url":"","created_at":"2024-04-27T05:35:40.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847194,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847194/thumbnails/1.jpg","file_name":"Issue-51-April-2017.pdf","download_url":"https://www.academia.edu/attachments/113847194/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modeling_the_Tracking_Area_Planning_Prob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847194/Issue-51-April-2017-libre.pdf?1714223559=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_Tracking_Area_Planning_Prob.pdf\u0026Expires=1733172574\u0026Signature=MwZjzleqnPZYOaMHErBgXl-8p1n7b2UxXXwJEbMCrg8l6-xfBuLzgnl1nR-HXeBo66cmUTyIu19VkVhBFaauUkeXGOJ0ozduWtLMSBKQMVx6FlaKS55YI4VLh7dZ5bQ2fZIRwz77nt1wVquMGtWs1un5PgMNW9CuPba9SUdc9iGN4IPO~LbkrBPXp7BZGLKEsPb6no8P1atqdE9uDJgUfFHVoG9hU3HyBvRdiRg8dzKs121z-8oUHs0jEfl7lpJG06VuSVOpFUzWivZrmHG0BUIsW5bSk9fKYHUyA7IKgMCBgjdiCMsviGNuxr5GaeAqfkuH72dTL3XivRWC8gsKCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modeling_the_Tracking_Area_Planning_Problem_Using_an_Evolutionary_Multi_Objective_Algorithm","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847194,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847194/thumbnails/1.jpg","file_name":"Issue-51-April-2017.pdf","download_url":"https://www.academia.edu/attachments/113847194/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modeling_the_Tracking_Area_Planning_Prob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847194/Issue-51-April-2017-libre.pdf?1714223559=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_Tracking_Area_Planning_Prob.pdf\u0026Expires=1733172574\u0026Signature=MwZjzleqnPZYOaMHErBgXl-8p1n7b2UxXXwJEbMCrg8l6-xfBuLzgnl1nR-HXeBo66cmUTyIu19VkVhBFaauUkeXGOJ0ozduWtLMSBKQMVx6FlaKS55YI4VLh7dZ5bQ2fZIRwz77nt1wVquMGtWs1un5PgMNW9CuPba9SUdc9iGN4IPO~LbkrBPXp7BZGLKEsPb6no8P1atqdE9uDJgUfFHVoG9hU3HyBvRdiRg8dzKs121z-8oUHs0jEfl7lpJG06VuSVOpFUzWivZrmHG0BUIsW5bSk9fKYHUyA7IKgMCBgjdiCMsviGNuxr5GaeAqfkuH72dTL3XivRWC8gsKCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":41439145,"url":"https://doi.org/10.1109/mci.2016.2627669"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154519/Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators"><img alt="Research paper thumbnail of Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154519/Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators">Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators</a></div><div class="wp-workCard_item"><span>Journal of Bionic Engineering</span><span>, Dec 1, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work concerns biped adaptive walking control on irregular terrains with online trajectory ge...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the generated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on irregular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154519]").text(description); $(".js-view-count[data-work-id=118154519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154519,"title":"Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators","translated_title":"","metadata":{"abstract":"This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the generated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on irregular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns.","publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":2016,"errors":{}},"publication_name":"Journal of Bionic Engineering"},"translated_abstract":"This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the generated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on irregular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns.","internal_url":"https://www.academia.edu/118154519/Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators","translated_internal_url":"","created_at":"2024-04-27T05:35:39.441-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Adaptive_walking_control_of_biped_robots_using_online_trajectory_generation_method_based_on_neural_oscillators","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":59770,"name":"Trajectory","url":"https://www.academia.edu/Documents/in/Trajectory"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":41439141,"url":"https://doi.org/10.1016/s1672-6529(16)60329-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154514"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154514/Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving"><img alt="Research paper thumbnail of Greenhouse climate fuzzy adaptive control considering energy saving" class="work-thumbnail" src="https://attachments.academia-assets.com/113847191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154514/Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving">Greenhouse climate fuzzy adaptive control considering energy saving</a></div><div class="wp-workCard_item"><span>International Journal of Control Automation and Systems</span><span>, Jun 27, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="612a1c7d69a7ba45167a08e109fc577a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847191,"asset_id":118154514,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847191/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154514"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154514"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154514; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154514]").text(description); $(".js-view-count[data-work-id=118154514]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154514; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154514']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154514, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "612a1c7d69a7ba45167a08e109fc577a" } } $('.js-work-strip[data-work-id=118154514]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154514,"title":"Greenhouse climate fuzzy adaptive control considering energy saving","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"This paper proposes a fuzzy adaptive control approach to solve greenhouse climate control problem. The aim is to ensure the controlled environmental variables to track their desired trajectories so as to create a favorable environment for crop growth. In this method, a feedback linearization technique is first introduced to derive the control laws of heating, fogging and CO 2 injection, then to compensate for the saturation of the actuators, a fuzzy logic system (FLS) is used to approximate the differences between controller outputs and actuator outputs due to actuator constraints. A robust control term is introduced to eliminate the impact of external disturbances and model uncertainty, and finally, Lyapunov stability analysis is performed to guarantee the convergence of the closed-loop system. Taking into account the fact that the crop is usually insensitive to the change of the environment inside the greenhouse during a short time interval, a certain amount of tracking error of the environmental variables is usually acceptable, which means that the environmental variables need only be driven into the corresponding target intervals. In this case, an energy-saving management mechanism is designed to reduce the energy consumption as much as possible. The simulation results illustrate the effectiveness of the proposed control scheme.","publication_date":{"day":27,"month":6,"year":2017,"errors":{}},"publication_name":"International Journal of Control Automation and Systems","grobid_abstract_attachment_id":113847191},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154514/Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving","translated_internal_url":"","created_at":"2024-04-27T05:35:38.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847191/thumbnails/1.jpg","file_name":"s12555-016-0220-620240427-1-khwtxz.pdf","download_url":"https://www.academia.edu/attachments/113847191/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Greenhouse_climate_fuzzy_adaptive_contro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847191/s12555-016-0220-620240427-1-khwtxz-libre.pdf?1714223561=\u0026response-content-disposition=attachment%3B+filename%3DGreenhouse_climate_fuzzy_adaptive_contro.pdf\u0026Expires=1733172574\u0026Signature=BRkw4aGZ3PNDVLMZZonkDYaMtFLMwrwvGEsqO8fmdcm0iPDVk0vA0kkPokU1yYTwRsiwdmmy--~uEFvmPGMJIJdB4PqyHsDJ3FRLgNEu3zqmdLGUgpj2NyMCOmgP~jH5QHt0YHu1LVaEEdUjmkDFkdLLFGsrB77apmQaSfotPS7AvI4DapS9yu0QA~9Xukr6OIeur~hoCR2iLflDcDRvGbUg-ZSQKVkXeDAOog0GMODohdLqIppjQGBPgzLeniikGTKZf6aMedTIDFCjaUzrj4IvZOU0tr7nWAkitp8ihopf86Rjbyc2OxDbe5dUCI2hb17yVEHUgCrl9iazJqcpvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Greenhouse_climate_fuzzy_adaptive_control_considering_energy_saving","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847191/thumbnails/1.jpg","file_name":"s12555-016-0220-620240427-1-khwtxz.pdf","download_url":"https://www.academia.edu/attachments/113847191/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Greenhouse_climate_fuzzy_adaptive_contro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847191/s12555-016-0220-620240427-1-khwtxz-libre.pdf?1714223561=\u0026response-content-disposition=attachment%3B+filename%3DGreenhouse_climate_fuzzy_adaptive_contro.pdf\u0026Expires=1733172574\u0026Signature=BRkw4aGZ3PNDVLMZZonkDYaMtFLMwrwvGEsqO8fmdcm0iPDVk0vA0kkPokU1yYTwRsiwdmmy--~uEFvmPGMJIJdB4PqyHsDJ3FRLgNEu3zqmdLGUgpj2NyMCOmgP~jH5QHt0YHu1LVaEEdUjmkDFkdLLFGsrB77apmQaSfotPS7AvI4DapS9yu0QA~9Xukr6OIeur~hoCR2iLflDcDRvGbUg-ZSQKVkXeDAOog0GMODohdLqIppjQGBPgzLeniikGTKZf6aMedTIDFCjaUzrj4IvZOU0tr7nWAkitp8ihopf86Rjbyc2OxDbe5dUCI2hb17yVEHUgCrl9iazJqcpvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":3414,"name":"Mechatronics","url":"https://www.academia.edu/Documents/in/Mechatronics"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":53489,"name":"Automation \u0026 Control Systems","url":"https://www.academia.edu/Documents/in/Automation_and_Control_Systems"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":195712,"name":"GREENHOUSE","url":"https://www.academia.edu/Documents/in/GREENHOUSE"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":41439137,"url":"https://doi.org/10.1007/s12555-016-0220-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154510"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154510/Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms"><img alt="Research paper thumbnail of Solving metameric variable-length optimization problems using genetic algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/113847193/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154510/Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms">Solving metameric variable-length optimization problems using genetic algorithms</a></div><div class="wp-workCard_item"><span>Genetic Programming and Evolvable Machines</span><span>, Sep 26, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="471865fb58648dceb5eec4c04cccc2d7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847193,"asset_id":118154510,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847193/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154510"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154510"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154510; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154510]").text(description); $(".js-view-count[data-work-id=118154510]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154510; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154510']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154510, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "471865fb58648dceb5eec4c04cccc2d7" } } $('.js-work-strip[data-work-id=118154510]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154510,"title":"Solving metameric variable-length optimization problems using genetic algorithms","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Variable-Length Genetic Algorithms for Optimization Problems","grobid_abstract":"In many optimization problems, one of the goals is to determine the optimal number of analogous components to include in the system. Examples include the number of sensors in a sensor coverage problem, the number of turbines in a wind farm problem, and the number of plies in a laminate stacking problem. Using standard approaches to solve these problems requires assuming a fixed number of sensors, turbines, or plies. However, if the optimal number is not known a priori this will likely lead to a sub-optimal solution. A better method is to allow the number of components to vary. As the number of components varies, so does the dimensionality of the search space, making the use of gradient-based methods difficult. A metameric genetic algorithm (MGA), which uses a segmented variablelength genome, is proposed. Traditional genetic algorithm (GA) operators, designed to work with fixed-length genomes, are no longer valid. This paper discusses the modifications required for an effective MGA, which is then demonstrated on the aforementioned problems. This includes the representation of the solution in the genome and the recombination, mutation, and selection operators. With these modifications the MGA is able to outperform the fixed-length GA on the selected problems, even if the optimal number of components is assumed to be known a priori.","publication_date":{"day":26,"month":9,"year":2016,"errors":{}},"publication_name":"Genetic Programming and Evolvable Machines","grobid_abstract_attachment_id":113847193},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154510/Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms","translated_internal_url":"","created_at":"2024-04-27T05:35:36.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847193/thumbnails/1.jpg","file_name":"s10710-016-9282-820240427-1-eqqkkm.pdf","download_url":"https://www.academia.edu/attachments/113847193/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_metameric_variable_length_optimi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847193/s10710-016-9282-820240427-1-eqqkkm-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DSolving_metameric_variable_length_optimi.pdf\u0026Expires=1733172574\u0026Signature=YoJzL-P1I7dxZ0pmr0MGdoJMT-9QVksnTw4NOPa0vVxVmNZfmaNMYUDg1~Z0MpbaBoKYZfnEIQzLcjci61SB~nd7DOTCSV-~WiYXucmTgMsKU~ruz7QExBnwvi8TRXVzzOQFE3dfzNI5DWldpS1iplTrq7H9FiO2rMfiJcdv0DaMAGaLOKo9XllqPxRe05TQUMoFsezMao8GLKa~WugR1q9a8SaBUlniIdUUkbZ~iCL8jCwlJ8wTPanxPWnOKsAGn1j~DFPjxvDGowa48-V1GuerHt5u3tmyauHmVl4iRQ3JcgHz-RzjJdO9XHIxdVdqbiemDvRQJxieQX6r2YFjFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Solving_metameric_variable_length_optimization_problems_using_genetic_algorithms","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847193/thumbnails/1.jpg","file_name":"s10710-016-9282-820240427-1-eqqkkm.pdf","download_url":"https://www.academia.edu/attachments/113847193/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_metameric_variable_length_optimi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847193/s10710-016-9282-820240427-1-eqqkkm-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DSolving_metameric_variable_length_optimi.pdf\u0026Expires=1733172574\u0026Signature=YoJzL-P1I7dxZ0pmr0MGdoJMT-9QVksnTw4NOPa0vVxVmNZfmaNMYUDg1~Z0MpbaBoKYZfnEIQzLcjci61SB~nd7DOTCSV-~WiYXucmTgMsKU~ruz7QExBnwvi8TRXVzzOQFE3dfzNI5DWldpS1iplTrq7H9FiO2rMfiJcdv0DaMAGaLOKo9XllqPxRe05TQUMoFsezMao8GLKa~WugR1q9a8SaBUlniIdUUkbZ~iCL8jCwlJ8wTPanxPWnOKsAGn1j~DFPjxvDGowa48-V1GuerHt5u3tmyauHmVl4iRQ3JcgHz-RzjJdO9XHIxdVdqbiemDvRQJxieQX6r2YFjFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":1827413,"name":"Curse of Dimensionality","url":"https://www.academia.edu/Documents/in/Curse_of_Dimensionality"},{"id":3325992,"name":"a priori and a posteriori","url":"https://www.academia.edu/Documents/in/a_priori_and_a_posteriori"}],"urls":[{"id":41439133,"url":"https://doi.org/10.1007/s10710-016-9282-8"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154495/An_improved_MOCC_with_feedback_control_structure_based_on_preference"><img alt="Research paper thumbnail of An improved MOCC with feedback control structure based on preference" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154495/An_improved_MOCC_with_feedback_control_structure_based_on_preference">An improved MOCC with feedback control structure based on preference</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn&amp;#39;t unique, so ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn&amp;#39;t unique, so it is hard for traditional method to obtain these optimal solutions in one simulation process. Based on this background, Multi-Objective Compatible Control (MOCC) algorithm was presented by Lihong Xu in [2]. MOCC is a compromise method, which hunts for suboptimal and feasible region as the control aim rather than precise optimal point. The controller of MOCC is optimized by GA in its interval, namely its controller lacks concrete controller structure. Due to the controller without concrete structure, the system model must be accurate and without input disturbance; however, it is impractical in practice. Besides, the control problem is different from the optimization. Different user has different preference and users&amp;#39; preference information plays a key role in control performance. In this paper, the feedback control law and users&amp;#39; preference information are incorporated into MOCC algorithm. An improved MOCC (IMOCC) algorithm is presented. The simulation result demonstrates its superiority and advantage over the MOCC algorithm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154495]").text(description); $(".js-view-count[data-work-id=118154495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154495, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154495,"title":"An improved MOCC with feedback control structure based on preference","translated_title":"","metadata":{"abstract":"ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn\u0026amp;#39;t unique, so it is hard for traditional method to obtain these optimal solutions in one simulation process. Based on this background, Multi-Objective Compatible Control (MOCC) algorithm was presented by Lihong Xu in [2]. MOCC is a compromise method, which hunts for suboptimal and feasible region as the control aim rather than precise optimal point. The controller of MOCC is optimized by GA in its interval, namely its controller lacks concrete controller structure. Due to the controller without concrete structure, the system model must be accurate and without input disturbance; however, it is impractical in practice. Besides, the control problem is different from the optimization. Different user has different preference and users\u0026amp;#39; preference information plays a key role in control performance. In this paper, the feedback control law and users\u0026amp;#39; preference information are incorporated into MOCC algorithm. An improved MOCC (IMOCC) algorithm is presented. The simulation result demonstrates its superiority and advantage over the MOCC algorithm.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"ABSTRACT The optimal solution of multi-objective control problem (MOCP) isn\u0026amp;#39;t unique, so it is hard for traditional method to obtain these optimal solutions in one simulation process. Based on this background, Multi-Objective Compatible Control (MOCC) algorithm was presented by Lihong Xu in [2]. MOCC is a compromise method, which hunts for suboptimal and feasible region as the control aim rather than precise optimal point. The controller of MOCC is optimized by GA in its interval, namely its controller lacks concrete controller structure. Due to the controller without concrete structure, the system model must be accurate and without input disturbance; however, it is impractical in practice. Besides, the control problem is different from the optimization. Different user has different preference and users\u0026amp;#39; preference information plays a key role in control performance. In this paper, the feedback control law and users\u0026amp;#39; preference information are incorporated into MOCC algorithm. An improved MOCC (IMOCC) algorithm is presented. The simulation result demonstrates its superiority and advantage over the MOCC algorithm.","internal_url":"https://www.academia.edu/118154495/An_improved_MOCC_with_feedback_control_structure_based_on_preference","translated_internal_url":"","created_at":"2024-04-27T05:35:32.623-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_improved_MOCC_with_feedback_control_structure_based_on_preference","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2200,"name":"Optimal Control","url":"https://www.academia.edu/Documents/in/Optimal_Control"},{"id":573872,"name":"Control Management","url":"https://www.academia.edu/Documents/in/Control_Management"},{"id":913924,"name":"Preference","url":"https://www.academia.edu/Documents/in/Preference"}],"urls":[{"id":41439131,"url":"https://doi.org/10.1145/1543834.1543923"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154493/Academic_Biography_of_Erik_D_Goodman"><img alt="Research paper thumbnail of Academic Biography of Erik D. Goodman" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154493/Academic_Biography_of_Erik_D_Goodman">Academic Biography of Erik D. Goodman</a></div><div class="wp-workCard_item"><span>Genetic and evolutionary computation</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This contribution summarizes the academic biography of the founding director of the NSF-funded BE...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This contribution summarizes the academic biography of the founding director of the NSF-funded BEACON Center for the Study of Evolution in Action, Dr. Erik D. Goodman, in a first person narrative.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154493]").text(description); $(".js-view-count[data-work-id=118154493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154493, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154493,"title":"Academic Biography of Erik D. Goodman","translated_title":"","metadata":{"abstract":"This contribution summarizes the academic biography of the founding director of the NSF-funded BEACON Center for the Study of Evolution in Action, Dr. Erik D. Goodman, in a first person narrative.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Genetic and evolutionary computation"},"translated_abstract":"This contribution summarizes the academic biography of the founding director of the NSF-funded BEACON Center for the Study of Evolution in Action, Dr. Erik D. Goodman, in a first person narrative.","internal_url":"https://www.academia.edu/118154493/Academic_Biography_of_Erik_D_Goodman","translated_internal_url":"","created_at":"2024-04-27T05:35:31.704-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Academic_Biography_of_Erik_D_Goodman","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":1236,"name":"Art","url":"https://www.academia.edu/Documents/in/Art"},{"id":2852,"name":"Narrative","url":"https://www.academia.edu/Documents/in/Narrative"},{"id":8265,"name":"Biography","url":"https://www.academia.edu/Documents/in/Biography"}],"urls":[{"id":41439122,"url":"https://doi.org/10.1007/978-3-030-39831-6_38"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154490/Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions"><img alt="Research paper thumbnail of Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154490/Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions">Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When using constrained multi-objective evolutionary algorithms to solve problems, most of them pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When using constrained multi-objective evolutionary algorithms to solve problems, most of them prefer infeasible solutions closer to feasible regions since they have smaller constraint violations. However, they may not work well on some problems which infeasible solutions closer to feasible regions have larger constraint violations than the ones farther away from the feasible regions. This kind of problems has not been explored so far. To help close this research gap, this paper first illustrates it by designing two new constrained multi-objective optimization problems (CMOPs) with deceptive infeasible regions. That is, in the deceptive infeasible regions, solutions farther away from a feasible region has a smaller constraint violation than the ones closer to the feasible region. We have proposed a constraint-handling technique based a set of directed weights (M2M-DW) to solve CMOPs on our previous work. However, it can not be able to solve the CMOPs with deceptive infeasible regions, since the directed weights prefer infeasible solutions with smaller constraint violations, which guides the search to the less promising regions. We improve it to solve the two proposed problems. Another set of benchmark problems, i.e., CTPs, is also used to verify the performance of the compared algorithms. Experimental results show that the proposed algorithm significantly outperforms the algorithms with which it is compared on the two proposed problems and CTPs, in terms of reliability and stability in finding a set of well-distributed optimal solutions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154490]").text(description); $(".js-view-count[data-work-id=118154490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154490,"title":"Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions","translated_title":"","metadata":{"abstract":"When using constrained multi-objective evolutionary algorithms to solve problems, most of them prefer infeasible solutions closer to feasible regions since they have smaller constraint violations. However, they may not work well on some problems which infeasible solutions closer to feasible regions have larger constraint violations than the ones farther away from the feasible regions. This kind of problems has not been explored so far. To help close this research gap, this paper first illustrates it by designing two new constrained multi-objective optimization problems (CMOPs) with deceptive infeasible regions. That is, in the deceptive infeasible regions, solutions farther away from a feasible region has a smaller constraint violation than the ones closer to the feasible region. We have proposed a constraint-handling technique based a set of directed weights (M2M-DW) to solve CMOPs on our previous work. However, it can not be able to solve the CMOPs with deceptive infeasible regions, since the directed weights prefer infeasible solutions with smaller constraint violations, which guides the search to the less promising regions. We improve it to solve the two proposed problems. Another set of benchmark problems, i.e., CTPs, is also used to verify the performance of the compared algorithms. Experimental results show that the proposed algorithm significantly outperforms the algorithms with which it is compared on the two proposed problems and CTPs, in terms of reliability and stability in finding a set of well-distributed optimal solutions.","publication_date":{"day":1,"month":12,"year":2019,"errors":{}}},"translated_abstract":"When using constrained multi-objective evolutionary algorithms to solve problems, most of them prefer infeasible solutions closer to feasible regions since they have smaller constraint violations. However, they may not work well on some problems which infeasible solutions closer to feasible regions have larger constraint violations than the ones farther away from the feasible regions. This kind of problems has not been explored so far. To help close this research gap, this paper first illustrates it by designing two new constrained multi-objective optimization problems (CMOPs) with deceptive infeasible regions. That is, in the deceptive infeasible regions, solutions farther away from a feasible region has a smaller constraint violation than the ones closer to the feasible region. We have proposed a constraint-handling technique based a set of directed weights (M2M-DW) to solve CMOPs on our previous work. However, it can not be able to solve the CMOPs with deceptive infeasible regions, since the directed weights prefer infeasible solutions with smaller constraint violations, which guides the search to the less promising regions. We improve it to solve the two proposed problems. Another set of benchmark problems, i.e., CTPs, is also used to verify the performance of the compared algorithms. Experimental results show that the proposed algorithm significantly outperforms the algorithms with which it is compared on the two proposed problems and CTPs, in terms of reliability and stability in finding a set of well-distributed optimal solutions.","internal_url":"https://www.academia.edu/118154490/Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions","translated_internal_url":"","created_at":"2024-04-27T05:35:31.018-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigating_the_Performance_of_Evolutionary_Algorithms_on_Constrained_Multi_objective_Optimization_Problems_with_Deceptive_Infeasible_Regions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":2001284,"name":"Feasible Region","url":"https://www.academia.edu/Documents/in/Feasible_Region"}],"urls":[{"id":41439118,"url":"https://doi.org/10.1109/ssci44817.2019.9002763"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154485/Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems"><img alt="Research paper thumbnail of Push and Pull Search for Solving Constrained Multi-objective Optimization Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/113847112/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154485/Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems">Push and Pull Search for Solving Constrained Multi-objective Optimization Problems</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 15, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="175e0b22a8568d95502b42a13ea73b86" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847112,"asset_id":118154485,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847112/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154485]").text(description); $(".js-view-count[data-work-id=118154485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154485, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "175e0b22a8568d95502b42a13ea73b86" } } $('.js-work-strip[data-work-id=118154485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154485,"title":"Push and Pull Search for Solving Constrained Multi-objective Optimization Problems","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper proposes a push and pull search (PPS) framework for solving constrained multi-objective optimization problems (CMOPs). To be more specific, the proposed PPS divides the search process into two different stages, including the push and pull search stages. In the push stage, a multiobjective evolutionary algorithm (MOEA) is adopted to explore the search space without considering any constraints, which can help to get across infeasible regions very fast and approach the unconstrained Pareto front. Furthermore, the landscape of CMOPs with constraints can be probed and estimated in the push stage, which can be utilized to conduct the parameters setting for constraint-handling approaches applied in the pull stage. Then, a constrained multi-objective evolutionary algorithm (CMOEA) equipped with an improved epsilon constraint-handling is applied to pull the infeasible individuals achieved in the push stage to the feasible and non-dominated regions. Compared with other CMOEAs, the proposed PPS method can more efficiently get across infeasible regions and converge to the feasible and nondominated regions by applying push and pull search strategies at different stages. To evaluate the performance regarding convergence and diversity, a set of benchmark CMOPs is used to test the proposed PPS and compare with other five CMOEAs, including MOEA/D-CDP, MOEA/D-SR, C-MOEA/D, MOEA/D-Epsilon and MOEA/D-IEpsilon. The comprehensive experimental results demonstrate that the proposed PPS achieves significantly better or competitive performance than the other five CMOEAs on most of the benchmark set.","publication_date":{"day":15,"month":9,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113847112},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154485/Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems","translated_internal_url":"","created_at":"2024-04-27T05:35:30.216-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847112/thumbnails/1.jpg","file_name":"1709.pdf","download_url":"https://www.academia.edu/attachments/113847112/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Push_and_Pull_Search_for_Solving_Constra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847112/1709-libre.pdf?1714223829=\u0026response-content-disposition=attachment%3B+filename%3DPush_and_Pull_Search_for_Solving_Constra.pdf\u0026Expires=1733172574\u0026Signature=ELJYWN8I6g~3yf6nEQdZcy4~JFcGDXA2qfXjo1o~X9WGLjAs5y8UvOreTR8Yim6PwdOpQat6vY2~ewjxaROZWD5XVKtQh05D8mNXUdM4q9wZ7jFAS66lk~tHkb4oAlq2p819Jl3EysDxwreKREmuNRtLQCuaeTVkOfI-65WPacRKxouGAKLz4u6hbYxPDQpLwZ5hpjOvhboimVYoMLDnelg~2HKdkJxZhmYDVddzqPwTQFf39MZsfXa-eefbeNT3~kimvqwCLkxPgWD9Cha-qCvg5uTDm8a0AxYJysd8ZE4gADH0Q3cEZUdOZB39TYm6uFvflSVpCl0wBzZU8I94KA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Push_and_Pull_Search_for_Solving_Constrained_Multi_objective_Optimization_Problems","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847112/thumbnails/1.jpg","file_name":"1709.pdf","download_url":"https://www.academia.edu/attachments/113847112/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Push_and_Pull_Search_for_Solving_Constra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847112/1709-libre.pdf?1714223829=\u0026response-content-disposition=attachment%3B+filename%3DPush_and_Pull_Search_for_Solving_Constra.pdf\u0026Expires=1733172574\u0026Signature=ELJYWN8I6g~3yf6nEQdZcy4~JFcGDXA2qfXjo1o~X9WGLjAs5y8UvOreTR8Yim6PwdOpQat6vY2~ewjxaROZWD5XVKtQh05D8mNXUdM4q9wZ7jFAS66lk~tHkb4oAlq2p819Jl3EysDxwreKREmuNRtLQCuaeTVkOfI-65WPacRKxouGAKLz4u6hbYxPDQpLwZ5hpjOvhboimVYoMLDnelg~2HKdkJxZhmYDVddzqPwTQFf39MZsfXa-eefbeNT3~kimvqwCLkxPgWD9Cha-qCvg5uTDm8a0AxYJysd8ZE4gADH0Q3cEZUdOZB39TYm6uFvflSVpCl0wBzZU8I94KA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113847113,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847113/thumbnails/1.jpg","file_name":"1709.pdf","download_url":"https://www.academia.edu/attachments/113847113/download_file","bulk_download_file_name":"Push_and_Pull_Search_for_Solving_Constra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847113/1709-libre.pdf?1714223823=\u0026response-content-disposition=attachment%3B+filename%3DPush_and_Pull_Search_for_Solving_Constra.pdf\u0026Expires=1733172574\u0026Signature=XpCcuK52ZswL5tSj~lPu2Ev7AGJkH~4Y5pqX63TuBDzjhzz9xorebnrlbLBfUkoGc0tB8XF5h~nCiJlHgmAG4WZ5onDNY1~jsHLsyYMNmGPmW5FqgucYsASfEH4pafwgik839JIbcrWh8sqEp6At7-RhfRCgH1E63VMw964~myKqsOW2Nj~4fNOslsi3IChWU69cX2HjGwMujJOhrEjxWvGwmk~uvLvaVmIVhI7dNay1LZZ7Yco6bKmnaDBK-DoCvqR0FNBB~u0AZZWIjvziO0kz1GJMGglTJdCw~-DZBzDYgJttE~issNfbXHD16L2NMZIPJvFs5gGEDxagqi2xhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":2001284,"name":"Feasible Region","url":"https://www.academia.edu/Documents/in/Feasible_Region"}],"urls":[{"id":41439115,"url":"http://arxiv.org/pdf/1709.05915"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154482"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154482/Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition"><img alt="Research paper thumbnail of Predicting and analyzing determinants of water-mediated ligand recognition" class="work-thumbnail" src="https://attachments.academia-assets.com/113847173/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154482/Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition">Predicting and analyzing determinants of water-mediated ligand recognition</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A</span><span>, Aug 8, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2cd7e7cf4b419d6becbff76e666473b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847173,"asset_id":118154482,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847173/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154482"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154482"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154482; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154482]").text(description); $(".js-view-count[data-work-id=118154482]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154482; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154482']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154482, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2cd7e7cf4b419d6becbff76e666473b7" } } $('.js-work-strip[data-work-id=118154482]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154482,"title":"Predicting and analyzing determinants of water-mediated ligand recognition","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"C-87 the chances of success in \"bootstrapping\" from an unpromising molecular replacement starting point to a complete structure. We will also discuss the two main concems at the moment in the fields of structure refinement and validation where Bayesian methods have much to offer. namely (l) getting better reliability indicators for the final results of structure refinement and (2) ensming that these indicators are effectively optimised during refinement","publication_date":{"day":8,"month":8,"year":1996,"errors":{}},"publication_name":"Acta Crystallographica Section A","grobid_abstract_attachment_id":113847173},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154482/Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition","translated_internal_url":"","created_at":"2024-04-27T05:35:29.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847173,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847173/thumbnails/1.jpg","file_name":"a40638.pdf","download_url":"https://www.academia.edu/attachments/113847173/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_and_analyzing_determinants_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847173/a40638-libre.pdf?1714223563=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_and_analyzing_determinants_of.pdf\u0026Expires=1733172574\u0026Signature=HsUdgDFN7GmKKD5k9CWUARwTQP-zezBy0j8ibMOSQnq6lKhmpJo4zxCxT-04B4ynDN-o4BKvOArt1jjO-ADc3fm15eJVXzQ2vFTvHGgliDG~9TUGPJXTtL3y0fEut445804p0bryk5P-Syo5gpGML8un1qLVMRgFebaUD-aKXr0LvBzOLyVMXw~xaKXFM0Te9-6oCAcEPfKJxDyw3Pit1bsVW~IFCYT34rcGx8kPrHg7KV89-CaNM0lReIuetZllgDgdGnleSqa~GvpGOcNlyRCWH8~CrpRGmGww81BQ7QEulT1axjr-LtOmR4OJTOpluPCtJNSPq2lbqzd5E~AETw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predicting_and_analyzing_determinants_of_water_mediated_ligand_recognition","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847173,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847173/thumbnails/1.jpg","file_name":"a40638.pdf","download_url":"https://www.academia.edu/attachments/113847173/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_and_analyzing_determinants_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847173/a40638-libre.pdf?1714223563=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_and_analyzing_determinants_of.pdf\u0026Expires=1733172574\u0026Signature=HsUdgDFN7GmKKD5k9CWUARwTQP-zezBy0j8ibMOSQnq6lKhmpJo4zxCxT-04B4ynDN-o4BKvOArt1jjO-ADc3fm15eJVXzQ2vFTvHGgliDG~9TUGPJXTtL3y0fEut445804p0bryk5P-Syo5gpGML8un1qLVMRgFebaUD-aKXr0LvBzOLyVMXw~xaKXFM0Te9-6oCAcEPfKJxDyw3Pit1bsVW~IFCYT34rcGx8kPrHg7KV89-CaNM0lReIuetZllgDgdGnleSqa~GvpGOcNlyRCWH8~CrpRGmGww81BQ7QEulT1axjr-LtOmR4OJTOpluPCtJNSPq2lbqzd5E~AETw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"}],"urls":[{"id":41439111,"url":"https://doi.org/10.1107/s0108767396095621"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154478"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154478/NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search"><img alt="Research paper thumbnail of NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search" class="work-thumbnail" src="https://attachments.academia-assets.com/113847110/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154478/NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search">NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 20, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9bbd7084f851ec64566757d195b28607" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847110,"asset_id":118154478,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847110/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154478"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154478]").text(description); $(".js-view-count[data-work-id=118154478]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154478']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154478, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9bbd7084f851ec64566757d195b28607" } } $('.js-work-strip[data-work-id=118154478]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154478,"title":"NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper, we propose an efficient NAS algorithm for generating task-specific models that are competitive under multiple competing objectives. It comprises of two surrogates, one at the architecture level to improve sample efficiency and one at the weights level, through a supernet, to improve gradient descent training efficiency. On standard benchmark datasets (C10, C100, ImageNet), the resulting models, dubbed NSGANetV2, either match or outperform models from existing approaches with the search being orders of magnitude more sample efficient. Furthermore, we demonstrate the effectiveness and versatility of the proposed method on six diverse non-standard datasets, e.g. STL-10, Flowers102, Oxford Pets, FGVC Aircrafts etc. In all cases, NSGANetV2s improve the state-of-the-art (under mobile setting), suggesting that NAS can be a viable alternative to conventional transfer learning approaches in handling diverse scenarios such as small-scale or fine-grained datasets. Code is available at https://github.com/mikelzc1990/nsganetv2.","publication_date":{"day":20,"month":7,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113847110},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154478/NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search","translated_internal_url":"","created_at":"2024-04-27T05:35:28.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847110/thumbnails/1.jpg","file_name":"2007.10396.pdf","download_url":"https://www.academia.edu/attachments/113847110/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NSGANetV2_Evolutionary_Multi_Objective_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847110/2007.10396-libre.pdf?1714223616=\u0026response-content-disposition=attachment%3B+filename%3DNSGANetV2_Evolutionary_Multi_Objective_S.pdf\u0026Expires=1733172574\u0026Signature=ZjOyJOx9XwiCRH8~1S8P9COWYjk252srEGPrqiz3xbaKjCLibVimToecFzJy7de-QZPe254LDJ~KPkC1oOuVce0aOrxIRf2-2FUXD2ZnONln4byg8TyDItvV3rm6227uR-LBTCYvGbxYJ0MetNn8zFEo1tjLiQSBSRl6ahV6rbYJa4UN4Fs8DUAv2vkDy~0TUbzc32kj77YGFnYzDwjKG7T1JjUA5r4eXHKfqKcFdCA66g~QKZb2q420A57ZHIHJjLRXvCgWHuyUo1f4niPnWMRK-8CSb-JvVSr-87k24Ai2LvO7dvlYtnP-UIU5ij6F8GeHR7~G9W1lT3ml00hhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"NSGANetV2_Evolutionary_Multi_Objective_Surrogate_Assisted_Neural_Architecture_Search","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847110,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847110/thumbnails/1.jpg","file_name":"2007.10396.pdf","download_url":"https://www.academia.edu/attachments/113847110/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NSGANetV2_Evolutionary_Multi_Objective_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847110/2007.10396-libre.pdf?1714223616=\u0026response-content-disposition=attachment%3B+filename%3DNSGANetV2_Evolutionary_Multi_Objective_S.pdf\u0026Expires=1733172574\u0026Signature=ZjOyJOx9XwiCRH8~1S8P9COWYjk252srEGPrqiz3xbaKjCLibVimToecFzJy7de-QZPe254LDJ~KPkC1oOuVce0aOrxIRf2-2FUXD2ZnONln4byg8TyDItvV3rm6227uR-LBTCYvGbxYJ0MetNn8zFEo1tjLiQSBSRl6ahV6rbYJa4UN4Fs8DUAv2vkDy~0TUbzc32kj77YGFnYzDwjKG7T1JjUA5r4eXHKfqKcFdCA66g~QKZb2q420A57ZHIHJjLRXvCgWHuyUo1f4niPnWMRK-8CSb-JvVSr-87k24Ai2LvO7dvlYtnP-UIU5ij6F8GeHR7~G9W1lT3ml00hhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113847111,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847111/thumbnails/1.jpg","file_name":"2007.10396.pdf","download_url":"https://www.academia.edu/attachments/113847111/download_file","bulk_download_file_name":"NSGANetV2_Evolutionary_Multi_Objective_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847111/2007.10396-libre.pdf?1714223606=\u0026response-content-disposition=attachment%3B+filename%3DNSGANetV2_Evolutionary_Multi_Objective_S.pdf\u0026Expires=1733172574\u0026Signature=giTe5okvSy-EDGBphfAcnATtTChWBeD0vm5QpTjHovPnuJF1C~FU5YRjtOcRh64nZjdwGkc0UPRr4GXAPgYo3GnSMu5LiyBXIDamFjtDwqJJr0MLEu6GvMwxm5lIyFzdtN~TZJEaNbfnOojfUBW~QNalhPa5oTTkh84I3Nv~25Sve0Agfd~Rd57poq6-woCCZiTWMr35~YcUHGWkAN94iDz~evh1kirXBOH2BHdNH8fWBge1A8sO8aqgYveL0KgeOXR4ul2VJRbGzmQDmqe8TEY5rSatv7fqh5tm4gySWP8MoZfgHIuQAmb9K0dStQqevDlKdOWNzkLbWb2MtyCsUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":41439108,"url":"http://arxiv.org/pdf/2007.10396"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154474/A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems"><img alt="Research paper thumbnail of A collaboration-based particle swarm optimizer for global optimization problems" class="work-thumbnail" src="https://attachments.academia-assets.com/113847176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154474/A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems">A collaboration-based particle swarm optimizer for global optimization problems</a></div><div class="wp-workCard_item"><span>International Journal of Machine Learning and Cybernetics</span><span>, Mar 24, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="44db303239fd028496040e82daff338d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847176,"asset_id":118154474,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847176/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154474]").text(description); $(".js-view-count[data-work-id=118154474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154474, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "44db303239fd028496040e82daff338d" } } $('.js-work-strip[data-work-id=118154474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154474,"title":"A collaboration-based particle swarm optimizer for global optimization problems","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"This paper introduces a collaboration-based particle swarm optimizer (PSO) by incorporating three new strategies: a global learning strategy, a probability of learning, and a \"worst replacement\" swarm update rule. Instead of learning from the personal historical best position and the global (or local) best position which was used by the classical PSO, a target particle learns from another randomly chosen particle and the global best one in the swarm. Instead of accepting a new velocity directly, the velocity updates according to a learning probability, according to which the velocity of the target particle in each dimension updates via learning from other particles or simply inherits its previous velocity component. Since each particle has the same chance to be selected as a leader, the worst particle might influence the whole swarm's performance. Therefore, the worst particle in the swarm in each update is moved to a new better position generated from another particle. The proposed algorithm is shown to be statistically significantly better than six other state-of-the-art PSO variants on 20 typical benchmark functions with three different dimensionalities.","publication_date":{"day":24,"month":3,"year":2018,"errors":{}},"publication_name":"International Journal of Machine Learning and Cybernetics","grobid_abstract_attachment_id":113847176},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154474/A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems","translated_internal_url":"","created_at":"2024-04-27T05:35:27.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847176/thumbnails/1.jpg","file_name":"s13042-018-0810-020240427-1-2tkem8.pdf","download_url":"https://www.academia.edu/attachments/113847176/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_collaboration_based_particle_swarm_opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847176/s13042-018-0810-020240427-1-2tkem8-libre.pdf?1714223586=\u0026response-content-disposition=attachment%3B+filename%3DA_collaboration_based_particle_swarm_opt.pdf\u0026Expires=1733172574\u0026Signature=KFAl3dDAiheOBpMlECiL04VaiuZQoDk-lpsZWT8LF9HzbnxvmudB8N~tTv0LMABDkjjh45PKQ~9T3604fCDS4kAYck1grvlwC8hbua7nv4D3Yu7uxnrEXqQ0Mo0Hew28x0yws4fMW4aK16VtKlMyNrqhqBTpEODfMXmppGPtfAE5ASPAbeMfD~I8L2LpQMfZM1uYCJDAj7aHezAvS1AqYPlJSdocfDJrM~-sPlImwUVR9-8ofUQHNE4UVB4IYIafkscAtj~rfQfRKI~xqoIdIWsTwdFANfWoCsv9ajEDvtWglIJeAQrCOOBe6clq10ssUsDw8MqEBsm7Yj3FQlD-5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_collaboration_based_particle_swarm_optimizer_for_global_optimization_problems","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847176/thumbnails/1.jpg","file_name":"s13042-018-0810-020240427-1-2tkem8.pdf","download_url":"https://www.academia.edu/attachments/113847176/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_collaboration_based_particle_swarm_opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847176/s13042-018-0810-020240427-1-2tkem8-libre.pdf?1714223586=\u0026response-content-disposition=attachment%3B+filename%3DA_collaboration_based_particle_swarm_opt.pdf\u0026Expires=1733172574\u0026Signature=KFAl3dDAiheOBpMlECiL04VaiuZQoDk-lpsZWT8LF9HzbnxvmudB8N~tTv0LMABDkjjh45PKQ~9T3604fCDS4kAYck1grvlwC8hbua7nv4D3Yu7uxnrEXqQ0Mo0Hew28x0yws4fMW4aK16VtKlMyNrqhqBTpEODfMXmppGPtfAE5ASPAbeMfD~I8L2LpQMfZM1uYCJDAj7aHezAvS1AqYPlJSdocfDJrM~-sPlImwUVR9-8ofUQHNE4UVB4IYIafkscAtj~rfQfRKI~xqoIdIWsTwdFANfWoCsv9ajEDvtWglIJeAQrCOOBe6clq10ssUsDw8MqEBsm7Yj3FQlD-5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence"},{"id":5395,"name":"Swarm Intelligence","url":"https://www.academia.edu/Documents/in/Swarm_Intelligence"},{"id":25896,"name":"Particle Swarm Optimization","url":"https://www.academia.edu/Documents/in/Particle_Swarm_Optimization"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"}],"urls":[{"id":41439107,"url":"https://doi.org/10.1007/s13042-018-0810-0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154472"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154472/A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization"><img alt="Research paper thumbnail of A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154472/A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization">A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization</a></div><div class="wp-workCard_item"><span>Expert Systems With Applications</span><span>, Mar 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154472"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154472"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154472; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154472]").text(description); $(".js-view-count[data-work-id=118154472]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154472; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154472']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154472, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154472]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154472,"title":"A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":3,"year":2023,"errors":{}},"publication_name":"Expert Systems With Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154472/A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization","translated_internal_url":"","created_at":"2024-04-27T05:35:27.331-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_new_adaptive_decomposition_based_evolutionary_algorithm_for_multi_and_many_objective_optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":46254,"name":"Optimization Problem","url":"https://www.academia.edu/Documents/in/Optimization_Problem"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":1476527,"name":"Pareto principle","url":"https://www.academia.edu/Documents/in/Pareto_principle"}],"urls":[{"id":41439105,"url":"https://doi.org/10.1016/j.eswa.2022.119080"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154470"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154470/The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock"><img alt="Research paper thumbnail of The Effect of Weather on Bioenergetics of Breeding American Woodcock" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154470/The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock">The Effect of Weather on Bioenergetics of Breeding American Woodcock</a></div><div class="wp-workCard_item"><span>Journal of Wildlife Management</span><span>, Jul 1, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK&#x27; DALE L. RABE,2...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK&#x27; DALE L. RABE,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 HAROLD H. PRINCE ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154470"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154470"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154470; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154470]").text(description); $(".js-view-count[data-work-id=118154470]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154470; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154470']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154470, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154470]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154470,"title":"The Effect of Weather on Bioenergetics of Breeding American Woodcock","translated_title":"","metadata":{"abstract":"Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK\u0026#x27; DALE L. RABE,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 HAROLD H. PRINCE ...","publisher":"Wiley-Blackwell","publication_date":{"day":1,"month":7,"year":1983,"errors":{}},"publication_name":"Journal of Wildlife Management"},"translated_abstract":"Page 1. THE EFFECT OF WEATHER ON BIOENERGETICS OF BREEDING AMERICAN WOODCOCK\u0026#x27; DALE L. RABE,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 HAROLD H. PRINCE ...","internal_url":"https://www.academia.edu/118154470/The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock","translated_internal_url":"","created_at":"2024-04-27T05:35:26.608-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Effect_of_Weather_on_Bioenergetics_of_Breeding_American_Woodcock","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":28836,"name":"Bioenergetics","url":"https://www.academia.edu/Documents/in/Bioenergetics"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":133572,"name":"Wildlife Management","url":"https://www.academia.edu/Documents/in/Wildlife_Management"}],"urls":[{"id":41439103,"url":"https://doi.org/10.2307/3808611"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154468"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154468/A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization"><img alt="Research paper thumbnail of A method for accurate simulation of robotic spray application using empirical parameterization" class="work-thumbnail" src="https://attachments.academia-assets.com/113847169/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154468/A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization">A method for accurate simulation of robotic spray application using empirical parameterization</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="76300fdd5f2bb64f6fb124404941272e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847169,"asset_id":118154468,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847169/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154468"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154468"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154468; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154468]").text(description); $(".js-view-count[data-work-id=118154468]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154468; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154468']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154468, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "76300fdd5f2bb64f6fb124404941272e" } } $('.js-work-strip[data-work-id=118154468]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154468,"title":"A method for accurate simulation of robotic spray application using empirical parameterization","translated_title":"","metadata":{"ai_title_tag":"Accurate Robotic Spray Simulation via Empirical Parameterization","grobid_abstract":"As part of the development of an accurate simulator of robotically-applied spray coatings on sculptured surfaces, a tabular technique was developed for representing with arbitrary accuracy the spray pattern from a robot sprayer. The method allows parameterization of this spray distribution using a single spray test pattern applied by the robot, without symmetry assumptions. The thickness of the test pattem is measured at a user-specified grid of points. These data are used to calculate a least-squares solution to an overdetermined set of linear equations, with optional user-scalable smoothing (via regularization) to suppress effects of measurement noise. In closed-loop testing of the parameterization and simulation process using pseudorandom noise in the measurement data, the solution table entries typically contain less noise than the individual thickness measurements on which they are based, even when measured data points are not much more numerous than table entries. 1357","publication_date":{"day":10,"month":12,"year":2002,"errors":{}},"grobid_abstract_attachment_id":113847169},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154468/A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization","translated_internal_url":"","created_at":"2024-04-27T05:35:25.425-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847169/thumbnails/1.jpg","file_name":"9682cc3b5d50accacc06b76c45e837b25f7f.pdf","download_url":"https://www.academia.edu/attachments/113847169/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_accurate_simulation_of_robo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847169/9682cc3b5d50accacc06b76c45e837b25f7f-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_accurate_simulation_of_robo.pdf\u0026Expires=1733172574\u0026Signature=GtQ17kr2DklaYmIZtTUuo3St9K1V9kvu9J6KzogVadRzV4a85iLUGg6GXyWjv41DrS43VULhTsz-gxnS9lKzKveqlc~jM8rRz4Sr-KJEK8eCQBYJYSKB3LitQ0HBg1pQA4jAe1gZ6NTcZmXIfniTkdk68rvzJU95RslQ5NZqX9iLNP8qIdJuFMXt5rhbuKcTZeYTe0HnlEW13SBBw0fo3F6--VA~Zt0AMzuSaBsTxwZBPqVJjjnj5AQmpzO-oVRCmSsFAEIsGxvjPnWtYpZYH7iIec90X6ShmFWRQjcDB6NvUyHdqv~1W6yIPrdCva0bNMRtksd7WmvltVh4EqweiQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_method_for_accurate_simulation_of_robotic_spray_application_using_empirical_parameterization","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847169/thumbnails/1.jpg","file_name":"9682cc3b5d50accacc06b76c45e837b25f7f.pdf","download_url":"https://www.academia.edu/attachments/113847169/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_accurate_simulation_of_robo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847169/9682cc3b5d50accacc06b76c45e837b25f7f-libre.pdf?1714223574=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_accurate_simulation_of_robo.pdf\u0026Expires=1733172574\u0026Signature=GtQ17kr2DklaYmIZtTUuo3St9K1V9kvu9J6KzogVadRzV4a85iLUGg6GXyWjv41DrS43VULhTsz-gxnS9lKzKveqlc~jM8rRz4Sr-KJEK8eCQBYJYSKB3LitQ0HBg1pQA4jAe1gZ6NTcZmXIfniTkdk68rvzJU95RslQ5NZqX9iLNP8qIdJuFMXt5rhbuKcTZeYTe0HnlEW13SBBw0fo3F6--VA~Zt0AMzuSaBsTxwZBPqVJjjnj5AQmpzO-oVRCmSsFAEIsGxvjPnWtYpZYH7iIec90X6ShmFWRQjcDB6NvUyHdqv~1W6yIPrdCva0bNMRtksd7WmvltVh4EqweiQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":225304,"name":"Smoothing","url":"https://www.academia.edu/Documents/in/Smoothing"},{"id":1911817,"name":"Sprayer","url":"https://www.academia.edu/Documents/in/Sprayer"}],"urls":[{"id":41439102,"url":"https://doi.org/10.1109/robot.1991.131802"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154464"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154464/Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm"><img alt="Research paper thumbnail of Discovering the Chemistry of Conserved First-Shell and Active-Site Hydration in Proteins Using Pattern Classification with a Genetic Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154464/Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm">Discovering the Chemistry of Conserved First-Shell and Active-Site Hydration in Proteins Using Pattern Classification with a Genetic Algorithm</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154464"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154464"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154464; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154464]").text(description); $(".js-view-count[data-work-id=118154464]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154464; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154464']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154464, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154464]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154464,"title":"Discovering the Chemistry of Conserved First-Shell and Active-Site Hydration in Proteins Using Pattern Classification with a Genetic Algorithm","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154464/Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm","translated_internal_url":"","created_at":"2024-04-27T05:35:24.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Discovering_the_Chemistry_of_Conserved_First_Shell_and_Active_Site_Hydration_in_Proteins_Using_Pattern_Classification_with_a_Genetic_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"}],"urls":[{"id":41439100,"url":"https://corescholar.libraries.wright.edu/knoesis/929/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154460"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118154460/Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier"><img alt="Research paper thumbnail of Elucidating the Determinants of Conserved Protein Surface Solvation Using a Genetic Algorithm and Nearest Neighbor Classifier" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118154460/Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier">Elucidating the Determinants of Conserved Protein Surface Solvation Using a Genetic Algorithm and Nearest Neighbor Classifier</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154460"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154460"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154460; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154460]").text(description); $(".js-view-count[data-work-id=118154460]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154460; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154460']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154460, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154460]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154460,"title":"Elucidating the Determinants of Conserved Protein Surface Solvation Using a Genetic Algorithm and Nearest Neighbor Classifier","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154460/Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier","translated_internal_url":"","created_at":"2024-04-27T05:35:23.915-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Elucidating_the_Determinants_of_Conserved_Protein_Surface_Solvation_Using_a_Genetic_Algorithm_and_Nearest_Neighbor_Classifier","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":49735,"name":"Solvation","url":"https://www.academia.edu/Documents/in/Solvation"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"},{"id":2981830,"name":" K-nearest neighbors algorithm","url":"https://www.academia.edu/Documents/in/K-nearest_neighbors_algorithm"}],"urls":[{"id":41439098,"url":"https://corescholar.libraries.wright.edu/knoesis/933/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154456/Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites"><img alt="Research paper thumbnail of Predicting Conserved Water-Mediated Interactions in Protein Active Sites" class="work-thumbnail" src="https://attachments.academia-assets.com/113847105/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154456/Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites">Predicting Conserved Water-Mediated Interactions in Protein Active Sites</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f80fea1557e01c21a56a2b4120c6365c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113847105,"asset_id":118154456,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113847105/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154456]").text(description); $(".js-view-count[data-work-id=118154456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154456, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f80fea1557e01c21a56a2b4120c6365c" } } $('.js-work-strip[data-work-id=118154456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154456,"title":"Predicting Conserved Water-Mediated Interactions in Protein Active Sites","translated_title":"","metadata":{"ai_title_tag":"Predicting Water-Related Interactions in Protein Active Sites","grobid_abstract":"Water bound in protein active sites is essential for processes as diverse as degradation of penicillin by-lactamase and recognition of DNA by trp repressor, yet the principles governing which waters are conserved or displaced upon ligand binding have not been characterized. While liganddependent steric eects may be involved, the chemistry of the water binding site is also likely to be important. Surprisingly, we show that even without explicit knowledge of the ligand, it is possible to predict most watermediated ligand interactions from the chemical environments of bound water molecules in the free protein structure. A k-nearest-neighbor classier coupled with a genetic algorithm was trained on 13 high-resolution protein structures' rst-shell water molecules, which could be classied as conserved or displaced by comparison with a known ligand-bound structure. When this algorithm was applied to active site water molecules in free protein structures, 70% of the water sites were correctly classied as conserved or displaced upon ligand binding. Discriminant analysis, a traditional statistical technique, was also applied to predict conservation of water sites, and proved to have a similar prediction rate to the genetic algorithm outside active sites, but a random predictive level within active sites. A valuable product of both algorithms is a set of weights for the features used to characterize water-binding sites { hydrogen bonding, neighboring atom hydrophilicity, local mobility, and surface shape { reecting the relative discriminatory ability of each feature in determining whether water is conserved or displaced. Interestingly, the features important for water conservation in active sites dier somewhat from those outside active sites. Together, our results suggest that water-mediated interactions for proteins can be predicted without knowledge of the ligand and that there is a generalizable structural chemistry for water-mediated protein:ligand interactions which can be applied to improve drug design and water modelling.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"grobid_abstract_attachment_id":113847105},"translated_abstract":null,"internal_url":"https://www.academia.edu/118154456/Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites","translated_internal_url":"","created_at":"2024-04-27T05:35:23.144-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113847105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847105/thumbnails/1.jpg","file_name":"GARAGe95-03-02.pdf","download_url":"https://www.academia.edu/attachments/113847105/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_Conserved_Water_Mediated_Inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847105/GARAGe95-03-02-libre.pdf?1714223571=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_Conserved_Water_Mediated_Inte.pdf\u0026Expires=1733172574\u0026Signature=Xb~L2FqLRbDqg~Njy4g~0hdp9~dlTUsTX2ajXf868LeAHJsdBV~gWdEwUVvqMx59nMlZMHKV7WU547PvmqmC2dfWNKyQzk2P9DkaLlowx3Kfx0PMkuLj8tq-aNj2IDtwtFIwbVzy~5o0OlLLIrsOV3KNpB3fKXO4IyoeqoHRgZZpXkfm65E1O5Ssz0fHdg~SMl7mj6kUd3fE0OZx8cqx0TRq60krIXOiOJP-vITw9qc2FrvzRvqWGXMflY~KBO7qbQlkHnJXJxMoshNQb~EPttfcD9~6DkTeecYXD0noJlrxiAwpujUAve~sTOInOgfI77Cf~oGNhBqqC46KP2tUrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predicting_Conserved_Water_Mediated_Interactions_in_Protein_Active_Sites","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[{"id":113847105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847105/thumbnails/1.jpg","file_name":"GARAGe95-03-02.pdf","download_url":"https://www.academia.edu/attachments/113847105/download_file?st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&st=MTczMzE2ODk3NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_Conserved_Water_Mediated_Inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847105/GARAGe95-03-02-libre.pdf?1714223571=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_Conserved_Water_Mediated_Inte.pdf\u0026Expires=1733172574\u0026Signature=Xb~L2FqLRbDqg~Njy4g~0hdp9~dlTUsTX2ajXf868LeAHJsdBV~gWdEwUVvqMx59nMlZMHKV7WU547PvmqmC2dfWNKyQzk2P9DkaLlowx3Kfx0PMkuLj8tq-aNj2IDtwtFIwbVzy~5o0OlLLIrsOV3KNpB3fKXO4IyoeqoHRgZZpXkfm65E1O5Ssz0fHdg~SMl7mj6kUd3fE0OZx8cqx0TRq60krIXOiOJP-vITw9qc2FrvzRvqWGXMflY~KBO7qbQlkHnJXJxMoshNQb~EPttfcD9~6DkTeecYXD0noJlrxiAwpujUAve~sTOInOgfI77Cf~oGNhBqqC46KP2tUrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113847104,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113847104/thumbnails/1.jpg","file_name":"GARAGe95-03-02.pdf","download_url":"https://www.academia.edu/attachments/113847104/download_file","bulk_download_file_name":"Predicting_Conserved_Water_Mediated_Inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113847104/GARAGe95-03-02-libre.pdf?1714223571=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_Conserved_Water_Mediated_Inte.pdf\u0026Expires=1733172574\u0026Signature=YvM3OExgCdTK14wP6l8ly8tyFiz3XnJTgoZh6Tu4CQgr91ShipxBtedsbPzKgdWOgmBYxrTYUpr5rpvfVTp8jzc3xtCIxaPbyzgBCrK~Rqi4Y1cHhZMk3ORXNDMh9lzJxMHcaA8w~oQmJadqpdAwFBsVVn9yAXjndKzz0mx6sGNHQDUPtqmJQJjY~thaOkWrU47uplbPJ8zJ40o0qDXhJLenWFNofvybMmAjzzkyk0kJDRjwAZzxSnmb0hFkTODctLAavlEth5Egt8tI6a44nprDZITBtapZLdrRwySh7kCxOb7cMd1OFrJZlCmyvfa3tUAkrh1ShRgdv9EHDfIkgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences"},{"id":50487,"name":"Protein-Protein Interaction","url":"https://www.academia.edu/Documents/in/Protein-Protein_Interaction"},{"id":125632,"name":"Social and Behavioral Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Behavioral_Sciences"},{"id":670410,"name":"Databases and Information/Programming Systems","url":"https://www.academia.edu/Documents/in/Databases_and_Information_Programming_Systems"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies"},{"id":2054502,"name":"Computer Sciences","url":"https://www.academia.edu/Documents/in/Computer_Sciences"}],"urls":[{"id":41439095,"url":"http://garage.cse.msu.edu/papers/GARAGe95-03-02.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118154451"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118154451/Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents"><img alt="Research paper thumbnail of Synthesis of Planar Mechanisms Simultaneously for Both Type and Dimensionality Using Evolutionary Search and Convertible Agents" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118154451/Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents">Synthesis of Planar Mechanisms Simultaneously for Both Type and Dimensionality Using Evolutionary Search and Convertible Agents</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is deceptively complex. In this dissertation, a novel approach to automated mechanism synthesis is described which uses an evolutionary search algorithm and a technique called &quot;convertible agents&quot; to simultaneously find the most appropriate mechanism type for a given problem, while finding an optimum set of dimensions for that mechanism to realize a specified behavior. The convertible agent technique has been developed in response to the unique design challenges encountered when synthesizing a mechanism for both type and dimensionality. Several case studies are presented which demonstrate the approach&#39;s effectiveness over earlier solution strategies. In these studies, six different planar single-degree-of-freedom mechanism types are considered: a four-bar mechanism, Stephenson&#39;s six-bar-mechanisms (types I, II, and III), and Watt&#39;s six-bar-mechanisms (types I and II). The method is readily scalable to account for any number of different mechanism types and complexities. The developed convertible agent approach is well suited for evolutionary design applications outside of mechanism synthesis in which there are a small number of distinct topological design possibilities each with parametric variables to be optimized.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118154451"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118154451"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118154451; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118154451]").text(description); $(".js-view-count[data-work-id=118154451]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118154451; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118154451']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118154451, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118154451]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118154451,"title":"Synthesis of Planar Mechanisms Simultaneously for Both Type and Dimensionality Using Evolutionary Search and Convertible Agents","translated_title":"","metadata":{"abstract":"In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is deceptively complex. In this dissertation, a novel approach to automated mechanism synthesis is described which uses an evolutionary search algorithm and a technique called \u0026quot;convertible agents\u0026quot; to simultaneously find the most appropriate mechanism type for a given problem, while finding an optimum set of dimensions for that mechanism to realize a specified behavior. The convertible agent technique has been developed in response to the unique design challenges encountered when synthesizing a mechanism for both type and dimensionality. Several case studies are presented which demonstrate the approach\u0026#39;s effectiveness over earlier solution strategies. In these studies, six different planar single-degree-of-freedom mechanism types are considered: a four-bar mechanism, Stephenson\u0026#39;s six-bar-mechanisms (types I, II, and III), and Watt\u0026#39;s six-bar-mechanisms (types I and II). The method is readily scalable to account for any number of different mechanism types and complexities. The developed convertible agent approach is well suited for evolutionary design applications outside of mechanism synthesis in which there are a small number of distinct topological design possibilities each with parametric variables to be optimized.","publication_date":{"day":9,"month":9,"year":2011,"errors":{}}},"translated_abstract":"In the field of mechanical engineering, synthesizing a mechanism to perform an intended task is deceptively complex. In this dissertation, a novel approach to automated mechanism synthesis is described which uses an evolutionary search algorithm and a technique called \u0026quot;convertible agents\u0026quot; to simultaneously find the most appropriate mechanism type for a given problem, while finding an optimum set of dimensions for that mechanism to realize a specified behavior. The convertible agent technique has been developed in response to the unique design challenges encountered when synthesizing a mechanism for both type and dimensionality. Several case studies are presented which demonstrate the approach\u0026#39;s effectiveness over earlier solution strategies. In these studies, six different planar single-degree-of-freedom mechanism types are considered: a four-bar mechanism, Stephenson\u0026#39;s six-bar-mechanisms (types I, II, and III), and Watt\u0026#39;s six-bar-mechanisms (types I and II). The method is readily scalable to account for any number of different mechanism types and complexities. The developed convertible agent approach is well suited for evolutionary design applications outside of mechanism synthesis in which there are a small number of distinct topological design possibilities each with parametric variables to be optimized.","internal_url":"https://www.academia.edu/118154451/Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents","translated_internal_url":"","created_at":"2024-04-27T05:35:22.434-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32766763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Synthesis_of_Planar_Mechanisms_Simultaneously_for_Both_Type_and_Dimensionality_Using_Evolutionary_Search_and_Convertible_Agents","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32766763,"first_name":"Erik","middle_initials":null,"last_name":"Goodman","page_name":"EricGoodman3","domain_name":"independent","created_at":"2015-07-03T08:31:31.493-07:00","display_name":"Erik Goodman","url":"https://independent.academia.edu/EricGoodman3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":810972,"name":"Mechanism in Biology","url":"https://www.academia.edu/Documents/in/Mechanism_in_Biology"},{"id":1827413,"name":"Curse of Dimensionality","url":"https://www.academia.edu/Documents/in/Curse_of_Dimensionality"}],"urls":[{"id":41439093,"url":"https://dl.acm.org/citation.cfm?id=1970841"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "b44cc6479db879b3a613fdf3c6eae7c4927d6f140c645be9cd60969a198a0577", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="z2d7pe5UfeWM5rmwc/bPUSHd01HTboPV8WyW+72N0zGs4u9N+4ejD2gesTAB+Dc/VXmZkNcA1w4OLThgYsT8WA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/EricGoodman3" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Dm1Mkv6VtdAlfxySDChuni4Erpz1NraFmWX4qiCZU5Rt6Nh660ZrOsGHFBJ+JpbwWqDkXfFY4l5mJFYx/9B8/Q==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>