CINXE.COM

SIC-POVM - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>SIC-POVM - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"83671a37-806e-44ee-a00f-8b9f2a2a19cc","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"SIC-POVM","wgTitle":"SIC-POVM","wgCurRevisionId":1276080242,"wgRevisionId":1276080242,"wgArticleId":20159695,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from July 2023","Quantum measurement","Unsolved problems in physics","Unsolved problems in mathematics","Hilbert spaces","Operator theory","Incidence geometry","Euclidean plane geometry","Algebraic geometry","Hypergraphs","Computer-assisted proofs"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"SIC-POVM","wgRelevantArticleId":20159695,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q7390277","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/1200px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1060"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/800px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="707"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/640px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="566"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="SIC-POVM - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/SIC-POVM"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=SIC-POVM&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/SIC-POVM"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-SIC-POVM rootpage-SIC-POVM skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=SIC-POVM" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=SIC-POVM" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=SIC-POVM" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=SIC-POVM" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Symmetry</span> </div> </a> <ul id="toc-Symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Superoperator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Superoperator"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Superoperator</span> </div> </a> <ul id="toc-Superoperator-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Finding_SIC_sets" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Finding_SIC_sets"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Finding SIC sets</span> </div> </a> <button aria-controls="toc-Finding_SIC_sets-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Finding SIC sets subsection</span> </button> <ul id="toc-Finding_SIC_sets-sublist" class="vector-toc-list"> <li id="toc-Simplest_example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simplest_example"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Simplest example</span> </div> </a> <ul id="toc-Simplest_example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Group_covariance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Group_covariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Group covariance</span> </div> </a> <ul id="toc-Group_covariance-sublist" class="vector-toc-list"> <li id="toc-General_group_covariance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#General_group_covariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>General group covariance</span> </div> </a> <ul id="toc-General_group_covariance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_case_of_Zd_×_Zd" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_case_of_Zd_×_Zd"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>The case of Z<sub><i>d</i></sub> × Z<sub><i>d</i></sub></span> </div> </a> <ul id="toc-The_case_of_Zd_×_Zd-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Zauner&#039;s_conjecture" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zauner&#039;s_conjecture"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Zauner's conjecture</span> </div> </a> <ul id="toc-Zauner&#039;s_conjecture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partial_results" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_results"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Partial results</span> </div> </a> <ul id="toc-Partial_results-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relation_to_spherical_t-designs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_to_spherical_t-designs"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relation to spherical t-designs</span> </div> </a> <ul id="toc-Relation_to_spherical_t-designs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_MUBs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_to_MUBs"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Relation to MUBs</span> </div> </a> <ul id="toc-Relation_to_MUBs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">SIC-POVM</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/SIC-POVM" title="SIC-POVM – Ukrainian" lang="uk" hreflang="uk" data-title="SIC-POVM" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7390277#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/SIC-POVM" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:SIC-POVM" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/SIC-POVM"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/SIC-POVM"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/SIC-POVM" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/SIC-POVM" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;oldid=1276080242" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=SIC-POVM&amp;id=1276080242&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSIC-POVM"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSIC-POVM"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=SIC-POVM&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=SIC-POVM&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7390277" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of measurement in quantum mechanics</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Regular_tetrahedron_inscribed_in_a_sphere.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/220px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png" decoding="async" width="220" height="194" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/330px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/440px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png 2x" data-file-width="602" data-file-height="532" /></a><figcaption>In the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a> representation of a <a href="/wiki/Qubit" title="Qubit">qubit</a>, the states of a SIC-POVM form a <a href="/wiki/Regular_tetrahedron" class="mw-redirect" title="Regular tetrahedron">regular tetrahedron</a>. Zauner conjectured that analogous structures exist in complex <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a> of all finite dimensions.</figcaption></figure> <p>In the context of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> and <a href="/wiki/Quantum_information" title="Quantum information">quantum information theory</a>, <b>symmetric, informationally complete, positive operator-valued measures</b> (SIC-<a href="/wiki/POVM" title="POVM">POVMs</a>) are a particular type of <a href="/wiki/POVM" title="POVM">generalized measurement (POVM)</a>. SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2) having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data. </p><p>The properties of SIC-POVMs make them an interesting candidate for a "standard quantum measurement", utilized in the study of foundational quantum mechanics, most notably in <a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">QBism</a><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2023)">citation needed</span></a></i>&#93;</sup>. SIC-POVMs have several applications in the context of <a href="/wiki/Quantum_state_tomography" class="mw-redirect" title="Quantum state tomography">quantum state tomography</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Quantum_cryptography" title="Quantum cryptography">quantum cryptography</a>,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and a possible connection has been discovered with <a href="/wiki/Hilbert%27s_twelfth_problem" title="Hilbert&#39;s twelfth problem">Hilbert's twelfth problem</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1233989161">.mw-parser-output .unsolved{margin:0.5em 0 1em 1em;border:#ccc solid;padding:0.35em 0.35em 0.35em 2.2em;background-color:var(--background-color-interactive-subtle);background-image:url("https://upload.wikimedia.org/wikipedia/commons/2/26/Question%2C_Web_Fundamentals.svg");background-position:top 50%left 0.35em;background-size:1.5em;background-repeat:no-repeat}@media(min-width:720px){.mw-parser-output .unsolved{clear:right;float:right;max-width:25%}}.mw-parser-output .unsolved-label{font-weight:bold}.mw-parser-output .unsolved-body{margin:0.35em;font-style:italic}.mw-parser-output .unsolved-more{font-size:smaller}</style> <div role="note" aria-labelledby="unsolved-label-mathematics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-mathematics">Unsolved problem in mathematics</span>:</div> <div class="unsolved-body">Do SIC-POVMs exist in all dimensions?</div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">(more unsolved problems in mathematics)</a></div> </div><p>A POVM over a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}" /></span>-dimensional Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19ef4c7b923a5125ac91aa491838a95ee15b804f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle {\mathcal {H}}}" /></span> is a set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}" /></span> <a href="/wiki/Positive-definite_kernel" title="Positive-definite kernel">positive-semidefinite operators</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{F_{i}\right\}_{i=1}^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>{</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{F_{i}\right\}_{i=1}^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1d3e1fc35a4bc3d156fe9b8c0a2af80f7737ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.519ex; height:3.176ex;" alt="{\displaystyle \left\{F_{i}\right\}_{i=1}^{m}}" /></span> that sum to the <a href="/wiki/Identity_matrix" title="Identity matrix">identity</a>:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{m}F_{i}=I.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>I</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{m}F_{i}=I.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d7a46b7b8169e6a3d6948ccef807a110b54096" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.953ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{m}F_{i}=I.}" /></span> </p><p>If a POVM consists of at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef0309e83b9f8917fb33be7c0c04fd6d871a4135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.272ex; height:2.676ex;" alt="{\displaystyle d^{2}}" /></span> operators which <a href="/wiki/Spanning_set" class="mw-redirect" title="Spanning set">span</a> the space of self-adjoint operators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}({\mathcal {H}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}({\mathcal {H}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee6cd2c9cd337cf678253dd156edd2ead87892c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.377ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}({\mathcal {H}})}" /></span>, it is said to be an informationally complete POVM (IC-POVM). IC-POVMs consisting of exactly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef0309e83b9f8917fb33be7c0c04fd6d871a4135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.272ex; height:2.676ex;" alt="{\displaystyle d^{2}}" /></span> elements are called minimal. A set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef0309e83b9f8917fb33be7c0c04fd6d871a4135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.272ex; height:2.676ex;" alt="{\displaystyle d^{2}}" /></span> <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a>-1 <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">projectors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{\Pi _{i}\right\}_{i=1}^{d^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>{</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{\Pi _{i}\right\}_{i=1}^{d^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e63a48f642ebe4715540609abcb659710dfafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.768ex; height:3.843ex;" alt="{\displaystyle \left\{\Pi _{i}\right\}_{i=1}^{d^{2}}}" /></span> which have equal pairwise <a href="/wiki/Hilbert%E2%80%93Schmidt_inner_product" class="mw-redirect" title="Hilbert–Schmidt inner product">Hilbert–Schmidt inner products</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Tr} \left(\Pi _{i}\Pi _{j}\right)={\frac {d\delta _{ij}+1}{d+1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Tr} \left(\Pi _{i}\Pi _{j}\right)={\frac {d\delta _{ij}+1}{d+1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb0b9d13ffcf528e535bb34373c0524893aded1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:22.291ex; height:6.009ex;" alt="{\displaystyle \mathrm {Tr} \left(\Pi _{i}\Pi _{j}\right)={\frac {d\delta _{ij}+1}{d+1}},}" /></span> defines a minimal IC-POVM with elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{i}={\frac {1}{d}}\Pi _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{i}={\frac {1}{d}}\Pi _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/357a4f428e688006aaabded38baf1a1e99392891" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.988ex; height:5.343ex;" alt="{\displaystyle F_{i}={\frac {1}{d}}\Pi _{i}}" /></span> called a SIC-POVM. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=2" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Symmetry">Symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=3" title="Edit section: Symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider an arbitrary set of rank-1 projectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Pi _{i})_{i=1}^{d^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Pi _{i})_{i=1}^{d^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6f1eb29929c06ebc19ca1a00d88ab7c25c9bbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.252ex; height:3.676ex;" alt="{\displaystyle (\Pi _{i})_{i=1}^{d^{2}}}" /></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{i}=\Pi _{i}/d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{i}=\Pi _{i}/d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/509e3c301402c90f7204675ba038c77017afa5b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.314ex; height:2.843ex;" alt="{\displaystyle F_{i}=\Pi _{i}/d}" /></span> is a POVM, and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{d}}\sum _{i}\Pi _{i}=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{d}}\sum _{i}\Pi _{i}=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab54872a6f15045bdc557e9a7ee197edd8defefa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.994ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{d}}\sum _{i}\Pi _{i}=I}" /></span>. Asking the projectors to have equal pairwise inner products, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Tr} (\Pi _{i}\Pi _{j})=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Tr} (\Pi _{i}\Pi _{j})=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0307d71520350e33733a5b5a67c177512d1d412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.7ex; height:3.009ex;" alt="{\displaystyle \mathrm {Tr} (\Pi _{i}\Pi _{j})=c}" /></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\neq j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\neq j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95aeb406bb427ac96806bc00c30c91d31b858be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.859ex; height:2.676ex;" alt="{\displaystyle i\neq j}" /></span>, fixes the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}" /></span>. To see this, observe that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}d&amp;=\mathrm {Tr} (I^{2})\\&amp;={\frac {1}{d^{2}}}\sum _{i,j}\mathrm {Tr} (\Pi _{i}\Pi _{j})\\&amp;={\frac {1}{d^{2}}}\left(d^{2}+cd^{2}(d^{2}-1)\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>d</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>c</mi> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}d&amp;=\mathrm {Tr} (I^{2})\\&amp;={\frac {1}{d^{2}}}\sum _{i,j}\mathrm {Tr} (\Pi _{i}\Pi _{j})\\&amp;={\frac {1}{d^{2}}}\left(d^{2}+cd^{2}(d^{2}-1)\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67a94097455af89d059a83a53d8097b86882f24b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.019ex; margin-bottom: -0.319ex; width:27.168ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}d&amp;=\mathrm {Tr} (I^{2})\\&amp;={\frac {1}{d^{2}}}\sum _{i,j}\mathrm {Tr} (\Pi _{i}\Pi _{j})\\&amp;={\frac {1}{d^{2}}}\left(d^{2}+cd^{2}(d^{2}-1)\right)\end{aligned}}}" /></span> implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {1}{d+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {1}{d+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d27071409e17225963efbdde402a6554eef6fc14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:10.16ex; height:5.509ex;" alt="{\displaystyle c={\frac {1}{d+1}}}" /></span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Tr} \left(\Pi _{i}\Pi _{j}\right)={\frac {d\delta _{ij}+1}{d+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Tr} \left(\Pi _{i}\Pi _{j}\right)={\frac {d\delta _{ij}+1}{d+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb5871003f5a80bd3a6b2ffc2bea81115abab513" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:22.291ex; height:6.009ex;" alt="{\displaystyle \mathrm {Tr} \left(\Pi _{i}\Pi _{j}\right)={\frac {d\delta _{ij}+1}{d+1}}.}" /></span> This property is what makes SIC-POVMs <i>symmetric</i>: Any pair of elements has the same <a href="/wiki/Hilbert%E2%80%93Schmidt_inner_product" class="mw-redirect" title="Hilbert–Schmidt inner product">Hilbert–Schmidt inner product</a> as any other pair. </p> <div class="mw-heading mw-heading3"><h3 id="Superoperator">Superoperator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=4" title="Edit section: Superoperator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In using the SIC-POVM elements, an interesting superoperator can be constructed, the likes of which map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}({\mathcal {H}})\rightarrow {\mathcal {L}}({\mathcal {H}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}({\mathcal {H}})\rightarrow {\mathcal {L}}({\mathcal {H}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f68f91e4fdebf9e06e4f9f086275746afdba41c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.368ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}({\mathcal {H}})\rightarrow {\mathcal {L}}({\mathcal {H}})}" /></span>. This operator is most useful in considering the <a href="#Relation_to_spherical_t-designs">relation of SIC-POVMs with spherical t-designs</a>. Consider the map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {G}}:{\mathcal {L}}({\mathcal {H}})&amp;\rightarrow {\mathcal {L}}({\mathcal {H}})\\A&amp;\mapsto \displaystyle \sum _{\alpha }|\psi _{\alpha }\rangle \langle \psi _{\alpha }|A|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x21a6;<!-- ↦ --></mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {G}}:{\mathcal {L}}({\mathcal {H}})&amp;\rightarrow {\mathcal {L}}({\mathcal {H}})\\A&amp;\mapsto \displaystyle \sum _{\alpha }|\psi _{\alpha }\rangle \langle \psi _{\alpha }|A|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53765ca0094992fd73f3e86069724790440b6eb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:35.952ex; height:8.509ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {G}}:{\mathcal {L}}({\mathcal {H}})&amp;\rightarrow {\mathcal {L}}({\mathcal {H}})\\A&amp;\mapsto \displaystyle \sum _{\alpha }|\psi _{\alpha }\rangle \langle \psi _{\alpha }|A|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\end{aligned}}}" /></span></dd></dl> <p>This operator acts on a SIC-POVM element in a way very similar to identity, in that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {G}}(\Pi _{\beta })&amp;=\displaystyle \sum _{\alpha }\Pi _{\alpha }\left|\langle \psi _{\alpha }|\psi _{\beta }\rangle \right|^{2}\\&amp;=\displaystyle \Pi _{\beta }+{\frac {1}{d+1}}\sum _{\alpha \neq \beta }\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\Pi _{\beta }+{\frac {1}{d+1}}\Pi _{\beta }+{\frac {1}{d+1}}\sum _{\alpha \neq \beta }\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\Pi _{\beta }+{\frac {d}{d+1}}\sum _{\alpha }{\frac {1}{d}}\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\left(\Pi _{\beta }+I\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <msup> <mrow> <mo>|</mo> <mrow> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x3b2;<!-- β --></mi> </mrow> </munder> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x3b2;<!-- β --></mi> </mrow> </munder> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <mi>I</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {G}}(\Pi _{\beta })&amp;=\displaystyle \sum _{\alpha }\Pi _{\alpha }\left|\langle \psi _{\alpha }|\psi _{\beta }\rangle \right|^{2}\\&amp;=\displaystyle \Pi _{\beta }+{\frac {1}{d+1}}\sum _{\alpha \neq \beta }\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\Pi _{\beta }+{\frac {1}{d+1}}\Pi _{\beta }+{\frac {1}{d+1}}\sum _{\alpha \neq \beta }\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\Pi _{\beta }+{\frac {d}{d+1}}\sum _{\alpha }{\frac {1}{d}}\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\left(\Pi _{\beta }+I\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d79240356aa6e706bada1e3c77ecf66a964dba1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.074ex; margin-bottom: -0.264ex; width:46.805ex; height:31.843ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {G}}(\Pi _{\beta })&amp;=\displaystyle \sum _{\alpha }\Pi _{\alpha }\left|\langle \psi _{\alpha }|\psi _{\beta }\rangle \right|^{2}\\&amp;=\displaystyle \Pi _{\beta }+{\frac {1}{d+1}}\sum _{\alpha \neq \beta }\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\Pi _{\beta }+{\frac {1}{d+1}}\Pi _{\beta }+{\frac {1}{d+1}}\sum _{\alpha \neq \beta }\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\Pi _{\beta }+{\frac {d}{d+1}}\sum _{\alpha }{\frac {1}{d}}\Pi _{\alpha }\\&amp;=\displaystyle {\frac {d}{d+1}}\left(\Pi _{\beta }+I\right)\end{aligned}}}" /></span></dd></dl> <p>But since elements of a SIC-POVM can completely and uniquely determine any quantum state, this linear operator can be applied to the decomposition of any state, resulting in the ability to write the following: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G={\frac {d}{d+1}}\left({\mathcal {I}}+I\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">I</mi> </mrow> </mrow> <mo>+</mo> <mi>I</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G={\frac {d}{d+1}}\left({\mathcal {I}}+I\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57462728ceba8d68848c48be5c76d2078826f31a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:18.681ex; height:5.676ex;" alt="{\displaystyle G={\frac {d}{d+1}}\left({\mathcal {I}}+I\right)}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(A)=A{\text{ and }}{\mathcal {I}}(A)=\mathrm {Tr} (A)I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xa0;and&#xa0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">I</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(A)=A{\text{ and }}{\mathcal {I}}(A)=\mathrm {Tr} (A)I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8461e73521a8e9e35c3361b843cf65cc93bc9fec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.931ex; height:2.843ex;" alt="{\displaystyle I(A)=A{\text{ and }}{\mathcal {I}}(A)=\mathrm {Tr} (A)I}" /></span></dd></dl> <p>From here, the <a href="/wiki/Inverse_element" title="Inverse element">left inverse</a> can be calculated<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{-1}={\frac {1}{d}}\left[\left(d+1\right)I-{\mathcal {I}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">I</mi> </mrow> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{-1}={\frac {1}{d}}\left[\left(d+1\right)I-{\mathcal {I}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bdbbf381bdbd4410d6f8ac6fc59a71ba8950d1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.91ex; height:5.343ex;" alt="{\displaystyle G^{-1}={\frac {1}{d}}\left[\left(d+1\right)I-{\mathcal {I}}\right]}" /></span>, and so with the knowledge that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=G^{-1}G={\frac {1}{d}}\sum _{\alpha }\left[(d+1)\Pi _{\alpha }\odot \Pi _{\alpha }-I\odot \Pi _{\alpha }\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>G</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2299;<!-- ⊙ --></mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>I</mi> <mo>&#x2299;<!-- ⊙ --></mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=G^{-1}G={\frac {1}{d}}\sum _{\alpha }\left[(d+1)\Pi _{\alpha }\odot \Pi _{\alpha }-I\odot \Pi _{\alpha }\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63f54e6afd97fbf3668fc78fb99c6c78776a8e05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.633ex; height:6.343ex;" alt="{\displaystyle I=G^{-1}G={\frac {1}{d}}\sum _{\alpha }\left[(d+1)\Pi _{\alpha }\odot \Pi _{\alpha }-I\odot \Pi _{\alpha }\right]}" /></span>,</dd></dl> <p>an expression for a state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }" /></span> can be created in terms of a <a href="/wiki/Quasi-probability_distribution" class="mw-redirect" title="Quasi-probability distribution">quasi-probability distribution</a>, as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\rho =I|\rho )&amp;=\displaystyle \sum _{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]{\frac {(\Pi _{\alpha }|\rho )}{d}}\\&amp;=\displaystyle \sum _{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]{\frac {\mathrm {Tr} (\Pi _{\alpha }\rho )}{d}}\\&amp;=\displaystyle \sum _{\alpha }p_{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]\quad {\text{ where }}p_{\alpha }=\mathrm {Tr} (\Pi _{\alpha }\rho )/d\\&amp;=\displaystyle -I+(d+1)\sum _{\alpha }p_{\alpha }|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\\&amp;=\displaystyle \sum _{\alpha }\left[(d+1)p_{\alpha }-{\frac {1}{d}}\right]|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x3c1;<!-- ρ --></mi> <mo>=</mo> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c1;<!-- ρ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>I</mi> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c1;<!-- ρ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>d</mi> </mfrac> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>I</mi> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mi>&#x3c1;<!-- ρ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>d</mi> </mfrac> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>I</mi> </mrow> <mo>]</mo> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xa0;where&#xa0;</mtext> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mi>&#x3c1;<!-- ρ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>I</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\rho =I|\rho )&amp;=\displaystyle \sum _{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]{\frac {(\Pi _{\alpha }|\rho )}{d}}\\&amp;=\displaystyle \sum _{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]{\frac {\mathrm {Tr} (\Pi _{\alpha }\rho )}{d}}\\&amp;=\displaystyle \sum _{\alpha }p_{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]\quad {\text{ where }}p_{\alpha }=\mathrm {Tr} (\Pi _{\alpha }\rho )/d\\&amp;=\displaystyle -I+(d+1)\sum _{\alpha }p_{\alpha }|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\\&amp;=\displaystyle \sum _{\alpha }\left[(d+1)p_{\alpha }-{\frac {1}{d}}\right]|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2088df121b10afe1ab4ece2d17afea549abf102d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.972ex; margin-bottom: -0.199ex; width:60.396ex; height:31.509ex;" alt="{\displaystyle {\begin{aligned}\rho =I|\rho )&amp;=\displaystyle \sum _{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]{\frac {(\Pi _{\alpha }|\rho )}{d}}\\&amp;=\displaystyle \sum _{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]{\frac {\mathrm {Tr} (\Pi _{\alpha }\rho )}{d}}\\&amp;=\displaystyle \sum _{\alpha }p_{\alpha }\left[(d+1)\Pi _{\alpha }-I\right]\quad {\text{ where }}p_{\alpha }=\mathrm {Tr} (\Pi _{\alpha }\rho )/d\\&amp;=\displaystyle -I+(d+1)\sum _{\alpha }p_{\alpha }|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\\&amp;=\displaystyle \sum _{\alpha }\left[(d+1)p_{\alpha }-{\frac {1}{d}}\right]|\psi _{\alpha }\rangle \langle \psi _{\alpha }|\end{aligned}}}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\rho )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c1;<!-- ρ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\rho )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5921fab597fbfce48c7f1c53d45f9f16c49bd4e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.753ex; height:2.843ex;" alt="{\displaystyle |\rho )}" /></span> is the Dirac notation for the density operator viewed in the Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}({\mathcal {H}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}({\mathcal {H}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee6cd2c9cd337cf678253dd156edd2ead87892c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.377ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}({\mathcal {H}})}" /></span>. This shows that the appropriate quasi-probability distribution (termed as such because it may yield negative results) representation of the state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }" /></span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (d+1)p_{\alpha }-{\frac {1}{d}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (d+1)p_{\alpha }-{\frac {1}{d}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c594554e253a6b75446d33855f6ad9a9d541c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.374ex; height:5.343ex;" alt="{\displaystyle (d+1)p_{\alpha }-{\frac {1}{d}}}" /></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Finding_SIC_sets">Finding SIC sets</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=5" title="Edit section: Finding SIC sets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Simplest_example">Simplest example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=6" title="Edit section: Simplest example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c28d2048804ba61b4fc8761e42223f561e0a7ce6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.477ex; height:2.176ex;" alt="{\displaystyle d=2}" /></span> the equations that define the SIC-POVM can be solved by hand, yielding the vectors </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}|\psi _{1}\rangle &amp;=|0\rangle \\|\psi _{2}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}|1\rangle \\|\psi _{3}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}e^{i{\frac {2\pi }{3}}}|1\rangle \\|\psi _{4}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}e^{i{\frac {4\pi }{3}}}|1\rangle ,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </msqrt> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x3c0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </msqrt> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>&#x3c0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}|\psi _{1}\rangle &amp;=|0\rangle \\|\psi _{2}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}|1\rangle \\|\psi _{3}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}e^{i{\frac {2\pi }{3}}}|1\rangle \\|\psi _{4}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}e^{i{\frac {4\pi }{3}}}|1\rangle ,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc2c8c91910bd804beddf90315ea598d74e980b7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.171ex; width:29.292ex; height:23.509ex;" alt="{\displaystyle {\begin{aligned}|\psi _{1}\rangle &amp;=|0\rangle \\|\psi _{2}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}|1\rangle \\|\psi _{3}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}e^{i{\frac {2\pi }{3}}}|1\rangle \\|\psi _{4}\rangle &amp;={\frac {1}{\sqrt {3}}}|0\rangle +{\sqrt {\frac {2}{3}}}e^{i{\frac {4\pi }{3}}}|1\rangle ,\end{aligned}}}" /></span></dd></dl> <p>which form the vertices of a regular tetrahedron in the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a>. The projectors that define the SIC-POVM are given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi _{i}=|\psi _{i}\rangle \langle \psi _{i}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi _{i}=|\psi _{i}\rangle \langle \psi _{i}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cc900239624e242efef2f72ad36bd775d905d29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.37ex; height:2.843ex;" alt="{\displaystyle \Pi _{i}=|\psi _{i}\rangle \langle \psi _{i}|}" /></span>, and the elements of the SIC-POVM are thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{i}=\Pi _{i}/2=|\psi _{i}\rangle \!\langle \psi _{i}|/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">&#x3a0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mspace width="negativethinmathspace"></mspace> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{i}=\Pi _{i}/2=|\psi _{i}\rangle \!\langle \psi _{i}|/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac56360fd20f39a87631fd56f5be3b9fe60a0af8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.025ex; height:2.843ex;" alt="{\displaystyle F_{i}=\Pi _{i}/2=|\psi _{i}\rangle \!\langle \psi _{i}|/2}" /></span>. </p><p>For higher dimensions this is not feasible, necessitating the use of a more sophisticated approach. </p> <div class="mw-heading mw-heading3"><h3 id="Group_covariance">Group covariance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=7" title="Edit section: Group covariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="General_group_covariance">General group covariance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=8" title="Edit section: General group covariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A SIC-POVM <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}" /></span> is said to be <i>group covariant</i> if there exists a group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}" /></span> with a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef0309e83b9f8917fb33be7c0c04fd6d871a4135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.272ex; height:2.676ex;" alt="{\displaystyle d^{2}}" /></span>-dimensional <a href="/wiki/Unitary_representation" title="Unitary representation">unitary</a> <a href="/wiki/Group_representation" title="Group representation">representation</a> such that </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall |\psi \rangle \langle \psi |\in P,\quad \forall U_{g}\in G,\quad U_{g}|\psi \rangle \in P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> <mo>,</mo> <mspace width="1em"></mspace> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo>,</mo> <mspace width="1em"></mspace> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall |\psi \rangle \langle \psi |\in P,\quad \forall U_{g}\in G,\quad U_{g}|\psi \rangle \in P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69e4556e1fb1fe0f9e12e2d1f15e2e412f9ae50d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.549ex; height:3.009ex;" alt="{\displaystyle \forall |\psi \rangle \langle \psi |\in P,\quad \forall U_{g}\in G,\quad U_{g}|\psi \rangle \in P}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall |\psi \rangle \langle \psi |,|\phi \rangle \langle \phi |\in P,\quad \exists U_{g}\in G,\quad U_{g}|\phi \rangle =|\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> <mo>,</mo> <mspace width="1em"></mspace> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo>,</mo> <mspace width="1em"></mspace> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall |\psi \rangle \langle \psi |,|\phi \rangle \langle \phi |\in P,\quad \exists U_{g}\in G,\quad U_{g}|\phi \rangle =|\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0aaf1c1b1eecbc9188c40a98616c8ab5118a573" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.906ex; height:3.009ex;" alt="{\displaystyle \forall |\psi \rangle \langle \psi |,|\phi \rangle \langle \phi |\in P,\quad \exists U_{g}\in G,\quad U_{g}|\phi \rangle =|\psi \rangle }" /></span></li></ul> <p>The search for SIC-POVMs can be greatly simplified by exploiting the property of group covariance. Indeed, the problem is reduced to finding a normalized <i>fiducial vector</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\phi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\phi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/312d43de853a9e6ca74888e63394fc8081f56a43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.937ex; height:2.843ex;" alt="{\displaystyle |\phi \rangle }" /></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\langle \phi |U_{g}|\phi \rangle |^{2}={\frac {1}{d+1}}\ \forall g\neq id}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mtext>&#xa0;</mtext> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>g</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>i</mi> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\langle \phi |U_{g}|\phi \rangle |^{2}={\frac {1}{d+1}}\ \forall g\neq id}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0853c5c251037dcac99565ef1084c77fea746209" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:28.09ex; height:5.509ex;" alt="{\displaystyle |\langle \phi |U_{g}|\phi \rangle |^{2}={\frac {1}{d+1}}\ \forall g\neq id}" /></span>.</dd></dl> <p>The SIC-POVM is then the set <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generated</a> by the <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">group action</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a64cf4663593622b814d10b92d8d81fbe1c34f78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle U_{g}}" /></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\phi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\phi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/312d43de853a9e6ca74888e63394fc8081f56a43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.937ex; height:2.843ex;" alt="{\displaystyle |\phi \rangle }" /></span>. </p> <div class="mw-heading mw-heading4"><h4 id="The_case_of_Zd_×_Zd"><span id="The_case_of_Zd_.C3.97_Zd"></span>The case of Z<sub><i>d</i></sub> × Z<sub><i>d</i></sub></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=9" title="Edit section: The case of Zd × Zd"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>So far, most SIC-POVM's have been found by considering group covariance under <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39fb573dafa9edd15c46ccae5fa15e068be666e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.125ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}" /></span>.<sup id="cite_ref-history2017_5-0" class="reference"><a href="#cite_note-history2017-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> To construct the unitary representation, we map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39fb573dafa9edd15c46ccae5fa15e068be666e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.125ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}" /></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29fa7982b3e7d89c410068f3f672d61a532f9555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.808ex; height:2.843ex;" alt="{\displaystyle U(d)}" /></span>, the group of unitary operators on d-dimensions. Several operators must first be introduced. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |e_{i}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |e_{i}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a63d3b7d08f454cc1799a34aedb965f56416ae97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.435ex; height:2.843ex;" alt="{\displaystyle |e_{i}\rangle }" /></span> be a basis for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19ef4c7b923a5125ac91aa491838a95ee15b804f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle {\mathcal {H}}}" /></span>, then the <i>phase operator</i> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T|e_{i}\rangle =\omega ^{i}|e_{i}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>=</mo> <msup> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T|e_{i}\rangle =\omega ^{i}|e_{i}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8395c99dbb3ce4279111b0bc9464a20649211af0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.85ex; height:3.176ex;" alt="{\displaystyle T|e_{i}\rangle =\omega ^{i}|e_{i}\rangle }" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =e^{\frac {2\pi i}{d}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x3c0;<!-- π --></mi> <mi>i</mi> </mrow> <mi>d</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =e^{\frac {2\pi i}{d}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb7851d183bee49198ff2f8ec05443def81b924b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.589ex; height:3.676ex;" alt="{\displaystyle \omega =e^{\frac {2\pi i}{d}}}" /></span> is a root of unity</dd></dl> <p>and the <i>shift operator</i> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S|e_{i}\rangle =|e_{i+1{\pmod {d}}}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em"></mspace> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S|e_{i}\rangle =|e_{i+1{\pmod {d}}}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f590279812e5db3545ac598bf6b48e363a2d8f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.718ex; height:3.176ex;" alt="{\displaystyle S|e_{i}\rangle =|e_{i+1{\pmod {d}}}\rangle }" /></span></dd></dl> <p>Combining these two operators yields the <i>Weyl operator</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W(p,q)=S^{p}T^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W(p,q)=S^{p}T^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38ee857cff8861eccd6990b073d4540c7ada9409" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.905ex; height:2.843ex;" alt="{\displaystyle W(p,q)=S^{p}T^{q}}" /></span> which generates the Heisenberg-Weyl group. This is a unitary operator since </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}W(p,q)W^{\dagger }(p,q)&amp;=S^{p}T^{q}T^{-q}S^{-p}\\&amp;=Id\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>W</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mrow> </msup> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>I</mi> <mi>d</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}W(p,q)W^{\dagger }(p,q)&amp;=S^{p}T^{q}T^{-q}S^{-p}\\&amp;=Id\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5d0a285d5fcf708785e1082a1df870ffbdd859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.055ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}W(p,q)W^{\dagger }(p,q)&amp;=S^{p}T^{q}T^{-q}S^{-p}\\&amp;=Id\end{aligned}}}" /></span></dd></dl> <p>It can be checked that the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p,q)\in \mathbb {Z} _{d}\times \mathbb {Z} _{d}\rightarrow W(p,q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>W</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p,q)\in \mathbb {Z} _{d}\times \mathbb {Z} _{d}\rightarrow W(p,q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57e9a4e83add10c5c85567422f03d13db194ca1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.179ex; height:2.843ex;" alt="{\displaystyle (p,q)\in \mathbb {Z} _{d}\times \mathbb {Z} _{d}\rightarrow W(p,q)}" /></span> is a projective unitary representation. It also satisfies all of the properties for group covariance,<sup id="cite_ref-Appleby2004_6-0" class="reference"><a href="#cite_note-Appleby2004-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> and is useful for numerical calculation of SIC sets. </p> <div class="mw-heading mw-heading3"><h3 id="Zauner's_conjecture"><span id="Zauner.27s_conjecture"></span>Zauner's conjecture</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=10" title="Edit section: Zauner&#39;s conjecture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given some of the useful properties of SIC-POVMs, it would be useful if it were positively known whether such sets could be constructed in a Hilbert space of arbitrary dimension. Originally proposed in the dissertation of Zauner,<sup id="cite_ref-Zauner1999_7-0" class="reference"><a href="#cite_note-Zauner1999-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> a conjecture about the existence of a fiducial vector for arbitrary dimensions was hypothesized. </p><p>More specifically, </p> <blockquote> <p>For every dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4f0ac074e1d66eecdf58762164e0afd3d628232" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.477ex; height:2.343ex;" alt="{\displaystyle d\geq 2}" /></span> there exists a SIC-POVM whose elements are the orbit of a positive rank-one operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}" /></span> under the <a href="/wiki/Generalizations_of_Pauli_matrices#A_non-Hermitian_generalization_of_Pauli_matrices" title="Generalizations of Pauli matrices">Weyl&#8211;Heisenberg group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc39f9d107082d9be120dd7194f0f04c0ca9ee92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.023ex; height:2.509ex;" alt="{\displaystyle H_{d}}" /></span>. What is more, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}" /></span> commutes with an element T of the Jacobi group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{d}=H_{d}\rtimes SL(2,\mathbb {Z} _{d})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#x22ca;<!-- ⋊ --></mo> <mi>S</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{d}=H_{d}\rtimes SL(2,\mathbb {Z} _{d})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8411e872b60cc9c7acbedd406d0d3d19cdc9f14e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.074ex; height:2.843ex;" alt="{\displaystyle J_{d}=H_{d}\rtimes SL(2,\mathbb {Z} _{d})}" /></span>. The action of T on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc39f9d107082d9be120dd7194f0f04c0ca9ee92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.023ex; height:2.509ex;" alt="{\displaystyle H_{d}}" /></span> modulo the center has order three. </p> </blockquote> <p>Utilizing the notion of group covariance on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39fb573dafa9edd15c46ccae5fa15e068be666e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.125ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}" /></span>, this can be restated as <sup id="cite_ref-Renes2004_8-0" class="reference"><a href="#cite_note-Renes2004-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <blockquote> <p>For any dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a86f7fcd041c0196f44e7c04f4b3eac94e5a757" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.735ex; height:2.176ex;" alt="{\displaystyle d\in \mathbb {N} }" /></span>, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{k\right\}_{k=0}^{d-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>{</mo> <mi>k</mi> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{k\right\}_{k=0}^{d-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1de97ffbebd98413d6afa49465c79baceb31d60a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.729ex; height:3.509ex;" alt="{\displaystyle \left\{k\right\}_{k=0}^{d-1}}" /></span> be an orthonormal basis for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc165f5f6c2360e365b6693209c45fe805a0781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.77ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{d}}" /></span>, and define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle \omega =e^{\frac {2\pi i}{d}},\quad \quad D_{j,k}=\omega ^{\frac {jk}{2}}\sum _{m=0}^{d-1}\omega ^{jm}|k+m{\pmod {d}}\rangle \langle m|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x3c0;<!-- π --></mi> <mi>i</mi> </mrow> <mi>d</mi> </mfrac> </mrow> </msup> <mo>,</mo> <mspace width="1em"></mspace> <mspace width="1em"></mspace> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>j</mi> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mo>+</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em"></mspace> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle \omega =e^{\frac {2\pi i}{d}},\quad \quad D_{j,k}=\omega ^{\frac {jk}{2}}\sum _{m=0}^{d-1}\omega ^{jm}|k+m{\pmod {d}}\rangle \langle m|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93f95bd76ec41863c3a76f63c8c9909366095775" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.525ex; height:7.343ex;" alt="{\displaystyle \displaystyle \omega =e^{\frac {2\pi i}{d}},\quad \quad D_{j,k}=\omega ^{\frac {jk}{2}}\sum _{m=0}^{d-1}\omega ^{jm}|k+m{\pmod {d}}\rangle \langle m|}" /></span></dd></dl> <p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists |\phi \rangle \in \mathbb {C} ^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists |\phi \rangle \in \mathbb {C} ^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7aa62dda11f61d8aeb61ba9470320398a144f0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.84ex; height:3.176ex;" alt="{\displaystyle \exists |\phi \rangle \in \mathbb {C} ^{d}}" /></span> such that the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{D_{j,k}|\phi \rangle \right\}_{j,k=1}^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>{</mo> <mrow> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{D_{j,k}|\phi \rangle \right\}_{j,k=1}^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2461807a3e26d2f38f3f80be966fc753b1d02e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:13.734ex; height:3.843ex;" alt="{\displaystyle \left\{D_{j,k}|\phi \rangle \right\}_{j,k=1}^{d}}" /></span> is a SIC-POVM. </p> </blockquote> <div class="mw-heading mw-heading3"><h3 id="Partial_results">Partial results</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=11" title="Edit section: Partial results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The proof for the existence of SIC-POVMs for arbitrary dimensions remains an open question,<sup id="cite_ref-Appleby2004_6-1" class="reference"><a href="#cite_note-Appleby2004-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> but is an ongoing field of research in the quantum information community. </p><p>Exact expressions for SIC sets have been found for Hilbert spaces of all dimensions from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c28d2048804ba61b4fc8761e42223f561e0a7ce6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.477ex; height:2.176ex;" alt="{\displaystyle d=2}" /></span> through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=53}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>53</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=53}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3845a1301c2dfc74d876e2df8f113d1dd4674acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.639ex; height:2.176ex;" alt="{\displaystyle d=53}" /></span> inclusive, and in some higher dimensions as large as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=5779}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>5779</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=5779}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10787040aeb0653d175e6b26037d986f9d08187f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.964ex; height:2.176ex;" alt="{\displaystyle d=5779}" /></span>, for 115 values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}" /></span> in all.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> Furthermore, using the Heisenberg group covariance on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39fb573dafa9edd15c46ccae5fa15e068be666e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.125ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{d}\times \mathbb {Z} _{d}}" /></span>, numerical solutions have been found for all integers up through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=193}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>193</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=193}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2b936a42c93bd50ea3a5112c037f510f93d7535" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.802ex; height:2.176ex;" alt="{\displaystyle d=193}" /></span>, and in some larger dimensions up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=2208}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>2208</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=2208}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ff36f8be99fac07234a24922663866faffc563e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.964ex; height:2.176ex;" alt="{\displaystyle d=2208}" /></span>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> </p><p>There exists a construction that has been conjectured to work for all prime dimensions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}+3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}+3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86e32394acc76a3ea5f83e805f803adae58964b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.452ex; height:2.843ex;" alt="{\displaystyle n^{2}+3}" /></span> for integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}" /></span>,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> and another that has been conjectured to work for all dimensions.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_spherical_t-designs">Relation to spherical t-designs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=12" title="Edit section: Relation to spherical t-designs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <i><a href="/wiki/Spherical_t-design" class="mw-redirect" title="Spherical t-design">spherical t-design</a></i> is a set of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\left\{|\phi _{k}\rangle :|\phi _{k}\rangle \in \mathbb {S} ^{d}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\left\{|\phi _{k}\rangle :|\phi _{k}\rangle \in \mathbb {S} ^{d}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e30cc395595f03c7f23f2bce905a9c4dd863037a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.522ex; height:3.343ex;" alt="{\displaystyle S=\left\{|\phi _{k}\rangle :|\phi _{k}\rangle \in \mathbb {S} ^{d}\right\}}" /></span> on the d-dimensional generalized <a href="/wiki/Hypersphere" class="mw-redirect" title="Hypersphere">hypersphere</a>, such that the average value of any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{th}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>h</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{th}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4427a45ed7837d5d88bc6bed0201152e08e94504" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.612ex; height:2.676ex;" alt="{\displaystyle t^{th}}" /></span>-order polynomial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{t}(\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x3c8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{t}(\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa979d91f19b363e73cc64c1dd22bdd15001de79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.288ex; height:2.843ex;" alt="{\displaystyle f_{t}(\psi )}" /></span> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}" /></span> is equal to the average of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{t}(\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x3c8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{t}(\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa979d91f19b363e73cc64c1dd22bdd15001de79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.288ex; height:2.843ex;" alt="{\displaystyle f_{t}(\psi )}" /></span> over all normalized vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x3c8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }" /></span>. Defining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}_{t}=\displaystyle \bigotimes _{i=1}^{t}{\mathcal {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2a02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}_{t}=\displaystyle \bigotimes _{i=1}^{t}{\mathcal {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b9505de5b792850ac7c0fbbc5c10fe683838fba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.75ex; height:7.176ex;" alt="{\displaystyle {\mathcal {H}}_{t}=\displaystyle \bigotimes _{i=1}^{t}{\mathcal {H}}}" /></span> as the t-fold <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> of the Hilbert spaces, and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{t}=\displaystyle \sum _{k=1}^{n}|\Phi _{k}^{t}\rangle \langle \Phi _{k}^{t}|,\quad |\Phi _{k}^{t}\rangle =|\phi _{k}\rangle ^{\otimes t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2297;<!-- ⊗ --></mo> <mi>t</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{t}=\displaystyle \sum _{k=1}^{n}|\Phi _{k}^{t}\rangle \langle \Phi _{k}^{t}|,\quad |\Phi _{k}^{t}\rangle =|\phi _{k}\rangle ^{\otimes t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/045ec84af9648ad4e51ff4ca7207585ce5831284" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.631ex; height:6.843ex;" alt="{\displaystyle S_{t}=\displaystyle \sum _{k=1}^{n}|\Phi _{k}^{t}\rangle \langle \Phi _{k}^{t}|,\quad |\Phi _{k}^{t}\rangle =|\phi _{k}\rangle ^{\otimes t}}" /></span></dd></dl> <p>as the t-fold tensor product <a href="/wiki/Frame_of_a_vector_space" class="mw-redirect" title="Frame of a vector space">frame</a> operator, it can be shown that<sup id="cite_ref-Renes2004_8-3" class="reference"><a href="#cite_note-Renes2004-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> a set of normalized vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{|\phi _{k}\rangle \in \mathbb {S} ^{d}\right\}_{k=1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{|\phi _{k}\rangle \in \mathbb {S} ^{d}\right\}_{k=1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19859bb7050961c15276cec6d9c341a29c8a9dc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.151ex; height:3.676ex;" alt="{\displaystyle \left\{|\phi _{k}\rangle \in \mathbb {S} ^{d}\right\}_{k=1}^{n}}" /></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq {t+d-1 \choose d-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>t</mi> <mo>+</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq {t+d-1 \choose d-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c4e4c55fb5dbc9bbed070a59f9a717ad5131edf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.813ex; height:6.176ex;" alt="{\displaystyle n\geq {t+d-1 \choose d-1}}" /></span> forms a spherical t-design if and only if </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle \mathrm {Tr} \left[S_{t}^{2}\right]=\sum _{j,k}\left|\langle \phi _{j}|\phi _{k}\rangle \right|^{2t}={\frac {n^{2}t!(d-1)!}{(t+d-1)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mrow> <mo>[</mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>]</mo> </mrow> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </munder> <msup> <mrow> <mo>|</mo> <mrow> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>t</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle \mathrm {Tr} \left[S_{t}^{2}\right]=\sum _{j,k}\left|\langle \phi _{j}|\phi _{k}\rangle \right|^{2t}={\frac {n^{2}t!(d-1)!}{(t+d-1)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41d1489da662ee59dbc132f7eeed093b939b8b79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.044ex; height:7.343ex;" alt="{\displaystyle \displaystyle \mathrm {Tr} \left[S_{t}^{2}\right]=\sum _{j,k}\left|\langle \phi _{j}|\phi _{k}\rangle \right|^{2t}={\frac {n^{2}t!(d-1)!}{(t+d-1)!}}}" /></span></dd></dl></dd></dl> <p>It then immediately follows that every SIC-POVM is a 2-design, since </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Tr} (S_{2}^{2})=\displaystyle \sum _{j,k}|\langle \phi _{j}|\phi _{k}\rangle |^{4}={\frac {2d^{3}}{d+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Tr} (S_{2}^{2})=\displaystyle \sum _{j,k}|\langle \phi _{j}|\phi _{k}\rangle |^{4}={\frac {2d^{3}}{d+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78a30c73a7889be0d077265517cf5a4b6314190d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:32.542ex; height:7.176ex;" alt="{\displaystyle \mathrm {Tr} (S_{2}^{2})=\displaystyle \sum _{j,k}|\langle \phi _{j}|\phi _{k}\rangle |^{4}={\frac {2d^{3}}{d+1}}}" /></span></dd></dl> <p>which is precisely the necessary value that satisfies the above theorem. </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_MUBs">Relation to MUBs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=13" title="Edit section: Relation to MUBs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a <i>d</i>-dimensional Hilbert space, two <i>distinct</i> bases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{|\psi _{i}\rangle \right\},\left\{|\phi _{j}\rangle \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mrow> <mo>}</mo> </mrow> <mo>,</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{|\psi _{i}\rangle \right\},\left\{|\phi _{j}\rangle \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c83db1ea358725187817b0ab151c0fc9cd71f2b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.782ex; height:3.009ex;" alt="{\displaystyle \left\{|\psi _{i}\rangle \right\},\left\{|\phi _{j}\rangle \right\}}" /></span> are said to be <a href="/wiki/Mutually_unbiased_bases" title="Mutually unbiased bases">mutually unbiased</a> if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle |\langle \psi _{i}|\phi _{j}\rangle |^{2}={\frac {1}{d}},\quad \forall i,j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">&#x27e8;<!-- ⟨ --></mo> <msub> <mi>&#x3c8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27e9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="1em"></mspace> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle |\langle \psi _{i}|\phi _{j}\rangle |^{2}={\frac {1}{d}},\quad \forall i,j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae532cf8495c7b4eee5a2bd40e964cc76975feb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.006ex; height:5.343ex;" alt="{\displaystyle \displaystyle |\langle \psi _{i}|\phi _{j}\rangle |^{2}={\frac {1}{d}},\quad \forall i,j}" /></span></dd></dl> <p>This seems similar in nature to the symmetric property of SIC-POVMs. <a href="/wiki/William_Wootters" title="William Wootters">Wootters</a> points out that a complete set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/056e0c06c828dbe71a0f9021b2828ff176a3d337" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.219ex; height:2.343ex;" alt="{\displaystyle d+1}" /></span> unbiased bases yields a geometric structure known as a <a href="/wiki/Finite_projective_plane" class="mw-redirect" title="Finite projective plane">finite projective plane</a>, while a SIC-POVM (in any dimension that is a <a href="/wiki/Prime_power" title="Prime power">prime power</a>) yields a <a href="/wiki/Affine_plane_(incidence_geometry)" title="Affine plane (incidence geometry)">finite affine plane</a>, a type of structure whose definition is identical to that of a finite projective plane with the roles of points and lines exchanged. In this sense, the problems of SIC-POVMs and of mutually unbiased bases are dual to one another.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>In dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58a4a6128b5cc1e25fcba3a16cbd9126b2d3e2fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.477ex; height:2.176ex;" alt="{\displaystyle d=3}" /></span>, the analogy can be taken further: a complete set of mutually unbiased bases can be directly constructed from a SIC-POVM.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> The 9 vectors of the SIC-POVM, together with the 12 vectors of the mutually unbiased bases, form a set that can be used in a <a href="/wiki/Kochen%E2%80%93Specker_theorem" title="Kochen–Specker theorem">Kochen–Specker proof</a>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> However, in 6-dimensional Hilbert space, a SIC-POVM is known, but no complete set of mutually unbiased bases has yet been discovered, and it is widely believed that no such set exists.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=14" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement in quantum mechanics</a></li> <li><a href="/wiki/Mutually_unbiased_bases" title="Mutually unbiased bases">Mutually unbiased bases</a></li> <li><a href="/wiki/POVM" title="POVM">POVM</a></li> <li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">QBism</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=15" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-lower-alpha" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Details of these exact solutions can be found in the literature.<sup id="cite_ref-Zauner1999_7-1" class="reference"><a href="#cite_note-Zauner1999-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Renes2004_8-1" class="reference"><a href="#cite_note-Renes2004-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ScottGrassl_10-0" class="reference"><a href="#cite_note-ScottGrassl-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stacey2021_14-0" class="reference"><a href="#cite_note-Stacey2021-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Like the exact solutions, the numerical solutions have been presented over the years in a series of publications by different authors.<sup id="cite_ref-Renes2004_8-2" class="reference"><a href="#cite_note-Renes2004-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ScottGrassl_10-1" class="reference"><a href="#cite_note-ScottGrassl-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-history2017_5-1" class="reference"><a href="#cite_note-history2017-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stacey2021_14-1" class="reference"><a href="#cite_note-Stacey2021-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=SIC-POVM&amp;action=edit&amp;section=16" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCavesFuchsSchack2002" class="citation journal cs1"><a href="/wiki/Carlton_M._Caves" title="Carlton M. Caves">Caves, Carlton M.</a>; Fuchs, Christopher A.; Schack, Rüdiger (September 2002). "Unknown quantum states: The quantum de Finetti representation". <i><a href="/wiki/Journal_of_Mathematical_Physics" title="Journal of Mathematical Physics">Journal of Mathematical Physics</a></i>. <b>43</b> (9): <span class="nowrap">4537–</span>4559. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0104088">quant-ph/0104088</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JMP....43.4537C">2002JMP....43.4537C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1494475">10.1063/1.1494475</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-2488">0022-2488</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17416262">17416262</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Unknown+quantum+states%3A+The+quantum+de+Finetti+representation&amp;rft.volume=43&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4537-%3C%2Fspan%3E4559&amp;rft.date=2002-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17416262%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2002JMP....43.4537C&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0104088&amp;rft.issn=0022-2488&amp;rft_id=info%3Adoi%2F10.1063%2F1.1494475&amp;rft.aulast=Caves&amp;rft.aufirst=Carlton+M.&amp;rft.au=Fuchs%2C+Christopher+A.&amp;rft.au=Schack%2C+R%C3%BCdiger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFuchsSasaki2003" class="citation journal cs1">Fuchs, C. A.; Sasaki, M. (2003). "Squeezing Quantum Information through a Classical Channel: Measuring the 'Quantumness' of a Set of Quantum States". <i>Quant. Info. Comp</i>. <b>3</b>: <span class="nowrap">377–</span>404. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0302092">quant-ph/0302092</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003quant.ph..2092F">2003quant.ph..2092F</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quant.+Info.+Comp.&amp;rft.atitle=Squeezing+Quantum+Information+through+a+Classical+Channel%3A+Measuring+the+%27Quantumness%27+of+a+Set+of+Quantum+States&amp;rft.volume=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E377-%3C%2Fspan%3E404&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0302092&amp;rft_id=info%3Abibcode%2F2003quant.ph..2092F&amp;rft.aulast=Fuchs&amp;rft.aufirst=C.+A.&amp;rft.au=Sasaki%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFApplebyFlammiaMcConnellYard2017" class="citation journal cs1">Appleby, Marcus; Flammia, Steven; McConnell, Gary; Yard, Jon (2017-04-24). "SICs and Algebraic Number Theory". <i><a href="/wiki/Foundations_of_Physics" title="Foundations of Physics">Foundations of Physics</a></i>. <b>47</b> (8): <span class="nowrap">1042–</span>1059. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1701.05200">1701.05200</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017FoPh...47.1042A">2017FoPh...47.1042A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-017-0090-7">10.1007/s10701-017-0090-7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0015-9018">0015-9018</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119334103">119334103</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Physics&amp;rft.atitle=SICs+and+Algebraic+Number+Theory&amp;rft.volume=47&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1042-%3C%2Fspan%3E1059&amp;rft.date=2017-04-24&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119334103%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017FoPh...47.1042A&amp;rft_id=info%3Aarxiv%2F1701.05200&amp;rft.issn=0015-9018&amp;rft_id=info%3Adoi%2F10.1007%2Fs10701-017-0090-7&amp;rft.aulast=Appleby&amp;rft.aufirst=Marcus&amp;rft.au=Flammia%2C+Steven&amp;rft.au=McConnell%2C+Gary&amp;rft.au=Yard%2C+Jon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">C.M. Caves (1999); <a rel="nofollow" class="external free" href="http://info.phys.unm.edu/~caves/reports/infopovm.pdf">http://info.phys.unm.edu/~caves/reports/infopovm.pdf</a></span> </li> <li id="cite_note-history2017-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-history2017_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-history2017_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFuchsHoangStacey2017" class="citation journal cs1">Fuchs, Christopher A.; Hoang, Michael C.; Stacey, Blake C. (2017-03-22). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Faxioms6030021">"The SIC Question: History and State of Play"</a>. <i>Axioms</i>. <b>6</b> (4): 21. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.07901">1703.07901</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Faxioms6030021">10.3390/axioms6030021</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Axioms&amp;rft.atitle=The+SIC+Question%3A+History+and+State+of+Play&amp;rft.volume=6&amp;rft.issue=4&amp;rft.pages=21&amp;rft.date=2017-03-22&amp;rft_id=info%3Aarxiv%2F1703.07901&amp;rft_id=info%3Adoi%2F10.3390%2Faxioms6030021&amp;rft.aulast=Fuchs&amp;rft.aufirst=Christopher+A.&amp;rft.au=Hoang%2C+Michael+C.&amp;rft.au=Stacey%2C+Blake+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Faxioms6030021&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-Appleby2004-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Appleby2004_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Appleby2004_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFAppleby2005" class="citation journal cs1">Appleby, D. M. (2005). "SIC-POVMs and the Extended Clifford Group". <i>Journal of Mathematical Physics</i>. <b>46</b> (5): 052107. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0412001">quant-ph/0412001</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JMP....46e2107A">2005JMP....46e2107A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1896384">10.1063/1.1896384</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=SIC-POVMs+and+the+Extended+Clifford+Group&amp;rft.volume=46&amp;rft.issue=5&amp;rft.pages=052107&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0412001&amp;rft_id=info%3Adoi%2F10.1063%2F1.1896384&amp;rft_id=info%3Abibcode%2F2005JMP....46e2107A&amp;rft.aulast=Appleby&amp;rft.aufirst=D.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-Zauner1999-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zauner1999_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zauner1999_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">G. Zauner, Quantendesigns – Grundzüge einer nichtkommutativen Designtheorie. Dissertation, Universität Wien, 1999. <a rel="nofollow" class="external free" href="http://www.gerhardzauner.at/documents/gz-quantendesigns.pdf">http://www.gerhardzauner.at/documents/gz-quantendesigns.pdf</a></span> </li> <li id="cite_note-Renes2004-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Renes2004_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Renes2004_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Renes2004_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Renes2004_8-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRenesBlume-KohoutScottCaves2004" class="citation journal cs1">Renes, Joseph M.; Blume-Kohout, Robin; Scott, A. J.; Caves, Carlton M. (2004). "Symmetric Informationally Complete Quantum Measurements". <i>Journal of Mathematical Physics</i>. <b>45</b> (6): 2171. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0310075">quant-ph/0310075</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JMP....45.2171R">2004JMP....45.2171R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1737053">10.1063/1.1737053</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17371881">17371881</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Symmetric+Informationally+Complete+Quantum+Measurements&amp;rft.volume=45&amp;rft.issue=6&amp;rft.pages=2171&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0310075&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17371881%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.1737053&amp;rft_id=info%3Abibcode%2F2004JMP....45.2171R&amp;rft.aulast=Renes&amp;rft.aufirst=Joseph+M.&amp;rft.au=Blume-Kohout%2C+Robin&amp;rft.au=Scott%2C+A.+J.&amp;rft.au=Caves%2C+Carlton+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">A. Koldobsky and H. König, “Aspects of the Isometric Theory of Banach Spaces,” in Handbook of the Geometry of Banach Spaces, Vol. 1, edited by W. B. Johnson and J. Lindenstrauss, (North Holland, Dordrecht, 2001), pp. 899–939.</span> </li> <li id="cite_note-ScottGrassl-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-ScottGrassl_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ScottGrassl_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFScottGrassl2010" class="citation journal cs1">Scott, A. J.; Grassl, M. (2010). "SIC-POVMs: A new computer study". <i>Journal of Mathematical Physics</i>. <b>51</b> (4): 042203. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0910.5784">0910.5784</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JMP....51d2203S">2010JMP....51d2203S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3374022">10.1063/1.3374022</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115159554">115159554</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=SIC-POVMs%3A+A+new+computer+study&amp;rft.volume=51&amp;rft.issue=4&amp;rft.pages=042203&amp;rft.date=2010&amp;rft_id=info%3Aarxiv%2F0910.5784&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115159554%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.3374022&amp;rft_id=info%3Abibcode%2F2010JMP....51d2203S&amp;rft.aulast=Scott&amp;rft.aufirst=A.+J.&amp;rft.au=Grassl%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">TY Chien. ``Equiangular lines, projective symmetries and nice error frames.<i> PhD thesis University of Auckland (2015); <a rel="nofollow" class="external free" href="https://www.math.auckland.ac.nz/~waldron/Tuan/Thesis.pdf">https://www.math.auckland.ac.nz/~waldron/Tuan/Thesis.pdf</a></i></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.physics.usyd.edu.au/~sflammia/SIC/">"Exact SIC fiducial vectors"</a>. <i><a href="/wiki/University_of_Sydney" title="University of Sydney">University of Sydney</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-03-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+Sydney&amp;rft.atitle=Exact+SIC+fiducial+vectors&amp;rft_id=http%3A%2F%2Fwww.physics.usyd.edu.au%2F~sflammia%2FSIC%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFApplebyChienFlammiaWaldron2018" class="citation journal cs1">Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne (2018). "Constructing exact symmetric informationally complete measurements from numerical solutions". <i>Journal of Physics A: Mathematical and Theoretical</i>. <b>51</b> (16): 165302. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.05981">1703.05981</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018JPhA...51p5302A">2018JPhA...51p5302A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1751-8121%2Faab4cd">10.1088/1751-8121/aab4cd</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119736328">119736328</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+Theoretical&amp;rft.atitle=Constructing+exact+symmetric+informationally+complete+measurements+from+numerical+solutions&amp;rft.volume=51&amp;rft.issue=16&amp;rft.pages=165302&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1703.05981&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119736328%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1751-8121%2Faab4cd&amp;rft_id=info%3Abibcode%2F2018JPhA...51p5302A&amp;rft.aulast=Appleby&amp;rft.aufirst=Marcus&amp;rft.au=Chien%2C+Tuan-Yow&amp;rft.au=Flammia%2C+Steven&amp;rft.au=Waldron%2C+Shayne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-Stacey2021-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stacey2021_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stacey2021_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStacey2021" class="citation book cs1">Stacey, Blake C. (2021). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/1253477267"><i>A First Course in the Sporadic SICs</i></a>. Cham, Switzerland: Springer. p.&#160;6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-76104-2" title="Special:BookSources/978-3-030-76104-2"><bdi>978-3-030-76104-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1253477267">1253477267</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+the+Sporadic+SICs&amp;rft.place=Cham%2C+Switzerland&amp;rft.pages=6&amp;rft.pub=Springer&amp;rft.date=2021&amp;rft_id=info%3Aoclcnum%2F1253477267&amp;rft.isbn=978-3-030-76104-2&amp;rft.aulast=Stacey&amp;rft.aufirst=Blake+C.&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F1253477267&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFuchsStacey2016" class="citation arxiv cs1">Fuchs, Christopher A.; Stacey, Blake C. (2016-12-21). "QBism: Quantum Theory as a Hero's Handbook". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.07308">1612.07308</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=QBism%3A+Quantum+Theory+as+a+Hero%27s+Handbook&amp;rft.date=2016-12-21&amp;rft_id=info%3Aarxiv%2F1612.07308&amp;rft.aulast=Fuchs&amp;rft.aufirst=Christopher+A.&amp;rft.au=Stacey%2C+Blake+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFScott2017" class="citation arxiv cs1">Scott, A. J. (2017-03-11). "SICs: Extending the list of solutions". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.03993">1703.03993</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=SICs%3A+Extending+the+list+of+solutions&amp;rft.date=2017-03-11&amp;rft_id=info%3Aarxiv%2F1703.03993&amp;rft.aulast=Scott&amp;rft.aufirst=A.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMarcus_ApplebyIngemar_BengtssonMarkus_GrasslMichael_Harrison2022" class="citation journal cs1">Marcus Appleby; Ingemar Bengtsson; Markus Grassl; Michael Harrison; Gary McConnell (2022). "SIC-POVMs from Stark units: Prime dimensions n^2+3". <i>J. Math. Phys</i>. <b>63</b>: 112205. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2112.05552">2112.05552</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0083520">10.1063/5.0083520</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Math.+Phys.&amp;rft.atitle=SIC-POVMs+from+Stark+units%3A+Prime+dimensions+n%5E2%2B3&amp;rft.volume=63&amp;rft.pages=112205&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2112.05552&amp;rft_id=info%3Adoi%2F10.1063%2F5.0083520&amp;rft.au=Marcus+Appleby&amp;rft.au=Ingemar+Bengtsson&amp;rft.au=Markus+Grassl&amp;rft.au=Michael+Harrison&amp;rft.au=Gary+McConnell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMarcus_ApplebySteven_T_FlammiaGene_S_Kopp2025" class="citation arxiv cs1">Marcus Appleby; Steven T Flammia; Gene S Kopp (2025). "A Constructive Approach to Zauner's Conjecture via the Stark Conjectures". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2501.03970">2501.03970</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+Constructive+Approach+to+Zauner%27s+Conjecture+via+the+Stark+Conjectures&amp;rft.date=2025&amp;rft_id=info%3Aarxiv%2F2501.03970&amp;rft.au=Marcus+Appleby&amp;rft.au=Steven+T+Flammia&amp;rft.au=Gene+S+Kopp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWootters2004" class="citation arxiv cs1">Wootters, William K. (2004). "Quantum measurements and finite geometry". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0406032">quant-ph/0406032</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+measurements+and+finite+geometry&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0406032&amp;rft.aulast=Wootters&amp;rft.aufirst=William+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStacey2016" class="citation journal cs1">Stacey, Blake C. (2016). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath4020036">"SIC-POVMs and Compatibility among Quantum States"</a>. <i>Mathematics</i>. <b>4</b> (2): 36. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.3774">1404.3774</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath4020036">10.3390/math4020036</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics&amp;rft.atitle=SIC-POVMs+and+Compatibility+among+Quantum+States&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=36&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1404.3774&amp;rft_id=info%3Adoi%2F10.3390%2Fmath4020036&amp;rft.aulast=Stacey&amp;rft.aufirst=Blake+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fmath4020036&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBengtssonBlanchfieldCabello2012" class="citation journal cs1">Bengtsson, Ingemar; Blanchfield, Kate; Cabello, Adán (2012). "A Kochen–Specker inequality from a SIC". <i><a href="/wiki/Physics_Letters_A" class="mw-redirect" title="Physics Letters A">Physics Letters A</a></i>. <b>376</b> (4): <span class="nowrap">374–</span>376. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.6514">1109.6514</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhLA..376..374B">2012PhLA..376..374B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physleta.2011.12.011">10.1016/j.physleta.2011.12.011</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55755390">55755390</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+A&amp;rft.atitle=A+Kochen%E2%80%93Specker+inequality+from+a+SIC&amp;rft.volume=376&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E374-%3C%2Fspan%3E376&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1109.6514&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55755390%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.physleta.2011.12.011&amp;rft_id=info%3Abibcode%2F2012PhLA..376..374B&amp;rft.aulast=Bengtsson&amp;rft.aufirst=Ingemar&amp;rft.au=Blanchfield%2C+Kate&amp;rft.au=Cabello%2C+Ad%C3%A1n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGrassl2004" class="citation arxiv cs1">Grassl, Markus (2004). "On SIC-POVMs and MUBs in Dimension 6". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0406175">quant-ph/0406175</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=On+SIC-POVMs+and+MUBs+in+Dimension+6&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0406175&amp;rft.aulast=Grassl&amp;rft.aufirst=Markus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBengtssonŻyczkowski2017" class="citation book cs1">Bengtsson, Ingemar; <a href="/wiki/Karol_%C5%BByczkowski" title="Karol Życzkowski">Życzkowski, Karol</a> (2017). <a href="/wiki/Geometry_of_Quantum_States" title="Geometry of Quantum States"><i>Geometry of quantum states&#160;: an introduction to quantum entanglement</i></a> (Second&#160;ed.). Cambridge, United Kingdom: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp.&#160;<span class="nowrap">313–</span>354. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781107026254" title="Special:BookSources/9781107026254"><bdi>9781107026254</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/967938939">967938939</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+of+quantum+states+%3A+an+introduction+to+quantum+entanglement&amp;rft.place=Cambridge%2C+United+Kingdom&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E313-%3C%2Fspan%3E354&amp;rft.edition=Second&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2017&amp;rft_id=info%3Aoclcnum%2F967938939&amp;rft.isbn=9781107026254&amp;rft.aulast=Bengtsson&amp;rft.aufirst=Ingemar&amp;rft.au=%C5%BByczkowski%2C+Karol&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASIC-POVM" class="Z3988"></span></span> </li> </ol></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐6ff9949d66‐rgdjh Cached time: 20250306002820 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.358 seconds Real time usage: 0.551 seconds Preprocessor visited node count: 2208/1000000 Post‐expand include size: 49293/2097152 bytes Template argument size: 2209/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 81831/5000000 bytes Lua time usage: 0.176/10.000 seconds Lua memory usage: 5936923/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 299.728 1 -total 42.37% 126.982 11 Template:Cite_journal 20.75% 62.193 1 Template:Short_description 14.11% 42.285 2 Template:Pagetype 10.80% 32.378 1 Template:Citation_needed 9.32% 27.947 1 Template:Fix 7.89% 23.649 5 Template:Cite_arXiv 6.39% 19.163 2 Template:Category_handler 4.34% 13.009 1 Template:Notes 3.56% 10.660 5 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:20159695:|#|:idhash:canonical and timestamp 20250306002820 and revision id 1276080242. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=SIC-POVM&amp;oldid=1276080242">https://en.wikipedia.org/w/index.php?title=SIC-POVM&amp;oldid=1276080242</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Quantum_measurement" title="Category:Quantum measurement">Quantum measurement</a></li><li><a href="/wiki/Category:Unsolved_problems_in_physics" title="Category:Unsolved problems in physics">Unsolved problems in physics</a></li><li><a href="/wiki/Category:Unsolved_problems_in_mathematics" title="Category:Unsolved problems in mathematics">Unsolved problems in mathematics</a></li><li><a href="/wiki/Category:Hilbert_spaces" title="Category:Hilbert spaces">Hilbert spaces</a></li><li><a href="/wiki/Category:Operator_theory" title="Category:Operator theory">Operator theory</a></li><li><a href="/wiki/Category:Incidence_geometry" title="Category:Incidence geometry">Incidence geometry</a></li><li><a href="/wiki/Category:Euclidean_plane_geometry" title="Category:Euclidean plane geometry">Euclidean plane geometry</a></li><li><a href="/wiki/Category:Algebraic_geometry" title="Category:Algebraic geometry">Algebraic geometry</a></li><li><a href="/wiki/Category:Hypergraphs" title="Category:Hypergraphs">Hypergraphs</a></li><li><a href="/wiki/Category:Computer-assisted_proofs" title="Category:Computer-assisted proofs">Computer-assisted proofs</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2023" title="Category:Articles with unsourced statements from July 2023">Articles with unsourced statements from July 2023</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 February 2025, at 19:36<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=SIC-POVM&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">SIC-POVM</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>1 language</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c6f46dcf-4v4pl","wgBackendResponseTime":234,"wgPageParseReport":{"limitreport":{"cputime":"0.358","walltime":"0.551","ppvisitednodes":{"value":2208,"limit":1000000},"postexpandincludesize":{"value":49293,"limit":2097152},"templateargumentsize":{"value":2209,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":81831,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 299.728 1 -total"," 42.37% 126.982 11 Template:Cite_journal"," 20.75% 62.193 1 Template:Short_description"," 14.11% 42.285 2 Template:Pagetype"," 10.80% 32.378 1 Template:Citation_needed"," 9.32% 27.947 1 Template:Fix"," 7.89% 23.649 5 Template:Cite_arXiv"," 6.39% 19.163 2 Template:Category_handler"," 4.34% 13.009 1 Template:Notes"," 3.56% 10.660 5 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.176","limit":"10.000"},"limitreport-memusage":{"value":5936923,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.eqiad.main-6ff9949d66-rgdjh","timestamp":"20250306002820","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"SIC-POVM","url":"https:\/\/en.wikipedia.org\/wiki\/SIC-POVM","sameAs":"http:\/\/www.wikidata.org\/entity\/Q7390277","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q7390277","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-11-11T02:59:22Z","dateModified":"2025-02-16T19:36:50Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/41\/Regular_tetrahedron_inscribed_in_a_sphere.svg","headline":"type of measurement in quantum mechanics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10