CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;23 of 23 results for author: <span class="mathjax">Kawasaki, J K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Kawasaki%2C+J+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kawasaki, J K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kawasaki%2C+J+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kawasaki, J K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08290">arXiv:2408.08290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08290">pdf</a>, <a href="https://arxiv.org/format/2408.08290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunable polar distortions and magnetism in Gd$_x$La$_{1-x}$PtSb epitaxial films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+J">Jingrui Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teng%2C+Y">Yujia Teng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genser%2C+K">Konrad Genser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabe%2C+K+M">Karin M. Rabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08290v1-abstract-short" style="display: inline;"> Hexagonal $ABC$ intermetallics are predicted to have tunable ferroelectric, topological, and magnetic properties as a function of the polar buckling of $BC$ atomic planes. We report the impact of isovalent lanthanide substitution on the buckling, structural phase transitions, and electronic and magnetic properties of Gd$_x$La$_{1-x}$PtSb films grown by molecular beam epitaxy (MBE) on c-plane sapph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08290v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08290v1-abstract-full" style="display: none;"> Hexagonal $ABC$ intermetallics are predicted to have tunable ferroelectric, topological, and magnetic properties as a function of the polar buckling of $BC$ atomic planes. We report the impact of isovalent lanthanide substitution on the buckling, structural phase transitions, and electronic and magnetic properties of Gd$_x$La$_{1-x}$PtSb films grown by molecular beam epitaxy (MBE) on c-plane sapphire substrates. The Gd$_x$La$_{1-x}$PtSb films form a solid solution from x = 0 to 1 and retain the polar hexagonal structure ($P6_3 mc$) out to $x \leq 0.95$. With increasing $x$, the PtSb buckling increases and the out of plane lattice constant $c$ decreases due to the lanthanide contraction. While hexagonal LaPtSb is a highly conductive polar metal, the carrier density decreases with $x$ until an abrupt phase transition to a zero band overlap semimetal is found for cubic GdPtSb at $x=1$. The magnetic susceptibility peaks at small but finite $x$, which we attribute to Ruderman Kittel Kasuya Yosida (RKKY) coupling between localized $4f$ moments, whose concentration increases with $x$, and free carriers that decrease with $x$. Samples with $x\geq 0.3$ show antiferromagnetic Curie-Weiss behavior and a Neel temperature that increases with $x$. The Gd$_x$La$_{1-x}$PtSb system provides opportunities to dramatically alter the polar buckling and concentration of local $4f$ moments, for tuning chiral spin textures and topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08290v1-abstract-full').style.display = 'none'; document.getElementById('2408.08290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05589">arXiv:2406.05589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05589">pdf</a>, <a href="https://arxiv.org/format/2406.05589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02731">10.1021/acs.nanolett.4c02731 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cold Seeded Epitaxy and Flexomagnetism in Smooth GdAuGe Membranes Exfoliated from graphene/Ge(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LaDuca%2C+Z">Z LaDuca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+T">T Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagopian%2C+N">N Hagopian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+T">T Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+K">K Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genser%2C+K">K Genser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabe%2C+K+M">K M Rabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">P M Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">M S Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">J K Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05589v1-abstract-short" style="display: inline;"> Remote and van der Waals epitaxy are promising approaches for synthesizing single crystalline membranes for flexible electronics and discovery of new properties via extreme strain; however, a fundamental challenge is that most materials do not wet the graphene surface. We develop a cold seed approach for synthesizing smooth intermetallic films on graphene that can be exfoliated to form few nanomet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05589v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05589v1-abstract-full" style="display: none;"> Remote and van der Waals epitaxy are promising approaches for synthesizing single crystalline membranes for flexible electronics and discovery of new properties via extreme strain; however, a fundamental challenge is that most materials do not wet the graphene surface. We develop a cold seed approach for synthesizing smooth intermetallic films on graphene that can be exfoliated to form few nanometer thick single crystalline membranes. Our seeded GdAuGe films have narrow x-ray rocking curve widths of 9-24 arc seconds, which is two orders of magnitude lower than their counterparts grown by typical high temperature methods, and have atomically sharp interfaces observed by transmission electron microscopy. Upon exfoliation and rippling, strain gradients in GdAuGe membranes induce an antiferromagnetic to ferri/ferromagnetic transition. Our smooth, ultrathin membranes provide a clean platform for discovering new flexomagnetic effects in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05589v1-abstract-full').style.display = 'none'; document.getElementById('2406.05589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07793">arXiv:2305.07793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07793">pdf</a>, <a href="https://arxiv.org/format/2305.07793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Control of ternary alloy composition during remote epitaxy on graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LaDuca%2C+Z">Zach LaDuca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+K">Katherine Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07793v1-abstract-short" style="display: inline;"> Understanding the sticking coefficient $蟽$, i.e., the probability of an adatom sticking to a surface, is essential for controlling the stoichiometry during epitaxial film growth. However, $蟽$ on monolayer graphene-covered surfaces and its impact on remote epitaxy are not understood. Here, using molecular-beam epitaxial (MBE) growth of the magnetic shape memory alloy Ni$_2$MnGa, we show that the st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07793v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07793v1-abstract-full" style="display: none;"> Understanding the sticking coefficient $蟽$, i.e., the probability of an adatom sticking to a surface, is essential for controlling the stoichiometry during epitaxial film growth. However, $蟽$ on monolayer graphene-covered surfaces and its impact on remote epitaxy are not understood. Here, using molecular-beam epitaxial (MBE) growth of the magnetic shape memory alloy Ni$_2$MnGa, we show that the sticking coefficients for metals on graphene-covered MgO (001) are less than one and are temperature and element dependent, as revealed by ion backscattering spectrometry (IBS) and energy dispersive x-ray spectroscopy (EDS). This lies in stark contrast with most transition metals sticking on semiconductor and oxide substrates, for which $蟽$ is near unity at typical growth temperatures ($T&lt;800\degree$C). By initiating growth below $400 \degree$ C, where the sticking coefficients are closer to unity and wetting on the graphene surface is improved, we demonstrate epitaxy of Ni$_2$MnGa films with controlled stoichiometry that can be exfoliated to produce freestanding membranes. Straining these membranes tunes the magnetic coercive field. Our results provide a route to synthesize membranes with complex stoichiometries whose properties can be manipulated via strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07793v1-abstract-full').style.display = 'none'; document.getElementById('2305.07793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03811">arXiv:2304.03811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03811">pdf</a>, <a href="https://arxiv.org/format/2304.03811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of Pt vacancies on magnetotransport of Weyl semimetal candidate GdPtSb epitaxial films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thoutam%2C+L+R">Laxman Raju Thoutam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genser%2C+K+T">Konrad T. Genser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabe%2C+K+M">Karin M. Rabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03811v1-abstract-short" style="display: inline;"> We examine the effects of Pt vacancies on the magnetotransport properties of Weyl semimetal candidate GdPtSb films, grown by molecular beam epitaxy on c-plane sapphire. Rutherford backscattering spectrometry (RBS) and x-ray diffraction measurements suggest that phase pure GdPt$_{x}$Sb films can accommodate up to $15\%$ Pt vacancies ($x=0.85$), which act as acceptors as measured by Hall effect. Two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03811v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03811v1-abstract-full" style="display: none;"> We examine the effects of Pt vacancies on the magnetotransport properties of Weyl semimetal candidate GdPtSb films, grown by molecular beam epitaxy on c-plane sapphire. Rutherford backscattering spectrometry (RBS) and x-ray diffraction measurements suggest that phase pure GdPt$_{x}$Sb films can accommodate up to $15\%$ Pt vacancies ($x=0.85$), which act as acceptors as measured by Hall effect. Two classes of electrical transport behavior are observed. Pt-deficient films display a metallic temperature dependent resistivity (d$蟻$/dT$&gt;$0). The longitudinal magnetoresistance (LMR, magnetic field $\mathbf{B}$ parallel to electric field $\mathbf{E}$) is more negative than transverse magnetoresistance (TMR, $\mathbf{B} \perp \mathbf{E}$), consistent with the expected chiral anomaly for a Weyl semimetal. The combination of Pt-vacancy disorder and doping away from the expected Weyl nodes; however, suggests conductivity fluctuations may explain the negative LMR rather than chiral anomaly. Samples closer to stoichiometry display the opposite behavior: semiconductor-like resistivity (d$蟻$/dT$&lt;$0) and more negative transverse magnetoresistance than longitudinal magnetoresistance. Hysteresis and other nonlinearities in the low field Hall effect and magnetoresistance suggest that spin disorder scattering, and possible topological Hall effect, may dominate the near stoichiometric samples. Our findings highlight the complications of transport-based identification of Weyl nodes, but point to possible topological spin textures in GdPtSb. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03811v1-abstract-full').style.display = 'none'; document.getElementById('2304.03811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07390">arXiv:2302.07390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07390">pdf</a>, <a href="https://arxiv.org/format/2302.07390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0146553">10.1063/5.0146553 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspective: strain and strain gradient engineering in membranes of quantum materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiamian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07390v1-abstract-short" style="display: inline;"> Strain is powerful for discovery and manipulation of new phases of matter; however, the elastic strains accessible to epitaxial films and bulk crystals are typically limited to small ($&lt;2\%$), uniform, and often discrete values. This Perspective highlights new directions for strain and strain gradient engineering in free-standing single crystalline membranes of quantum materials. Membranes enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07390v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07390v1-abstract-full" style="display: none;"> Strain is powerful for discovery and manipulation of new phases of matter; however, the elastic strains accessible to epitaxial films and bulk crystals are typically limited to small ($&lt;2\%$), uniform, and often discrete values. This Perspective highlights new directions for strain and strain gradient engineering in free-standing single crystalline membranes of quantum materials. Membranes enable large ($\sim 10\%$), continuously tunable strains and strain gradients via bending and rippling. Moreover, strain gradients break inversion symmetry to activate polar distortions, ferroelectricity, chiral spin textures, novel superconductivity, and topological states. Recent advances in membrane synthesis by remote epitaxy and sacrificial etch layers enable extreme strains in new materials, including transition metal oxides and Heusler compounds, compared to natively van der Waals (vdW) materials like graphene. We highlight new opportunities and challenges for strain and strain gradient engineering in membranes of non-vdW materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07390v1-abstract-full').style.display = 'none'; document.getElementById('2302.07390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 122, 170501 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05927">arXiv:2208.05927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05927">pdf</a>, <a href="https://arxiv.org/format/2208.05927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03187">10.1021/acs.nanolett.2c03187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling the balance between remote, pinhole, and van der Waals epitaxy of Heusler films on graphene/sapphire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+T">Taehwan Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaDuca%2C+Z+T">Zachary T. LaDuca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaoqi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+K">Katherine Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05927v1-abstract-short" style="display: inline;"> Remote epitaxy on monolayer graphene is promising for synthesis of highly lattice mismatched materials, exfoliation of free-standing membranes, and re-use of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. In many cases, due to contaminants at the transferred graphene/substrate interface, alternative mechanisms such as pinhole-seeded lateral epitax&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05927v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05927v1-abstract-full" style="display: none;"> Remote epitaxy on monolayer graphene is promising for synthesis of highly lattice mismatched materials, exfoliation of free-standing membranes, and re-use of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. In many cases, due to contaminants at the transferred graphene/substrate interface, alternative mechanisms such as pinhole-seeded lateral epitaxy or van der Waals epitaxy can explain the resulting exfoliatable single-crystalline films. Here, we find that growth of the Heusler compound GdPtSb on clean graphene on sapphire substrates produces a 30 degree rotated epitaxial superstructure that cannot be explained by pinhole or van der Waals epitaxy. With decreasing growth temperature the volume fraction of this 30 degree domain increases compared to the direct epitaxial 0 degree domain, which we attribute to slower surface diffusion at low temperature that favors remote epitaxy, compared to faster surface diffusion at high temperature that favors pinhole epitaxy. We further show that careful graphene/substrate annealing ($T\sim 700 ^\circ C$) and consideration of the film/substrate vs film/graphene lattice mismatch are required to obtain epitaxy to the underlying substrate for a variety of other Heusler films, including LaPtSb and GdAuGe. The 30 degree rotated superstructure provides a possible experimental fingerprint of remote epitaxy since it is inconsistent with the leading alternative mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05927v1-abstract-full').style.display = 'none'; document.getElementById('2208.05927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09094">arXiv:2206.09094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09094">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Free-Standing Epitaxial SrTiO$_3$ Nanomembranes via Remote Epitaxy using Hybrid Molecular Beam Epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+H">Hyojin Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Truttmann%2C+T+K">Tristan K. Truttmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fengdeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matthews%2C+B+E">Bethany E. Matthews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choo%2C+S">Sooho Choo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Q">Qun Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraswat%2C+V">Vivek Saraswat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowden%2C+M+E">Mark E. Bowden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koester%2C+S+J">Steven J. Koester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spurgeon%2C+S+R">Steven R. Spurgeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chambers%2C+S+A">Scott A. Chambers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09094v1-abstract-short" style="display: inline;"> The epitaxial growth of functional materials using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining free-standing epitaxial nano-membranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically employed to grow epitaxial perovskite oxides can damage graphene. Here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09094v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09094v1-abstract-full" style="display: none;"> The epitaxial growth of functional materials using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining free-standing epitaxial nano-membranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically employed to grow epitaxial perovskite oxides can damage graphene. Here, we demonstrate a technique based on hybrid molecular beam epitaxy that does not require an independent oxygen source to achieve epitaxial growth of complex oxides without damaging the underlying graphene. The technique produces films with self-regulating cation stoichiometry control and epitaxial orientation to the oxide substrate. Furthermore, the films can be exfoliated and transferred to foreign substrates while leaving the graphene on the original substrate. These results open the door to future studies of previously unattainable free-standing nano-membranes grown in an adsorption-controlled manner by hybrid molecular beam epitaxy, and has potentially important implications for the commercial application of perovskite oxides in flexible electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09094v1-abstract-full').style.display = 'none'; document.getElementById('2206.09094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01346">arXiv:2111.01346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01346">pdf</a>, <a href="https://arxiv.org/format/2111.01346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0078774">10.1063/5.0078774 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective area epitaxy of GaAs films using patterned graphene on Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+Z+H">Zheng Hui Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraswat%2C+V">Vivek Saraswat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01346v1-abstract-short" style="display: inline;"> We demonstrate selective area epitaxy of GaAs films using patterned graphene masks on a Ge (001) substrate. The GaAs selectively grows on exposed regions of the Ge substrate, for graphene spacings as large as 10 microns. The selectivity is highly dependent on the growth temperature and annealing time, which we explain in terms of temperature dependent sticking coefficients and surface diffusion. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01346v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01346v1-abstract-full" style="display: none;"> We demonstrate selective area epitaxy of GaAs films using patterned graphene masks on a Ge (001) substrate. The GaAs selectively grows on exposed regions of the Ge substrate, for graphene spacings as large as 10 microns. The selectivity is highly dependent on the growth temperature and annealing time, which we explain in terms of temperature dependent sticking coefficients and surface diffusion. The high nucleation selectivity over several microns sets constraints on experimental realizations of remote epitaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01346v1-abstract-full').style.display = 'none'; document.getElementById('2111.01346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01239">arXiv:2106.01239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01239">pdf</a>, <a href="https://arxiv.org/format/2106.01239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.1c10701">10.1021/acsami.1c10701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying Mn diffusion through transferred versus directly-grown graphene barriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraswat%2C+V">Vivek Saraswat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+K">Katherine Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01239v3-abstract-short" style="display: inline;"> We quantify the mechanisms for manganese (Mn) diffusion through graphene in Mn/graphene/Ge (001) and Mn/graphene/GaAs (001) heterostructures for samples prepared by graphene layer transfer versus graphene growth directly on the semiconductor substrate. These heterostructures are important for applications in spintronics; however, challenges in synthesizing graphene directly on technologically impo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01239v3-abstract-full').style.display = 'inline'; document.getElementById('2106.01239v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01239v3-abstract-full" style="display: none;"> We quantify the mechanisms for manganese (Mn) diffusion through graphene in Mn/graphene/Ge (001) and Mn/graphene/GaAs (001) heterostructures for samples prepared by graphene layer transfer versus graphene growth directly on the semiconductor substrate. These heterostructures are important for applications in spintronics; however, challenges in synthesizing graphene directly on technologically important substrates such as GaAs necessitate layer transfer and anneal steps, which introduce defects into the graphene. \textit{In-situ} photoemission spectroscopy measurements reveal that Mn diffusion through graphene grown directly on a Ge (001) substrate is 1000 times lower than Mn diffusion into samples without graphene ($D_{gr,direct} \sim 4\times10^{-18}$cm$^2$/s, $D_{no-gr} \sim 5 \times 10^{-15}$ cm$^2$/s at 500$^\circ$C). Transferred graphene on Ge suppresses the Mn in Ge diffusion by a factor of 10 compared to no graphene ($D_{gr,transfer} \sim 4\times10^{-16}cm^2/s$). For both transferred and directly-grown graphene, the low activation energy ($E_a \sim 0.1-0.5$ eV) suggests that Mn diffusion through graphene occurs primarily at graphene defects. This is further confirmed as the diffusivity prefactor, $D_0$, scales with the defect density of the graphene sheet. Similar diffusion barrier performance is found on GaAs substrates; however, it is not currently possible to grow graphene directly on GaAs. Our results highlight the importance of developing graphene growth directly on functional substrates, to avoid the damage induced by layer transfer and annealing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01239v3-abstract-full').style.display = 'none'; document.getElementById('2106.01239v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Applied Materials &amp; Interfaces, 13 (35), 42146 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00721">arXiv:2106.00721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00721">pdf</a>, <a href="https://arxiv.org/format/2106.00721">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-31610-y">10.1038/s41467-022-31610-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pinhole-seeded lateral epitaxy and exfoliation of GaSb films on graphene-terminated surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+Z">Zheng-Hui Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraswat%2C+V">Vivek Saraswat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00721v3-abstract-short" style="display: inline;"> Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene ser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00721v3-abstract-full').style.display = 'inline'; document.getElementById('2106.00721v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00721v3-abstract-full" style="display: none;"> Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with \textit{in-situ} electron diffraction and photoemission, plus \textit{ex-situ} atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides a powerful route towards tuning the growth and properties of epitaxial films and membranes on 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00721v3-abstract-full').style.display = 'none'; document.getElementById('2106.00721v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 4014 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05797">arXiv:2103.05797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05797">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.083402">10.1103/PhysRevMaterials.5.083402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solid phase epitaxial growth of the correlated-electron transparent conducting oxide SrVO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Marks%2C+S+D">Samuel D. Marks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+P">Peng Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobs%2C+R">Ryan Jacobs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waldvogel%2C+J+R">Jason R. Waldvogel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savage%2C+D+E">Donald E. Savage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Booske%2C+J+H">John H. Booske</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babcock%2C+S+E">Susan E. Babcock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+D">Dane Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evans%2C+P+G">Paul G. Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05797v2-abstract-short" style="display: inline;"> SrVO3 thin films with a high figure of merit for applications as transparent conductors were crystallized from amorphous layers using solid phase epitaxy (SPE). Epitaxial SrVO3 films crystallized on SrTiO3 using SPE exhibit a room temperature resistivity of 2.5 x 10-5 Ohms cm, a residual resistivity ratio of 3.8, and visible light transmission above 0.5 for a 60 nm-thick film. SrVO3 layers were de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05797v2-abstract-full').style.display = 'inline'; document.getElementById('2103.05797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05797v2-abstract-full" style="display: none;"> SrVO3 thin films with a high figure of merit for applications as transparent conductors were crystallized from amorphous layers using solid phase epitaxy (SPE). Epitaxial SrVO3 films crystallized on SrTiO3 using SPE exhibit a room temperature resistivity of 2.5 x 10-5 Ohms cm, a residual resistivity ratio of 3.8, and visible light transmission above 0.5 for a 60 nm-thick film. SrVO3 layers were deposited at room temperature using radio-frequency sputtering in an amorphous form and subsequently crystallized by heating in controlled gas environment. The lattice parameters and mosaic angular width of x-ray reflections from the crystallized films are consistent with partial relaxation of the strain resulting from the epitaxial mismatch between SrVO3 and SrTiO3. A reflection high-energy electron diffraction study of the kinetics of SPE indicates that crystallization occurs via the thermally activated propagation of the crystalline/amorphous interface, similar to SPE phenomena in other perovskite oxides. Thermodynamic calculations based on density functional theory predict the temperature and oxygen partial pressure conditions required to produce the SrVO3 phase and are consistent with the experiments. The separate control of deposition and crystallization conditions in SPE presents new possibilities for the crystallization of transparent conductors in complex geometries and over large areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05797v2-abstract-full').style.display = 'none'; document.getElementById('2103.05797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Keywords: epitaxial transparent conducting oxides, solid-phase epitaxy, strontium vanadate, phase selection in oxide synthesis</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 083402 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03397">arXiv:2102.03397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03397">pdf</a>, <a href="https://arxiv.org/format/2102.03397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.016803">10.1103/PhysRevLett.127.016803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial Electron-Phonon Coupling Constants Extracted from Intrinsic Replica Bands in Monolayer FeSe/SrTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Faeth%2C+B+D">Brendan D. Faeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+S">Saien Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuolong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+J+N">Jocienne N. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+P">Pramita Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Christopher Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">Kyle M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03397v1-abstract-short" style="display: inline;"> The observation of replica bands by angle-resolved photoemission spectroscopy has ignited interest in the study of electron-phonon coupling at low carrier densities, particularly in monolayer FeSe/SrTiO$_3$, where the appearance of replica bands has motivated theoretical work suggesting that the interfacial coupling of electrons in the FeSe layer to optical phonons in the SrTiO$_3$ substrate might&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03397v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03397v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03397v1-abstract-full" style="display: none;"> The observation of replica bands by angle-resolved photoemission spectroscopy has ignited interest in the study of electron-phonon coupling at low carrier densities, particularly in monolayer FeSe/SrTiO$_3$, where the appearance of replica bands has motivated theoretical work suggesting that the interfacial coupling of electrons in the FeSe layer to optical phonons in the SrTiO$_3$ substrate might contribute to the enhanced superconducting pairing temperature. Alternatively, it has also been recently proposed that such replica bands might instead originate from extrinsic final state losses associated with the photoemission process. Here, we perform a quantitative examination of replica bands in monolayer FeSe/SrTiO$_3$, where we are able to conclusively demonstrate that the replica bands are indeed signatures of intrinsic electron-boson coupling, and not associated with final state effects. A detailed analysis of the energy splittings between the higher-order replicas, as well as other self-energy effects, allow us to determine that the interfacial electron-phonon coupling in the system corresponds to a value of $位= 0.19 \pm 0.02$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03397v1-abstract-full').style.display = 'none'; document.getElementById('2102.03397v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 016803 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.11984">arXiv:2010.11984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.11984">pdf</a>, <a href="https://arxiv.org/format/2010.11984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.021054">10.1103/PhysRevX.11.021054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Incoherent Cooper pairing and pseudogap behavior in single-layer FeSe/SrTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Faeth%2C+B+D">Brendan D. Faeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuolong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+J+N">Jocienne N. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+P">Pramita Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">Kyle M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.11984v1-abstract-short" style="display: inline;"> In many unconventional superconductors, the presence of a pseudogap - a suppression in the electronic density of states extending above the critical temperature - has been a long-standing mystery. Here, we employ combined \textit{in situ} electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements to reveal an unprecedentedly large pseudogap regime in single-layer FeSe/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11984v1-abstract-full').style.display = 'inline'; document.getElementById('2010.11984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.11984v1-abstract-full" style="display: none;"> In many unconventional superconductors, the presence of a pseudogap - a suppression in the electronic density of states extending above the critical temperature - has been a long-standing mystery. Here, we employ combined \textit{in situ} electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements to reveal an unprecedentedly large pseudogap regime in single-layer FeSe/SrTiO$_3$, an interfacial superconductor where incoherent Cooper pairs are initially formed above $T_螖$ $\approx$ 60 K, but where a zero resistance state is only achieved below $T_{0}$ $&lt;$ 30 K. We show that this behavior is accompanied by distinct transport signatures of two-dimensional phase fluctuating superconductivity, suggesting a mixed vortex state hosting incoherent Cooper pairs which persist well above the maximum clean limit $T_{c}$ of $\approx$ 40 K. Our work establishes the critical role of reduced dimensionality in driving the complex interplay between Cooper pairing and phase coherence in two-dimensional high-$T_c$ superconductors, providing a paradigm for understanding and engineering higher-$T_{c}$ interfacial superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11984v1-abstract-full').style.display = 'none'; document.getElementById('2010.11984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 021054 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11489">arXiv:2009.11489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11489">pdf</a>, <a href="https://arxiv.org/format/2009.11489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.045134">10.1103/PhysRevB.103.045134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic correlations in the semiconducting half-Heusler compound FeVSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shourov%2C+E+H">Estiaque H. Shourov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharan%2C+A">Abhishek Sharan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Lima%2C+F+C">Felipe C. de Lima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J">Jessica McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yannello%2C+V">Vincent Yannello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birol%2C+T">Turan Birol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11489v2-abstract-short" style="display: inline;"> Electronic correlations are crucial to the low energy physics of metallic systems with localized $d$ and $f$ states; however, their effect on band insulators and semiconductors is typically negligible. Here, we measure the electronic structure of the half-Heusler compound FeVSb, a band insulator with filled shell configuration of 18 valence electrons per formula unit ($s^2 p^6 d^{10}$). Angle-reso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11489v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11489v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11489v2-abstract-full" style="display: none;"> Electronic correlations are crucial to the low energy physics of metallic systems with localized $d$ and $f$ states; however, their effect on band insulators and semiconductors is typically negligible. Here, we measure the electronic structure of the half-Heusler compound FeVSb, a band insulator with filled shell configuration of 18 valence electrons per formula unit ($s^2 p^6 d^{10}$). Angle-resolved photoemission spectroscopy (ARPES) reveals a mass renormalization of $m^{*}/m_{bare}= 1.4$, where $m^{*}$ is the measured effective mass and $m_{bare}$ is the mass from density functional theory (DFT) calculations with no added on-site Coulomb repulsion. Our measurements are in quantitative agreement with dynamical mean field theory (DMFT) calculations, highlighting the many-body origin of the mass renormalization. This mass renormalization lies in dramatic contrast to other filled shell intermetallics, including the thermoelectric materials CoTiSb and NiTiSn; and has a similar origin to that in FeSi, where Hund&#39;s coupling induced fluctuations across the gap can explain a dynamical self-energy and correlations. Our work calls for a re-thinking of the role of correlations and Hund&#39;s coupling in intermetallic band insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11489v2-abstract-full').style.display = 'none'; document.getElementById('2009.11489v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 045134 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10100">arXiv:2006.10100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10100">pdf</a>, <a href="https://arxiv.org/format/2006.10100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-22784-y">10.1038/s41467-021-22784-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manzo%2C+S">Sebastian Manzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraswat%2C+V">Vivek Saraswat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genser%2C+K+T">Konrad T. Genser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabe%2C+K+M">Karin M. Rabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arnold%2C+M+S">Michael S. Arnold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10100v3-abstract-short" style="display: inline;"> Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-ter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10100v3-abstract-full').style.display = 'inline'; document.getElementById('2006.10100v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10100v3-abstract-full" style="display: none;"> Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al$_2$O$_3$ substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetixm and magnetostriction) and strain gradients (flexomagnetism). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10100v3-abstract-full').style.display = 'none'; document.getElementById('2006.10100v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 12, 2494 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06543">arXiv:2005.06543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06543">pdf</a>, <a href="https://arxiv.org/format/2005.06543">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-20252-7">10.1038/s41467-020-20252-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-stabilized superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruf%2C+J+P">Jacob P. Ruf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+N+J">Nathaniel J. Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+H+P">Hari P. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+L">Ludi Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+J+N">Jocienne N. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faeth%2C+B+D">Brendan D. Faeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennie%2C+C+J">Craig J. Fennie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">Kyle M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06543v1-abstract-short" style="display: inline;"> Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06543v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06543v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06543v1-abstract-full" style="display: none;"> Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the first instance of the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO$_{2}$ thin films on (110)-oriented TiO$_{2}$ substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of $d$ orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06543v1-abstract-full').style.display = 'none'; document.getElementById('2005.06543v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 20 figures (including supplemental information)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 59 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.05971">arXiv:2003.05971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.05971">pdf</a>, <a href="https://arxiv.org/format/2003.05971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.073401">10.1103/PhysRevMaterials.4.073401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semi-adsorption-controlled growth window for half Heusler FeVSb epitaxial films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shourov%2C+E+H">Estiaque H. Shourov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobs%2C+R">Ryan Jacobs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behn%2C+W+A">Wyatt A. Behn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krebs%2C+Z+J">Zachary J. Krebs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brar%2C+V+W">Victor W. Brar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+D+D">Dane D. Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.05971v2-abstract-short" style="display: inline;"> The electronic, magnetic, thermoelectric, and topological properties of Heusler compounds (composition $XYZ$ or $X_2 YZ$) are highly sensitive to stoichiometry and defects. Here we establish the existence and experimentally map the bounds of a \textit{semi} adsorption-controlled growth window for semiconducting half Heusler FeVSb films, grown by molecular beam epitaxy (MBE). We show that due to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05971v2-abstract-full').style.display = 'inline'; document.getElementById('2003.05971v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.05971v2-abstract-full" style="display: none;"> The electronic, magnetic, thermoelectric, and topological properties of Heusler compounds (composition $XYZ$ or $X_2 YZ$) are highly sensitive to stoichiometry and defects. Here we establish the existence and experimentally map the bounds of a \textit{semi} adsorption-controlled growth window for semiconducting half Heusler FeVSb films, grown by molecular beam epitaxy (MBE). We show that due to the high volatility of Sb, the Sb stoichiometry is self-limiting for a finite range of growth temperatures and Sb fluxes, similar to the growth of III-V semiconductors such as GaSb and GaAs. Films grown within this window are nearly structurally indistinguishable by X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). The highest electron mobility and lowest background carrier density are obtained towards the Sb-rich bound of the window, suggesting that Sb-vacancies may be a common defect. Similar \textit{semi} adsorption-controlled bounds are expected for other ternary intermetallics that contain a volatile species $Z=$\{Sb, As, Bi\}, e.g., CoTiSb, LuPtSb, GdPtBi, and NiMnSb. However, outstanding challenges remain in controlling the remaining Fe/V ($X/Y$) transition metal stoichiometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05971v2-abstract-full').style.display = 'none'; document.getElementById('2003.05971v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. Materials 4, 073401 (2020) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 073401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.05611">arXiv:2001.05611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.05611">pdf</a>, <a href="https://arxiv.org/format/2001.05611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/1.5145217">10.1116/1.5145217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of polymorphism during epitaxial growth of hyperferroelectric candidate LiZnSb on GaSb (111)B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genser%2C+K">Konrad Genser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabe%2C+K+M">Karin M. Rabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.05611v1-abstract-short" style="display: inline;"> A major challenge for ferroelectric devices is the depolarization field, which competes with and often destroys long-range polar order in the limit of ultrathin films. Recent theoretical predictions suggest a new class of materials, termed hyperferroelectics, that should be robust against the depolarization field and enable ferroelectricity down to the monolayer limit. Here we demonstrate the epit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05611v1-abstract-full').style.display = 'inline'; document.getElementById('2001.05611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.05611v1-abstract-full" style="display: none;"> A major challenge for ferroelectric devices is the depolarization field, which competes with and often destroys long-range polar order in the limit of ultrathin films. Recent theoretical predictions suggest a new class of materials, termed hyperferroelectics, that should be robust against the depolarization field and enable ferroelectricity down to the monolayer limit. Here we demonstrate the epitaxial growth of hexagonal LiZnSb, one of the hyperferroelectric candidate materials, by molecular-beam epitaxy on GaSb (111)B substrates. Due to the high volatility of all three atomic species, we find that LiZnSb can be grown in an adsorption-controlled window, using an excess zinc flux. Within this window, the desired polar hexagonal phase is stabilized with respect to a competing cubic polymorph, as revealed by X-ray diffraction and transmission electron microscopy measurements. First-principles calculations show that for moderate amounts of epitaxial strain and moderate concentrations of Li vacancies, the cubic LiZnSb phase is lower in formation energy than the hexagonal phase, but only by a few meV per formula unit. Therefore we suggest that kinetics plays a role in stabilizing the desired hexagonal phase at low temperatures. Our results provide a path towards experimentally demonstrating ferroelectricity and hyperferroelectricity in a new class of ternary intermetallic compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05611v1-abstract-full').style.display = 'none'; document.getElementById('2001.05611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been submitted to the Journal of Vacuum Science and Technology. After it is published, it will be found at https://avs.scitation.org/journal/jvb</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Vacuum Science &amp; Technology B 38, 022208 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07685">arXiv:1910.07685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07685">pdf</a>, <a href="https://arxiv.org/format/1910.07685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5132339">10.1063/1.5132339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High electrical conductivity in the epitaxial polar metals LaAuGe and LaPtSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+A">Amber Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shourov%2C+E+H">Estiaque H. Shourov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P">Paul Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fredrickson%2C+D+C">Daniel C. Fredrickson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07685v1-abstract-short" style="display: inline;"> Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name &#34;polar metal,&#34; however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial (MBE) growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07685v1-abstract-full').style.display = 'inline'; document.getElementById('1910.07685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07685v1-abstract-full" style="display: none;"> Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name &#34;polar metal,&#34; however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial (MBE) growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower than the well studied oxide polar metals. These materials belong to a broad family of $ABC$ intermetallics adopting the stuffed wurtzite structure, also known as hexagonal Heusler compounds. Scanning transmission electron microscopy (STEM) reveals a polar structure with unidirectionally buckled $BC$ (PtSb, AuGe) planes. Magnetotransport measurements demonstrate good metallic behavior with low residual resistivity ($蟻_{LaAuGe}=59.05$ $渭惟\cdot$cm and $蟻_{LaAPtSb}=27.81$ $渭惟\cdot$cm at 2K) and high carrier density ($n_h\sim 10^{21}$ cm$^{-3}$). Photoemission spectroscopy measurements confirm the band metallicity and are in quantitative agreement with density functional theory (DFT) calculations. Through DFT-Chemical Pressure and Crystal Orbital Hamilton Population analyses, the atomic packing factor is found to support the polar buckling of the structure, though the degree of direct interlayer $B-C$ bonding is limited by repulsion at the $A-C$ contacts. When combined with insulating hexagonal Heuslers, these materials provide a new platform for fully epitaxial, multiferroic heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07685v1-abstract-full').style.display = 'none'; document.getElementById('1910.07685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 7, 121107 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00101">arXiv:1908.00101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.00101">pdf</a>, <a href="https://arxiv.org/format/1908.00101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5099576">10.1063/1.5099576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspective: Heusler interfaces -- opportunities beyond spintronics? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00101v1-abstract-short" style="display: inline;"> Heusler compounds, in both cubic and hexagonal polymorphs, exhibit a remarkable range of electronic, magnetic, elastic, and topological properties, rivaling that of the transition metal oxides. To date, research on these quantum materials has focused primarily on bulk magnetic and thermoelectric properties or on applications in spintronics. More broadly, however, Heuslers provide a platform for di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00101v1-abstract-full').style.display = 'inline'; document.getElementById('1908.00101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00101v1-abstract-full" style="display: none;"> Heusler compounds, in both cubic and hexagonal polymorphs, exhibit a remarkable range of electronic, magnetic, elastic, and topological properties, rivaling that of the transition metal oxides. To date, research on these quantum materials has focused primarily on bulk magnetic and thermoelectric properties or on applications in spintronics. More broadly, however, Heuslers provide a platform for discovery and manipulation of emergent properties at well-defined crystalline interfaces. Here, motivated by advances in the epitaxial growth of layered Heusler heterostructures, I present a vision for Heusler interfaces, focusing on the frontiers and challenges that lie beyond spintronics. The ability to grow these materials epitaxially on technologically important semiconductor substrates, such as GaAs, Ge, and Si, provides a direct path for their integration with modern electronics. Further advances will require new methods to control the stoichiometry and defects to &#34;electronic grade&#34; quality, and to control the interface abruptness and ordering at the atomic scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00101v1-abstract-full').style.display = 'none'; document.getElementById('1908.00101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 7, 080907 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.09114">arXiv:1901.09114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.09114">pdf</a>, <a href="https://arxiv.org/format/1901.09114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.024201">10.1103/PhysRevMaterials.3.024201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronically enhanced layer buckling and Au-Au dimerization in epitaxial LaAuSb films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Strohbeen%2C+P+J">Patrick J. Strohbeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+D">Dongxue Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shourov%2C+E+H">Estiaque H. Shourov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.09114v1-abstract-short" style="display: inline;"> We report the molecular beam epitaxial growth, structure, and electronic measurements of single-crystalline LaAuSb films on Al$_2$O$_3$ (0001) substrates. LaAuSb belongs to a broad family of hexagonal $ABC$ intermetallics in which the magnitude and sign of layer buckling have strong effects on properties, e.g., predicted hyperferroelecticity, polar metallicity, and Weyl and Dirac states. Scanning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09114v1-abstract-full').style.display = 'inline'; document.getElementById('1901.09114v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.09114v1-abstract-full" style="display: none;"> We report the molecular beam epitaxial growth, structure, and electronic measurements of single-crystalline LaAuSb films on Al$_2$O$_3$ (0001) substrates. LaAuSb belongs to a broad family of hexagonal $ABC$ intermetallics in which the magnitude and sign of layer buckling have strong effects on properties, e.g., predicted hyperferroelecticity, polar metallicity, and Weyl and Dirac states. Scanning transmission electron microscopy reveals highly buckled planes of Au-Sb atoms, with strong interlayer Au-Au interactions and a doubling of the unit cell. This buckling is four times larger than the buckling observed in other $ABC$s with similar composition, e.g. LaAuGe and LaPtSb. Photoemission spectroscopy measurements and comparison with theory suggest an electronic driving force for the Au-Au dimerization, since LaAuSb, with a 19-electron count, has one more valence electron per formula unit than most stable $ABC$s. Our results suggest that the electron count, in addition to conventional parameters such as epitaxial strain and chemical pressure, provides a powerful means for tuning the layer buckling in ferroic $ABC$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09114v1-abstract-full').style.display = 'none'; document.getElementById('1901.09114v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 024201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.2643">arXiv:1204.2643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.2643">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cross-Sectional Scanning Tunneling Microscopy and Spectroscopy of Semimetallic ErAs Nanostructures Embedded in GaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timm%2C+R">Rainer Timm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buehl%2C+T+E">Trevor E. Buehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lundgren%2C+E">Edvin Lundgren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikkelsen%2C+A">Anders Mikkelsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gossard%2C+A+C">Arthur C. Gossard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.2643v1-abstract-short" style="display: inline;"> The growth and atomic/electronic structure of molecular beam epitaxy (MBE)-grown ErAs nanoparticles and nanorods embedded within a GaAs matrix are examined for the first time via cross-sectional scanning tunneling microscopy (XSTM) and spectroscopy (XSTS). Cross sections enable the interrogation of the internal structure and are well suited for studying embedded nanostructures. The early stages of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.2643v1-abstract-full').style.display = 'inline'; document.getElementById('1204.2643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.2643v1-abstract-full" style="display: none;"> The growth and atomic/electronic structure of molecular beam epitaxy (MBE)-grown ErAs nanoparticles and nanorods embedded within a GaAs matrix are examined for the first time via cross-sectional scanning tunneling microscopy (XSTM) and spectroscopy (XSTS). Cross sections enable the interrogation of the internal structure and are well suited for studying embedded nanostructures. The early stages of embedded ErAs nanostructure growth are examined via these techniques and compared with previous cross sectional TEM work. Tunneling spectroscopy I(V) for both ErAs nanoparticles and nanorods was also performed, demonstrating that both nanostructures are semimetallic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.2643v1-abstract-full').style.display = 'none'; document.getElementById('1204.2643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Vac. Sci. Technol. B 29, 03C104 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.2641">arXiv:1204.2641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.2641">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.036806">10.1103/PhysRevLett.107.036806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local Density of States and Interface Effects in Semimetallic ErAs Nanoparticles Embedded in GaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timm%2C+R">Rainer Timm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delaney%2C+K+T">Kris T. Delaney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lundgren%2C+E">Edvin Lundgren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikkelsen%2C+A">Anders Mikkelsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.2641v1-abstract-short" style="display: inline;"> The atomic and electronic structures of ErAs nanoparticles embedded within a GaAs matrix are examined via cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/XSTS). The local density of states (LDOS) exhibits a finite minimum at the Fermi level demonstrating that the nanoparticles remain semimetallic despite the predictions of previous models of quantum confinement in ErAs. We als&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.2641v1-abstract-full').style.display = 'inline'; document.getElementById('1204.2641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.2641v1-abstract-full" style="display: none;"> The atomic and electronic structures of ErAs nanoparticles embedded within a GaAs matrix are examined via cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/XSTS). The local density of states (LDOS) exhibits a finite minimum at the Fermi level demonstrating that the nanoparticles remain semimetallic despite the predictions of previous models of quantum confinement in ErAs. We also use XSTS to measure changes in the LDOS across the ErAs/GaAs interface and propose that the interface atomic structure results in electronic states that prevent the opening of a band gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.2641v1-abstract-full').style.display = 'none'; document.getElementById('1204.2641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 107, 036806 (2011) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10