CINXE.COM
About: Algebra over a field
<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Algebra over a field</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Algebra_over_a_field.rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Algebra_over_a_field.n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Algebra_over_a_field.ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Algebra_over_a_field.jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Algebra_over_a_field.json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Algebra_over_a_field.atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Algebra_over_a_field.ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Algebra_over_a_field" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Algebra_over_a_field"/> <link rev="describedby" href="http://dbpedia.org/resource/Algebra_over_a_field"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Algebra over a field" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Algebra_over_a_field" /> <meta property="og:image" content="/statics/images/dbpedia_logo.png" /> <meta property="og:description" content="In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Algebra_over_a_field"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FAlgebra_over_a_field.ttl&view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Algebra_over_a_field.jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FAlgebra_over_a_field%3E&format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Algebra_over_a_field">Algebra over a field</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://dbpedia.org/ontology/Building">building</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.</p> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ca" >En matemàtiques, un àlgebra sobre un cos és un espai vectorial proveït amb un producte vectorial bilineal. És a dir, ésuna estructura algebraica que consta d'un espai vectorial juntament amb una operació, normalment anomenada multiplicació, que combina dos vectors qualssevol per formar un tercer vector; per qualificar-se com a àlgebra, aquesta multiplicació ha de satisfer certs axiomes de compatibilitat amb l'estructura espacial vectorial donada, com la propietat distributiva. En altres paraules, una àlgebra sobre un cos és un conjunt juntament amb operacions de multiplicació, suma, i multiplicació per un escalar del cos. Es pot generalitzar aquesta idea canviant el cos d'escalars per un anell commutatiu, i així es defineix una àlgebra sobre un anell. Alguns autors fan servir el terme "àlgebra" per dir un "àlgebra associativa" unitària, però aquest article no exigirà ni associativitat ni una unitat.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="cs" >Algebra jako matematická struktura je vektorový prostor A nad tělesem F (anebo obecněji modul nad okruhem), na kterém je dána další operace násobení, které je lineární, t.j. pro .</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ar" >جبر على حقل في الرياضيات، هو فضاء متجهي مع ضرب اتجاهي اقتراني ثنائي خطي. وهذا يعني، أنه بنية جبرية مكونة من فضاء متجهي "V" جنبا إلى جنب مع عملية ثنائية مغلقة على الفضاء. حتى يتم اعتباره جبراً، يجب أن تكون هذه العملية V×V→V ملبية للبديهيات التوافقية الإضافية، مثل التوزيعية distributivity.</span><small> (ar)</small></span></li> <li><span class="literal"><span property="dbo:abstract" lang="en" >In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead. An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space. Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra. Replacing the field of scalars by a commutative ring leads to the more general notion of an . Algebras are not to be confused with vector spaces equipped with a bilinear form, like inner product spaces, as, for such a space, the result of a product is not in the space, but rather in the field of coefficients.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="de" >Eine Algebra über einem Körper , Algebra über oder -Algebra (früher auch als lineare Algebra bezeichnet) ist ein Vektorraum über einem Körper , der um eine mit der Vektorraumstruktur verträgliche Multiplikation erweitert wurde. Je nach Kontext wird dabei mitunter zusätzlich gefordert, dass die Multiplikation das Assoziativgesetz oder das Kommutativgesetz erfüllt oder dass die Algebra bezüglich der Multiplikation ein Einselement besitzt.</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="eo" >Alĝebro (aŭ algebrao) estas algebra strukturo, kiu estas kaj ringo kaj vektora spaco. * : modulo aŭ vektora spaco kaj ankaŭ kiel multipliko * Asocieca alĝebro: alĝebro kies multipliko estas asocia * : asocieca alĝebro, kies multipliko estas komuta * Grupa alĝebro: asocieca alĝebro difinita per grupo * Alĝebro de Lie: ne-asocieca alĝebro grava en geometrio</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="es" >En matemáticas, un álgebra sobre un cuerpo K, o una K-álgebra, es un espacio vectorial A sobre K equipado con una noción compatible de multiplicación de elementos de A. Una generalización directa admite que K sea cualquier anillo conmutativo.Algunos autores utilizan el término "álgebra" como sinónimo de "álgebra asociativa".</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="in" >Dalam matematika, aljabar atas medan (disebut juga aljabar) adalah ruang vektor kelengkapan dengan hasil kali. Jadi, aljabar adalah struktur aljabar yang terdiri dari himpunan bersama dengan operasi perkalian dan penjumlahan dan perkalian skalar oleh elemen medan dan memenuhi aksioma yang diimplikasikan oleh "ruang vektor" dan "bilinear". Operasi perkalian dalam aljabar atau mungkin asosiatif, mengarah ke gagasan aljabar asosiatif dan aljabar takasosiatif. Diberikan sebuah bilangan bulat n, gelanggang dari matriks persegi tingkat n adalah contoh aljabar asosiatif pada medan bilangan riil bawah penambahan matriks dan perkalian matriks karena perkalian matriks bersifat asosiatif. Ruang Euklides tiga dimensi dengan perkalian yang diberikan oleh adalah contoh aljabar takasosiatif pada medan bilangan riil karena perkalian vektor takasosiatif, memenuhi identitas Jacobi sebagai gantinya. Sebuah aljabar dikatakan unital atau uniter jika memiliki elemen identitas sehubungan dengan perkalian. Gelanggang matriks kuadrat riil urutan n dalam bentuk aljabar unital karena matriks identitas tingkat n adalah elemen identitas yang berkaitan dengan perkalian matriks. Ini adalah contoh aljabar asosiatif unital, yang juga merupakan ruang vektor. Banyak penulis menggunakan istilah aljabar yang berarti aljabar asosiatif, atau aljabar asosiatif unital, atau dalam beberapa mata pelajaran seperti geometri aljabar, aljabar komutatif asosiatif unital. Mengganti medan skalar dengan gelanggang komutatif mengarah ke gagasan yang lebih umum tentang . Aljabar tidak disamakan dengan ruang vektor kelengkapan dengan , seperti , karena, untuk ruang seperti itu, hasil darab bukan dalam ruang, melainkan di medan koefisien.</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="fr" >En mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : 1. * (A, +, ·) est un espace vectoriel sur K ; 2. * la loi × est définie de A × A dans A (loi de composition interne) ; 3. * la loi × est bilinéaire.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="it" >In matematica, per algebra su campo si intende uno spazio vettoriale definito su un campo e munito di un'operazione binaria "compatibile" con le altre leggi di composizione (o moltiplicazione) degli elementi dello spazio. Una generalizzazione diretta riguarda la possibilità di servirsi, invece che di un campo di base, di un qualsiasi anello commutativo.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >数学において体上の代数あるいは多元環(たげんかん、英: algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるスカラー倍とを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pl" >Algebra nad ciałem (algebra liniowa) – przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny).</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="nl" >Een algebra is een uitbreiding van het begrip vectorruimte uit de lineaire algebra. In een algebra is, naast de optelling en de scalaire vermenigvuldiging, ook een binaire operatie, formeel als vermenigvuldiging aangeduid, tussen de elementen (vectoren) gedefineerd.</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="sv" >En algebra över en kropp är inom matematik en algebraisk struktur, mer specifikt ett vektorrum med en operation som liknar multiplikation.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pt" >Uma álgebra sobre um corpo é um espaço vetorial com uma operação binária de multiplicação de vetores, que tem a propriedade distributiva sobre a soma de vetores e associativa quando faz sentido. Explicitamente: Seja A um espaço vetorial sobre um corpo K. Se existe uma operação binária de A x A em A (chamada de multiplicação de vetores), A será uma álgebra sobre o corpo K quando: (distributividade) Quando a multiplicação de vetores é associativa: temos uma álgebra associativa. Nesse caso, o conjunto de vetores A com suas operações de soma e produto forma um anel.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ru" >Алгебра над полем — это векторное пространство, снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом. Алгебра называется ассоциативной, если операция умножения в ней ассоциативна; соответственно, алгебра с единицей — алгебра, в которой существует нейтральный относительно умножения элемент. В некоторых учебниках под словом «алгебра» подразумевается «ассоциативная алгебра», однако неассоциативные алгебры также представляют определённую важность.</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="uk" >Алгебра над полем — векторний простір, на якому введено білінійне множення узгоджене з структурою векторного простору. Алгебра над полем є одночасно векторним простором і кільцем, і ці структури узгоджені.Узагальненням цього поняття є алгебра над кільцем, яка, взагалі кажучи, є не векторним простором, а модулем над деяким кільцем.</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="zh" >域上的代数(algebra over a field)或域代数,一般可简称为代数,是在向量空间的基础上定义了一个双线性的乘法运算而构成的代数结构。</span><small> (zh)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >191788</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >21905</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1095286021</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pushforward_(differential)" href="http://dbpedia.org/resource/Pushforward_(differential)"><small>dbr</small>:Pushforward_(differential)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternion" href="http://dbpedia.org/resource/Quaternion"><small>dbr</small>:Quaternion</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scalar_(mathematics)" href="http://dbpedia.org/resource/Scalar_(mathematics)"><small>dbr</small>:Scalar_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scalar_multiplication" href="http://dbpedia.org/resource/Scalar_multiplication"><small>dbr</small>:Scalar_multiplication</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Module_(mathematics)" href="http://dbpedia.org/resource/Module_(mathematics)"><small>dbr</small>:Module_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mutation_(algebra)" href="http://dbpedia.org/resource/Mutation_(algebra)"><small>dbr</small>:Mutation_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_(linear_algebra)" href="http://dbpedia.org/resource/Basis_(linear_algebra)"><small>dbr</small>:Basis_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bilinear_form" href="http://dbpedia.org/resource/Bilinear_form"><small>dbr</small>:Bilinear_form</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bilinear_operator" href="http://dbpedia.org/resource/Bilinear_operator"><small>dbr</small>:Bilinear_operator</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_structure" href="http://dbpedia.org/resource/Algebraic_structure"><small>dbr</small>:Algebraic_structure</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Anticommutative_property" href="http://dbpedia.org/resource/Anticommutative_property"><small>dbr</small>:Anticommutative_property</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Holomorphic_function" href="http://dbpedia.org/resource/Holomorphic_function"><small>dbr</small>:Holomorphic_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homomorphism" href="http://dbpedia.org/resource/Homomorphism"><small>dbr</small>:Homomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jordan_algebra" href="http://dbpedia.org/resource/Jordan_algebra"><small>dbr</small>:Jordan_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Unital_ring" href="http://dbpedia.org/resource/Unital_ring"><small>dbr</small>:Unital_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Incidence_algebra" href="http://dbpedia.org/resource/Incidence_algebra"><small>dbr</small>:Incidence_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Index_notation" href="http://dbpedia.org/resource/Index_notation"><small>dbr</small>:Index_notation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jacobi_identity" href="http://dbpedia.org/resource/Jacobi_identity"><small>dbr</small>:Jacobi_identity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_algebra" href="http://dbpedia.org/resource/Operator_algebra"><small>dbr</small>:Operator_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Algebras" href="http://dbpedia.org/resource/Category:Algebras"><small>dbc</small>:Algebras</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative" href="http://dbpedia.org/resource/Commutative"><small>dbr</small>:Commutative</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutativity" href="http://dbpedia.org/resource/Commutativity"><small>dbr</small>:Commutativity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complex_number" href="http://dbpedia.org/resource/Complex_number"><small>dbr</small>:Complex_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complex_plane" href="http://dbpedia.org/resource/Complex_plane"><small>dbr</small>:Complex_plane</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Continuous_function" href="http://dbpedia.org/resource/Continuous_function"><small>dbr</small>:Continuous_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Covariance_and_contravariance_of_vectors" href="http://dbpedia.org/resource/Covariance_and_contravariance_of_vectors"><small>dbr</small>:Covariance_and_contravariance_of_vectors</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cross_product" href="http://dbpedia.org/resource/Cross_product"><small>dbr</small>:Cross_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematics" href="http://dbpedia.org/resource/Mathematics"><small>dbr</small>:Mathematics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_(mathematics)" href="http://dbpedia.org/resource/Matrix_(mathematics)"><small>dbr</small>:Matrix_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_multiplication" href="http://dbpedia.org/resource/Matrix_multiplication"><small>dbr</small>:Matrix_multiplication</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pullback_(differential_geometry)" href="http://dbpedia.org/resource/Pullback_(differential_geometry)"><small>dbr</small>:Pullback_(differential_geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Clifford_algebra" href="http://dbpedia.org/resource/Clifford_algebra"><small>dbr</small>:Clifford_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Einstein_notation" href="http://dbpedia.org/resource/Einstein_notation"><small>dbr</small>:Einstein_notation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_(mathematics)" href="http://dbpedia.org/resource/Function_(mathematics)"><small>dbr</small>:Function_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_algebra" href="http://dbpedia.org/resource/Geometric_algebra"><small>dbr</small>:Geometric_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lie_algebra" href="http://dbpedia.org/resource/Lie_algebra"><small>dbr</small>:Lie_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_operator" href="http://dbpedia.org/resource/Linear_operator"><small>dbr</small>:Linear_operator</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bijective" href="http://dbpedia.org/resource/Bijective"><small>dbr</small>:Bijective</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_algebra" href="http://dbpedia.org/resource/Commutative_algebra"><small>dbr</small>:Commutative_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_ring" href="http://dbpedia.org/resource/Commutative_ring"><small>dbr</small>:Commutative_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zariski's_lemma" href="http://dbpedia.org/resource/Zariski's_lemma"><small>dbr</small>:Zariski's_lemma</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zero_ring" href="http://dbpedia.org/resource/Zero_ring"><small>dbr</small>:Zero_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_analysis" href="http://dbpedia.org/resource/Functional_analysis"><small>dbr</small>:Functional_analysis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ideal_(ring_theory)" href="http://dbpedia.org/resource/Ideal_(ring_theory)"><small>dbr</small>:Ideal_(ring_theory)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Identity_element" href="http://dbpedia.org/resource/Identity_element"><small>dbr</small>:Identity_element</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Identity_matrix" href="http://dbpedia.org/resource/Identity_matrix"><small>dbr</small>:Identity_matrix</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematical_physics" href="http://dbpedia.org/resource/Mathematical_physics"><small>dbr</small>:Mathematical_physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_addition" href="http://dbpedia.org/resource/Matrix_addition"><small>dbr</small>:Matrix_addition</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Max-plus_algebra" href="http://dbpedia.org/resource/Max-plus_algebra"><small>dbr</small>:Max-plus_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Banach_space" href="http://dbpedia.org/resource/Banach_space"><small>dbr</small>:Banach_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bruno_Buchberger" href="http://dbpedia.org/resource/Bruno_Buchberger"><small>dbr</small>:Bruno_Buchberger</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_map" href="http://dbpedia.org/resource/Linear_map"><small>dbr</small>:Linear_map</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_subspace" href="http://dbpedia.org/resource/Linear_subspace"><small>dbr</small>:Linear_subspace</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Square_matrix" href="http://dbpedia.org/resource/Square_matrix"><small>dbr</small>:Square_matrix</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_geometry" href="http://dbpedia.org/resource/Algebraic_geometry"><small>dbr</small>:Algebraic_geometry</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_number" href="http://dbpedia.org/resource/Dual_number"><small>dbr</small>:Dual_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Eduard_Study" href="http://dbpedia.org/resource/Eduard_Study"><small>dbr</small>:Eduard_Study</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Alternative_algebra" href="http://dbpedia.org/resource/Alternative_algebra"><small>dbr</small>:Alternative_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_space" href="http://dbpedia.org/resource/Euclidean_space"><small>dbr</small>:Euclidean_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(mathematics)" href="http://dbpedia.org/resource/Field_(mathematics)"><small>dbr</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_with_one_element" href="http://dbpedia.org/resource/Field_with_one_element"><small>dbr</small>:Field_with_one_element</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Banach_algebra" href="http://dbpedia.org/resource/Banach_algebra"><small>dbr</small>:Banach_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Non-associative_algebra" href="http://dbpedia.org/resource/Non-associative_algebra"><small>dbr</small>:Non-associative_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partially_ordered_set" href="http://dbpedia.org/resource/Partially_ordered_set"><small>dbr</small>:Partially_ordered_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Center_(ring_theory)" href="http://dbpedia.org/resource/Center_(ring_theory)"><small>dbr</small>:Center_(ring_theory)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Direct_sum_of_modules" href="http://dbpedia.org/resource/Direct_sum_of_modules"><small>dbr</small>:Direct_sum_of_modules</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isomorphism" href="http://dbpedia.org/resource/Isomorphism"><small>dbr</small>:Isomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Product_(mathematics)" href="http://dbpedia.org/resource/Product_(mathematics)"><small>dbr</small>:Product_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_(mathematics)" href="http://dbpedia.org/resource/Ring_(mathematics)"><small>dbr</small>:Ring_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_(mathematics)" href="http://dbpedia.org/resource/Group_(mathematics)"><small>dbr</small>:Group_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gröbner_basis" href="http://dbpedia.org/resource/Gröbner_basis"><small>dbr</small>:Gröbner_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert_space" href="http://dbpedia.org/resource/Hilbert_space"><small>dbr</small>:Hilbert_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Interval_(mathematics)" href="http://dbpedia.org/resource/Interval_(mathematics)"><small>dbr</small>:Interval_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Associativity" href="http://dbpedia.org/resource/Associativity"><small>dbr</small>:Associativity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bilinear_map" href="http://dbpedia.org/resource/Bilinear_map"><small>dbr</small>:Bilinear_map</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Binary_operation" href="http://dbpedia.org/resource/Binary_operation"><small>dbr</small>:Binary_operation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Split-biquaternion" href="http://dbpedia.org/resource/Split-biquaternion"><small>dbr</small>:Split-biquaternion</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_algebra" href="http://dbpedia.org/resource/Differential_algebra"><small>dbr</small>:Differential_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Distributivity" href="http://dbpedia.org/resource/Distributivity"><small>dbr</small>:Distributivity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Associative_algebra" href="http://dbpedia.org/resource/Associative_algebra"><small>dbr</small>:Associative_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/C*-algebra" href="http://dbpedia.org/resource/C*-algebra"><small>dbr</small>:C*-algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial" href="http://dbpedia.org/resource/Polynomial"><small>dbr</small>:Polynomial</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_ring" href="http://dbpedia.org/resource/Polynomial_ring"><small>dbr</small>:Polynomial_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_extension" href="http://dbpedia.org/resource/Field_extension"><small>dbr</small>:Field_extension</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Free_algebra" href="http://dbpedia.org/resource/Free_algebra"><small>dbr</small>:Free_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Free_module" href="http://dbpedia.org/resource/Free_module"><small>dbr</small>:Free_module</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_ring" href="http://dbpedia.org/resource/Group_ring"><small>dbr</small>:Group_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Injective_function" href="http://dbpedia.org/resource/Injective_function"><small>dbr</small>:Injective_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inner_product_space" href="http://dbpedia.org/resource/Inner_product_space"><small>dbr</small>:Inner_product_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integer" href="http://dbpedia.org/resource/Integer"><small>dbr</small>:Integer</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_over_an_operad" href="http://dbpedia.org/resource/Algebra_over_an_operad"><small>dbr</small>:Algebra_over_an_operad</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Associative" href="http://dbpedia.org/resource/Associative"><small>dbr</small>:Associative</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Octonion" href="http://dbpedia.org/resource/Octonion"><small>dbr</small>:Octonion</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_matrix" href="http://dbpedia.org/resource/Real_matrix"><small>dbr</small>:Real_matrix</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_number" href="http://dbpedia.org/resource/Real_number"><small>dbr</small>:Real_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Set_(mathematics)" href="http://dbpedia.org/resource/Set_(mathematics)"><small>dbr</small>:Set_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Up_to" href="http://dbpedia.org/resource/Up_to"><small>dbr</small>:Up_to</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Flexible_algebra" href="http://dbpedia.org/resource/Flexible_algebra"><small>dbr</small>:Flexible_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Topological_space" href="http://dbpedia.org/resource/Topological_space"><small>dbr</small>:Topological_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_multiplication" href="http://dbpedia.org/resource/Polynomial_multiplication"><small>dbr</small>:Polynomial_multiplication</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_homomorphism" href="http://dbpedia.org/resource/Ring_homomorphism"><small>dbr</small>:Ring_homomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/B*-algebra" href="http://dbpedia.org/resource/B*-algebra"><small>dbr</small>:B*-algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_cross_product" href="http://dbpedia.org/resource/Vector_cross_product"><small>dbr</small>:Vector_cross_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_composition" href="http://dbpedia.org/resource/Functional_composition"><small>dbr</small>:Functional_composition</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Unit_(algebra)" href="http://dbpedia.org/resource/Unit_(algebra)"><small>dbr</small>:Unit_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension_(linear_algebra)" href="http://dbpedia.org/resource/Dimension_(linear_algebra)"><small>dbr</small>:Dimension_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Power-associative_algebra" href="http://dbpedia.org/resource/Power-associative_algebra"><small>dbr</small>:Power-associative_algebra</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Algebraic_structures" href="http://dbpedia.org/resource/Template:Algebraic_structures"><small>dbt</small>:Algebraic_structures</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cite_book" href="http://dbpedia.org/resource/Template:Cite_book"><small>dbt</small>:Cite_book</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Main" href="http://dbpedia.org/resource/Template:Main"><small>dbt</small>:Main</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Math" href="http://dbpedia.org/resource/Template:Math"><small>dbt</small>:Math</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Mvar" href="http://dbpedia.org/resource/Template:Mvar"><small>dbt</small>:Mvar</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dcterms:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Algebras" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Algebras"><small>dbc</small>:Algebras</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://purl.org/linguistics/gold/hypernym"><small>gold:</small>hypernym</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="gold:hypernym" resource="http://dbpedia.org/resource/Structures" prefix="gold: http://purl.org/linguistics/gold/" href="http://dbpedia.org/resource/Structures"><small>dbr</small>:Structures</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Abstraction100002137" href="http://dbpedia.org/class/yago/Abstraction100002137"><small>yago</small>:Abstraction100002137</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Algebra106012726" href="http://dbpedia.org/class/yago/Algebra106012726"><small>yago</small>:Algebra106012726</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Cognition100023271" href="http://dbpedia.org/class/yago/Cognition100023271"><small>yago</small>:Cognition100023271</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Content105809192" href="http://dbpedia.org/class/yago/Content105809192"><small>yago</small>:Content105809192</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Discipline105996646" href="http://dbpedia.org/class/yago/Discipline105996646"><small>yago</small>:Discipline105996646</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/KnowledgeDomain105999266" href="http://dbpedia.org/class/yago/KnowledgeDomain105999266"><small>yago</small>:KnowledgeDomain105999266</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Mathematics106000644" href="http://dbpedia.org/class/yago/Mathematics106000644"><small>yago</small>:Mathematics106000644</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Possession100032613" href="http://dbpedia.org/class/yago/Possession100032613"><small>yago</small>:Possession100032613</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Property113244109" href="http://dbpedia.org/class/yago/Property113244109"><small>yago</small>:Property113244109</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/PsychologicalFeature100023100" href="http://dbpedia.org/class/yago/PsychologicalFeature100023100"><small>yago</small>:PsychologicalFeature100023100</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/PureMathematics106003682" href="http://dbpedia.org/class/yago/PureMathematics106003682"><small>yago</small>:PureMathematics106003682</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Relation100031921" href="http://dbpedia.org/class/yago/Relation100031921"><small>yago</small>:Relation100031921</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/ontology/Building" href="http://dbpedia.org/ontology/Building"><small>dbo</small>:Building</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Science105999797" href="http://dbpedia.org/class/yago/Science105999797"><small>yago</small>:Science105999797</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatAlgebras" href="http://dbpedia.org/class/yago/WikicatAlgebras"><small>yago</small>:WikicatAlgebras</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatPropertiesOfTopologicalSpaces" href="http://dbpedia.org/class/yago/WikicatPropertiesOfTopologicalSpaces"><small>yago</small>:WikicatPropertiesOfTopologicalSpaces</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="cs" >Algebra jako matematická struktura je vektorový prostor A nad tělesem F (anebo obecněji modul nad okruhem), na kterém je dána další operace násobení, které je lineární, t.j. pro .</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ar" >جبر على حقل في الرياضيات، هو فضاء متجهي مع ضرب اتجاهي اقتراني ثنائي خطي. وهذا يعني، أنه بنية جبرية مكونة من فضاء متجهي "V" جنبا إلى جنب مع عملية ثنائية مغلقة على الفضاء. حتى يتم اعتباره جبراً، يجب أن تكون هذه العملية V×V→V ملبية للبديهيات التوافقية الإضافية، مثل التوزيعية distributivity.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="de" >Eine Algebra über einem Körper , Algebra über oder -Algebra (früher auch als lineare Algebra bezeichnet) ist ein Vektorraum über einem Körper , der um eine mit der Vektorraumstruktur verträgliche Multiplikation erweitert wurde. Je nach Kontext wird dabei mitunter zusätzlich gefordert, dass die Multiplikation das Assoziativgesetz oder das Kommutativgesetz erfüllt oder dass die Algebra bezüglich der Multiplikation ein Einselement besitzt.</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="eo" >Alĝebro (aŭ algebrao) estas algebra strukturo, kiu estas kaj ringo kaj vektora spaco. * : modulo aŭ vektora spaco kaj ankaŭ kiel multipliko * Asocieca alĝebro: alĝebro kies multipliko estas asocia * : asocieca alĝebro, kies multipliko estas komuta * Grupa alĝebro: asocieca alĝebro difinita per grupo * Alĝebro de Lie: ne-asocieca alĝebro grava en geometrio</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="es" >En matemáticas, un álgebra sobre un cuerpo K, o una K-álgebra, es un espacio vectorial A sobre K equipado con una noción compatible de multiplicación de elementos de A. Una generalización directa admite que K sea cualquier anillo conmutativo.Algunos autores utilizan el término "álgebra" como sinónimo de "álgebra asociativa".</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="fr" >En mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : 1. * (A, +, ·) est un espace vectoriel sur K ; 2. * la loi × est définie de A × A dans A (loi de composition interne) ; 3. * la loi × est bilinéaire.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="it" >In matematica, per algebra su campo si intende uno spazio vettoriale definito su un campo e munito di un'operazione binaria "compatibile" con le altre leggi di composizione (o moltiplicazione) degli elementi dello spazio. Una generalizzazione diretta riguarda la possibilità di servirsi, invece che di un campo di base, di un qualsiasi anello commutativo.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >数学において体上の代数あるいは多元環(たげんかん、英: algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるスカラー倍とを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pl" >Algebra nad ciałem (algebra liniowa) – przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny).</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="nl" >Een algebra is een uitbreiding van het begrip vectorruimte uit de lineaire algebra. In een algebra is, naast de optelling en de scalaire vermenigvuldiging, ook een binaire operatie, formeel als vermenigvuldiging aangeduid, tussen de elementen (vectoren) gedefineerd.</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="sv" >En algebra över en kropp är inom matematik en algebraisk struktur, mer specifikt ett vektorrum med en operation som liknar multiplikation.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pt" >Uma álgebra sobre um corpo é um espaço vetorial com uma operação binária de multiplicação de vetores, que tem a propriedade distributiva sobre a soma de vetores e associativa quando faz sentido. Explicitamente: Seja A um espaço vetorial sobre um corpo K. Se existe uma operação binária de A x A em A (chamada de multiplicação de vetores), A será uma álgebra sobre o corpo K quando: (distributividade) Quando a multiplicação de vetores é associativa: temos uma álgebra associativa. Nesse caso, o conjunto de vetores A com suas operações de soma e produto forma um anel.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="uk" >Алгебра над полем — векторний простір, на якому введено білінійне множення узгоджене з структурою векторного простору. Алгебра над полем є одночасно векторним простором і кільцем, і ці структури узгоджені.Узагальненням цього поняття є алгебра над кільцем, яка, взагалі кажучи, є не векторним простором, а модулем над деяким кільцем.</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="zh" >域上的代数(algebra over a field)或域代数,一般可简称为代数,是在向量空间的基础上定义了一个双线性的乘法运算而构成的代数结构。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ca" >En matemàtiques, un àlgebra sobre un cos és un espai vectorial proveït amb un producte vectorial bilineal. És a dir, ésuna estructura algebraica que consta d'un espai vectorial juntament amb una operació, normalment anomenada multiplicació, que combina dos vectors qualssevol per formar un tercer vector; per qualificar-se com a àlgebra, aquesta multiplicació ha de satisfer certs axiomes de compatibilitat amb l'estructura espacial vectorial donada, com la propietat distributiva. En altres paraules, una àlgebra sobre un cos és un conjunt juntament amb operacions de multiplicació, suma, i multiplicació per un escalar del cos.</span><small> (ca)</small></span></li> <li><span class="literal"><span property="rdfs:comment" lang="en" >In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="in" >Dalam matematika, aljabar atas medan (disebut juga aljabar) adalah ruang vektor kelengkapan dengan hasil kali. Jadi, aljabar adalah struktur aljabar yang terdiri dari himpunan bersama dengan operasi perkalian dan penjumlahan dan perkalian skalar oleh elemen medan dan memenuhi aksioma yang diimplikasikan oleh "ruang vektor" dan "bilinear". Banyak penulis menggunakan istilah aljabar yang berarti aljabar asosiatif, atau aljabar asosiatif unital, atau dalam beberapa mata pelajaran seperti geometri aljabar, aljabar komutatif asosiatif unital.</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ru" >Алгебра над полем — это векторное пространство, снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.</span><small> (ru)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ar" >جبر على حقل</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ca" >Àlgebra sobre un cos</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="cs" >Algebra (struktura)</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="de" >Algebra über einem Körper</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="eo" >Alĝebro</span><small> (eo)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Algebra over a field</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="es" >Álgebra sobre un cuerpo</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="in" >Aljabar atas medan</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="fr" >Algèbre sur un corps</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="it" >Algebra su campo</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >体上の多元環</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="nl" >Algebra (structuur)</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pl" >Algebra nad ciałem</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pt" >Álgebra sobre um corpo</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ru" >Алгебра над полем</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="sv" >Algebra över en kropp</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="zh" >域上的代数</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="uk" >Алгебра над полем</span><small> (uk)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.02m5hd" href="http://rdf.freebase.com/ns/m.02m5hd"><small>freebase</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.01b6zb" href="http://rdf.freebase.com/ns/m.01b6zb"><small>freebase</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://yago-knowledge.org/resource/Algebra_over_a_field" href="http://yago-knowledge.org/resource/Algebra_over_a_field"><small>yago-res</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q1000660" href="http://www.wikidata.org/entity/Q1000660"><small>wikidata</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ar.dbpedia.org/resource/جبر_على_حقل" href="http://ar.dbpedia.org/resource/جبر_على_حقل"><small>dbpedia-ar</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bg.dbpedia.org/resource/Алгебра_над_поле" href="http://bg.dbpedia.org/resource/Алгебра_над_поле"><small>dbpedia-bg</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ca.dbpedia.org/resource/Àlgebra_sobre_un_cos" href="http://ca.dbpedia.org/resource/Àlgebra_sobre_un_cos"><small>dbpedia-ca</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cs.dbpedia.org/resource/Algebra_(struktura)" href="http://cs.dbpedia.org/resource/Algebra_(struktura)"><small>dbpedia-cs</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cv.dbpedia.org/resource/Алгебра_(уй_çийĕн)" href="http://cv.dbpedia.org/resource/Алгебра_(уй_çийĕн)">http://cv.dbpedia.org/resource/Алгебра_(уй_çийĕн)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://de.dbpedia.org/resource/Algebra_über_einem_Körper" href="http://de.dbpedia.org/resource/Algebra_über_einem_Körper"><small>dbpedia-de</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://eo.dbpedia.org/resource/Alĝebro" href="http://eo.dbpedia.org/resource/Alĝebro"><small>dbpedia-eo</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://es.dbpedia.org/resource/Álgebra_sobre_un_cuerpo" href="http://es.dbpedia.org/resource/Álgebra_sobre_un_cuerpo"><small>dbpedia-es</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fa.dbpedia.org/resource/جبر_روی_یک_میدان" href="http://fa.dbpedia.org/resource/جبر_روی_یک_میدان"><small>dbpedia-fa</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fr.dbpedia.org/resource/Algèbre_sur_un_corps" href="http://fr.dbpedia.org/resource/Algèbre_sur_un_corps"><small>dbpedia-fr</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ia.dbpedia.org/resource/Algebra_super_un_corpore" href="http://ia.dbpedia.org/resource/Algebra_super_un_corpore">http://ia.dbpedia.org/resource/Algebra_super_un_corpore</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://id.dbpedia.org/resource/Aljabar_atas_medan" href="http://id.dbpedia.org/resource/Aljabar_atas_medan"><small>dbpedia-id</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://it.dbpedia.org/resource/Algebra_su_campo" href="http://it.dbpedia.org/resource/Algebra_su_campo"><small>dbpedia-it</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/体上の多元環" href="http://ja.dbpedia.org/resource/体上の多元環"><small>dbpedia-ja</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nl.dbpedia.org/resource/Algebra_(structuur)" href="http://nl.dbpedia.org/resource/Algebra_(structuur)"><small>dbpedia-nl</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nn.dbpedia.org/resource/Algebra_over_ein_kropp" href="http://nn.dbpedia.org/resource/Algebra_over_ein_kropp"><small>dbpedia-nn</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pl.dbpedia.org/resource/Algebra_nad_ciałem" href="http://pl.dbpedia.org/resource/Algebra_nad_ciałem"><small>dbpedia-pl</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pt.dbpedia.org/resource/Álgebra_sobre_um_corpo" href="http://pt.dbpedia.org/resource/Álgebra_sobre_um_corpo"><small>dbpedia-pt</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ro.dbpedia.org/resource/Algebră_peste_un_corp" href="http://ro.dbpedia.org/resource/Algebră_peste_un_corp"><small>dbpedia-ro</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ru.dbpedia.org/resource/Алгебра_над_полем" href="http://ru.dbpedia.org/resource/Алгебра_над_полем"><small>dbpedia-ru</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sv.dbpedia.org/resource/Algebra_över_en_kropp" href="http://sv.dbpedia.org/resource/Algebra_över_en_kropp"><small>dbpedia-sv</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uk.dbpedia.org/resource/Алгебра_над_полем" href="http://uk.dbpedia.org/resource/Алгебра_над_полем"><small>dbpedia-uk</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://vi.dbpedia.org/resource/Đại_số_trên_một_trường" href="http://vi.dbpedia.org/resource/Đại_số_trên_một_trường"><small>dbpedia-vi</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://zh.dbpedia.org/resource/域上的代数" href="http://zh.dbpedia.org/resource/域上的代数"><small>dbpedia-zh</small>:Algebra over a field</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/6m7N" href="https://global.dbpedia.org/id/6m7N">https://global.dbpedia.org/id/6m7N</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Algebra_over_a_field?oldid=1095286021&ns=0" href="http://en.wikipedia.org/wiki/Algebra_over_a_field?oldid=1095286021&ns=0"><small>wikipedia-en</small>:Algebra_over_a_field?oldid=1095286021&ns=0</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Algebra_over_a_field" href="http://en.wikipedia.org/wiki/Algebra_over_a_field"><small>wikipedia-en</small>:Algebra_over_a_field</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageDisambiguates"><small>dbo:</small>wikiPageDisambiguates</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageDisambiguates" resource="http://dbpedia.org/resource/Algebra_(disambiguation)" href="http://dbpedia.org/resource/Algebra_(disambiguation)"><small>dbr</small>:Algebra_(disambiguation)</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebra_(ring_theory)" href="http://dbpedia.org/resource/Algebra_(ring_theory)"><small>dbr</small>:Algebra_(ring_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Unital_algebra" href="http://dbpedia.org/resource/Unital_algebra"><small>dbr</small>:Unital_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebra_over_a_ring" href="http://dbpedia.org/resource/Algebra_over_a_ring"><small>dbr</small>:Algebra_over_a_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebras_over_a_field" href="http://dbpedia.org/resource/Algebras_over_a_field"><small>dbr</small>:Algebras_over_a_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Comeasuring" href="http://dbpedia.org/resource/Comeasuring"><small>dbr</small>:Comeasuring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebra_over_a_commutative_ring" href="http://dbpedia.org/resource/Algebra_over_a_commutative_ring"><small>dbr</small>:Algebra_over_a_commutative_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebras" href="http://dbpedia.org/resource/Algebras"><small>dbr</small>:Algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/An_algebra" href="http://dbpedia.org/resource/An_algebra"><small>dbr</small>:An_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Distributive_algebra" href="http://dbpedia.org/resource/Distributive_algebra"><small>dbr</small>:Distributive_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebra_(module)" href="http://dbpedia.org/resource/Algebra_(module)"><small>dbr</small>:Algebra_(module)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebra_over_the_complex_numbers" href="http://dbpedia.org/resource/Algebra_over_the_complex_numbers"><small>dbr</small>:Algebra_over_the_complex_numbers</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/K-algebra" href="http://dbpedia.org/resource/K-algebra"><small>dbr</small>:K-algebra</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rudolf_Lipschitz" href="http://dbpedia.org/resource/Rudolf_Lipschitz"><small>dbr</small>:Rudolf_Lipschitz</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Endomorphism_ring" href="http://dbpedia.org/resource/Endomorphism_ring"><small>dbr</small>:Endomorphism_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_abstract_algebra_topics" href="http://dbpedia.org/resource/List_of_abstract_algebra_topics"><small>dbr</small>:List_of_abstract_algebra_topics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monoid_(category_theory)" href="http://dbpedia.org/resource/Monoid_(category_theory)"><small>dbr</small>:Monoid_(category_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mutation_(algebra)" href="http://dbpedia.org/resource/Mutation_(algebra)"><small>dbr</small>:Mutation_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Noether_normalization_lemma" href="http://dbpedia.org/resource/Noether_normalization_lemma"><small>dbr</small>:Noether_normalization_lemma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ran_space" href="http://dbpedia.org/resource/Ran_space"><small>dbr</small>:Ran_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/One-dimensional_space" href="http://dbpedia.org/resource/One-dimensional_space"><small>dbr</small>:One-dimensional_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Yang–Baxter_equation" href="http://dbpedia.org/resource/Yang–Baxter_equation"><small>dbr</small>:Yang–Baxter_equation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Projective_line_over_a_ring" href="http://dbpedia.org/resource/Projective_line_over_a_ring"><small>dbr</small>:Projective_line_over_a_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector-valued_differential_form" href="http://dbpedia.org/resource/Vector-valued_differential_form"><small>dbr</small>:Vector-valued_differential_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bertram_Kostant" href="http://dbpedia.org/resource/Bertram_Kostant"><small>dbr</small>:Bertram_Kostant</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bialgebra" href="http://dbpedia.org/resource/Bialgebra"><small>dbr</small>:Bialgebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_(ring_theory)" href="http://dbpedia.org/resource/Algebra_(ring_theory)"><small>dbr</small>:Algebra_(ring_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_bundle" href="http://dbpedia.org/resource/Algebra_bundle"><small>dbr</small>:Algebra_bundle</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_homomorphism" href="http://dbpedia.org/resource/Algebra_homomorphism"><small>dbr</small>:Algebra_homomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_extension" href="http://dbpedia.org/resource/Algebraic_extension"><small>dbr</small>:Algebraic_extension</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_representation" href="http://dbpedia.org/resource/Algebraic_representation"><small>dbr</small>:Algebraic_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_structure" href="http://dbpedia.org/resource/Algebraic_structure"><small>dbr</small>:Algebraic_structure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebroid" href="http://dbpedia.org/resource/Algebroid"><small>dbr</small>:Algebroid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Antihomomorphism" href="http://dbpedia.org/resource/Antihomomorphism"><small>dbr</small>:Antihomomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Applications_of_dual_quaternions_to_2D_geometry" href="http://dbpedia.org/resource/Applications_of_dual_quaternions_to_2D_geometry"><small>dbr</small>:Applications_of_dual_quaternions_to_2D_geometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homomorphism" href="http://dbpedia.org/resource/Homomorphism"><small>dbr</small>:Homomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/John_von_Neumann" href="http://dbpedia.org/resource/John_von_Neumann"><small>dbr</small>:John_von_Neumann</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jordan_algebra" href="http://dbpedia.org/resource/Jordan_algebra"><small>dbr</small>:Jordan_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_mathematical_jargon" href="http://dbpedia.org/resource/List_of_mathematical_jargon"><small>dbr</small>:List_of_mathematical_jargon</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_numbers" href="http://dbpedia.org/resource/List_of_numbers"><small>dbr</small>:List_of_numbers</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pauli_matrices" href="http://dbpedia.org/resource/Pauli_matrices"><small>dbr</small>:Pauli_matrices</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Richard_Borcherds" href="http://dbpedia.org/resource/Richard_Borcherds"><small>dbr</small>:Richard_Borcherds</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Unbounded_operator" href="http://dbpedia.org/resource/Unbounded_operator"><small>dbr</small>:Unbounded_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Unital_algebra" href="http://dbpedia.org/resource/Unital_algebra"><small>dbr</small>:Unital_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_(mathematics_and_physics)" href="http://dbpedia.org/resource/Vector_(mathematics_and_physics)"><small>dbr</small>:Vector_(mathematics_and_physics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Derivation_(differential_algebra)" href="http://dbpedia.org/resource/Derivation_(differential_algebra)"><small>dbr</small>:Derivation_(differential_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/E8_lattice" href="http://dbpedia.org/resource/E8_lattice"><small>dbr</small>:E8_lattice</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Invariant_subspace" href="http://dbpedia.org/resource/Invariant_subspace"><small>dbr</small>:Invariant_subspace</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jacobson_radical" href="http://dbpedia.org/resource/Jacobson_radical"><small>dbr</small>:Jacobson_radical</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jan_Mikusiński" href="http://dbpedia.org/resource/Jan_Mikusiński"><small>dbr</small>:Jan_Mikusiński</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_algebra" href="http://dbpedia.org/resource/Operator_algebra"><small>dbr</small>:Operator_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lie-admissible_algebra" href="http://dbpedia.org/resource/Lie-admissible_algebra"><small>dbr</small>:Lie-admissible_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lie_algebra_representation" href="http://dbpedia.org/resource/Lie_algebra_representation"><small>dbr</small>:Lie_algebra_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lie_derivative" href="http://dbpedia.org/resource/Lie_derivative"><small>dbr</small>:Lie_derivative</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_inventions_and_discoveries_by_women" href="http://dbpedia.org/resource/List_of_inventions_and_discoveries_by_women"><small>dbr</small>:List_of_inventions_and_discoveries_by_women</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Number_line" href="http://dbpedia.org/resource/Number_line"><small>dbr</small>:Number_line</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ordered_exponential" href="http://dbpedia.org/resource/Ordered_exponential"><small>dbr</small>:Ordered_exponential</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quadratic-linear_algebra" href="http://dbpedia.org/resource/Quadratic-linear_algebra"><small>dbr</small>:Quadratic-linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/'t_Hooft_loop" href="http://dbpedia.org/resource/'t_Hooft_loop"><small>dbr</small>:'t_Hooft_loop</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_property" href="http://dbpedia.org/resource/Commutative_property"><small>dbr</small>:Commutative_property</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complex_analytic_variety" href="http://dbpedia.org/resource/Complex_analytic_variety"><small>dbr</small>:Complex_analytic_variety</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cross_product" href="http://dbpedia.org/resource/Cross_product"><small>dbr</small>:Cross_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematical_formulation_of_the_Standard_Model" href="http://dbpedia.org/resource/Mathematical_formulation_of_the_Standard_Model"><small>dbr</small>:Mathematical_formulation_of_the_Standard_Model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chevalley_basis" href="http://dbpedia.org/resource/Chevalley_basis"><small>dbr</small>:Chevalley_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/General_topology" href="http://dbpedia.org/resource/General_topology"><small>dbr</small>:General_topology</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generalizations_of_the_derivative" href="http://dbpedia.org/resource/Generalizations_of_the_derivative"><small>dbr</small>:Generalizations_of_the_derivative</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generalized_trigonometry" href="http://dbpedia.org/resource/Generalized_trigonometry"><small>dbr</small>:Generalized_trigonometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generic_matrix_ring" href="http://dbpedia.org/resource/Generic_matrix_ring"><small>dbr</small>:Generic_matrix_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Norm_(mathematics)" href="http://dbpedia.org/resource/Norm_(mathematics)"><small>dbr</small>:Norm_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_product_expansion" href="http://dbpedia.org/resource/Operator_product_expansion"><small>dbr</small>:Operator_product_expansion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_theory" href="http://dbpedia.org/resource/Operator_theory"><small>dbr</small>:Operator_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transpose_of_a_linear_map" href="http://dbpedia.org/resource/Transpose_of_a_linear_map"><small>dbr</small>:Transpose_of_a_linear_map</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quasi-bialgebra" href="http://dbpedia.org/resource/Quasi-bialgebra"><small>dbr</small>:Quasi-bialgebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_pseudo-telepathy" href="http://dbpedia.org/resource/Quantum_pseudo-telepathy"><small>dbr</small>:Quantum_pseudo-telepathy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternionic_manifold" href="http://dbpedia.org/resource/Quaternionic_manifold"><small>dbr</small>:Quaternionic_manifold</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Clifford_algebra" href="http://dbpedia.org/resource/Clifford_algebra"><small>dbr</small>:Clifford_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Emmy_Noether" href="http://dbpedia.org/resource/Emmy_Noether"><small>dbr</small>:Emmy_Noether</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_invariant_theory" href="http://dbpedia.org/resource/Geometric_invariant_theory"><small>dbr</small>:Geometric_invariant_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Giovanni_Battista_Rizza" href="http://dbpedia.org/resource/Giovanni_Battista_Rizza"><small>dbr</small>:Giovanni_Battista_Rizza</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_Lie_groups_and_Lie_algebras" href="http://dbpedia.org/resource/Glossary_of_Lie_groups_and_Lie_algebras"><small>dbr</small>:Glossary_of_Lie_groups_and_Lie_algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_areas_of_mathematics" href="http://dbpedia.org/resource/Glossary_of_areas_of_mathematics"><small>dbr</small>:Glossary_of_areas_of_mathematics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bounded_type_(mathematics)" href="http://dbpedia.org/resource/Bounded_type_(mathematics)"><small>dbr</small>:Bounded_type_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Moshe_Goldberg" href="http://dbpedia.org/resource/Moshe_Goldberg"><small>dbr</small>:Moshe_Goldberg</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Conformal_bootstrap" href="http://dbpedia.org/resource/Conformal_bootstrap"><small>dbr</small>:Conformal_bootstrap</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Correspondence_theorem" href="http://dbpedia.org/resource/Correspondence_theorem"><small>dbr</small>:Correspondence_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Laguerre_transformations" href="http://dbpedia.org/resource/Laguerre_transformations"><small>dbr</small>:Laguerre_transformations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Normed_algebra" href="http://dbpedia.org/resource/Normed_algebra"><small>dbr</small>:Normed_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Order_(ring_theory)" href="http://dbpedia.org/resource/Order_(ring_theory)"><small>dbr</small>:Order_(ring_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ordered_algebra" href="http://dbpedia.org/resource/Ordered_algebra"><small>dbr</small>:Ordered_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bergman's_diamond_lemma" href="http://dbpedia.org/resource/Bergman's_diamond_lemma"><small>dbr</small>:Bergman's_diamond_lemma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Leonard_Eugene_Dickson" href="http://dbpedia.org/resource/Leonard_Eugene_Dickson"><small>dbr</small>:Leonard_Eugene_Dickson</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_algebra" href="http://dbpedia.org/resource/Linear_algebra"><small>dbr</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Locally_nilpotent_derivation" href="http://dbpedia.org/resource/Locally_nilpotent_derivation"><small>dbr</small>:Locally_nilpotent_derivation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sobolev_space" href="http://dbpedia.org/resource/Sobolev_space"><small>dbr</small>:Sobolev_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stone–Weierstrass_theorem" href="http://dbpedia.org/resource/Stone–Weierstrass_theorem"><small>dbr</small>:Stone–Weierstrass_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Clifford_bundle" href="http://dbpedia.org/resource/Clifford_bundle"><small>dbr</small>:Clifford_bundle</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Closed_monoidal_category" href="http://dbpedia.org/resource/Closed_monoidal_category"><small>dbr</small>:Closed_monoidal_category</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cluster_algebra" href="http://dbpedia.org/resource/Cluster_algebra"><small>dbr</small>:Cluster_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutant-associative_algebra" href="http://dbpedia.org/resource/Commutant-associative_algebra"><small>dbr</small>:Commutant-associative_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_magma" href="http://dbpedia.org/resource/Commutative_magma"><small>dbr</small>:Commutative_magma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Compact_operator" href="http://dbpedia.org/resource/Compact_operator"><small>dbr</small>:Compact_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composition_algebra" href="http://dbpedia.org/resource/Composition_algebra"><small>dbr</small>:Composition_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zero_object_(algebra)" href="http://dbpedia.org/resource/Zero_object_(algebra)"><small>dbr</small>:Zero_object_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_of_a_real_variable" href="http://dbpedia.org/resource/Function_of_a_real_variable"><small>dbr</small>:Function_of_a_real_variable</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Koszul_algebra" href="http://dbpedia.org/resource/Koszul_algebra"><small>dbr</small>:Koszul_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Krull–Schmidt_category" href="http://dbpedia.org/resource/Krull–Schmidt_category"><small>dbr</small>:Krull–Schmidt_category</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/G-algebra" href="http://dbpedia.org/resource/G-algebra"><small>dbr</small>:G-algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Malcev-admissible_algebra" href="http://dbpedia.org/resource/Malcev-admissible_algebra"><small>dbr</small>:Malcev-admissible_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Step_function" href="http://dbpedia.org/resource/Step_function"><small>dbr</small>:Step_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Structure_(mathematical_logic)" href="http://dbpedia.org/resource/Structure_(mathematical_logic)"><small>dbr</small>:Structure_(mathematical_logic)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Structure_constants" href="http://dbpedia.org/resource/Structure_constants"><small>dbr</small>:Structure_constants</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain" href="http://dbpedia.org/resource/Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain"><small>dbr</small>:Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Substructure_(mathematics)" href="http://dbpedia.org/resource/Substructure_(mathematics)"><small>dbr</small>:Substructure_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_representation" href="http://dbpedia.org/resource/Matrix_representation"><small>dbr</small>:Matrix_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Automorphism" href="http://dbpedia.org/resource/Automorphism"><small>dbr</small>:Automorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Banach_space" href="http://dbpedia.org/resource/Banach_space"><small>dbr</small>:Banach_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cayley–Dickson_construction" href="http://dbpedia.org/resource/Cayley–Dickson_construction"><small>dbr</small>:Cayley–Dickson_construction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Three-dimensional_space" href="http://dbpedia.org/resource/Three-dimensional_space"><small>dbr</small>:Three-dimensional_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Disk_algebra" href="http://dbpedia.org/resource/Disk_algebra"><small>dbr</small>:Disk_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Distributive_property" href="http://dbpedia.org/resource/Distributive_property"><small>dbr</small>:Distributive_property</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Division_algebra" href="http://dbpedia.org/resource/Division_algebra"><small>dbr</small>:Division_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_quaternion" href="http://dbpedia.org/resource/Dual_quaternion"><small>dbr</small>:Dual_quaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Haag–Łopuszański–Sohnius_theorem" href="http://dbpedia.org/resource/Haag–Łopuszański–Sohnius_theorem"><small>dbr</small>:Haag–Łopuszański–Sohnius_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hasse_invariant_of_an_algebra" href="http://dbpedia.org/resource/Hasse_invariant_of_an_algebra"><small>dbr</small>:Hasse_invariant_of_an_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hecke_algebra" href="http://dbpedia.org/resource/Hecke_algebra"><small>dbr</small>:Hecke_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hecke_algebra_of_a_finite_group" href="http://dbpedia.org/resource/Hecke_algebra_of_a_finite_group"><small>dbr</small>:Hecke_algebra_of_a_finite_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Irreducible_representation" href="http://dbpedia.org/resource/Irreducible_representation"><small>dbr</small>:Irreducible_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearly_disjoint" href="http://dbpedia.org/resource/Linearly_disjoint"><small>dbr</small>:Linearly_disjoint</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory_of_finite_groups" href="http://dbpedia.org/resource/Representation_theory_of_finite_groups"><small>dbr</small>:Representation_theory_of_finite_groups</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Abraham_Adrian_Albert" href="http://dbpedia.org/resource/Abraham_Adrian_Albert"><small>dbr</small>:Abraham_Adrian_Albert</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_space" href="http://dbpedia.org/resource/Affine_space"><small>dbr</small>:Affine_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Alex_F._T._W._Rosenberg" href="http://dbpedia.org/resource/Alex_F._T._W._Rosenberg"><small>dbr</small>:Alex_F._T._W._Rosenberg</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra" href="http://dbpedia.org/resource/Algebra"><small>dbr</small>:Algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_over_a_ring" href="http://dbpedia.org/resource/Algebra_over_a_ring"><small>dbr</small>:Algebra_over_a_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebras_over_a_field" href="http://dbpedia.org/resource/Algebras_over_a_field"><small>dbr</small>:Algebras_over_a_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_number" href="http://dbpedia.org/resource/Dual_number"><small>dbr</small>:Dual_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_space" href="http://dbpedia.org/resource/Dual_space"><small>dbr</small>:Dual_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Alternative_algebra" href="http://dbpedia.org/resource/Alternative_algebra"><small>dbr</small>:Alternative_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Even_and_odd_functions" href="http://dbpedia.org/resource/Even_and_odd_functions"><small>dbr</small>:Even_and_odd_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Factor_system" href="http://dbpedia.org/resource/Factor_system"><small>dbr</small>:Factor_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_of_sets" href="http://dbpedia.org/resource/Field_of_sets"><small>dbr</small>:Field_of_sets</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Four-dimensional_space" href="http://dbpedia.org/resource/Four-dimensional_space"><small>dbr</small>:Four-dimensional_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Brauer_group" href="http://dbpedia.org/resource/Brauer_group"><small>dbr</small>:Brauer_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Non-associative_algebra" href="http://dbpedia.org/resource/Non-associative_algebra"><small>dbr</small>:Non-associative_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Oswald_Teichmüller" href="http://dbpedia.org/resource/Oswald_Teichmüller"><small>dbr</small>:Oswald_Teichmüller</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cellular_algebra" href="http://dbpedia.org/resource/Cellular_algebra"><small>dbr</small>:Cellular_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Centralizer_and_normalizer" href="http://dbpedia.org/resource/Centralizer_and_normalizer"><small>dbr</small>:Centralizer_and_normalizer</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_(mathematics)" href="http://dbpedia.org/resource/Differential_(mathematics)"><small>dbr</small>:Differential_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_poset" href="http://dbpedia.org/resource/Differential_poset"><small>dbr</small>:Differential_poset</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension_(vector_space)" href="http://dbpedia.org/resource/Dimension_(vector_space)"><small>dbr</small>:Dimension_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Direct_limit" href="http://dbpedia.org/resource/Direct_limit"><small>dbr</small>:Direct_limit</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Direct_sum_of_modules" href="http://dbpedia.org/resource/Direct_sum_of_modules"><small>dbr</small>:Direct_sum_of_modules</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dirichlet_space" href="http://dbpedia.org/resource/Dirichlet_space"><small>dbr</small>:Dirichlet_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Graph_isomorphism_problem" href="http://dbpedia.org/resource/Graph_isomorphism_problem"><small>dbr</small>:Graph_isomorphism_problem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grassmann_number" href="http://dbpedia.org/resource/Grassmann_number"><small>dbr</small>:Grassmann_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hironaka_decomposition" href="http://dbpedia.org/resource/Hironaka_decomposition"><small>dbr</small>:Hironaka_decomposition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/History_of_mathematical_notation" href="http://dbpedia.org/resource/History_of_mathematical_notation"><small>dbr</small>:History_of_mathematical_notation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/History_of_mathematics" href="http://dbpedia.org/resource/History_of_mathematics"><small>dbr</small>:History_of_mathematics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/History_of_quaternions" href="http://dbpedia.org/resource/History_of_quaternions"><small>dbr</small>:History_of_quaternions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quadratic_form" href="http://dbpedia.org/resource/Quadratic_form"><small>dbr</small>:Quadratic_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Regular_representation" href="http://dbpedia.org/resource/Regular_representation"><small>dbr</small>:Regular_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_(mathematics)" href="http://dbpedia.org/resource/Ring_(mathematics)"><small>dbr</small>:Ring_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_theory" href="http://dbpedia.org/resource/Ring_theory"><small>dbr</small>:Ring_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_(mathematics)" href="http://dbpedia.org/resource/Group_(mathematics)"><small>dbr</small>:Group_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hermann_Grassmann" href="http://dbpedia.org/resource/Hermann_Grassmann"><small>dbr</small>:Hermann_Grassmann</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_limit" href="http://dbpedia.org/resource/Inverse_limit"><small>dbr</small>:Inverse_limit</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product" href="http://dbpedia.org/resource/Tensor_product"><small>dbr</small>:Tensor_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hyperbolic_quaternion" href="http://dbpedia.org/resource/Hyperbolic_quaternion"><small>dbr</small>:Hyperbolic_quaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hypercomplex_analysis" href="http://dbpedia.org/resource/Hypercomplex_analysis"><small>dbr</small>:Hypercomplex_analysis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hypercomplex_number" href="http://dbpedia.org/resource/Hypercomplex_number"><small>dbr</small>:Hypercomplex_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hyperreal_number" href="http://dbpedia.org/resource/Hyperreal_number"><small>dbr</small>:Hyperreal_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Triangle_center" href="http://dbpedia.org/resource/Triangle_center"><small>dbr</small>:Triangle_center</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quasinorm" href="http://dbpedia.org/resource/Quasinorm"><small>dbr</small>:Quasinorm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Superreal_number" href="http://dbpedia.org/resource/Superreal_number"><small>dbr</small>:Superreal_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Abelian_group" href="http://dbpedia.org/resource/Abelian_group"><small>dbr</small>:Abelian_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Abstract_algebra" href="http://dbpedia.org/resource/Abstract_algebra"><small>dbr</small>:Abstract_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jewish_culture" href="http://dbpedia.org/resource/Jewish_culture"><small>dbr</small>:Jewish_culture</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Karl_Menger" href="http://dbpedia.org/resource/Karl_Menger"><small>dbr</small>:Karl_Menger</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bicommutant" href="http://dbpedia.org/resource/Bicommutant"><small>dbr</small>:Bicommutant</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bicomplex_number" href="http://dbpedia.org/resource/Bicomplex_number"><small>dbr</small>:Bicomplex_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biquaternion" href="http://dbpedia.org/resource/Biquaternion"><small>dbr</small>:Biquaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coherent_algebra" href="http://dbpedia.org/resource/Coherent_algebra"><small>dbr</small>:Coherent_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coleman–Mandula_theorem" href="http://dbpedia.org/resource/Coleman–Mandula_theorem"><small>dbr</small>:Coleman–Mandula_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product_of_algebras" href="http://dbpedia.org/resource/Tensor_product_of_algebras"><small>dbr</small>:Tensor_product_of_algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product_of_fields" href="http://dbpedia.org/resource/Tensor_product_of_fields"><small>dbr</small>:Tensor_product_of_fields</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tor_functor" href="http://dbpedia.org/resource/Tor_functor"><small>dbr</small>:Tor_functor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weight_(representation_theory)" href="http://dbpedia.org/resource/Weight_(representation_theory)"><small>dbr</small>:Weight_(representation_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_algebra" href="http://dbpedia.org/resource/Vector_algebra"><small>dbr</small>:Vector_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Comeasuring" href="http://dbpedia.org/resource/Comeasuring"><small>dbr</small>:Comeasuring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Split-biquaternion" href="http://dbpedia.org/resource/Split-biquaternion"><small>dbr</small>:Split-biquaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differentiable_manifold" href="http://dbpedia.org/resource/Differentiable_manifold"><small>dbr</small>:Differentiable_manifold</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_algebra" href="http://dbpedia.org/resource/Differential_algebra"><small>dbr</small>:Differential_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension" href="http://dbpedia.org/resource/Dimension"><small>dbr</small>:Dimension</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dirac_algebra" href="http://dbpedia.org/resource/Dirac_algebra"><small>dbr</small>:Dirac_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Artinian_ring" href="http://dbpedia.org/resource/Artinian_ring"><small>dbr</small>:Artinian_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Associative_algebra" href="http://dbpedia.org/resource/Associative_algebra"><small>dbr</small>:Associative_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Augmentation_(algebra)" href="http://dbpedia.org/resource/Augmentation_(algebra)"><small>dbr</small>:Augmentation_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Automatic_differentiation" href="http://dbpedia.org/resource/Automatic_differentiation"><small>dbr</small>:Automatic_differentiation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Automorphism_group" href="http://dbpedia.org/resource/Automorphism_group"><small>dbr</small>:Automorphism_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/C*-algebra" href="http://dbpedia.org/resource/C*-algebra"><small>dbr</small>:C*-algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Poisson_bracket" href="http://dbpedia.org/resource/Poisson_bracket"><small>dbr</small>:Poisson_bracket</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Socle_(mathematics)" href="http://dbpedia.org/resource/Socle_(mathematics)"><small>dbr</small>:Socle_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Solomon_Mikhlin" href="http://dbpedia.org/resource/Solomon_Mikhlin"><small>dbr</small>:Solomon_Mikhlin</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Split-complex_number" href="http://dbpedia.org/resource/Split-complex_number"><small>dbr</small>:Split-complex_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Split-quaternion" href="http://dbpedia.org/resource/Split-quaternion"><small>dbr</small>:Split-quaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Filtered_algebra" href="http://dbpedia.org/resource/Filtered_algebra"><small>dbr</small>:Filtered_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Free_independence" href="http://dbpedia.org/resource/Free_independence"><small>dbr</small>:Free_independence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Free_product" href="http://dbpedia.org/resource/Free_product"><small>dbr</small>:Free_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Griess_algebra" href="http://dbpedia.org/resource/Griess_algebra"><small>dbr</small>:Griess_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grothendieck_group" href="http://dbpedia.org/resource/Grothendieck_group"><small>dbr</small>:Grothendieck_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_Hopf_algebra" href="http://dbpedia.org/resource/Group_Hopf_algebra"><small>dbr</small>:Group_Hopf_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_ring" href="http://dbpedia.org/resource/Group_ring"><small>dbr</small>:Group_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Groupoid_algebra" href="http://dbpedia.org/resource/Groupoid_algebra"><small>dbr</small>:Groupoid_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Idun_Reiten" href="http://dbpedia.org/resource/Idun_Reiten"><small>dbr</small>:Idun_Reiten</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inner_automorphism" href="http://dbpedia.org/resource/Inner_automorphism"><small>dbr</small>:Inner_automorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_(disambiguation)" href="http://dbpedia.org/resource/Algebra_(disambiguation)"><small>dbr</small>:Algebra_(disambiguation)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_over_a_commutative_ring" href="http://dbpedia.org/resource/Algebra_over_a_commutative_ring"><small>dbr</small>:Algebra_over_a_commutative_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebras" href="http://dbpedia.org/resource/Algebras"><small>dbr</small>:Algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Kleene_algebra" href="http://dbpedia.org/resource/Kleene_algebra"><small>dbr</small>:Kleene_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Octonion" href="http://dbpedia.org/resource/Octonion"><small>dbr</small>:Octonion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Okubo_algebra" href="http://dbpedia.org/resource/Okubo_algebra"><small>dbr</small>:Okubo_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Carmichael_number" href="http://dbpedia.org/resource/Carmichael_number"><small>dbr</small>:Carmichael_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_coordinate_space" href="http://dbpedia.org/resource/Real_coordinate_space"><small>dbr</small>:Real_coordinate_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Seminorm" href="http://dbpedia.org/resource/Seminorm"><small>dbr</small>:Seminorm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Klein's_Encyclopedia_of_Mathematical_Sciences" href="http://dbpedia.org/resource/Klein's_Encyclopedia_of_Mathematical_Sciences"><small>dbr</small>:Klein's_Encyclopedia_of_Mathematical_Sciences</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Umbral_calculus" href="http://dbpedia.org/resource/Umbral_calculus"><small>dbr</small>:Umbral_calculus</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schur's_lemma" href="http://dbpedia.org/resource/Schur's_lemma"><small>dbr</small>:Schur's_lemma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Valya_algebra" href="http://dbpedia.org/resource/Valya_algebra"><small>dbr</small>:Valya_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Variety_(universal_algebra)" href="http://dbpedia.org/resource/Variety_(universal_algebra)"><small>dbr</small>:Variety_(universal_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Universal_C*-algebra" href="http://dbpedia.org/resource/Universal_C*-algebra"><small>dbr</small>:Universal_C*-algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_algebra" href="http://dbpedia.org/resource/Tensor_algebra"><small>dbr</small>:Tensor_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Triality" href="http://dbpedia.org/resource/Triality"><small>dbr</small>:Triality</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ext_functor" href="http://dbpedia.org/resource/Ext_functor"><small>dbr</small>:Ext_functor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Octonion_algebra" href="http://dbpedia.org/resource/Octonion_algebra"><small>dbr</small>:Octonion_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subfield_of_an_algebra" href="http://dbpedia.org/resource/Subfield_of_an_algebra"><small>dbr</small>:Subfield_of_an_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Examples_of_vector_spaces" href="http://dbpedia.org/resource/Examples_of_vector_spaces"><small>dbr</small>:Examples_of_vector_spaces</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Finite_type_invariant" href="http://dbpedia.org/resource/Finite_type_invariant"><small>dbr</small>:Finite_type_invariant</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Flag_(linear_algebra)" href="http://dbpedia.org/resource/Flag_(linear_algebra)"><small>dbr</small>:Flag_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Flag_algebra" href="http://dbpedia.org/resource/Flag_algebra"><small>dbr</small>:Flag_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nakayama_algebra" href="http://dbpedia.org/resource/Nakayama_algebra"><small>dbr</small>:Nakayama_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Universal_property" href="http://dbpedia.org/resource/Universal_property"><small>dbr</small>:Universal_property</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Regulated_function" href="http://dbpedia.org/resource/Regulated_function"><small>dbr</small>:Regulated_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Uniform_algebra" href="http://dbpedia.org/resource/Uniform_algebra"><small>dbr</small>:Uniform_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternion_algebra" href="http://dbpedia.org/resource/Quaternion_algebra"><small>dbr</small>:Quaternion_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Semisimple_representation" href="http://dbpedia.org/resource/Semisimple_representation"><small>dbr</small>:Semisimple_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_multiplication" href="http://dbpedia.org/resource/Vector_multiplication"><small>dbr</small>:Vector_multiplication</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Noncommutative_Jordan_algebra" href="http://dbpedia.org/resource/Noncommutative_Jordan_algebra"><small>dbr</small>:Noncommutative_Jordan_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Perfect_ring" href="http://dbpedia.org/resource/Perfect_ring"><small>dbr</small>:Perfect_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Power_associativity" href="http://dbpedia.org/resource/Power_associativity"><small>dbr</small>:Power_associativity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory_of_Hopf_algebras" href="http://dbpedia.org/resource/Representation_theory_of_Hopf_algebras"><small>dbr</small>:Representation_theory_of_Hopf_algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Simple_function" href="http://dbpedia.org/resource/Simple_function"><small>dbr</small>:Simple_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Outline_of_algebraic_structures" href="http://dbpedia.org/resource/Outline_of_algebraic_structures"><small>dbr</small>:Outline_of_algebraic_structures</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Overcategory" href="http://dbpedia.org/resource/Overcategory"><small>dbr</small>:Overcategory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Poisson_ring" href="http://dbpedia.org/resource/Poisson_ring"><small>dbr</small>:Poisson_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Smooth_algebra" href="http://dbpedia.org/resource/Smooth_algebra"><small>dbr</small>:Smooth_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sedenion" href="http://dbpedia.org/resource/Sedenion"><small>dbr</small>:Sedenion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subalgebra" href="http://dbpedia.org/resource/Subalgebra"><small>dbr</small>:Subalgebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Topological_algebra" href="http://dbpedia.org/resource/Topological_algebra"><small>dbr</small>:Topological_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sequence_transformation" href="http://dbpedia.org/resource/Sequence_transformation"><small>dbr</small>:Sequence_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_of_modular_forms" href="http://dbpedia.org/resource/Ring_of_modular_forms"><small>dbr</small>:Ring_of_modular_forms</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/An_algebra" href="http://dbpedia.org/resource/An_algebra"><small>dbr</small>:An_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Distributive_algebra" href="http://dbpedia.org/resource/Distributive_algebra"><small>dbr</small>:Distributive_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_(module)" href="http://dbpedia.org/resource/Algebra_(module)"><small>dbr</small>:Algebra_(module)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_over_the_complex_numbers" href="http://dbpedia.org/resource/Algebra_over_the_complex_numbers"><small>dbr</small>:Algebra_over_the_complex_numbers</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/K-algebra" href="http://dbpedia.org/resource/K-algebra"><small>dbr</small>:K-algebra</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/property/type"><small>dbp:</small>type</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbp:type" resource="http://dbpedia.org/resource/Octonion" href="http://dbpedia.org/resource/Octonion"><small>dbr</small>:Octonion</a></span></li> <li><span class="literal"><a class="uri" rev="dbp:type" resource="http://dbpedia.org/resource/Sedenion" href="http://dbpedia.org/resource/Sedenion"><small>dbr</small>:Sedenion</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Algebra_over_a_field" href="http://en.wikipedia.org/wiki/Algebra_over_a_field"><small>wikipedia-en</small>:Algebra_over_a_field</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>    <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a>     <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a>     <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>    <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Algebra_over_a_field">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>