CINXE.COM
About: Tensor product of fields
<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Tensor product of fields</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Tensor_product_of_fields.rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Tensor_product_of_fields.n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Tensor_product_of_fields.ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Tensor_product_of_fields.jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Tensor_product_of_fields.json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Tensor_product_of_fields.atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Tensor_product_of_fields.ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Tensor_product_of_fields" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Tensor_product_of_fields"/> <link rev="describedby" href="http://dbpedia.org/resource/Tensor_product_of_fields"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Tensor product of fields" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Tensor_product_of_fields" /> <meta property="og:image" content="/statics/images/dbpedia_logo.png" /> <meta property="og:description" content="In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Tensor_product_of_fields"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FTensor_product_of_fields.ttl&view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Tensor_product_of_fields.jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FTensor_product_of_fields%3E&format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Tensor_product_of_fields">Tensor product of fields</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://www.w3.org/2002/07/owl#Thing">Thing</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.</p> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:abstract" lang="en" >In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >抽象代数学において体論には直積(いうなれば「直積体」)が存在しない(二つの体の(それらを環と見做してとった)直積(直積環)が、それ自身体になることは無いから)。その一方で、たとえば体 K と L がより大きい体 M の部分体として与えられているときや体 K と L が両方より小さい体 N(例えば素体)の拡大体のときには、その二つの体 K と L を「併せる」ことがしばしば要求される。 そういった体の間で生じるすべての現象を議論するために利用できる、それら体上の構成として体のテンソル積 (tensor product of fields) は最善である。これは環としてのテンソル積(テンソル積環)であり(それ自体、環にはなるが)、体になることもあれば体の直積環となることも多い。その一方で、0 でない冪零元を含みうる(環の根基参照)。 体 K と L が同型な素体を持たなければ ―つまり標数が異なれば― ある体 M の共通の部分体では決してない。このことに対応するのは「体 K と L のテンソル積が自明環になる」ことである。(このようにテンソル積構成が潰れてしまうのは理論としてはつまらない内容しか含まないので、ここでは特に扱わない)</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pt" >Em álgebra, o produto tensorial de corpos, de dois corpos K e L incluídos em um terceiro corpo M é o menor sub-corpo de M contendo tanto K e L.</span><small> (pt)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageExternalLink"><small>dbo:</small>wikiPageExternalLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://www.jmilne.org/math/CourseNotes/ANT.pdf" href="http://www.jmilne.org/math/CourseNotes/ANT.pdf">http://www.jmilne.org/math/CourseNotes/ANT.pdf</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://abel.math.harvard.edu/archive/129_spring_04/ant/ant.pdf" href="http://abel.math.harvard.edu/archive/129_spring_04/ant/ant.pdf">http://abel.math.harvard.edu/archive/129_spring_04/ant/ant.pdf</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://mathoverflow.net/questions/8324/what-does-linearly-disjoint-mean-for-abstract-field-extensions" href="http://mathoverflow.net/questions/8324/what-does-linearly-disjoint-mean-for-abstract-field-extensions">http://mathoverflow.net/questions/8324/what-does-linearly-disjoint-mean-for-abstract-field-extensions</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://books.google.com/books%3Fid=B3T0BwAAQBAJ&pg=PA85" href="https://books.google.com/books%3Fid=B3T0BwAAQBAJ&pg=PA85">https://books.google.com/books%3Fid=B3T0BwAAQBAJ&pg=PA85</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >372240</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >10049</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1094355628</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Prime_field" href="http://dbpedia.org/resource/Prime_field"><small>dbr</small>:Prime_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Prime_ideal" href="http://dbpedia.org/resource/Prime_ideal"><small>dbr</small>:Prime_ideal</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Prime_power" href="http://dbpedia.org/resource/Prime_power"><small>dbr</small>:Prime_power</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Product_ring" href="http://dbpedia.org/resource/Product_ring"><small>dbr</small>:Product_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Totally_real_number_field" href="http://dbpedia.org/resource/Totally_real_number_field"><small>dbr</small>:Totally_real_number_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_over_a_field" href="http://dbpedia.org/resource/Algebra_over_a_field"><small>dbr</small>:Algebra_over_a_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integral_domain" href="http://dbpedia.org/resource/Integral_domain"><small>dbr</small>:Integral_domain</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complex_number" href="http://dbpedia.org/resource/Complex_number"><small>dbr</small>:Complex_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematics" href="http://dbpedia.org/resource/Mathematics"><small>dbr</small>:Mathematics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nilradical_of_a_ring" href="http://dbpedia.org/resource/Nilradical_of_a_ring"><small>dbr</small>:Nilradical_of_a_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Galois_theory" href="http://dbpedia.org/resource/Galois_theory"><small>dbr</small>:Galois_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Converse_(logic)" href="http://dbpedia.org/resource/Converse_(logic)"><small>dbr</small>:Converse_(logic)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Equivalence_class" href="http://dbpedia.org/resource/Equivalence_class"><small>dbr</small>:Equivalence_class</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Roots_of_unity" href="http://dbpedia.org/resource/Roots_of_unity"><small>dbr</small>:Roots_of_unity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composite_number" href="http://dbpedia.org/resource/Composite_number"><small>dbr</small>:Composite_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Kernel_(algebra)" href="http://dbpedia.org/resource/Kernel_(algebra)"><small>dbr</small>:Kernel_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearly_disjoint" href="http://dbpedia.org/resource/Linearly_disjoint"><small>dbr</small>:Linearly_disjoint</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/A_priori_and_a_posteriori" href="http://dbpedia.org/resource/A_priori_and_a_posteriori"><small>dbr</small>:A_priori_and_a_posteriori</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_number_theory" href="http://dbpedia.org/resource/Algebraic_number_theory"><small>dbr</small>:Algebraic_number_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cube_root" href="http://dbpedia.org/resource/Cube_root"><small>dbr</small>:Cube_root</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cyclotomic_field" href="http://dbpedia.org/resource/Cyclotomic_field"><small>dbr</small>:Cyclotomic_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Extension_of_scalars" href="http://dbpedia.org/resource/Extension_of_scalars"><small>dbr</small>:Extension_of_scalars</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(mathematics)" href="http://dbpedia.org/resource/Field_(mathematics)"><small>dbr</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Finite_field" href="http://dbpedia.org/resource/Finite_field"><small>dbr</small>:Finite_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nilpotent_element" href="http://dbpedia.org/resource/Nilpotent_element"><small>dbr</small>:Nilpotent_element</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/P-adic_number" href="http://dbpedia.org/resource/P-adic_number"><small>dbr</small>:P-adic_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rational_function" href="http://dbpedia.org/resource/Rational_function"><small>dbr</small>:Rational_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_(mathematics)" href="http://dbpedia.org/resource/Ring_(mathematics)"><small>dbr</small>:Ring_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isomorphic" href="http://dbpedia.org/resource/Isomorphic"><small>dbr</small>:Isomorphic</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product" href="http://dbpedia.org/resource/Tensor_product"><small>dbr</small>:Tensor_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Field_(mathematics)" href="http://dbpedia.org/resource/Category:Field_(mathematics)"><small>dbc</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Characteristic_(algebra)" href="http://dbpedia.org/resource/Characteristic_(algebra)"><small>dbr</small>:Characteristic_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product_of_algebras" href="http://dbpedia.org/resource/Tensor_product_of_algebras"><small>dbr</small>:Tensor_product_of_algebras</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tower_of_fields" href="http://dbpedia.org/resource/Tower_of_fields"><small>dbr</small>:Tower_of_fields</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Artinian_ring" href="http://dbpedia.org/resource/Artinian_ring"><small>dbr</small>:Artinian_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Splitting_field" href="http://dbpedia.org/resource/Splitting_field"><small>dbr</small>:Splitting_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_of_fractions" href="http://dbpedia.org/resource/Field_of_fractions"><small>dbr</small>:Field_of_fractions</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_theory_(mathematics)" href="http://dbpedia.org/resource/Field_theory_(mathematics)"><small>dbr</small>:Field_theory_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grothendieck's_Galois_theory" href="http://dbpedia.org/resource/Grothendieck's_Galois_theory"><small>dbr</small>:Grothendieck's_Galois_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ramification_(mathematics)" href="http://dbpedia.org/resource/Ramification_(mathematics)"><small>dbr</small>:Ramification_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rational_numbers" href="http://dbpedia.org/resource/Rational_numbers"><small>dbr</small>:Rational_numbers</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_number" href="http://dbpedia.org/resource/Real_number"><small>dbr</small>:Real_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Separable_extension" href="http://dbpedia.org/resource/Separable_extension"><small>dbr</small>:Separable_extension</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Up_to" href="http://dbpedia.org/resource/Up_to"><small>dbr</small>:Up_to</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Injective" href="http://dbpedia.org/resource/Injective"><small>dbr</small>:Injective</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Separable_polynomial" href="http://dbpedia.org/resource/Separable_polynomial"><small>dbr</small>:Separable_polynomial</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_homomorphism" href="http://dbpedia.org/resource/Ring_homomorphism"><small>dbr</small>:Ring_homomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Springer-Verlag" href="http://dbpedia.org/resource/Springer-Verlag"><small>dbr</small>:Springer-Verlag</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bijectivity" href="http://dbpedia.org/resource/Bijectivity"><small>dbr</small>:Bijectivity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Purely_inseparable_field_extension" href="http://dbpedia.org/resource/Purely_inseparable_field_extension"><small>dbr</small>:Purely_inseparable_field_extension</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_algebra_(structure)" href="http://dbpedia.org/resource/Commutative_algebra_(structure)"><small>dbr</small>:Commutative_algebra_(structure)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Extension_field" href="http://dbpedia.org/resource/Extension_field"><small>dbr</small>:Extension_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subfield_(mathematics)" href="http://dbpedia.org/resource/Subfield_(mathematics)"><small>dbr</small>:Subfield_(mathematics)</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/id"><small>dbp:</small>id</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:id" lang="en" >C/c024310</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/title"><small>dbp:</small>title</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:title" lang="en" >Compositum of field extensions</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Springer" href="http://dbpedia.org/resource/Template:Springer"><small>dbt</small>:Springer</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cite_book" href="http://dbpedia.org/resource/Template:Cite_book"><small>dbt</small>:Cite_book</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cite_web" href="http://dbpedia.org/resource/Template:Cite_web"><small>dbt</small>:Cite_web</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Distinguish" href="http://dbpedia.org/resource/Template:Distinguish"><small>dbt</small>:Distinguish</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Other_uses" href="http://dbpedia.org/resource/Template:Other_uses"><small>dbt</small>:Other_uses</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Textbook" href="http://dbpedia.org/resource/Template:Textbook"><small>dbt</small>:Textbook</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dcterms:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Field_(mathematics)" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Field_(mathematics)"><small>dbc</small>:Field_(mathematics)</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://www.w3.org/2002/07/owl#Thing" href="http://www.w3.org/2002/07/owl#Thing"><small>owl</small>:Thing</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="rdfs:comment" lang="en" >In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >抽象代数学において体論には直積(いうなれば「直積体」)が存在しない(二つの体の(それらを環と見做してとった)直積(直積環)が、それ自身体になることは無いから)。その一方で、たとえば体 K と L がより大きい体 M の部分体として与えられているときや体 K と L が両方より小さい体 N(例えば素体)の拡大体のときには、その二つの体 K と L を「併せる」ことがしばしば要求される。 そういった体の間で生じるすべての現象を議論するために利用できる、それら体上の構成として体のテンソル積 (tensor product of fields) は最善である。これは環としてのテンソル積(テンソル積環)であり(それ自体、環にはなるが)、体になることもあれば体の直積環となることも多い。その一方で、0 でない冪零元を含みうる(環の根基参照)。 体 K と L が同型な素体を持たなければ ―つまり標数が異なれば― ある体 M の共通の部分体では決してない。このことに対応するのは「体 K と L のテンソル積が自明環になる」ことである。(このようにテンソル積構成が潰れてしまうのは理論としてはつまらない内容しか含まないので、ここでは特に扱わない)</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pt" >Em álgebra, o produto tensorial de corpos, de dois corpos K e L incluídos em um terceiro corpo M é o menor sub-corpo de M contendo tanto K e L.</span><small> (pt)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >体のテンソル積</span><small> (ja)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Tensor product of fields</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pt" >Produto tensorial de corpos</span><small> (pt)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#differentFrom"><small>owl:</small>differentFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:differentFrom" resource="http://dbpedia.org/resource/Tensor_field" href="http://dbpedia.org/resource/Tensor_field"><small>dbr</small>:Tensor_field</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.020lf3" href="http://rdf.freebase.com/ns/m.020lf3"><small>freebase</small>:Tensor product of fields</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q340145" href="http://www.wikidata.org/entity/Q340145"><small>wikidata</small>:Tensor product of fields</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/体のテンソル積" href="http://ja.dbpedia.org/resource/体のテンソル積"><small>dbpedia-ja</small>:Tensor product of fields</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pt.dbpedia.org/resource/Produto_tensorial_de_corpos" href="http://pt.dbpedia.org/resource/Produto_tensorial_de_corpos"><small>dbpedia-pt</small>:Tensor product of fields</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/38mxT" href="https://global.dbpedia.org/id/38mxT">https://global.dbpedia.org/id/38mxT</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Tensor_product_of_fields?oldid=1094355628&ns=0" href="http://en.wikipedia.org/wiki/Tensor_product_of_fields?oldid=1094355628&ns=0"><small>wikipedia-en</small>:Tensor_product_of_fields?oldid=1094355628&ns=0</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Tensor_product_of_fields" href="http://en.wikipedia.org/wiki/Tensor_product_of_fields"><small>wikipedia-en</small>:Tensor_product_of_fields</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageDisambiguates"><small>dbo:</small>wikiPageDisambiguates</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageDisambiguates" resource="http://dbpedia.org/resource/Tensor_product_(disambiguation)" href="http://dbpedia.org/resource/Tensor_product_(disambiguation)"><small>dbr</small>:Tensor_product_(disambiguation)</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Real_and_complex_embeddings" href="http://dbpedia.org/resource/Real_and_complex_embeddings"><small>dbr</small>:Real_and_complex_embeddings</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Real_embedding" href="http://dbpedia.org/resource/Real_embedding"><small>dbr</small>:Real_embedding</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Complex_embedding" href="http://dbpedia.org/resource/Complex_embedding"><small>dbr</small>:Complex_embedding</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Compositum" href="http://dbpedia.org/resource/Compositum"><small>dbr</small>:Compositum</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_abstract_algebra_topics" href="http://dbpedia.org/resource/List_of_abstract_algebra_topics"><small>dbr</small>:List_of_abstract_algebra_topics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_commutative_algebra_topics" href="http://dbpedia.org/resource/List_of_commutative_algebra_topics"><small>dbr</small>:List_of_commutative_algebra_topics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Totally_real_number_field" href="http://dbpedia.org/resource/Totally_real_number_field"><small>dbr</small>:Totally_real_number_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composite_field_(mathematics)" href="http://dbpedia.org/resource/Composite_field_(mathematics)"><small>dbr</small>:Composite_field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_equation_(L-function)" href="http://dbpedia.org/resource/Functional_equation_(L-function)"><small>dbr</small>:Functional_equation_(L-function)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearly_disjoint" href="http://dbpedia.org/resource/Linearly_disjoint"><small>dbr</small>:Linearly_disjoint</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(mathematics)" href="http://dbpedia.org/resource/Field_(mathematics)"><small>dbr</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_field_theory" href="http://dbpedia.org/resource/Glossary_of_field_theory"><small>dbr</small>:Glossary_of_field_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_tensor_theory" href="http://dbpedia.org/resource/Glossary_of_tensor_theory"><small>dbr</small>:Glossary_of_tensor_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_field" href="http://dbpedia.org/resource/Tensor_field"><small>dbr</small>:Tensor_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product" href="http://dbpedia.org/resource/Tensor_product"><small>dbr</small>:Tensor_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product_of_modules" href="http://dbpedia.org/resource/Tensor_product_of_modules"><small>dbr</small>:Tensor_product_of_modules</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product_(disambiguation)" href="http://dbpedia.org/resource/Tensor_product_(disambiguation)"><small>dbr</small>:Tensor_product_(disambiguation)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product_of_algebras" href="http://dbpedia.org/resource/Tensor_product_of_algebras"><small>dbr</small>:Tensor_product_of_algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dirichlet's_unit_theorem" href="http://dbpedia.org/resource/Dirichlet's_unit_theorem"><small>dbr</small>:Dirichlet's_unit_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grothendieck's_Galois_theory" href="http://dbpedia.org/resource/Grothendieck's_Galois_theory"><small>dbr</small>:Grothendieck's_Galois_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Change_of_rings" href="http://dbpedia.org/resource/Change_of_rings"><small>dbr</small>:Change_of_rings</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Separable_extension" href="http://dbpedia.org/resource/Separable_extension"><small>dbr</small>:Separable_extension</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Separable_polynomial" href="http://dbpedia.org/resource/Separable_polynomial"><small>dbr</small>:Separable_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_and_complex_embeddings" href="http://dbpedia.org/resource/Real_and_complex_embeddings"><small>dbr</small>:Real_and_complex_embeddings</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_embedding" href="http://dbpedia.org/resource/Real_embedding"><small>dbr</small>:Real_embedding</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complex_embedding" href="http://dbpedia.org/resource/Complex_embedding"><small>dbr</small>:Complex_embedding</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Compositum" href="http://dbpedia.org/resource/Compositum"><small>dbr</small>:Compositum</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Tensor_product_of_fields" href="http://en.wikipedia.org/wiki/Tensor_product_of_fields"><small>wikipedia-en</small>:Tensor_product_of_fields</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>    <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a>     <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a>     <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>    <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Tensor_product_of_fields">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>