CINXE.COM

Modus tollens - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Modus tollens - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"af2ff64f-0a55-4643-b6fc-1ae8cb745051","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Modus_tollens","wgTitle":"Modus tollens","wgCurRevisionId":1210597187,"wgRevisionId":1210597187,"wgArticleId":18901,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use dmy dates from October 2020","Pages displaying short descriptions of redirect targets via Module:Annotated link","Classical logic","Rules of inference","Latin logical phrases","Theorems in propositional logic"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Modus_tollens","wgRelevantArticleId":18901,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q844118","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled": false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Modus tollens - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Modus_tollens"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Modus_tollens&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Modus_tollens"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Modus_tollens rootpage-Modus_tollens skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Modus+tollens" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Modus+tollens" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Modus+tollens" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Modus+tollens" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Explanation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Explanation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Explanation</span> </div> </a> <ul id="toc-Explanation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_modus_ponens" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_to_modus_ponens"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Relation to <i>modus ponens</i></span> </div> </a> <ul id="toc-Relation_to_modus_ponens-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_notation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Formal notation</span> </div> </a> <ul id="toc-Formal_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Justification_via_truth_table" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Justification_via_truth_table"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Justification via truth table</span> </div> </a> <ul id="toc-Justification_via_truth_table-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_proof" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Formal proof</span> </div> </a> <button aria-controls="toc-Formal_proof-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Formal proof subsection</span> </button> <ul id="toc-Formal_proof-sublist" class="vector-toc-list"> <li id="toc-Via_disjunctive_syllogism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Via_disjunctive_syllogism"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Via disjunctive syllogism</span> </div> </a> <ul id="toc-Via_disjunctive_syllogism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Via_reductio_ad_absurdum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Via_reductio_ad_absurdum"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Via <i>reductio ad absurdum</i></span> </div> </a> <ul id="toc-Via_reductio_ad_absurdum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Via_contraposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Via_contraposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Via contraposition</span> </div> </a> <ul id="toc-Via_contraposition-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Correspondence_to_other_mathematical_frameworks" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Correspondence_to_other_mathematical_frameworks"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Correspondence to other mathematical frameworks</span> </div> </a> <button aria-controls="toc-Correspondence_to_other_mathematical_frameworks-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Correspondence to other mathematical frameworks subsection</span> </button> <ul id="toc-Correspondence_to_other_mathematical_frameworks-sublist" class="vector-toc-list"> <li id="toc-Probability_calculus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Probability calculus</span> </div> </a> <ul id="toc-Probability_calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subjective_logic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subjective_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Subjective logic</span> </div> </a> <ul id="toc-Subjective_logic-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><i>Modus tollens</i></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 27 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-27" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">27 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Modus_tollendo_tollens" title="Modus tollendo tollens – Catalan" lang="ca" hreflang="ca" data-title="Modus tollendo tollens" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Czech" lang="cs" hreflang="cs" data-title="Modus tollens" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Danish" lang="da" hreflang="da" data-title="Modus tollens" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – German" lang="de" hreflang="de" data-title="Modus tollens" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Estonian" lang="et" hreflang="et" data-title="Modus tollens" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%AD%CE%B8%CE%BF%CE%B4%CE%BF%CF%82_%CE%B4%CE%B9%CE%AC%CF%88%CE%B5%CF%85%CF%83%CE%B7%CF%82" title="Μέθοδος διάψευσης – Greek" lang="el" hreflang="el" data-title="Μέθοδος διάψευσης" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Modus_tollendo_tollens" title="Modus tollendo tollens – Spanish" lang="es" hreflang="es" data-title="Modus tollendo tollens" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Modus_tollendo_tollens" title="Modus tollendo tollens – Basque" lang="eu" hreflang="eu" data-title="Modus tollendo tollens" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D9%81%DB%8C_%D8%AA%D8%A7%D9%84%DB%8C" title="نفی تالی – Persian" lang="fa" hreflang="fa" data-title="نفی تالی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – French" lang="fr" hreflang="fr" data-title="Modus tollens" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9B%84%EA%B1%B4_%EB%B6%80%EC%A0%95" title="후건 부정 – Korean" lang="ko" hreflang="ko" data-title="후건 부정" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Indonesian" lang="id" hreflang="id" data-title="Modus tollens" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Neikv%C3%A6%C3%B0_neitunarregla" title="Neikvæð neitunarregla – Icelandic" lang="is" hreflang="is" data-title="Neikvæð neitunarregla" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Italian" lang="it" hreflang="it" data-title="Modus tollens" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%95%D7%93%D7%95%D7%A1_%D7%98%D7%95%D7%9C%D7%A0%D7%A1" title="מודוס טולנס – Hebrew" lang="he" hreflang="he" data-title="מודוס טולנס" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Dutch" lang="nl" hreflang="nl" data-title="Modus tollens" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%BC%E3%83%80%E3%82%B9%E3%83%88%E3%83%AC%E3%83%B3%E3%82%B9" title="モーダストレンス – Japanese" lang="ja" hreflang="ja" data-title="モーダストレンス" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Polish" lang="pl" hreflang="pl" data-title="Modus tollens" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Portuguese" lang="pt" hreflang="pt" data-title="Modus tollens" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Russian" lang="ru" hreflang="ru" data-title="Modus tollens" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Simple English" lang="en-simple" hreflang="en-simple" data-title="Modus tollens" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Slovak" lang="sk" hreflang="sk" data-title="Modus tollens" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%BE%D0%B4%D1%83%D1%81_%D1%82%D0%BE%D0%BB%D0%B5%D0%BD%D1%81" title="Модус толенс – Serbian" lang="sr" hreflang="sr" data-title="Модус толенс" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Modus tollens" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Swedish" lang="sv" hreflang="sv" data-title="Modus tollens" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/Modus_tollens" title="Modus tollens – Ukrainian" lang="uk" hreflang="uk" data-title="Modus tollens" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%90%A6%E5%AE%9A%E5%BE%8C%E4%BB%B6" title="否定後件 – Chinese" lang="zh" hreflang="zh" data-title="否定後件" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q844118#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Modus_tollens" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Modus_tollens" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Modus_tollens"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Modus_tollens"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Modus_tollens" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Modus_tollens" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;oldid=1210597187" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Modus_tollens&amp;id=1210597187&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FModus_tollens"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FModus_tollens"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Modus_tollens&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Modus_tollens&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q844118" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Rule of logical inference</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox vcard"><caption class="infobox-title fn" style="padding-bottom:0.2em;"><em>Modus tollens</em></caption><tbody><tr><th scope="row" class="infobox-label">Type</th><td class="infobox-data"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist"> <ul><li><a href="/wiki/Deductive_reasoning" title="Deductive reasoning">Deductive</a> <a href="/wiki/Argument_form" class="mw-redirect" title="Argument form">argument form</a></li> <li><a href="/wiki/Rule_of_inference" title="Rule of inference">Rule of inference</a></li></ul> </div></td></tr><tr><th scope="row" class="infobox-label">Field</th><td class="infobox-data"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="infobox-label">Statement</th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is false. Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> must also be false.</td></tr><tr><th scope="row" class="infobox-label">Symbolic statement</th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q,\neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo>,</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q,\neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88526c26fa5f08ff4bc651129480e92c4a7d64fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.62ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q,\neg Q}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \therefore \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2234;<!-- ∴ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \therefore \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d646ff51b9a975e8b80471b7d3c381275f8bc52a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.491ex; height:2.343ex;" alt="{\displaystyle \therefore \neg P}"></span><sup id="cite_ref-KA_1-0" class="reference"><a href="#cite_note-KA-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><table class="sidebar nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title"><a href="/wiki/Rule_of_inference" title="Rule of inference">Transformation rules</a></th></tr><tr><th class="sidebar-heading" style="background:#eaeaff;;background:#ddf;font-size:110%; border-bottom:1px #fefefe solid;"> <a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></th></tr><tr><th class="sidebar-heading" style="background:#eaeaff;"> <a href="/wiki/Rule_of_inference" title="Rule of inference">Rules of inference</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.15em;"> <ul><li><a href="/wiki/Conditional_proof" title="Conditional proof"><span>Implication introduction</span></a>&#160;/&#32;<a href="/wiki/Modus_ponens" title="Modus ponens"><span title="A→B, &#160; A &#160; ⊢ &#160; B">elimination (<i>modus ponens</i>)</span></a></li> <li><a href="/wiki/Biconditional_introduction" title="Biconditional introduction"><span title="A→B, &#160; B→A &#160; ⊢ &#160; A↔B">Biconditional introduction</span></a>&#160;/&#32;<a href="/wiki/Biconditional_elimination" title="Biconditional elimination"><span title="A↔B &#160; ⊢ &#160; A→B">elimination</span></a></li> <li><a href="/wiki/Conjunction_introduction" title="Conjunction introduction"><span title="A, &#160; B &#160; ⊢ &#160; A∧B">Conjunction introduction</span></a>&#160;/&#32;<a href="/wiki/Conjunction_elimination" title="Conjunction elimination"><span title="A∧B &#160; ⊢ &#160; A">elimination</span></a></li> <li><a href="/wiki/Disjunction_introduction" title="Disjunction introduction"><span title="A &#160; ⊢ &#160; A∨B">Disjunction introduction</span></a>&#160;/&#32;<a href="/wiki/Disjunction_elimination" title="Disjunction elimination"><span title="A∨B, &#160; A→C, &#160; B→C &#160; ⊢ &#160; C">elimination</span></a></li> <li><a href="/wiki/Disjunctive_syllogism" title="Disjunctive syllogism"><span title="A∨B, &#160; ¬A &#160; ⊢ &#160; B">Disjunctive</span></a>&#160;/&#32;<a href="/wiki/Hypothetical_syllogism" title="Hypothetical syllogism"><span title="A→B, &#160; B→C &#160; ⊢ &#160; A→C">hypothetical syllogism</span></a></li> <li><a href="/wiki/Constructive_dilemma" title="Constructive dilemma"><span title="A→P, &#160; B→Q, &#160; A∨B &#160; ⊢ &#160; P∨Q">Constructive</span></a>&#160;/&#32;<a href="/wiki/Destructive_dilemma" title="Destructive dilemma"><span title="A→P, &#160; B→Q, &#160; ¬P∨¬Q &#160; ⊢ &#160; ¬A∨¬B">destructive dilemma</span></a></li> <li><a href="/wiki/Absorption_(logic)" title="Absorption (logic)"><span title="A→B &#160; ⊢ &#160; A→A∧B">Absorption</span></a>&#160;/&#32;<a class="mw-selflink selflink"><span title="A→B, &#160; ¬B &#160; ⊢ &#160; ¬A"><i>modus tollens</i></span></a>&#160;/&#32;<a href="/wiki/Modus_ponendo_tollens" title="Modus ponendo tollens"><span title="¬(A∧B), &#160; A &#160; ⊢ &#160; ¬B"><i>modus ponendo tollens</i></span></a></li> <li><a href="/wiki/Negation_introduction" title="Negation introduction">Negation introduction</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#eaeaff;"> <a href="/wiki/Rule_of_replacement" title="Rule of replacement">Rules of replacement</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.15em;"> <div class="hlist"> <ul><li><a href="/wiki/Associative_property#Propositional_logic" title="Associative property"><span title="A∨(B∨C) &#160; = &#160; (A∨B)∨C">Associativity</span></a></li> <li><a href="/wiki/Commutative_property#Propositional_logic" title="Commutative property"><span title="A∨B &#160; = &#160; B∨A">Commutativity</span></a></li> <li><a href="/wiki/Distributive_property#Propositional_logic" title="Distributive property"><span title="A∧(B∨C) &#160; = &#160; (A∧B)∨(A∧C)">Distributivity</span></a></li> <li><a href="/wiki/Double_negation" title="Double negation"><span title="¬¬A &#160; = &#160; A">Double negation</span></a></li> <li><a href="/wiki/De_Morgan%27s_laws" title="De Morgan&#39;s laws">De Morgan's laws</a></li> <li><a href="/wiki/Transposition_(logic)" class="mw-redirect" title="Transposition (logic)">Transposition</a></li> <li><a href="/wiki/Material_implication_(rule_of_inference)" title="Material implication (rule of inference)"><span title="A→B &#160; ⊢ &#160; ¬A∨B">Material implication</span></a></li> <li><a href="/wiki/Exportation_(logic)" title="Exportation (logic)"><span title="(A∧B)→C &#160; ⊢ &#160; A→(B→C)">Exportation</span></a></li> <li><a href="/wiki/Tautology_(rule_of_inference)" title="Tautology (rule of inference)"><span title="A∨A &#160; = &#160; A">Tautology</span></a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="background:#eaeaff;;background:#ddf;font-size:110%;"> <a href="/wiki/First-order_logic" title="First-order logic">Predicate logic</a></th></tr><tr><th class="sidebar-heading" style="background:#eaeaff;"> <a href="/wiki/Rule_of_inference" title="Rule of inference">Rules of inference</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.15em;"> <ul><li><a href="/wiki/Universal_generalization" title="Universal generalization">Universal generalization</a>&#160;/&#32;<a href="/wiki/Universal_instantiation" title="Universal instantiation">instantiation</a></li> <li><a href="/wiki/Existential_generalization" title="Existential generalization">Existential generalization</a>&#160;/&#32;<a href="/wiki/Existential_instantiation" title="Existential instantiation">instantiation</a></li></ul></td> </tr></tbody></table> <p>In <a href="/wiki/Propositional_calculus" title="Propositional calculus">propositional logic</a>, <i><b>modus tollens</b></i> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;m&#39; in &#39;my&#39;">m</span><span title="/oʊ/: &#39;o&#39; in &#39;code&#39;">oʊ</span><span title="&#39;d&#39; in &#39;dye&#39;">d</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span></span><span class="wrap"> </span><span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;t&#39; in &#39;tie&#39;">t</span><span title="/ɒ/: &#39;o&#39; in &#39;body&#39;">ɒ</span><span title="&#39;l&#39; in &#39;lie&#39;">l</span><span title="/ɛ/: &#39;e&#39; in &#39;dress&#39;">ɛ</span><span title="&#39;n&#39; in &#39;nigh&#39;">n</span><span title="&#39;z&#39; in &#39;zoom&#39;">z</span></span>/</a></span></span>) (<b>MT</b>), also known as <i><b>modus tollendo <a href="https://en.wiktionary.org/wiki/tollens" class="extiw" title="wiktionary:tollens">tollens</a></b></i> (<a href="/wiki/Latin_language" class="mw-redirect" title="Latin language">Latin</a> for "method of removing by taking away")<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and <b>denying the consequent</b>,<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> is a <a href="/wiki/Deductive_reasoning" title="Deductive reasoning">deductive</a> <a href="/wiki/Logical_form" title="Logical form">argument form</a> and a <a href="/wiki/Rule_of_inference" title="Rule of inference">rule of inference</a>. <i>Modus tollens</i> is a mixed <a href="/wiki/Hypothetical_syllogism" title="Hypothetical syllogism">hypothetical syllogism</a> that takes the form of "If <i>P</i>, then <i>Q</i>. Not <i>Q</i>. Therefore, not <i>P</i>." It is an application of the general truth that if a statement is true, then so is its <a href="/wiki/Contrapositive" class="mw-redirect" title="Contrapositive">contrapositive</a>. The form shows that <a href="/wiki/Inference" title="Inference">inference</a> from <i>P implies Q</i> to <i>the negation of Q implies the negation of P</i> is a <a href="/wiki/Validity_(logic)" title="Validity (logic)">valid</a> argument. </p><p>The history of the inference rule <i>modus tollens</i> goes back to <a href="/wiki/Ancient_history" title="Ancient history">antiquity</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The first to explicitly describe the argument form <i>modus tollens</i> was <a href="/wiki/Theophrastus" title="Theophrastus">Theophrastus</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Modus tollens</i> is closely related to <i><a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a></i>. There are two similar, but <a href="/wiki/Fallacy" title="Fallacy">invalid, forms of argument</a>: <a href="/wiki/Affirming_the_consequent" title="Affirming the consequent">affirming the consequent</a> and <a href="/wiki/Denying_the_antecedent" title="Denying the antecedent">denying the antecedent</a>. See also <a href="/wiki/Contraposition" title="Contraposition">contraposition</a> and <a href="/wiki/Proof_by_contrapositive" class="mw-redirect" title="Proof by contrapositive">proof by contrapositive</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Explanation">Explanation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=1" title="Edit section: Explanation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The form of a <i>modus tollens</i> argument is a mixed <a href="/wiki/Hypothetical_syllogism" title="Hypothetical syllogism">hypothetical syllogism</a>, with two premises and a conclusion: </p> <dl><dd>If <i>P</i>, then <i>Q</i>.</dd> <dd>Not <i>Q</i>.</dd> <dd>Therefore, not <i>P</i>.</dd></dl> <p>The first premise is a <a href="/wiki/Material_conditional" title="Material conditional">conditional</a> ("if-then") claim, such as <i>P</i> implies <i>Q</i>. The second premise is an assertion that <i>Q</i>, the <a href="/wiki/Consequent" title="Consequent">consequent</a> of the conditional claim, is not the case. From these two premises it can be logically concluded that <i>P</i>, the <a href="/wiki/Antecedent_(logic)" title="Antecedent (logic)">antecedent</a> of the conditional claim, is also not the case. </p><p>For example: </p> <dl><dd>If the dog detects an intruder, the dog will bark.</dd> <dd>The dog did not bark.</dd> <dd>Therefore, no intruder was detected by the dog.</dd></dl> <p>Supposing that the premises are both true (the dog will bark if it detects an intruder, and does indeed not bark), it follows that no intruder has been detected. This is a valid argument since it is not possible for the conclusion to be false if the premises are true. (It is conceivable that there may have been an intruder that the dog did not detect, but that does not invalidate the argument; the first premise is "if the dog <i>detects</i> an intruder". The thing of importance is that the dog detects or does not detect an intruder, not whether there is one.) </p><p>Example 1: </p> <dl><dd>If I am the burglar, then I can crack a safe.</dd> <dd>I cannot crack a safe.</dd> <dd>Therefore, I am not the burglar.</dd></dl> <p>Example 2: </p> <dl><dd>If Rex is a chicken, then he is a bird.</dd> <dd>Rex is not a bird.</dd> <dd>Therefore, Rex is not a chicken.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Relation_to_modus_ponens">Relation to <i>modus ponens</i></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=2" title="Edit section: Relation to modus ponens"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every use of <i>modus tollens</i> can be converted to a use of <i><a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a></i> and one use of <a href="/wiki/Transposition_(logic)" class="mw-redirect" title="Transposition (logic)">transposition</a> to the premise which is a material implication. For example: </p> <dl><dd>If <i>P</i>, then <i>Q</i>. (premise – material implication)</dd> <dd>If not <i>Q</i>, then not <i>P</i>. (derived by transposition)</dd> <dd>Not <i>Q</i> . (premise)</dd> <dd>Therefore, not <i>P</i>. (derived by <i>modus ponens</i>)</dd></dl> <p>Likewise, every use of <i>modus ponens</i> can be converted to a use of <i>modus tollens</i> and transposition. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_notation">Formal notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=3" title="Edit section: Formal notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>modus tollens</i> rule can be stated formally as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {P\to Q,\neg Q}{\therefore \neg P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo>,</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mrow> <mrow> <mo>&#x2234;<!-- ∴ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {P\to Q,\neg Q}{\therefore \neg P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb94d8545126bb6194888258fba1624b8d2218c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.457ex; height:5.509ex;" alt="{\displaystyle {\frac {P\to Q,\neg Q}{\therefore \neg P}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cad5b2c2991ae1dbded560c5d875fbf49fe8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\to Q}"></span> stands for the statement "P implies Q". <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span> stands for "it is not the case that Q" (or in brief "not Q"). Then, whenever "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cad5b2c2991ae1dbded560c5d875fbf49fe8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\to Q}"></span>" and "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span>" each appear by themselves as a line of a <a href="/wiki/Formal_proof" title="Formal proof">proof</a>, then "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span>" can validly be placed on a subsequent line. </p><p>The <i>modus tollens</i> rule may be written in <a href="/wiki/Sequent" title="Sequent">sequent</a> notation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q,\neg Q\vdash \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo>,</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo>&#x22A2;<!-- ⊢ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q,\neg Q\vdash \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0876245013e8aaedf9639955b7da06eabf4c1741" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.627ex; height:2.509ex;" alt="{\displaystyle P\to Q,\neg Q\vdash \neg P}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22A2;<!-- ⊢ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c0d30cf8cb7dba179e317fcde9583d842e80f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.42ex; height:2.176ex;" alt="{\displaystyle \vdash }"></span> is a <a href="/wiki/Metalogic" title="Metalogic">metalogical</a> symbol meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span> is a <a href="/wiki/Logical_consequence" title="Logical consequence">syntactic consequence</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cad5b2c2991ae1dbded560c5d875fbf49fe8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\to Q}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span> in some <a href="/wiki/Formal_system" title="Formal system">logical system</a>; </p><p>or as the statement of a functional <a href="/wiki/Tautology_(logic)" title="Tautology (logic)">tautology</a> or <a href="/wiki/Theorem" title="Theorem">theorem</a> of propositional logic: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((P\to Q)\land \neg Q)\to \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((P\to Q)\land \neg Q)\to \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b559ddc683a52deec03549815b5e8e88ee5eddee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.698ex; height:2.843ex;" alt="{\displaystyle ((P\to Q)\land \neg Q)\to \neg P}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> are propositions expressed in some <a href="/wiki/Formal_system" title="Formal system">formal system</a>; </p><p>or including assumptions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Gamma \vdash P\to Q~~~\Gamma \vdash \neg Q}{\Gamma \vdash \neg P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x22A2;<!-- ⊢ --></mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x22A2;<!-- ⊢ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x22A2;<!-- ⊢ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Gamma \vdash P\to Q~~~\Gamma \vdash \neg Q}{\Gamma \vdash \neg P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09a8cccf7501c44e09798029c85ceac0b4608ee1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.491ex; height:5.343ex;" alt="{\displaystyle {\frac {\Gamma \vdash P\to Q~~~\Gamma \vdash \neg Q}{\Gamma \vdash \neg P}}}"></span></dd></dl> <p>though since the rule does not change the set of assumptions, this is not strictly necessary. </p><p>More complex rewritings involving <i>modus tollens</i> are often seen, for instance in <a href="/wiki/Set_theory" title="Set theory">set theory</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\subseteq Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\subseteq Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e34254b0983c5c0c24431161c2392c54f2b03ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.682ex; height:2.509ex;" alt="{\displaystyle P\subseteq Q}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\notin Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\notin Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0e7d9d58c782fa321f7496ebef3c0c74251b0f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.009ex; height:2.676ex;" alt="{\displaystyle x\notin Q}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \therefore x\notin P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2234;<!-- ∴ --></mo> <mi>x</mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \therefore x\notin P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b9fe5abaef42d38c0ca9bb70d6e8db7e2adf8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.111ex; height:2.676ex;" alt="{\displaystyle \therefore x\notin P}"></span></dd></dl> <p>("P is a subset of Q. x is not in Q. Therefore, x is not in P.") </p><p>Also in first-order <a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">predicate logic</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x:~P(x)\to Q(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>:</mo> <mtext>&#xA0;</mtext> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x:~P(x)\to Q(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d938d75f6eed7f0a8e5efa215f5caec24842f522" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.616ex; height:2.843ex;" alt="{\displaystyle \forall x:~P(x)\to Q(x)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3358de034cc50eef1c4799f7640b1cd5f3fe727" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.353ex; height:2.843ex;" alt="{\displaystyle \neg Q(y)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \therefore ~\neg P(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2234;<!-- ∴ --></mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \therefore ~\neg P(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3686ac4e4862e73bc93d549c15c192c31ff6c6ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.037ex; height:2.843ex;" alt="{\displaystyle \therefore ~\neg P(y)}"></span></dd></dl> <p>("For all x if x is P then x is Q. y is not Q. Therefore, y is not P.") </p><p>Strictly speaking these are not instances of <i>modus tollens</i>, but they may be derived from <i>modus tollens</i> using a few extra steps. </p> <div class="mw-heading mw-heading2"><h2 id="Justification_via_truth_table">Justification via truth table</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=4" title="Edit section: Justification via truth table"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The validity of <i>modus tollens</i> can be clearly demonstrated through a <a href="/wiki/Truth_table" title="Truth table">truth table</a>. </p> <table class="wikitable" style="margin: 0 auto; text-align:center; width:45%"> <tbody><tr> <th style="width:15%">p </th> <th style="width:15%">q </th> <th style="width:15%">p → q </th></tr> <tr> <td>T</td> <td>T</td> <td>T </td></tr> <tr> <td>T</td> <td>F</td> <td>F </td></tr> <tr> <td>F</td> <td>T</td> <td>T </td></tr> <tr> <td>F</td> <td>F</td> <td>T </td></tr></tbody></table> <p>In instances of <i>modus tollens</i> we assume as premises that p → q is true and q is false. There is only one line of the truth table—the fourth line—which satisfies these two conditions. In this line, p is false. Therefore, in every instance in which p → q is true and q is false, p must also be false. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_proof">Formal proof</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=5" title="Edit section: Formal proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Via_disjunctive_syllogism">Via disjunctive syllogism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=6" title="Edit section: Via disjunctive syllogism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th><i>Step</i> </th> <th><i>Proposition</i> </th> <th><i>Derivation</i> </th></tr> <tr> <td>1</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span></td> <td>Given </td></tr> <tr> <td>2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span></td> <td>Given </td></tr> <tr> <td>3</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P\lor Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P\lor Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac1671e840e1ccd6af46246ab7439802c090daab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.717ex; height:2.509ex;" alt="{\displaystyle \neg P\lor Q}"></span></td> <td><a href="/wiki/Material_implication_(rule_of_inference)" title="Material implication (rule of inference)">Material implication</a> (1) </td></tr> <tr> <td>4</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span></td> <td><a href="/wiki/Disjunctive_syllogism" title="Disjunctive syllogism">Disjunctive syllogism</a> (3,2) </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Via_reductio_ad_absurdum">Via <i>reductio ad absurdum</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=7" title="Edit section: Via reductio ad absurdum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th><i>Step</i> </th> <th><i>Proposition</i> </th> <th><i>Derivation</i> </th></tr> <tr> <td>1</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span></td> <td>Given </td></tr> <tr> <td>2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span></td> <td>Given </td></tr> <tr> <td>3</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span></td> <td>Assumption </td></tr> <tr> <td>4</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span></td> <td><a href="/wiki/Modus_ponens" title="Modus ponens">Modus ponens</a> (1,3) </td></tr> <tr> <td>5</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q\land \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q\land \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdaf497bd9328824019118ed8188eccc249803c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.81ex; height:2.509ex;" alt="{\displaystyle Q\land \neg Q}"></span></td> <td><a href="/wiki/Conjunction_introduction" title="Conjunction introduction">Conjunction introduction</a> (2,4) </td></tr> <tr> <td>6</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span></td> <td><i><a href="/wiki/Reductio_ad_absurdum" title="Reductio ad absurdum">Reductio ad absurdum</a></i> (3,5) </td></tr> <tr> <td>7</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q\rightarrow \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q\rightarrow \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2cda72a5ed034bbb1cdedb9b3c740e0900579a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.298ex; height:2.509ex;" alt="{\displaystyle \neg Q\rightarrow \neg P}"></span></td> <td><i>Conditional introduction</i> (2,6) </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Via_contraposition">Via contraposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=8" title="Edit section: Via contraposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th><i>Step</i> </th> <th><i>Proposition</i> </th> <th><i>Derivation</i> </th></tr> <tr> <td>1</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span></td> <td>Given </td></tr> <tr> <td>2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span></td> <td>Given </td></tr> <tr> <td>3</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q\rightarrow \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q\rightarrow \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2cda72a5ed034bbb1cdedb9b3c740e0900579a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.298ex; height:2.509ex;" alt="{\displaystyle \neg Q\rightarrow \neg P}"></span></td> <td><a href="/wiki/Contraposition" title="Contraposition">Contraposition</a> (1) </td></tr> <tr> <td>4</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span></td> <td><a href="/wiki/Modus_ponens" title="Modus ponens">Modus ponens</a> (2,3) </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Correspondence_to_other_mathematical_frameworks">Correspondence to other mathematical frameworks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=9" title="Edit section: Correspondence to other mathematical frameworks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Probability_calculus">Probability calculus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=10" title="Edit section: Probability calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Modus tollens</i> represents an instance of the <a href="/wiki/Law_of_total_probability" title="Law of total probability">law of total probability</a> combined with <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a> expressed as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P)=\Pr(P\mid Q)\Pr(Q)+\Pr(P\mid \lnot Q)\Pr(\lnot Q)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P)=\Pr(P\mid Q)\Pr(Q)+\Pr(P\mid \lnot Q)\Pr(\lnot Q)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4837166134336c03574b69645a317716ef75f039" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.83ex; height:2.843ex;" alt="{\displaystyle \Pr(P)=\Pr(P\mid Q)\Pr(Q)+\Pr(P\mid \lnot Q)\Pr(\lnot Q)\,,}"></span> </p><p>where the conditionals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P\mid Q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P\mid Q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc4f057dae0a62ae182f808c3846e265d957650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.825ex; height:2.843ex;" alt="{\displaystyle \Pr(P\mid Q)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P\mid \lnot Q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P\mid \lnot Q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcfa965de6a06b030a8591ba67caa3b418e3dc1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.375ex; height:2.843ex;" alt="{\displaystyle \Pr(P\mid \lnot Q)}"></span> are obtained with (the extended form of) <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a> expressed as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P\mid Q)={\frac {\Pr(Q\mid P)\,a(P)}{\Pr(Q\mid P)\,a(P)+\Pr(Q\mid \lnot P)\,a(\lnot P)}}\;\;\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P\mid Q)={\frac {\Pr(Q\mid P)\,a(P)}{\Pr(Q\mid P)\,a(P)+\Pr(Q\mid \lnot P)\,a(\lnot P)}}\;\;\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3b04d527f5961a0a6138124e31842290ca7e336" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:51.628ex; height:6.509ex;" alt="{\displaystyle \Pr(P\mid Q)={\frac {\Pr(Q\mid P)\,a(P)}{\Pr(Q\mid P)\,a(P)+\Pr(Q\mid \lnot P)\,a(\lnot P)}}\;\;\;}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P\mid \lnot Q)={\frac {\Pr(\lnot Q\mid P)\,a(P)}{\Pr(\lnot Q\mid P)\,a(P)+\Pr(\lnot Q\mid \lnot P)\,a(\lnot P)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P\mid \lnot Q)={\frac {\Pr(\lnot Q\mid P)\,a(P)}{\Pr(\lnot Q\mid P)\,a(P)+\Pr(\lnot Q\mid \lnot P)\,a(\lnot P)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0ce0995853285dee71d17450da1feabbcc30b58" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:54.991ex; height:6.509ex;" alt="{\displaystyle \Pr(P\mid \lnot Q)={\frac {\Pr(\lnot Q\mid P)\,a(P)}{\Pr(\lnot Q\mid P)\,a(P)+\Pr(\lnot Q\mid \lnot P)\,a(\lnot P)}}.}"></span> </p><p>In the equations above <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c629eb750321a80c64ad3529aded1a33e35f0bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.142ex; height:2.843ex;" alt="{\displaystyle \Pr(Q)}"></span> denotes the probability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6834fbbfcc1e72a0f37e1d512a72f8844ee06f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.785ex; height:2.843ex;" alt="{\displaystyle a(P)}"></span> denotes the <a href="/wiki/Base_rate" title="Base rate">base rate</a> (aka. <a href="/wiki/Prior_probability" title="Prior probability">prior probability</a>) of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>. The <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Q\mid P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Q\mid P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/537fbccf23ef68fe8e23b8b9941e64c5298b59c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.825ex; height:2.843ex;" alt="{\displaystyle \Pr(Q\mid P)}"></span> generalizes the logical statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cad5b2c2991ae1dbded560c5d875fbf49fe8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\to Q}"></span>, i.e. in addition to assigning TRUE or FALSE we can also assign any probability to the statement. Assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Q)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Q)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00f9d5bb8000a03539e90cd9a85ae7126bff190b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.403ex; height:2.843ex;" alt="{\displaystyle \Pr(Q)=1}"></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> being TRUE, and that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Q)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Q)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e350ab5bcd947089e454641a330b052f91aaf5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.403ex; height:2.843ex;" alt="{\displaystyle \Pr(Q)=0}"></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> being FALSE. It is then easy to see that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99e9ec59200edbc4a6c3442874517974ef898aad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.31ex; height:2.843ex;" alt="{\displaystyle \Pr(P)=0}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Q\mid P)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Q\mid P)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c9794a7586658ac6d5bf98cc0f6cd7d840db29a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.086ex; height:2.843ex;" alt="{\displaystyle \Pr(Q\mid P)=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Q)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Q)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e350ab5bcd947089e454641a330b052f91aaf5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.403ex; height:2.843ex;" alt="{\displaystyle \Pr(Q)=0}"></span>. This is because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(\lnot Q\mid P)=1-\Pr(Q\mid P)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(\lnot Q\mid P)=1-\Pr(Q\mid P)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba0d5188857d000d4e4a4d882c4922b3122a4f46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.562ex; height:2.843ex;" alt="{\displaystyle \Pr(\lnot Q\mid P)=1-\Pr(Q\mid P)=0}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P\mid \lnot Q)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P\mid \lnot Q)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8fd1d4051af3c7c64d5f62e1c8d3b0a07160d14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.636ex; height:2.843ex;" alt="{\displaystyle \Pr(P\mid \lnot Q)=0}"></span> in the last equation. Therefore, the product terms in the first equation always have a zero factor so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(P)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(P)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99e9ec59200edbc4a6c3442874517974ef898aad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.31ex; height:2.843ex;" alt="{\displaystyle \Pr(P)=0}"></span> which is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> being FALSE. Hence, the <a href="/wiki/Law_of_total_probability" title="Law of total probability">law of total probability</a> combined with <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a> represents a generalization of <i>modus tollens</i>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Subjective_logic">Subjective logic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=11" title="Edit section: Subjective logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Modus tollens</i> represents an instance of the abduction operator in <a href="/wiki/Subjective_logic" title="Subjective logic">subjective logic</a> expressed as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{P{\tilde {\|}}Q}^{A}=(\omega _{Q|P}^{A},\omega _{Q|\lnot P}^{A}){\widetilde {\circledcirc }}(a_{P},\,\omega _{Q}^{A})\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x229A;<!-- ⊚ --></mo> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{P{\tilde {\|}}Q}^{A}=(\omega _{Q|P}^{A},\omega _{Q|\lnot P}^{A}){\widetilde {\circledcirc }}(a_{P},\,\omega _{Q}^{A})\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e3764292d246a43a1eb851747ecee4e8f2da521" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.158ex; height:4.176ex;" alt="{\displaystyle \omega _{P{\tilde {\|}}Q}^{A}=(\omega _{Q|P}^{A},\omega _{Q|\lnot P}^{A}){\widetilde {\circledcirc }}(a_{P},\,\omega _{Q}^{A})\,,}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{Q}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{Q}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3269299a3720999f906c22eca1206f4afe41abf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.978ex; height:3.509ex;" alt="{\displaystyle \omega _{Q}^{A}}"></span> denotes the subjective opinion about <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\omega _{Q|P}^{A},\omega _{Q|\lnot P}^{A})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\omega _{Q|P}^{A},\omega _{Q|\lnot P}^{A})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03fbbbfbe70475dddf3d576b8d83d48b513286ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:13.279ex; height:3.676ex;" alt="{\displaystyle (\omega _{Q|P}^{A},\omega _{Q|\lnot P}^{A})}"></span> denotes a pair of binomial conditional opinions, as expressed by source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. The parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/013cfe982a1ca7e27df173b9f221a7dc9ff4031c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.696ex; height:2.009ex;" alt="{\displaystyle a_{P}}"></span> denotes the <a href="/wiki/Base_rate" title="Base rate">base rate</a> (aka. the <a href="/wiki/Prior_probability" title="Prior probability">prior probability</a>) of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>. The abduced marginal opinion on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{P{\tilde {\|}}Q}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{P{\tilde {\|}}Q}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbcde76c96c95cfa0b18feb6f1b1994ddfcebfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:5.034ex; height:4.176ex;" alt="{\displaystyle \omega _{P{\tilde {\|}}Q}^{A}}"></span>. The conditional opinion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{Q|P}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{Q|P}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbcadc50e7dbdbb35fea79b4b71a2c00305c529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:4.67ex; height:3.676ex;" alt="{\displaystyle \omega _{Q|P}^{A}}"></span> generalizes the logical statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cad5b2c2991ae1dbded560c5d875fbf49fe8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\to Q}"></span>, i.e. in addition to assigning TRUE or FALSE the source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> can assign any subjective opinion to the statement. The case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{Q}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{Q}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3269299a3720999f906c22eca1206f4afe41abf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.978ex; height:3.509ex;" alt="{\displaystyle \omega _{Q}^{A}}"></span> is an absolute TRUE opinion is equivalent to source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> saying that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is TRUE, and the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{Q}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{Q}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3269299a3720999f906c22eca1206f4afe41abf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.978ex; height:3.509ex;" alt="{\displaystyle \omega _{Q}^{A}}"></span> is an absolute FALSE opinion is equivalent to source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> saying that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is FALSE. The abduction operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\circledcirc }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x229A;<!-- ⊚ --></mo> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\circledcirc }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7a8e700c9e81e18bcb7234d6d0af8f4f2152342" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.676ex;" alt="{\displaystyle {\widetilde {\circledcirc }}}"></span> of <a href="/wiki/Subjective_logic" title="Subjective logic">subjective logic</a> produces an absolute FALSE abduced opinion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{P{\widetilde {\|}}Q}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{P{\widetilde {\|}}Q}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b2b87322505845e0c7dd5fcaa6702fdbf4bd96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:5.034ex; height:4.176ex;" alt="{\displaystyle \omega _{P{\widetilde {\|}}Q}^{A}}"></span> when the conditional opinion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{Q|P}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{Q|P}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbcadc50e7dbdbb35fea79b4b71a2c00305c529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:4.67ex; height:3.676ex;" alt="{\displaystyle \omega _{Q|P}^{A}}"></span> is absolute TRUE and the consequent opinion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{Q}^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{Q}^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3269299a3720999f906c22eca1206f4afe41abf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.978ex; height:3.509ex;" alt="{\displaystyle \omega _{Q}^{A}}"></span> is absolute FALSE. Hence, subjective logic abduction represents a generalization of both <i>modus tollens</i> and of the <a href="/wiki/Law_of_total_probability" title="Law of total probability">Law of total probability</a> combined with <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=12" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Evidence_of_absence" title="Evidence of absence">Evidence of absence</a>&#160;– Relevance fallacy</li> <li><a href="/wiki/Latin_phrases" class="mw-redirect" title="Latin phrases">Latin phrases</a></li> <li><a href="/wiki/Modus_operandi" title="Modus operandi"><i>Modus operandi</i></a>&#160;– Habits of working</li> <li><a href="/wiki/Modus_ponens" title="Modus ponens"><i>Modus ponens</i></a>&#160;– Rule of logical inference</li> <li><a href="/wiki/Modus_vivendi" title="Modus vivendi"><i>Modus vivendi</i></a>&#160;– Arrangement that allows conflicting parties to coexist in peace</li> <li><a href="/wiki/Non_sequitur_(logic)" class="mw-redirect" title="Non sequitur (logic)"><i>Non sequitur</i></a>&#160;– Faulty deductive reasoning due to a logical flaw<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Proof_by_contradiction" title="Proof by contradiction">Proof by contradiction</a>&#160;– Proving that the negation is impossible</li> <li><a href="/wiki/Proof_by_contrapositive" class="mw-redirect" title="Proof by contrapositive">Proof by contrapositive</a>&#160;– Mathematical logic concept<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Stoic_logic" title="Stoic logic">Stoic logic</a>&#160;– System of propositional logic developed by the Stoic philosophers</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=13" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-KA-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-KA_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMatthew_C._Harris" class="citation web cs1">Matthew C. Harris. <a rel="nofollow" class="external text" href="https://www.khanacademy.org/partner-content/wi-phi/wiphi-critical-thinking/wiphi-fallacies/v/denying-the-antecedent">"Denying the antecedent"</a>. <a href="/wiki/Khan_academy" class="mw-redirect" title="Khan academy">Khan academy</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Denying+the+antecedent&amp;rft.pub=Khan+academy&amp;rft.au=Matthew+C.+Harris&amp;rft_id=https%3A%2F%2Fwww.khanacademy.org%2Fpartner-content%2Fwi-phi%2Fwiphi-critical-thinking%2Fwiphi-fallacies%2Fv%2Fdenying-the-antecedent&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AModus+tollens" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStone1996" class="citation book cs1">Stone, Jon R. (1996). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/latinforillitera0000ston"><i>Latin for the Illiterati: Exorcizing the Ghosts of a Dead Language</i></a></span>. London: Routledge. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/latinforillitera0000ston/page/60">60</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-415-91775-9" title="Special:BookSources/978-0-415-91775-9"><bdi>978-0-415-91775-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Latin+for+the+Illiterati%3A+Exorcizing+the+Ghosts+of+a+Dead+Language&amp;rft.place=London&amp;rft.pages=60&amp;rft.pub=Routledge&amp;rft.date=1996&amp;rft.isbn=978-0-415-91775-9&amp;rft.aulast=Stone&amp;rft.aufirst=Jon+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flatinforillitera0000ston&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AModus+tollens" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSanford2003" class="citation book cs1">Sanford, David Hawley (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h_AUynB6PA8C&amp;pg=PA39"><i>If P, Then Q: Conditionals and the Foundations of Reasoning</i></a> (2nd&#160;ed.). London: Routledge. p.&#160;39. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-415-28368-7" title="Special:BookSources/978-0-415-28368-7"><bdi>978-0-415-28368-7</bdi></a>. <q>[Modus] tollens is always an abbreviation for modus tollendo tollens, the mood that by denying denies.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=If+P%2C+Then+Q%3A+Conditionals+and+the+Foundations+of+Reasoning&amp;rft.place=London&amp;rft.pages=39&amp;rft.edition=2nd&amp;rft.pub=Routledge&amp;rft.date=2003&amp;rft.isbn=978-0-415-28368-7&amp;rft.aulast=Sanford&amp;rft.aufirst=David+Hawley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh_AUynB6PA8C%26pg%3DPA39&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AModus+tollens" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="/wiki/Susanne_Bobzien" title="Susanne Bobzien">Susanne Bobzien</a> (2002). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1163/156852802321016541">"The Development of Modus Ponens in Antiquity"</a>, <i>Phronesis</i> 47.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/logic-ancient/#StoSyl">"Ancient Logic: Forerunners of <i>Modus Ponens</i> and <i>Modus Tollens</i>"</a>. <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Audun Jøsang 2016:p.2</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Audun Jøsang 2016:p.92</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=14" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Audun Jøsang, 2016, <i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=nqRlDQAAQBAJ&amp;q=%22Modus+tollens%22">Subjective Logic; A formalism for Reasoning Under Uncertainty</a></i> Springer, Cham, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-42337-1" title="Special:BookSources/978-3-319-42337-1">978-3-319-42337-1</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Modus_tollens&amp;action=edit&amp;section=15" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><i><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/ModusTollens.html">Modus Tollens</a></i> at Wolfram MathWorld</li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7fc47fc68d‐nw2pp Cached time: 20241128193231 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.539 seconds Real time usage: 0.904 seconds Preprocessor visited node count: 2866/1000000 Post‐expand include size: 27548/2097152 bytes Template argument size: 1825/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 26407/5000000 bytes Lua time usage: 0.287/10.000 seconds Lua memory usage: 19804922/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 550.786 1 -total 32.49% 178.967 9 Template:Annotated_link 19.46% 107.202 1 Template:Reflist 14.55% 80.118 1 Template:Cite_web 13.99% 77.069 1 Template:Transformation_rules 13.61% 74.945 1 Template:Sidebar 12.11% 66.717 1 Template:Short_description 8.14% 44.861 1 Template:Infobox_mathematical_statement 7.57% 41.713 2 Template:Pagetype 7.40% 40.775 1 Template:Infobox --> <!-- Saved in parser cache with key enwiki:pcache:18901:|#|:idhash:canonical and timestamp 20241128193231 and revision id 1210597187. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Modus_tollens&amp;oldid=1210597187">https://en.wikipedia.org/w/index.php?title=Modus_tollens&amp;oldid=1210597187</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Classical_logic" title="Category:Classical logic">Classical logic</a></li><li><a href="/wiki/Category:Rules_of_inference" title="Category:Rules of inference">Rules of inference</a></li><li><a href="/wiki/Category:Latin_logical_phrases" title="Category:Latin logical phrases">Latin logical phrases</a></li><li><a href="/wiki/Category:Theorems_in_propositional_logic" title="Category:Theorems in propositional logic">Theorems in propositional logic</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_October_2020" title="Category:Use dmy dates from October 2020">Use dmy dates from October 2020</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 February 2024, at 11:31<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Modus_tollens&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-78f4c97c5d-zbwvv","wgBackendResponseTime":212,"wgPageParseReport":{"limitreport":{"cputime":"0.539","walltime":"0.904","ppvisitednodes":{"value":2866,"limit":1000000},"postexpandincludesize":{"value":27548,"limit":2097152},"templateargumentsize":{"value":1825,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":26407,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 550.786 1 -total"," 32.49% 178.967 9 Template:Annotated_link"," 19.46% 107.202 1 Template:Reflist"," 14.55% 80.118 1 Template:Cite_web"," 13.99% 77.069 1 Template:Transformation_rules"," 13.61% 74.945 1 Template:Sidebar"," 12.11% 66.717 1 Template:Short_description"," 8.14% 44.861 1 Template:Infobox_mathematical_statement"," 7.57% 41.713 2 Template:Pagetype"," 7.40% 40.775 1 Template:Infobox"]},"scribunto":{"limitreport-timeusage":{"value":"0.287","limit":"10.000"},"limitreport-memusage":{"value":19804922,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7fc47fc68d-nw2pp","timestamp":"20241128193231","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Modus tollens","url":"https:\/\/en.wikipedia.org\/wiki\/Modus_tollens","sameAs":"http:\/\/www.wikidata.org\/entity\/Q844118","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q844118","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-03-21T22:09:21Z","dateModified":"2024-02-27T11:31:39Z","headline":"if X implies Y, and Y isn't true, then neither is X"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10