CINXE.COM
Deductive reasoning - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Deductive reasoning - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e6572eb9-30fd-4cc1-abb5-e036abb27608","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Deductive_reasoning","wgTitle":"Deductive reasoning","wgCurRevisionId":1254932393,"wgRevisionId":1254932393,"wgArticleId":61093,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1: long volume value","CS1 Portuguese-language sources (pt)","CS1 German-language sources (de)","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from April 2018","Articles to be expanded from January 2015","All articles to be expanded","All articles with dead external links","Articles with dead external links from August 2023", "Articles with permanently dead external links","Articles with Internet Encyclopedia of Philosophy links","Deductive reasoning","Logic","Problem solving skills","Reasoning"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Deductive_reasoning","wgRelevantArticleId":61093,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q484284","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Deductive reasoning - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Deductive_reasoning"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Deductive_reasoning&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Deductive_reasoning"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Deductive_reasoning rootpage-Deductive_reasoning skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Deductive+reasoning" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Deductive+reasoning" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Deductive+reasoning" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Deductive+reasoning" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conceptions_of_deduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conceptions_of_deduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Conceptions of deduction</span> </div> </a> <ul id="toc-Conceptions_of_deduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rules_of_inference" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rules_of_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Rules of inference</span> </div> </a> <button aria-controls="toc-Rules_of_inference-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Rules of inference subsection</span> </button> <ul id="toc-Rules_of_inference-sublist" class="vector-toc-list"> <li id="toc-Prominent_rules_of_inference" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prominent_rules_of_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Prominent rules of inference</span> </div> </a> <ul id="toc-Prominent_rules_of_inference-sublist" class="vector-toc-list"> <li id="toc-Modus_ponens" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Modus_ponens"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>Modus ponens</span> </div> </a> <ul id="toc-Modus_ponens-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modus_tollens" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Modus_tollens"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.2</span> <span>Modus tollens</span> </div> </a> <ul id="toc-Modus_tollens-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hypothetical_syllogism" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hypothetical_syllogism"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.3</span> <span>Hypothetical syllogism</span> </div> </a> <ul id="toc-Hypothetical_syllogism-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fallacies" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fallacies"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Fallacies</span> </div> </a> <ul id="toc-Fallacies-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitory_and_strategic_rules" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitory_and_strategic_rules"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Definitory and strategic rules</span> </div> </a> <ul id="toc-Definitory_and_strategic_rules-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Validity_and_soundness" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Validity_and_soundness"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Validity and soundness</span> </div> </a> <ul id="toc-Validity_and_soundness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Difference_from_ampliative_reasoning" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Difference_from_ampliative_reasoning"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Difference from ampliative reasoning</span> </div> </a> <ul id="toc-Difference_from_ampliative_reasoning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_various_fields" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_various_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In various fields</span> </div> </a> <button aria-controls="toc-In_various_fields-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In various fields subsection</span> </button> <ul id="toc-In_various_fields-sublist" class="vector-toc-list"> <li id="toc-Cognitive_psychology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cognitive_psychology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Cognitive psychology</span> </div> </a> <ul id="toc-Cognitive_psychology-sublist" class="vector-toc-list"> <li id="toc-Psychological_theories_of_deductive_reasoning" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Psychological_theories_of_deductive_reasoning"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Psychological theories of deductive reasoning</span> </div> </a> <ul id="toc-Psychological_theories_of_deductive_reasoning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intelligence" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Intelligence"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>Intelligence</span> </div> </a> <ul id="toc-Intelligence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Epistemology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Epistemology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Epistemology</span> </div> </a> <ul id="toc-Epistemology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_logic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Probability logic</span> </div> </a> <ul id="toc-Probability_logic-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_concepts_and_theories" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_concepts_and_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Related concepts and theories</span> </div> </a> <button aria-controls="toc-Related_concepts_and_theories-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Related concepts and theories subsection</span> </button> <ul id="toc-Related_concepts_and_theories-sublist" class="vector-toc-list"> <li id="toc-Deductivism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deductivism"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Deductivism</span> </div> </a> <ul id="toc-Deductivism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Natural_deduction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Natural_deduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Natural deduction</span> </div> </a> <ul id="toc-Natural_deduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometrical_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometrical_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Geometrical method</span> </div> </a> <ul id="toc-Geometrical_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes_and_references" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes_and_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes and references</span> </div> </a> <ul id="toc-Notes_and_references-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Deductive reasoning</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 62 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-62" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">62 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D9%86%D8%A8%D8%A7%D8%B7" title="استنباط – Arabic" lang="ar" hreflang="ar" data-title="استنباط" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Deduksiya" title="Deduksiya – Azerbaijani" lang="az" hreflang="az" data-title="Deduksiya" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Дедукция – Bulgarian" lang="bg" hreflang="bg" data-title="Дедукция" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Dedukcija" title="Dedukcija – Bosnian" lang="bs" hreflang="bs" data-title="Dedukcija" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Raonament_deductiu" title="Raonament deductiu – Catalan" lang="ca" hreflang="ca" data-title="Raonament deductiu" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Dedukce" title="Dedukce – Czech" lang="cs" hreflang="cs" data-title="Dedukce" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Deduktion" title="Deduktion – Danish" lang="da" hreflang="da" data-title="Deduktion" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Deduktion" title="Deduktion – German" lang="de" hreflang="de" data-title="Deduktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Deduktsioon" title="Deduktsioon – Estonian" lang="et" hreflang="et" data-title="Deduktsioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%B1%CE%B3%CF%89%CE%B3%CE%B9%CE%BA%CF%8C%CF%82_%CF%83%CF%85%CE%BB%CE%BB%CE%BF%CE%B3%CE%B9%CF%83%CE%BC%CF%8C%CF%82" title="Παραγωγικός συλλογισμός – Greek" lang="el" hreflang="el" data-title="Παραγωγικός συλλογισμός" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Razonamiento_deductivo" title="Razonamiento deductivo – Spanish" lang="es" hreflang="es" data-title="Razonamiento deductivo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Dedukto" title="Dedukto – Esperanto" lang="eo" hreflang="eo" data-title="Dedukto" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Arrazoibide_deduktibo" title="Arrazoibide deduktibo – Basque" lang="eu" hreflang="eu" data-title="Arrazoibide deduktibo" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D8%AF%D9%84%D8%A7%D9%84_%D8%A7%D8%B3%D8%AA%D9%86%D8%AA%D8%A7%D8%AC%DB%8C" title="استدلال استنتاجی – Persian" lang="fa" hreflang="fa" data-title="استدلال استنتاجی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Raisonnement_d%C3%A9ductif" title="Raisonnement déductif – French" lang="fr" hreflang="fr" data-title="Raisonnement déductif" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Deduci%C3%B3n" title="Dedución – Galician" lang="gl" hreflang="gl" data-title="Dedución" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ki mw-list-item"><a href="https://ki.wikipedia.org/wiki/Nguny%C4%A9r%C4%A9ko_(deduction)" title="Ngunyĩrĩko (deduction) – Kikuyu" lang="ki" hreflang="ki" data-title="Ngunyĩrĩko (deduction)" data-language-autonym="Gĩkũyũ" data-language-local-name="Kikuyu" class="interlanguage-link-target"><span>Gĩkũyũ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%97%B0%EC%97%AD" title="연역 – Korean" lang="ko" hreflang="ko" data-title="연역" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B4%D5%A5%D5%A4%D5%B8%D6%82%D5%AF%D6%81%D5%AB%D5%A1" title="Դեդուկցիա – Armenian" lang="hy" hreflang="hy" data-title="Դեդուկցիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A8%E0%A4%BF%E0%A4%97%E0%A4%AE%E0%A4%A8%E0%A4%BE%E0%A4%A4%E0%A5%8D%E0%A4%AE%E0%A4%95_%E0%A4%A4%E0%A4%B0%E0%A5%8D%E0%A4%95" title="निगमनात्मक तर्क – Hindi" lang="hi" hreflang="hi" data-title="निगमनात्मक तर्क" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Dedukcija" title="Dedukcija – Croatian" lang="hr" hreflang="hr" data-title="Dedukcija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Metode_deduksi" title="Metode deduksi – Indonesian" lang="id" hreflang="id" data-title="Metode deduksi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Aflei%C3%B0sla" title="Afleiðsla – Icelandic" lang="is" hreflang="is" data-title="Afleiðsla" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Deduzione" title="Deduzione – Italian" lang="it" hreflang="it" data-title="Deduzione" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%A1%D7%A7%D7%94_%D7%93%D7%93%D7%95%D7%A7%D7%98%D7%99%D7%91%D7%99%D7%AA" title="הסקה דדוקטיבית – Hebrew" lang="he" hreflang="he" data-title="הסקה דדוקטיבית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Panalaran_d%C3%A9duksi" title="Panalaran déduksi – Javanese" lang="jv" hreflang="jv" data-title="Panalaran déduksi" data-language-autonym="Jawa" data-language-local-name="Javanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D1%82%D1%96_%D0%BF%D0%B0%D0%B9%D1%8B%D0%BC%D0%B4%D0%B0%D1%83" title="Дедуктивті пайымдау – Kazakh" lang="kk" hreflang="kk" data-title="Дедуктивті пайымдау" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Дедукция – Kyrgyz" lang="ky" hreflang="ky" data-title="Дедукция" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Dedukt%C4%ABvs_sl%C4%93dziens" title="Deduktīvs slēdziens – Latvian" lang="lv" hreflang="lv" data-title="Deduktīvs slēdziens" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Dedukci%C3%B3" title="Dedukció – Hungarian" lang="hu" hreflang="hu" data-title="Dedukció" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Дедукција – Macedonian" lang="mk" hreflang="mk" data-title="Дедукција" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Penaakulan_deduktif" title="Penaakulan deduktif – Malay" lang="ms" hreflang="ms" data-title="Penaakulan deduktif" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Deductie" title="Deductie – Dutch" lang="nl" hreflang="nl" data-title="Deductie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%BC%94%E7%B9%B9" title="演繹 – Japanese" lang="ja" hreflang="ja" data-title="演繹" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Deduksjon_(filosofi)" title="Deduksjon (filosofi) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Deduksjon (filosofi)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Deduksjon" title="Deduksjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Deduksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Deduksiya" title="Deduksiya – Uzbek" lang="uz" hreflang="uz" data-title="Deduksiya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D8%AE%D8%B1%D8%A7%D8%AC" title="استخراج – Western Punjabi" lang="pnb" hreflang="pnb" data-title="استخراج" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D9%84%D9%87_%DA%A9%D9%8F%D9%84_%DA%85%D8%AE%D9%87_%D8%AC%D8%B2_%D8%AA%D9%87_(%D8%AA%D8%B9%D9%84%DB%8C%D9%84%D9%8A)_%D8%A7%D8%B3%D8%AA%D8%AF%D9%84%D8%A7%D9%84" title="له کُل څخه جز ته (تعلیلي) استدلال – Pashto" lang="ps" hreflang="ps" data-title="له کُل څخه جز ته (تعلیلي) استدلال" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozumowanie_dedukcyjne" title="Rozumowanie dedukcyjne – Polish" lang="pl" hreflang="pl" data-title="Rozumowanie dedukcyjne" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/M%C3%A9todo_dedutivo" title="Método dedutivo – Portuguese" lang="pt" hreflang="pt" data-title="Método dedutivo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ra%C8%9Bionament_deductiv" title="Raționament deductiv – Romanian" lang="ro" hreflang="ro" data-title="Raționament deductiv" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D0%B5_%D1%83%D0%BC%D0%BE%D0%B7%D0%B0%D0%BA%D0%BB%D1%8E%D1%87%D0%B5%D0%BD%D0%B8%D0%B5" title="Дедуктивное умозаключение – Russian" lang="ru" hreflang="ru" data-title="Дедуктивное умозаключение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Deduksioni" title="Deduksioni – Albanian" lang="sq" hreflang="sq" data-title="Deduksioni" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Deductive_reasoning" title="Deductive reasoning – Simple English" lang="en-simple" hreflang="en-simple" data-title="Deductive reasoning" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Dedukcia" title="Dedukcia – Slovak" lang="sk" hreflang="sk" data-title="Dedukcia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Dedukcija" title="Dedukcija – Slovenian" lang="sl" hreflang="sl" data-title="Dedukcija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%BE%DB%95%DA%B5%DA%BE%DB%8E%D9%86%D8%AC%D8%A7%D9%86" title="ھەڵھێنجان – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ھەڵھێنجان" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Дедукција – Serbian" lang="sr" hreflang="sr" data-title="Дедукција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Dedukcija" title="Dedukcija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Dedukcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Deduktiivinen_p%C3%A4%C3%A4ttely" title="Deduktiivinen päättely – Finnish" lang="fi" hreflang="fi" data-title="Deduktiivinen päättely" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Deduktion" title="Deduktion – Swedish" lang="sv" hreflang="sv" data-title="Deduktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%95%E0%AF%81%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%B5%E0%AE%B4%E0%AE%BF_%E0%AE%AA%E0%AE%95%E0%AF%81%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%B1%E0%AE%BF%E0%AE%A4%E0%AE%B2%E0%AF%8D" title="பகுப்புவழி பகுத்தறிதல் – Tamil" lang="ta" hreflang="ta" data-title="பகுப்புவழி பகுத்தறிதல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Дедукция – Tatar" lang="tt" hreflang="tt" data-title="Дедукция" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%83%E0%B8%AB%E0%B9%89%E0%B9%80%E0%B8%AB%E0%B8%95%E0%B8%B8%E0%B8%9C%E0%B8%A5%E0%B9%81%E0%B8%9A%E0%B8%9A%E0%B8%99%E0%B8%B4%E0%B8%A3%E0%B8%99%E0%B8%B1%E0%B8%A2" title="การให้เหตุผลแบบนิรนัย – Thai" lang="th" hreflang="th" data-title="การให้เหตุผลแบบนิรนัย" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/T%C3%BCmdengelim" title="Tümdengelim – Turkish" lang="tr" hreflang="tr" data-title="Tümdengelim" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D1%83%D0%BA%D1%86%D1%96%D1%8F" title="Дедукція – Ukrainian" lang="uk" hreflang="uk" data-title="Дедукція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D8%AE%D8%B1%D8%A7%D8%AC" title="استخراج – Urdu" lang="ur" hreflang="ur" data-title="استخراج" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Suy_di%E1%BB%85n_logic" title="Suy diễn logic – Vietnamese" lang="vi" hreflang="vi" data-title="Suy diễn logic" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%BC%94%E7%BB%8E%E6%8E%A8%E7%90%86" title="演绎推理 – Wu" lang="wuu" hreflang="wuu" data-title="演绎推理" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%BC%94%E7%B9%B9%E6%8E%A8%E7%90%86" title="演繹推理 – Cantonese" lang="yue" hreflang="yue" data-title="演繹推理" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%BC%94%E7%BB%8E%E6%8E%A8%E7%90%86" title="演绎推理 – Chinese" lang="zh" hreflang="zh" data-title="演绎推理" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q484284#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Deductive_reasoning" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Deductive_reasoning" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Deductive_reasoning"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Deductive_reasoning"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Deductive_reasoning" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Deductive_reasoning" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&oldid=1254932393" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Deductive_reasoning&id=1254932393&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDeductive_reasoning"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDeductive_reasoning"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Deductive_reasoning&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Deductive_reasoning&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Deductive_reasoning" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Deductive_reasoning" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q484284" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Form of reasoning</div> <p><b>Deductive reasoning</b> is the process of drawing valid <a href="/wiki/Inference" title="Inference">inferences</a>. An inference is <a href="/wiki/Validity_(logic)" title="Validity (logic)">valid</a> if its conclusion follows <a href="/wiki/Logic" title="Logic">logically</a> from its <a href="/wiki/Premise" title="Premise">premises</a>, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "<a href="/wiki/Socrates" title="Socrates">Socrates</a> is a man" to the conclusion "Socrates is mortal" is deductively valid. An <a href="/wiki/Argument" title="Argument">argument</a> is <i><a href="/wiki/Soundness" title="Soundness">sound</a></i> if it is valid <i>and</i> all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning. </p><p><b>Deductive logic</b> studies under what conditions an argument is valid. According to the <a href="/wiki/Semantic" class="mw-redirect" title="Semantic">semantic</a> approach, an argument is valid if there is no possible <a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">interpretation</a> of the argument whereby its premises are true and its conclusion is false. The <a href="/wiki/Syntactic" class="mw-redirect" title="Syntactic">syntactic</a> approach, by contrast, focuses on <a href="/wiki/Rules_of_inference" class="mw-redirect" title="Rules of inference">rules of inference</a>, that is, schemas of drawing a conclusion from a set of premises based only on their <a href="/wiki/Logical_form" title="Logical form">logical form</a>. There are various rules of inference, such as <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a> and <a href="/wiki/Modus_tollens" title="Modus tollens">modus tollens</a>. Invalid deductive arguments, which do not follow a rule of inference, are called <a href="/wiki/Formal_fallacies" class="mw-redirect" title="Formal fallacies">formal fallacies</a>. Rules of inference are definitory rules and contrast with strategic rules, which specify what inferences one needs to draw in order to arrive at an intended conclusion. </p><p>Deductive reasoning contrasts with non-deductive or <a href="/wiki/Ampliative" title="Ampliative">ampliative</a> reasoning. For ampliative arguments, such as <a href="/wiki/Inductive_reasoning" title="Inductive reasoning">inductive</a> or <a href="/wiki/Abductive_reasoning" title="Abductive reasoning">abductive arguments</a>, the premises offer weaker support to their conclusion: they indicate that it is most likely, but they do not guarantee its truth. They make up for this drawback with their ability to provide genuinely new information (that is, information not already found in the premises), unlike deductive arguments. </p><p><a href="/wiki/Cognitive_psychology" title="Cognitive psychology">Cognitive psychology</a> investigates the mental processes responsible for deductive reasoning. One of its topics concerns the factors determining whether people draw valid or invalid deductive inferences. One such factor is the form of the argument: for example, people draw valid inferences more successfully for arguments of the form modus ponens than of the form modus tollens. Another factor is the content of the arguments: people are more likely to believe that an argument is valid if the claim made in its conclusion is plausible. A general finding is that people tend to perform better for realistic and concrete cases than for abstract cases. Psychological theories of deductive reasoning aim to explain these findings by providing an account of the underlying psychological processes. <i>Mental logic theories</i> hold that deductive reasoning is a language-like process that happens through the manipulation of representations using rules of inference. <i>Mental model theories</i>, on the other hand, claim that deductive reasoning involves models of possible states of the world without the medium of language or rules of inference. According to <i><a href="/wiki/Dual-process_theories" class="mw-redirect" title="Dual-process theories">dual-process theories</a></i> of reasoning, there are two qualitatively different cognitive systems responsible for reasoning. </p><p>The problem of deduction is relevant to various fields and issues. <a href="/wiki/Epistemology" title="Epistemology">Epistemology</a> tries to understand how <a href="/wiki/Justification_(epistemology)" title="Justification (epistemology)">justification</a> is transferred from the <a href="/wiki/Belief" title="Belief">belief</a> in the premises to the belief in the conclusion in the process of deductive reasoning. <a href="/wiki/Probability_logic" class="mw-redirect" title="Probability logic">Probability logic</a> studies how the probability of the premises of an inference affects the probability of its conclusion. The controversial thesis of <a href="/wiki/Deductivism" class="mw-redirect" title="Deductivism">deductivism</a> denies that there are other correct forms of inference besides deduction. <a href="/wiki/Natural_deduction" title="Natural deduction">Natural deduction</a> is a type of proof system based on simple and self-evident rules of inference. In philosophy, the geometrical method is a way of philosophizing that starts from a small set of self-evident axioms and tries to build a comprehensive logical system using deductive reasoning. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deductive reasoning is the psychological process of drawing deductive <a href="/wiki/Inference" title="Inference">inferences</a>. An inference is a set of <a href="/wiki/Premise" title="Premise">premises</a> together with a conclusion. This psychological process starts from the premises and <a href="/wiki/Reason" title="Reason">reasons</a> to a conclusion based on and supported by these premises. If the reasoning was done correctly, it results in a <a href="/wiki/Validity_(logic)" title="Validity (logic)">valid</a> deduction: the truth of the premises ensures the truth of the conclusion.<sup id="cite_ref-Johnson-Laird2009_1-0" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Houde_2-0" class="reference"><a href="#cite_note-Houde-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-0" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> For example, in the <a href="/wiki/Syllogistic" class="mw-redirect" title="Syllogistic">syllogistic</a> argument "all frogs are amphibians; no cats are amphibians; therefore, no cats are frogs" the conclusion is true because its two premises are true. But even arguments with wrong premises can be deductively valid if they obey this principle, as in "all frogs are mammals; no cats are mammals; therefore, no cats are frogs". If the premises of a valid <a href="/wiki/Argument" title="Argument">argument</a> are true, then it is called a <a href="/wiki/Soundness" title="Soundness">sound</a> argument.<sup id="cite_ref-Evans_5-0" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>The relation between the premises and the conclusion of a deductive argument is usually referred to as "<a href="/wiki/Logical_consequence" title="Logical consequence">logical consequence</a>". According to <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a>, logical consequence has 3 essential features: it is necessary, formal, and knowable <a href="/wiki/A_priori" class="mw-redirect" title="A priori">a priori</a>.<sup id="cite_ref-IEPLogical_6-0" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tarski_7-0" class="reference"><a href="#cite_note-Tarski-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> It is necessary in the sense that the premises of valid deductive arguments necessitate the conclusion: it is impossible for the premises to be true and the conclusion to be false, independent of any other circumstances.<sup id="cite_ref-IEPLogical_6-1" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tarski_7-1" class="reference"><a href="#cite_note-Tarski-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Logical consequence is formal in the sense that it depends only on the form or the syntax of the premises and the conclusion. This means that the validity of a particular argument does not depend on the specific contents of this argument. If it is valid, then any argument with the same logical form is also valid, no matter how different it is on the level of its contents.<sup id="cite_ref-IEPLogical_6-2" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tarski_7-2" class="reference"><a href="#cite_note-Tarski-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Logical consequence is knowable a priori in the sense that no <a href="/wiki/Empirical" class="mw-redirect" title="Empirical">empirical</a> knowledge of the world is necessary to determine whether a deduction is valid. So it is not necessary to engage in any form of empirical investigation.<sup id="cite_ref-IEPLogical_6-3" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tarski_7-3" class="reference"><a href="#cite_note-Tarski-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Some logicians define deduction in terms of <a href="/wiki/Possible_world" title="Possible world">possible worlds</a>: A deductive inference is valid if and only if, there is no possible world in which its conclusion is false while its premises are true. This means that there are no counterexamples: the conclusion is true in <i>all</i> such cases, not just in <i>most</i> cases.<sup id="cite_ref-Johnson-Laird2009_1-1" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>It has been argued against this and similar definitions that they fail to distinguish between valid and invalid deductive reasoning, i.e. they leave it open whether there are invalid deductive inferences and how to define them.<sup id="cite_ref-Vorobej_8-0" class="reference"><a href="#cite_note-Vorobej-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wilbanks_9-0" class="reference"><a href="#cite_note-Wilbanks-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> Some authors define deductive reasoning in psychological terms in order to avoid this problem. According to Mark Vorobey, whether an argument is deductive depends on the psychological state of the person making the argument: "An argument is deductive if, and only if, the author of the argument believes that the truth of the premises necessitates (guarantees) the truth of the conclusion".<sup id="cite_ref-Vorobej_8-1" class="reference"><a href="#cite_note-Vorobej-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> A similar formulation holds that the speaker <i>claims</i> or <i>intends</i> that the premises offer deductive support for their conclusion.<sup id="cite_ref-Copi1_10-0" class="reference"><a href="#cite_note-Copi1-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPDeductiveInductive_11-0" class="reference"><a href="#cite_note-IEPDeductiveInductive-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> This is sometimes categorized as a <i>speaker-determined</i> definition of deduction since it depends also on the speaker whether the argument in question is deductive or not. For <i>speakerless</i> definitions, on the other hand, only the argument itself matters independent of the speaker.<sup id="cite_ref-Wilbanks_9-1" class="reference"><a href="#cite_note-Wilbanks-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> One advantage of this type of formulation is that it makes it possible to distinguish between good or valid and bad or invalid deductive arguments: the argument is good if the author's <a href="/wiki/Belief" title="Belief">belief</a> concerning the relation between the premises and the conclusion is true, otherwise it is bad.<sup id="cite_ref-Vorobej_8-2" class="reference"><a href="#cite_note-Vorobej-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> One consequence of this approach is that deductive arguments cannot be identified by the law of inference they use. For example, an argument of the form <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a> may be non-deductive if the author's beliefs are sufficiently confused. That brings with it an important drawback of this definition: it is difficult to apply to concrete cases since the intentions of the author are usually not explicitly stated.<sup id="cite_ref-Vorobej_8-3" class="reference"><a href="#cite_note-Vorobej-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>Deductive reasoning is studied in <a href="/wiki/Logic" title="Logic">logic</a>, <a href="/wiki/Psychology" title="Psychology">psychology</a>, and the <a href="/wiki/Cognitive_sciences" class="mw-redirect" title="Cognitive sciences">cognitive sciences</a>.<sup id="cite_ref-Schechter_3-1" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-2" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Some theorists emphasize in their definition the difference between these fields. On this view, psychology studies deductive reasoning as an empirical mental process, i.e. what happens when humans engage in reasoning.<sup id="cite_ref-Schechter_3-2" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-3" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> But the descriptive question of how actual reasoning happens is different from the <a href="/wiki/Normative" class="mw-redirect" title="Normative">normative</a> question of how it <i>should</i> happen or what constitutes <i>correct</i> deductive reasoning, which is studied by logic.<sup id="cite_ref-Schechter_3-3" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BritannicaPhilosophy_12-0" class="reference"><a href="#cite_note-BritannicaPhilosophy-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-4" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> This is sometimes expressed by stating that, strictly speaking, logic does not study deductive reasoning but the deductive relation between premises and a conclusion known as <a href="/wiki/Logical_consequence" title="Logical consequence">logical consequence</a>. But this distinction is not always precisely observed in the academic literature.<sup id="cite_ref-Schechter_3-4" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> One important aspect of this difference is that logic is not interested in whether the conclusion of an argument is sensible.<sup id="cite_ref-Johnson-Laird2009_1-4" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> So from the premise "the printer has ink" one may draw the unhelpful conclusion "the printer has ink and the printer has ink and the printer has ink", which has little relevance from a psychological point of view. Instead, actual reasoners usually try to remove redundant or irrelevant information and make the relevant information more explicit.<sup id="cite_ref-Johnson-Laird2009_1-5" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The psychological study of deductive reasoning is also concerned with how good people are at drawing deductive inferences and with the factors determining their performance.<sup id="cite_ref-Schechter_3-5" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-1" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Deductive inferences are found both in <a href="/wiki/Natural_language" title="Natural language">natural language</a> and in <a href="/wiki/Formal_logical_systems" class="mw-redirect" title="Formal logical systems">formal logical systems</a>, such as <a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">propositional logic</a>.<sup id="cite_ref-Johnson-Laird2009_1-6" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Hintikka_13-0" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Conceptions_of_deduction">Conceptions of deduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=2" title="Edit section: Conceptions of deduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deductive arguments differ from non-deductive arguments in that the truth of their premises ensures the truth of their conclusion.<sup id="cite_ref-Stump_14-0" class="reference"><a href="#cite_note-Stump-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-RoutledgeFormalInformal_15-0" class="reference"><a href="#cite_note-RoutledgeFormalInformal-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-5" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> There are two important conceptions of what this exactly means. They are referred to as the <a href="/wiki/Syntactic" class="mw-redirect" title="Syntactic">syntactic</a> and the <a href="/wiki/Semantic" class="mw-redirect" title="Semantic">semantic</a> approach.<sup id="cite_ref-Hintikka_13-1" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-6" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-2" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> According to the syntactic approach, whether an argument is deductively valid depends only on its form, syntax, or structure. Two arguments have the same form if they use the same logical vocabulary in the same arrangement, even if their contents differ.<sup id="cite_ref-Hintikka_13-2" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-7" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-3" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> For example, the arguments "if it rains then the street will be wet; it rains; therefore, the street will be wet" and "if the meat is not cooled then it will spoil; the meat is not cooled; therefore, it will spoil" have the same logical form: they follow the <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a>. Their form can be expressed more abstractly as "if A then B; A; therefore B" in order to make the common syntax explicit.<sup id="cite_ref-Evans_5-4" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> There are various other valid logical forms or <a href="/wiki/Rules_of_inference" class="mw-redirect" title="Rules of inference">rules of inference</a>, like <a href="/wiki/Modus_tollens" title="Modus tollens">modus tollens</a> or the <a href="/wiki/Disjunction_elimination" title="Disjunction elimination">disjunction elimination</a>. The syntactic approach then holds that an argument is deductively valid if and only if its conclusion can be deduced from its premises using a valid rule of inference.<sup id="cite_ref-Hintikka_13-3" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-8" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-5" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> One difficulty for the syntactic approach is that it is usually necessary to express the argument in a <a href="/wiki/Formal_language" title="Formal language">formal language</a> in order to assess whether it is valid. This often brings with it the difficulty of translating the <a href="/wiki/Natural_language" title="Natural language">natural language</a> argument into a formal language, a process that comes with various problems of its own.<sup id="cite_ref-Hintikka_13-4" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> Another difficulty is due to the fact that the syntactic approach depends on the distinction between formal and non-formal features. While there is a wide agreement concerning the paradigmatic cases, there are also various controversial cases where it is not clear how this distinction is to be drawn.<sup id="cite_ref-MacFarlane_16-0" class="reference"><a href="#cite_note-MacFarlane-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BritannicaPhilosophy_12-1" class="reference"><a href="#cite_note-BritannicaPhilosophy-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>The semantic approach suggests an alternative definition of deductive validity. It is based on the idea that the sentences constituting the premises and conclusions have to be <a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">interpreted</a> in order to determine whether the argument is valid.<sup id="cite_ref-Hintikka_13-5" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-9" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-6" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> This means that one ascribes semantic values to the expressions used in the sentences, such as the reference to an object for <a href="/wiki/Singular_term" title="Singular term">singular terms</a> or to a <a href="/wiki/Truth-value" class="mw-redirect" title="Truth-value">truth-value</a> for atomic sentences. The semantic approach is also referred to as the model-theoretic approach since the branch of mathematics known as <a href="/wiki/Model_theory" title="Model theory">model theory</a> is often used to interpret these sentences.<sup id="cite_ref-Hintikka_13-6" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-10" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Usually, many different interpretations are possible, such as whether a singular term refers to one object or to another. According to the semantic approach, an argument is deductively valid if and only if there is no possible interpretation where its premises are true and its conclusion is false.<sup id="cite_ref-Hintikka_13-7" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPLogical_6-11" class="reference"><a href="#cite_note-IEPLogical-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-7" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Some objections to the semantic approach are based on the claim that the semantics of a language cannot be expressed in the same language, i.e. that a richer <a href="/wiki/Metalanguage" title="Metalanguage">metalanguage</a> is necessary. This would imply that the semantic approach cannot provide a universal account of deduction for language as an all-encompassing medium.<sup id="cite_ref-Hintikka_13-8" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BritannicaPhilosophy_12-2" class="reference"><a href="#cite_note-BritannicaPhilosophy-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Rules_of_inference">Rules of inference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=3" title="Edit section: Rules of inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deductive reasoning usually happens by applying <a href="/wiki/Rules_of_inference" class="mw-redirect" title="Rules of inference">rules of inference</a>. A rule of inference is a way or schema of drawing a conclusion from a set of premises.<sup id="cite_ref-Macmillan_17-0" class="reference"><a href="#cite_note-Macmillan-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> This happens usually based only on the <a href="/wiki/Logical_form" title="Logical form">logical form</a> of the premises. A rule of inference is valid if, when applied to true premises, the conclusion cannot be false. A particular argument is valid if it follows a valid rule of inference. Deductive arguments that do not follow a valid rule of inference are called <a href="/wiki/Formal_fallacies" class="mw-redirect" title="Formal fallacies">formal fallacies</a>: the truth of their premises does not ensure the truth of their conclusion.<sup id="cite_ref-IEPFallacies_18-0" class="reference"><a href="#cite_note-IEPFallacies-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stump_14-1" class="reference"><a href="#cite_note-Stump-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>In some cases, whether a rule of inference is valid depends on the logical system one is using. The dominant logical system is <a href="/wiki/Classical_logic" title="Classical logic">classical logic</a> and the rules of inference listed here are all valid in classical logic. But so-called <a href="/wiki/Deviant_logic" title="Deviant logic">deviant logics</a> provide a different account of which inferences are valid. For example, the rule of inference known as <a href="/wiki/Double_negation_elimination" class="mw-redirect" title="Double negation elimination">double negation elimination</a>, i.e. that if a proposition is <i>not not true</i> then it is also <i>true</i>, is accepted in classical logic but rejected in <a href="/wiki/Intuitionistic_logic" title="Intuitionistic logic">intuitionistic logic</a>.<sup id="cite_ref-Moschovakis_19-0" class="reference"><a href="#cite_note-Moschovakis-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-MacMillanNonClassical_20-0" class="reference"><a href="#cite_note-MacMillanNonClassical-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Prominent_rules_of_inference">Prominent rules of inference</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=4" title="Edit section: Prominent rules of inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Modus_ponens">Modus ponens</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=5" title="Edit section: Modus ponens"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Modus_ponens" title="Modus ponens">Modus ponens</a></div> <p>Modus ponens (also known as "affirming the antecedent" or "the law of detachment") is the primary deductive <a href="/wiki/Rule_of_inference" title="Rule of inference">rule of inference</a>. It applies to arguments that have as first premise a <a href="/wiki/Material_conditional" title="Material conditional">conditional statement</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span>) and as second premise the antecedent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>) of the conditional statement. It obtains the consequent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>) of the conditional statement as its conclusion. The argument form is listed below: </p> <ol><li><code><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span></code>  (First premise is a conditional statement)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>  (Second premise is the antecedent)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>  (Conclusion deduced is the consequent)</li></ol> <p>In this form of deductive reasoning, the consequent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>) obtains as the conclusion from the premises of a conditional statement (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span>) and its antecedent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>). However, the antecedent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>) cannot be similarly obtained as the conclusion from the premises of the conditional statement (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span>) and the consequent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>). Such an argument commits the <a href="/wiki/Logical_fallacy" class="mw-redirect" title="Logical fallacy">logical fallacy</a> of <a href="/wiki/Affirming_the_consequent" title="Affirming the consequent">affirming the consequent</a>. </p><p>The following is an example of an argument using modus ponens: </p> <ol><li>If it is raining, then there are clouds in the sky.</li> <li>It is raining.</li> <li>Thus, there are clouds in the sky.</li></ol> <div class="mw-heading mw-heading4"><h4 id="Modus_tollens">Modus tollens</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=6" title="Edit section: Modus tollens"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Modus_tollens" title="Modus tollens">Modus tollens</a></div> <p>Modus tollens (also known as "the law of contrapositive") is a deductive rule of inference. It validates an argument that has as premises a conditional statement (formula) and the negation of the consequent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67b5e3033d1f0e7333fc9e708c2ea802f9b9fca9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \lnot Q}"></span>) and as conclusion the negation of the antecedent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a32afb77c17696c41588f6deaf9bcd7109b10c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \lnot P}"></span>). In contrast to <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a>, reasoning with modus tollens goes in the opposite direction to that of the conditional. The general expression for modus tollens is the following: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span>. (First premise is a conditional statement)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67b5e3033d1f0e7333fc9e708c2ea802f9b9fca9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \lnot Q}"></span>. (Second premise is the negation of the consequent)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a32afb77c17696c41588f6deaf9bcd7109b10c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \lnot P}"></span>. (Conclusion deduced is the negation of the antecedent)</li></ol> <p>The following is an example of an argument using modus tollens: </p> <ol><li>If it is raining, then there are clouds in the sky.</li> <li>There are no clouds in the sky.</li> <li>Thus, it is not raining.</li></ol> <div class="mw-heading mw-heading4"><h4 id="Hypothetical_syllogism">Hypothetical syllogism</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=7" title="Edit section: Hypothetical syllogism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hypothetical_syllogism" title="Hypothetical syllogism">hypothetical syllogism</a></div> <p>A <i>hypothetical <a href="/wiki/Syllogism" title="Syllogism">syllogism</a></i> is an inference that takes two conditional statements and forms a conclusion by combining the hypothesis of one statement with the conclusion of another. Here is the general form: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86439ea857adc8eaec93c4d14270b8ba6bd2a6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\rightarrow Q}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q\rightarrow R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">→<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q\rightarrow R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b76e444a574635586201a7ce3424d8777e3d6e22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.216ex; height:2.509ex;" alt="{\displaystyle Q\rightarrow R}"></span></li> <li>Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\rightarrow R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">→<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\rightarrow R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a49c1fd9f72e6b64b996ec899e5d2a68f6ac539a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.124ex; height:2.176ex;" alt="{\displaystyle P\rightarrow R}"></span>.</li></ol> <p>In there being a subformula in common between the two premises that does not occur in the consequence, this resembles syllogisms in <a href="/wiki/Term_logic" title="Term logic">term logic</a>, although it differs in that this subformula is a proposition whereas in Aristotelian logic, this common element is a term and not a proposition. </p><p>The following is an example of an argument using a hypothetical syllogism: </p> <ol><li>If there had been a thunderstorm, it would have rained.</li> <li>If it had rained, things would have gotten wet.</li> <li>Thus, if there had been a thunderstorm, things would have gotten wet.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li></ol> <div class="mw-heading mw-heading3"><h3 id="Fallacies">Fallacies</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=8" title="Edit section: Fallacies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Various formal fallacies have been described. They are invalid forms of deductive reasoning.<sup id="cite_ref-IEPFallacies_18-1" class="reference"><a href="#cite_note-IEPFallacies-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stump_14-2" class="reference"><a href="#cite_note-Stump-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> An additional aspect of them is that they appear to be valid on some occasions or on the first impression. They may thereby seduce people into accepting and committing them.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> One type of formal fallacy is <a href="/wiki/Affirming_the_consequent" title="Affirming the consequent">affirming the consequent</a>, as in "if John is a bachelor, then he is male; John is male; therefore, John is a bachelor".<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> This is similar to the valid rule of inference named <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a>, but the second premise and the conclusion are switched around, which is why it is invalid. A similar formal fallacy is <a href="/wiki/Denying_the_antecedent" title="Denying the antecedent">denying the antecedent</a>, as in "if Othello is a bachelor, then he is male; Othello is not a bachelor; therefore, Othello is not male".<sup id="cite_ref-BritannicaThought_24-0" class="reference"><a href="#cite_note-BritannicaThought-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> This is similar to the valid rule of inference called <a href="/wiki/Modus_tollens" title="Modus tollens">modus tollens</a>, the difference being that the second premise and the conclusion are switched around. Other formal fallacies include <a href="/wiki/Affirming_a_disjunct" title="Affirming a disjunct">affirming a disjunct</a>, <a href="/wiki/Denying_a_conjunct" class="mw-redirect" title="Denying a conjunct">denying a conjunct</a>, and the <a href="/wiki/Fallacy_of_the_undistributed_middle" title="Fallacy of the undistributed middle">fallacy of the undistributed middle</a>. All of them have in common that the truth of their premises does not ensure the truth of their conclusion. But it may still happen by coincidence that both the premises and the conclusion of formal fallacies are true.<sup id="cite_ref-IEPFallacies_18-2" class="reference"><a href="#cite_note-IEPFallacies-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stump_14-3" class="reference"><a href="#cite_note-Stump-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Definitory_and_strategic_rules">Definitory and strategic rules</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=9" title="Edit section: Definitory and strategic rules"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Rules of inferences are definitory rules: they determine whether an argument is deductively valid or not. But reasoners are usually not just interested in making any kind of valid argument. Instead, they often have a specific point or conclusion that they wish to prove or refute. So given a set of premises, they are faced with the problem of choosing the relevant rules of inference for their deduction to arrive at their intended conclusion.<sup id="cite_ref-Hintikka_13-9" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BritannicaSystems_26-0" class="reference"><a href="#cite_note-BritannicaSystems-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Pedemonte_27-0" class="reference"><a href="#cite_note-Pedemonte-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> This issue belongs to the field of strategic rules: the question of which inferences need to be drawn to support one's conclusion. The distinction between definitory and strategic rules is not exclusive to logic: it is also found in various games.<sup id="cite_ref-Hintikka_13-10" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BritannicaSystems_26-1" class="reference"><a href="#cite_note-BritannicaSystems-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Pedemonte_27-1" class="reference"><a href="#cite_note-Pedemonte-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Chess" title="Chess">chess</a>, for example, the definitory rules state that <a href="/wiki/Bishop_(chess)" title="Bishop (chess)">bishops</a> may only move diagonally while the strategic rules recommend that one should control the center and protect one's <a href="/wiki/King_(chess)" title="King (chess)">king</a> if one intends to win. In this sense, definitory rules determine whether one plays chess or something else whereas strategic rules determine whether one is a good or a bad chess player.<sup id="cite_ref-Hintikka_13-11" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BritannicaSystems_26-2" class="reference"><a href="#cite_note-BritannicaSystems-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The same applies to deductive reasoning: to be an effective reasoner involves mastering both definitory and strategic rules.<sup id="cite_ref-Hintikka_13-12" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Validity_and_soundness">Validity and soundness</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=10" title="Edit section: Validity and soundness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Argument_terminology_used_in_logic_(en).svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Argument_terminology_used_in_logic_%28en%29.svg/400px-Argument_terminology_used_in_logic_%28en%29.svg.png" decoding="async" width="400" height="283" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Argument_terminology_used_in_logic_%28en%29.svg/600px-Argument_terminology_used_in_logic_%28en%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Argument_terminology_used_in_logic_%28en%29.svg/800px-Argument_terminology_used_in_logic_%28en%29.svg.png 2x" data-file-width="1052" data-file-height="744" /></a><figcaption>Argument terminology</figcaption></figure> <p>Deductive arguments are evaluated in terms of their <i><a href="/wiki/Validity_(logic)" title="Validity (logic)">validity</a></i> and <i><a href="/wiki/Soundness" title="Soundness">soundness</a></i>. </p><p>An argument is <i>valid</i> if it is impossible for its <a href="/wiki/Premise" title="Premise">premises</a> to be true while its conclusion is false. In other words, the conclusion must be true if the premises are true. An argument can be “valid” even if one or more of its premises are false. </p><p>An argument is <i>sound</i> if it is <i>valid</i> and the premises are true. </p><p>It is possible to have a deductive argument that is logically <i>valid</i> but is not <i>sound</i>. Fallacious arguments often take that form. </p><p>The following is an example of an argument that is “valid”, but not “sound”: </p> <ol><li>Everyone who eats carrots is a quarterback.</li> <li>John eats carrots.</li> <li>Therefore, John is a quarterback.</li></ol> <p>The example's first premise is false – there are people who eat carrots who are not quarterbacks – but the conclusion would necessarily be true, if the premises were true. In other words, it is impossible for the premises to be true and the conclusion false. Therefore, the argument is “valid”, but not “sound”. False generalizations – such as "Everyone who eats carrots is a quarterback" – are often used to make unsound arguments. The fact that there are some people who eat carrots but are not quarterbacks proves the flaw of the argument. </p><p>In this example, the first statement uses <a href="/wiki/Term_logic" title="Term logic">categorical reasoning</a>, saying that all carrot-eaters are definitely quarterbacks. This theory of deductive reasoning – also known as <a href="/wiki/Term_logic" title="Term logic">term logic</a> – was developed by <a href="/wiki/Aristotle" title="Aristotle">Aristotle</a>, but was superseded by <a href="/wiki/Propositional_calculus" title="Propositional calculus">propositional (sentential) logic</a> and <a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">predicate logic</a>. <sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2018)">citation needed</span></a></i>]</sup> </p><p>Deductive reasoning can be contrasted with <a href="/wiki/Inductive_reasoning" title="Inductive reasoning">inductive reasoning</a>, in regards to validity and soundness. In cases of inductive reasoning, even though the premises are true and the argument is “valid”, it is possible for the conclusion to be false (determined to be false with a counterexample or other means). </p> <div class="mw-heading mw-heading2"><h2 id="Difference_from_ampliative_reasoning">Difference from ampliative reasoning</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=11" title="Edit section: Difference from ampliative reasoning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deductive reasoning is usually contrasted with non-deductive or <a href="/wiki/Ampliative" title="Ampliative">ampliative</a> reasoning.<sup id="cite_ref-Hintikka_13-13" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Backmann_28-0" class="reference"><a href="#cite_note-Backmann-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPArguments_29-0" class="reference"><a href="#cite_note-IEPArguments-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> The hallmark of valid deductive inferences is that it is impossible for their premises to be true and their conclusion to be false. In this way, the premises provide the strongest possible support to their conclusion.<sup id="cite_ref-Hintikka_13-14" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Backmann_28-1" class="reference"><a href="#cite_note-Backmann-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPArguments_29-1" class="reference"><a href="#cite_note-IEPArguments-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> The premises of ampliative inferences also support their conclusion. But this support is weaker: they are not necessarily truth-preserving. So even for correct ampliative arguments, it is possible that their premises are true and their conclusion is false.<sup id="cite_ref-IEPDeductiveInductive_11-1" class="reference"><a href="#cite_note-IEPDeductiveInductive-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Two important forms of ampliative reasoning are <a href="/wiki/Inductive_reasoning" title="Inductive reasoning">inductive</a> and <a href="/wiki/Abductive_reasoning" title="Abductive reasoning">abductive reasoning</a>.<sup id="cite_ref-StanfordAbduction_30-0" class="reference"><a href="#cite_note-StanfordAbduction-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Sometimes the term "inductive reasoning" is used in a very wide sense to cover all forms of ampliative reasoning.<sup id="cite_ref-IEPDeductiveInductive_11-2" class="reference"><a href="#cite_note-IEPDeductiveInductive-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> However, in a more strict usage, inductive reasoning is just one form of ampliative reasoning.<sup id="cite_ref-StanfordAbduction_30-1" class="reference"><a href="#cite_note-StanfordAbduction-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> In the narrow sense, inductive inferences are forms of statistical generalization. They are usually based on many individual <a href="/wiki/Observation" title="Observation">observations</a> that all show a certain pattern. These observations are then used to form a conclusion either about a yet unobserved entity or about a general law.<sup id="cite_ref-MacmillanInduction_31-0" class="reference"><a href="#cite_note-MacmillanInduction-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> For abductive inferences, the premises support the conclusion because the conclusion is the best explanation of why the premises are true.<sup id="cite_ref-StanfordAbduction_30-2" class="reference"><a href="#cite_note-StanfordAbduction-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Koslowski_34-0" class="reference"><a href="#cite_note-Koslowski-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>The support ampliative arguments provide for their conclusion comes in degrees: some ampliative arguments are stronger than others.<sup id="cite_ref-IEPDeductiveInductive_11-3" class="reference"><a href="#cite_note-IEPDeductiveInductive-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordInductive_35-0" class="reference"><a href="#cite_note-StanfordInductive-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordAbduction_30-3" class="reference"><a href="#cite_note-StanfordAbduction-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> This is often explained in terms of <a href="/wiki/Probability" title="Probability">probability</a>: the premises make it more likely that the conclusion is true.<sup id="cite_ref-Hintikka_13-15" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Backmann_28-2" class="reference"><a href="#cite_note-Backmann-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPArguments_29-2" class="reference"><a href="#cite_note-IEPArguments-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Strong ampliative arguments make their conclusion very likely, but not absolutely certain. An example of ampliative reasoning is the inference from the premise "every raven in a random sample of 3200 ravens is black" to the conclusion "all ravens are black": the extensive random sample makes the conclusion very likely, but it does not exclude that there are rare exceptions.<sup id="cite_ref-StanfordInductiveLogic_36-0" class="reference"><a href="#cite_note-StanfordInductiveLogic-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> In this sense, ampliative reasoning is defeasible: it may become necessary to retract an earlier conclusion upon receiving new related information.<sup id="cite_ref-BritannicaPhilosophy_12-3" class="reference"><a href="#cite_note-BritannicaPhilosophy-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordAbduction_30-4" class="reference"><a href="#cite_note-StanfordAbduction-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Ampliative reasoning is very common in everyday discourse and the <a href="/wiki/Science" title="Science">sciences</a>.<sup id="cite_ref-Hintikka_13-16" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bunge_37-0" class="reference"><a href="#cite_note-Bunge-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p><p>An important drawback of deductive reasoning is that it does not lead to genuinely new information.<sup id="cite_ref-Evans_5-8" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> This means that the conclusion only repeats information already found in the premises. Ampliative reasoning, on the other hand, goes beyond the premises by arriving at genuinely new information.<sup id="cite_ref-Hintikka_13-17" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Backmann_28-3" class="reference"><a href="#cite_note-Backmann-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IEPArguments_29-3" class="reference"><a href="#cite_note-IEPArguments-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> One difficulty for this characterization is that it makes deductive reasoning appear useless: if deduction is uninformative, it is not clear why people would engage in it and study it.<sup id="cite_ref-Hintikka_13-18" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-D'Agostino_38-0" class="reference"><a href="#cite_note-D'Agostino-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> It has been suggested that this problem can be solved by distinguishing between surface and depth information. On this view, deductive reasoning is uninformative on the depth level, in contrast to ampliative reasoning. But it may still be valuable on the surface level by presenting the information in the premises in a new and sometimes surprising way.<sup id="cite_ref-Hintikka_13-19" class="reference"><a href="#cite_note-Hintikka-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-9" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>A popular misconception of the relation between deduction and induction identifies their difference on the level of particular and general claims.<sup id="cite_ref-Houde_2-1" class="reference"><a href="#cite_note-Houde-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wilbanks_9-2" class="reference"><a href="#cite_note-Wilbanks-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> On this view, deductive inferences start from general premises and draw particular conclusions, while inductive inferences start from particular premises and draw general conclusions. This idea is often motivated by seeing deduction and induction as two inverse processes that complement each other: deduction is <i>top-down</i> while induction is <i>bottom-up</i>. But this is a misconception that does not reflect how valid deduction is defined in the field of <a href="/wiki/Logic" title="Logic">logic</a>: a deduction is valid if it is impossible for its premises to be true while its conclusion is false, independent of whether the premises or the conclusion are particular or general.<sup id="cite_ref-Houde_2-2" class="reference"><a href="#cite_note-Houde-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wilbanks_9-3" class="reference"><a href="#cite_note-Wilbanks-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-7" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-10" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-6" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Because of this, some deductive inferences have a general conclusion and some also have particular premises.<sup id="cite_ref-Houde_2-3" class="reference"><a href="#cite_note-Houde-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_various_fields">In various fields</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=12" title="Edit section: In various fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Cognitive_psychology">Cognitive psychology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=13" title="Edit section: Cognitive psychology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Cognitive_psychology" title="Cognitive psychology">Cognitive psychology</a> studies the psychological processes responsible for deductive reasoning.<sup id="cite_ref-Schechter_3-7" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-11" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> It is concerned, among other things, with how good people are at drawing valid deductive inferences. This includes the study of the factors affecting their performance, their tendency to commit <a href="/wiki/Fallacies" class="mw-redirect" title="Fallacies">fallacies</a>, and the underlying <a href="/wiki/Cognitive_bias" title="Cognitive bias">biases</a> involved.<sup id="cite_ref-Schechter_3-8" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-12" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> A notable finding in this field is that the type of deductive inference has a significant impact on whether the correct conclusion is drawn.<sup id="cite_ref-Schechter_3-9" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-13" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> In a meta-analysis of 65 studies, for example, 97% of the subjects evaluated <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a> inferences correctly, while the success rate for <a href="/wiki/Modus_tollens" title="Modus tollens">modus tollens</a> was only 72%. On the other hand, even some fallacies like <a href="/wiki/Affirming_the_consequent" title="Affirming the consequent">affirming the consequent</a> or <a href="/wiki/Denying_the_antecedent" title="Denying the antecedent">denying the antecedent</a> were regarded as valid arguments by the majority of the subjects.<sup id="cite_ref-Schechter_3-10" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> An important factor for these mistakes is whether the conclusion seems initially plausible: the more believable the conclusion is, the higher the chance that a subject will mistake a fallacy for a valid argument.<sup id="cite_ref-Schechter_3-11" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-14" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>An important bias is the <i>matching bias</i>, which is often illustrated using the <a href="/wiki/Wason_selection_task" title="Wason selection task">Wason selection task</a>.<sup id="cite_ref-Evans_5-15" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-12" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> In an often-cited experiment by <a href="/wiki/Peter_Wason" class="mw-redirect" title="Peter Wason">Peter Wason</a>, 4 cards are presented to the participant. In one case, the visible sides show the symbols D, K, 3, and 7 on the different cards. The participant is told that every card has a letter on one side and a number on the other side, and that "[e]very card which has a D on one side has a 3 on the other side". Their task is to identify which cards need to be turned around in order to confirm or refute this conditional claim. The correct answer, only given by about 10%, is the cards D and 7. Many select card 3 instead, even though the conditional claim does not involve any requirements on what symbols can be found on the opposite side of card 3.<sup id="cite_ref-Schechter_3-13" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-16" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> But this result can be drastically changed if different symbols are used: the visible sides show "drinking a beer", "drinking a coke", "16 years of age", and "22 years of age" and the participants are asked to evaluate the claim "[i]f a person is drinking beer, then the person must be over 19 years of age". In this case, 74% of the participants identified correctly that the cards "drinking a beer" and "16 years of age" have to be turned around.<sup id="cite_ref-Schechter_3-14" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-17" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> These findings suggest that the deductive reasoning ability is heavily influenced by the content of the involved claims and not just by the abstract logical form of the task: the more realistic and concrete the cases are, the better the subjects tend to perform.<sup id="cite_ref-Schechter_3-15" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Evans_5-18" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>Another bias is called the "negative conclusion bias", which happens when one of the premises has the form of a negative <a href="/wiki/Material_conditional" title="Material conditional">material conditional</a>,<sup id="cite_ref-Evans_5-19" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> as in "If the card does not have an A on the left, then it has a 3 on the right. The card does not have a 3 on the right. Therefore, the card has an A on the left". The increased tendency to misjudge the validity of this type of argument is not present for positive material conditionals, as in "If the card has an A on the left, then it has a 3 on the right. The card does not have a 3 on the right. Therefore, the card does not have an A on the left".<sup id="cite_ref-Evans_5-20" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Psychological_theories_of_deductive_reasoning">Psychological theories of deductive reasoning</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=14" title="Edit section: Psychological theories of deductive reasoning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Various psychological theories of deductive reasoning have been proposed. These theories aim to explain how deductive reasoning works in relation to the underlying psychological processes responsible. They are often used to explain the empirical findings, such as why human reasoners are more susceptible to some types of fallacies than to others.<sup id="cite_ref-Schechter_3-16" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-8" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird1993_46-0" class="reference"><a href="#cite_note-Johnson-Laird1993-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>An important distinction is between <i>mental logic theories</i>, sometimes also referred to as <i>rule theories</i>, and <i>mental model theories</i>. <i>Mental logic theories</i> see deductive reasoning as a <a href="/wiki/Language" title="Language">language</a>-like process that happens through the manipulation of representations.<sup id="cite_ref-Schechter_3-17" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-9" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-García-Madruga_47-0" class="reference"><a href="#cite_note-García-Madruga-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird1993_46-1" class="reference"><a href="#cite_note-Johnson-Laird1993-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> This is done by applying syntactic rules of inference in a way very similar to how systems of <a href="#Natural_deduction">natural deduction</a> transform their premises to arrive at a conclusion.<sup id="cite_ref-Johnson-Laird1993_46-2" class="reference"><a href="#cite_note-Johnson-Laird1993-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> On this view, some deductions are simpler than others since they involve fewer inferential steps.<sup id="cite_ref-Schechter_3-18" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> This idea can be used, for example, to explain why humans have more difficulties with some deductions, like the <a href="/wiki/Modus_tollens" title="Modus tollens">modus tollens</a>, than with others, like the <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a>: because the more error-prone forms do not have a native rule of inference but need to be calculated by combining several inferential steps with other rules of inference. In such cases, the additional cognitive labor makes the inferences more open to error.<sup id="cite_ref-Schechter_3-19" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p><i>Mental model theories</i>, on the other hand, hold that deductive reasoning involves models or <a href="/wiki/Mental_representation" title="Mental representation">mental representations</a> of possible states of the world without the medium of language or rules of inference.<sup id="cite_ref-Schechter_3-20" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-10" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird1993_46-3" class="reference"><a href="#cite_note-Johnson-Laird1993-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> In order to assess whether a deductive inference is valid, the reasoner mentally constructs models that are compatible with the premises of the inference. The conclusion is then tested by looking at these models and trying to find a counterexample in which the conclusion is false. The inference is valid if no such counterexample can be found.<sup id="cite_ref-Schechter_3-21" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-11" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird1993_46-4" class="reference"><a href="#cite_note-Johnson-Laird1993-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> In order to reduce cognitive labor, only such models are represented in which the premises are true. Because of this, the evaluation of some forms of inference only requires the construction of very few models while for others, many different models are necessary. In the latter case, the additional cognitive labor required makes deductive reasoning more error-prone, thereby explaining the increased rate of error observed.<sup id="cite_ref-Schechter_3-22" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson-Laird2009_1-12" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> This theory can also explain why some errors depend on the content rather than the form of the argument. For example, when the conclusion of an argument is very plausible, the subjects may lack the motivation to search for counterexamples among the constructed models.<sup id="cite_ref-Schechter_3-23" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Both mental logic theories and mental model theories assume that there is one general-purpose reasoning mechanism that applies to all forms of deductive reasoning.<sup id="cite_ref-Schechter_3-24" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-García-Madruga_47-1" class="reference"><a href="#cite_note-García-Madruga-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> But there are also alternative accounts that posit various different special-purpose reasoning mechanisms for different contents and contexts. In this sense, it has been claimed that humans possess a special mechanism for permissions and obligations, specifically for detecting cheating in social exchanges. This can be used to explain why humans are often more successful in drawing valid inferences if the contents involve human behavior in relation to social norms.<sup id="cite_ref-Schechter_3-25" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Another example is the so-called <a href="/wiki/Dual_process_theory" title="Dual process theory">dual-process theory</a>.<sup id="cite_ref-Evans_5-21" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-26" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> This theory posits that there are two distinct cognitive systems responsible for reasoning. Their interrelation can be used to explain commonly observed biases in deductive reasoning. System 1 is the older system in terms of evolution. It is based on associative learning and happens fast and automatically without demanding many cognitive resources.<sup id="cite_ref-Evans_5-22" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-27" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> System 2, on the other hand, is of more recent evolutionary origin. It is slow and cognitively demanding, but also more flexible and under deliberate control.<sup id="cite_ref-Evans_5-23" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-28" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> The dual-process theory posits that system 1 is the default system guiding most of our everyday reasoning in a pragmatic way. But for particularly difficult problems on the logical level, system 2 is employed. System 2 is mostly responsible for deductive reasoning.<sup id="cite_ref-Evans_5-24" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Schechter_3-29" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Intelligence">Intelligence</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=15" title="Edit section: Intelligence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Ability" title="Ability">ability</a> of deductive reasoning is an important aspect of <a href="/wiki/Intelligence" title="Intelligence">intelligence</a> and many <a href="/wiki/Intelligence_test" class="mw-redirect" title="Intelligence test">tests of intelligence</a> include problems that call for deductive inferences.<sup id="cite_ref-Johnson-Laird2009_1-13" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Because of this relation to intelligence, deduction is highly relevant to psychology and the cognitive sciences.<sup id="cite_ref-Evans_5-25" class="reference"><a href="#cite_note-Evans-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> But the subject of deductive reasoning is also pertinent to the <a href="/wiki/Computer_sciences" class="mw-redirect" title="Computer sciences">computer sciences</a>, for example, in the creation of <a href="/wiki/Artificial_intelligence" title="Artificial intelligence">artificial intelligence</a>.<sup id="cite_ref-Johnson-Laird2009_1-14" class="reference"><a href="#cite_note-Johnson-Laird2009-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Epistemology">Epistemology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=16" title="Edit section: Epistemology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deductive reasoning plays an important role in <a href="/wiki/Epistemology" title="Epistemology">epistemology</a>. Epistemology is concerned with the question of <a href="/wiki/Justification_(epistemology)" title="Justification (epistemology)">justification</a>, i.e. to point out which beliefs are justified and why.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Deductive inferences are able to transfer the justification of the premises onto the conclusion.<sup id="cite_ref-Schechter_3-30" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> So while logic is interested in the truth-preserving nature of deduction, epistemology is interested in the justification-preserving nature of deduction. There are different theories trying to explain why deductive reasoning is justification-preserving.<sup id="cite_ref-Schechter_3-31" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> According to <a href="/wiki/Reliabilism" title="Reliabilism">reliabilism</a>, this is the case because deductions are truth-preserving: they are reliable processes that ensure a true conclusion given the premises are true.<sup id="cite_ref-Schechter_3-32" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> Some theorists hold that the thinker has to have explicit awareness of the truth-preserving nature of the inference for the justification to be transferred from the premises to the conclusion. One consequence of such a view is that, for young children, this deductive transference does not take place since they lack this specific awareness.<sup id="cite_ref-Schechter_3-33" class="reference"><a href="#cite_note-Schechter-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Probability_logic">Probability logic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=17" title="Edit section: Probability logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Probability_logic" class="mw-redirect" title="Probability logic">Probability logic</a> is interested in how the probability of the premises of an argument affects the probability of its conclusion. It differs from classical logic, which assumes that propositions are either true or false but does not take into consideration the probability or certainty that a proposition is true or false.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=18" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b>. You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Deductive_reasoning&action=edit&section=">adding to it</a>. <span class="date-container"><i>(<span class="date">January 2015</span>)</i></span></div></td></tr></tbody></table> <p><a href="/wiki/Aristotle" title="Aristotle">Aristotle</a>, a <a href="/wiki/Greek_philosopher" class="mw-redirect" title="Greek philosopher">Greek philosopher</a>, started documenting deductive reasoning in the 4th century BC.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a>, in his book <a href="/wiki/Discourse_on_Method" class="mw-redirect" title="Discourse on Method">Discourse on Method</a>, refined the idea for the <a href="/wiki/Scientific_Revolution" title="Scientific Revolution">Scientific Revolution</a>. Developing four rules to follow for proving an idea deductively, Descartes laid the foundation for the deductive portion of the <a href="/wiki/Scientific_method" title="Scientific method">scientific method</a>. Descartes' background in geometry and mathematics influenced his ideas on the truth and reasoning, causing him to develop a system of general reasoning now used for most mathematical reasoning. Similar to postulates, Descartes believed that ideas could be self-evident and that reasoning alone must prove that observations are reliable. These ideas also lay the foundations for the ideas of <a href="/wiki/Rationalism" title="Rationalism">rationalism</a>.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Related_concepts_and_theories">Related concepts and theories</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=19" title="Edit section: Related concepts and theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Deductivism">Deductivism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=20" title="Edit section: Deductivism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deductivism is a philosophical position that gives primacy to deductive reasoning or arguments over their non-deductive counterparts.<sup id="cite_ref-Bermejo-Luque_57-0" class="reference"><a href="#cite_note-Bermejo-Luque-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Howson_58-0" class="reference"><a href="#cite_note-Howson-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> It is often understood as the evaluative claim that only deductive inferences are <i>good</i> or <i>correct</i> inferences. This theory would have wide-reaching consequences for various fields since it implies that the rules of deduction are "the only acceptable standard of <a href="/wiki/Evidence" title="Evidence">evidence</a>".<sup id="cite_ref-Bermejo-Luque_57-1" class="reference"><a href="#cite_note-Bermejo-Luque-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> This way, the rationality or correctness of the different forms of inductive reasoning is denied.<sup id="cite_ref-Howson_58-1" class="reference"><a href="#cite_note-Howson-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Some forms of deductivism express this in terms of degrees of reasonableness or probability. Inductive inferences are usually seen as providing a certain degree of support for their conclusion: they make it more likely that their conclusion is true. Deductivism states that such inferences are not rational: the premises either ensure their conclusion, as in deductive reasoning, or they do not provide any support at all.<sup id="cite_ref-Stove_60-0" class="reference"><a href="#cite_note-Stove-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>One motivation for deductivism is the <a href="/wiki/Problem_of_induction" title="Problem of induction">problem of induction</a> introduced by <a href="/wiki/David_Hume" title="David Hume">David Hume</a>. It consists in the challenge of explaining how or whether inductive inferences based on past experiences support conclusions about future events.<sup id="cite_ref-Howson_58-2" class="reference"><a href="#cite_note-Howson-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stove_60-1" class="reference"><a href="#cite_note-Stove-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> For example, a chicken comes to expect, based on all its past experiences, that the person entering its coop is going to feed it, until one day the person "at last wrings its neck instead".<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> According to <a href="/wiki/Karl_Popper" title="Karl Popper">Karl Popper</a>'s falsificationism, deductive reasoning alone is sufficient. This is due to its truth-preserving nature: a theory can be falsified if one of its deductive consequences is false.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> So while inductive reasoning does not offer positive evidence for a theory, the theory still remains a viable competitor until falsified by <a href="/wiki/Empirical_evidence" title="Empirical evidence">empirical observation</a>. In this sense, deduction alone is sufficient for discriminating between competing hypotheses about what is the case.<sup id="cite_ref-Howson_58-3" class="reference"><a href="#cite_note-Howson-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Hypothetico-deductivism" class="mw-redirect" title="Hypothetico-deductivism">Hypothetico-deductivism</a> is a closely related scientific method, according to which science progresses by formulating hypotheses and then aims to falsify them by trying to make observations that run counter to their deductive consequences.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Natural_deduction">Natural deduction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=21" title="Edit section: Natural deduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term "<a href="/wiki/Natural_deduction" title="Natural deduction">natural deduction</a>" refers to a class of proof systems based on self-evident rules of inference.<sup id="cite_ref-IEPNatural_67-0" class="reference"><a href="#cite_note-IEPNatural-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordNatural_68-0" class="reference"><a href="#cite_note-StanfordNatural-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> The first systems of natural deduction were developed by <a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gerhard Gentzen</a> and <a href="/wiki/Stanislaw_Jaskowski" class="mw-redirect" title="Stanislaw Jaskowski">Stanislaw Jaskowski</a> in the 1930s. The core motivation was to give a simple presentation of deductive reasoning that closely mirrors how reasoning actually takes place.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> In this sense, natural deduction stands in contrast to other less intuitive proof systems, such as <a href="/wiki/Hilbert-style_deductive_systems" class="mw-redirect" title="Hilbert-style deductive systems">Hilbert-style deductive systems</a>, which employ axiom schemes to express <a href="/wiki/Logical_truth" title="Logical truth">logical truths</a>.<sup id="cite_ref-IEPNatural_67-1" class="reference"><a href="#cite_note-IEPNatural-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> Natural deduction, on the other hand, avoids axioms schemes by including many different rules of inference that can be used to formulate proofs. These rules of inference express how <a href="/wiki/Logical_constant" title="Logical constant">logical constants</a> behave. They are often divided into <a href="/wiki/Natural_deduction#Introduction_and_elimination" title="Natural deduction">introduction rules and elimination rules</a>. Introduction rules specify under which conditions a logical constant may be introduced into a new sentence of the <a href="/wiki/Formal_proof" title="Formal proof">proof</a>.<sup id="cite_ref-IEPNatural_67-2" class="reference"><a href="#cite_note-IEPNatural-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordNatural_68-1" class="reference"><a href="#cite_note-StanfordNatural-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> For example, the introduction rule for the logical constant <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span>"</span> (and) is <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {A,B}{(A\land B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {A,B}{(A\land B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/019e90567fc8bd3222ad7427ff56d7947a1a3ba9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:8.735ex; height:6.176ex;" alt="{\displaystyle {\frac {A,B}{(A\land B)}}}"></span>"</span>. It expresses that, given the premises <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>"</span> and <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>"</span> individually, one may draw the conclusion <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span>"</span> and thereby include it in one's proof. This way, the symbol <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span>"</span> is introduced into the proof. The removal of this symbol is governed by other rules of inference, such as the elimination rule <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(A\land B)}{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mi>A</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(A\land B)}{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34242edbeddf1d09bc36d6c524705ec7c511aa73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.735ex; height:5.843ex;" alt="{\displaystyle {\frac {(A\land B)}{A}}}"></span>"</span>, which states that one may deduce the sentence <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>"</span> from the premise <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></span>"</span>. Similar introduction and elimination rules are given for other logical constants, such as the propositional operator <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/099107443792f5fec9bebe39b919a690db7198c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.204ex; margin-bottom: -0.376ex; width:1.55ex; height:1.176ex;" alt="{\displaystyle \lnot }"></span>"</span>, the <a href="/wiki/Logical_connective" title="Logical connective">propositional connectives</a> <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span>"</span> and <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">→<!-- → --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \rightarrow }"></span>"</span>, and the <a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">quantifiers</a> <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ed842b6b90b2fdd825320cf8e5265fa937b583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \exists }"></span>"</span> and <span class="nowrap">"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc1a1a9c4c0f8d5df989c98aa2773ed657c5937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \forall }"></span>"</span>.<sup id="cite_ref-IEPNatural_67-3" class="reference"><a href="#cite_note-IEPNatural-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordNatural_68-2" class="reference"><a href="#cite_note-StanfordNatural-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p><p>The focus on rules of inferences instead of axiom schemes is an important feature of natural deduction.<sup id="cite_ref-IEPNatural_67-4" class="reference"><a href="#cite_note-IEPNatural-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-StanfordNatural_68-3" class="reference"><a href="#cite_note-StanfordNatural-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> But there is no general agreement on how natural deduction is to be defined. Some theorists hold that all proof systems with this feature are forms of natural deduction. This would include various forms of <a href="/wiki/Sequent_calculi" class="mw-redirect" title="Sequent calculi">sequent calculi</a><sup id="cite_ref-natDeduc_70-0" class="reference"><a href="#cite_note-natDeduc-70"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> or <a href="/wiki/Method_of_analytic_tableaux#Tableau_calculi_and_their_properties" title="Method of analytic tableaux">tableau calculi</a>. But other theorists use the term in a more narrow sense, for example, to refer to the proof systems developed by Gentzen and Jaskowski. Because of its simplicity, natural deduction is often used for teaching logic to students.<sup id="cite_ref-IEPNatural_67-5" class="reference"><a href="#cite_note-IEPNatural-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Geometrical_method">Geometrical method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=22" title="Edit section: Geometrical method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The geometrical method is a method of <a href="/wiki/Philosophy" title="Philosophy">philosophy</a> based on deductive reasoning. It starts from a small set of <a href="/wiki/Self-evident" class="mw-redirect" title="Self-evident">self-evident</a> axioms and tries to build a comprehensive logical system based only on deductive inferences from these first <a href="/wiki/Axiom" title="Axiom">axioms</a>.<sup id="cite_ref-DalyHandbook_71-0" class="reference"><a href="#cite_note-DalyHandbook-71"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> It was initially formulated by <a href="/wiki/Baruch_Spinoza" title="Baruch Spinoza">Baruch Spinoza</a> and came to prominence in various <a href="/wiki/Rationalist" class="mw-redirect" title="Rationalist">rationalist</a> philosophical systems in the modern era.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> It gets its name from the forms of <a href="/wiki/Mathematical_proof" title="Mathematical proof">mathematical demonstration</a> found in traditional <a href="/wiki/Geometry" title="Geometry">geometry</a>, which are usually based on axioms, <a href="/wiki/Definition" title="Definition">definitions</a>, and inferred <a href="/wiki/Theorem" title="Theorem">theorems</a>.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> An important motivation of the geometrical method is to repudiate <a href="/wiki/Philosophical_skepticism" title="Philosophical skepticism">philosophical skepticism</a> by grounding one's philosophical system on absolutely certain axioms. Deductive reasoning is central to this endeavor because of its necessarily truth-preserving nature. This way, the certainty initially invested only in the axioms is transferred to all parts of the philosophical system.<sup id="cite_ref-DalyHandbook_71-1" class="reference"><a href="#cite_note-DalyHandbook-71"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p><p>One recurrent criticism of philosophical systems build using the geometrical method is that their initial axioms are not as self-evident or certain as their defenders proclaim.<sup id="cite_ref-DalyHandbook_71-2" class="reference"><a href="#cite_note-DalyHandbook-71"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> This problem lies beyond the deductive reasoning itself, which only ensures that the conclusion is true if the premises are true, but not that the premises themselves are true. For example, Spinoza's philosophical system has been criticized this way based on objections raised against the <a href="/wiki/Causal" class="mw-redirect" title="Causal">causal</a> axiom, i.e. that "the knowledge of an effect depends on and involves knowledge of its cause".<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> A different criticism targets not the premises but the reasoning itself, which may at times implicitly assume premises that are themselves not self-evident.<sup id="cite_ref-DalyHandbook_71-3" class="reference"><a href="#cite_note-DalyHandbook-71"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=23" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/18px-Socrates.png" decoding="async" width="18" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/27px-Socrates.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/36px-Socrates.png 2x" data-file-width="326" data-file-height="500" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Philosophy" title="Portal:Philosophy">Philosophy portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal_Clear_app_linneighborhood.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Crystal_Clear_app_linneighborhood.svg/28px-Crystal_Clear_app_linneighborhood.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Crystal_Clear_app_linneighborhood.svg/42px-Crystal_Clear_app_linneighborhood.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Crystal_Clear_app_linneighborhood.svg/56px-Crystal_Clear_app_linneighborhood.svg.png 2x" data-file-width="407" data-file-height="407" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Web" class="mw-redirect" title="Portal:Web">Web portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 30em;"> <ul><li><a href="/wiki/Abductive_reasoning" title="Abductive reasoning">Abductive reasoning</a></li> <li><a href="/wiki/Analogical_reasoning" class="mw-redirect" title="Analogical reasoning">Analogical reasoning</a></li> <li><a href="/wiki/Argument_(logic)" class="mw-redirect" title="Argument (logic)">Argument (logic)</a></li> <li><a href="/wiki/Argumentation_theory" title="Argumentation theory">Argumentation theory</a></li> <li><a href="/wiki/Correspondence_theory_of_truth" title="Correspondence theory of truth">Correspondence theory of truth</a></li> <li><a href="/wiki/Decision_making" class="mw-redirect" title="Decision making">Decision making</a></li> <li><a href="/wiki/Decision_theory" title="Decision theory">Decision theory</a></li> <li><a href="/wiki/Defeasible_reasoning" title="Defeasible reasoning">Defeasible reasoning</a></li> <li><a href="/wiki/Fallacy" title="Fallacy">Fallacy</a></li> <li><a href="/wiki/Fault_tree_analysis" title="Fault tree analysis">Fault tree analysis</a></li> <li><a href="/wiki/Geometry" title="Geometry">Geometry</a></li> <li><a href="/wiki/Hypothetico-deductive_method" class="mw-redirect" title="Hypothetico-deductive method">Hypothetico-deductive method</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Inquiry" title="Inquiry">Inquiry</a></li> <li><a href="/wiki/Legal_syllogism" title="Legal syllogism">Legal syllogism</a></li> <li><a href="/wiki/Logic_and_rationality" title="Logic and rationality">Logic and rationality</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Logical_reasoning" title="Logical reasoning">Logical reasoning</a></li> <li><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></li> <li><a href="/wiki/Natural_deduction" title="Natural deduction">Natural deduction</a></li> <li><a href="/wiki/Peirce%27s_theory_of_deductive_reasoning" class="mw-redirect" title="Peirce's theory of deductive reasoning">Peirce's theory of deductive reasoning</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li> <li><a href="/wiki/Retroductive_reasoning" class="mw-redirect" title="Retroductive reasoning">Retroductive reasoning</a></li> <li><a href="/wiki/Scientific_method" title="Scientific method">Scientific method</a></li> <li><a href="/wiki/Subjective_logic" title="Subjective logic">Subjective logic</a></li> <li><a href="/wiki/Theory_of_justification" class="mw-redirect" title="Theory of justification">Theory of justification</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes_and_references">Notes and references</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=24" title="Edit section: Notes and references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-natDeduc-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-natDeduc_70-0">^</a></b></span> <span class="reference-text">In natural deduction, a simplified <a href="/wiki/Sequent" title="Sequent">sequent</a> consists of an environment <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span> that yields (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c0d30cf8cb7dba179e317fcde9583d842e80f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.42ex; height:2.176ex;" alt="{\displaystyle \vdash }"></span>) a single conclusion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>; a single sequent would take the form <dl><dd>"<i>Assumptions</i> A1, A2, A3 etc. yield <i>Conclusion</i> C1"; in the symbols of <a href="/wiki/Natural_deduction" title="Natural deduction">natural deduction</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma A_{1},A_{2},A_{3}...\vdash C_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>⊢<!-- ⊢ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma A_{1},A_{2},A_{3}...\vdash C_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be29100a3c78150f48c4998b2c9f9ce3aa9af3a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.796ex; height:2.509ex;" alt="{\displaystyle \Gamma A_{1},A_{2},A_{3}...\vdash C_{1}}"></span></dd></dl> <ul><li>However if the premises were true but the conclusion were false, a hidden assumption could be intervening; alternatively, a hidden process might be coercing the form of presentation, and so forth; then the task would be to unearth the hidden factors in an ill-formed syllogism, in order to make the form valid.</li> <li><i>see <a href="/wiki/Deduction_theorem" title="Deduction theorem">Deduction theorem</a></i></li></ul> </span></li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Johnson-Laird2009-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Johnson-Laird2009_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Johnson-Laird2009_1-14"><sup><i><b>o</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJohnson-Laird2009" class="citation journal cs1">Johnson-Laird, Phil (30 December 2009). <a rel="nofollow" class="external text" href="https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.20">"Deductive reasoning"</a>. <i>WIREs Cognitive Science</i>. <b>1</b> (1): 8–17. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fwcs.20">10.1002/wcs.20</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1939-5078">1939-5078</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26272833">26272833</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=WIREs+Cognitive+Science&rft.atitle=Deductive+reasoning&rft.volume=1&rft.issue=1&rft.pages=8-17&rft.date=2009-12-30&rft.issn=1939-5078&rft_id=info%3Apmid%2F26272833&rft_id=info%3Adoi%2F10.1002%2Fwcs.20&rft.aulast=Johnson-Laird&rft.aufirst=Phil&rft_id=https%3A%2F%2Fwires.onlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2Fwcs.20&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Houde-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Houde_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Houde_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Houde_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Houde_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoude" class="citation book cs1">Houde, R. "Deduction". <a rel="nofollow" class="external text" href="https://www.encyclopedia.com/philosophy-and-religion/philosophy/philosophy-terms-and-concepts/deduction"><i>New Catholic Encyclopedia</i></a>. <q>Modern logicians sometimes oppose deduction to induction on the basis that the first concludes from the general to the particular, whereas the second concludes from the particular to the general; this characterization is inaccurate, however, since deduction need not conclude to the particular and its process is far from being the logical inverse of the inductive procedure.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deduction&rft.btitle=New+Catholic+Encyclopedia&rft.aulast=Houde&rft.aufirst=R.&rft_id=https%3A%2F%2Fwww.encyclopedia.com%2Fphilosophy-and-religion%2Fphilosophy%2Fphilosophy-terms-and-concepts%2Fdeduction&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Schechter-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schechter_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schechter_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Schechter_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Schechter_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Schechter_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Schechter_3-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Schechter_3-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Schechter_3-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Schechter_3-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Schechter_3-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Schechter_3-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Schechter_3-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Schechter_3-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Schechter_3-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Schechter_3-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Schechter_3-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Schechter_3-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Schechter_3-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Schechter_3-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-Schechter_3-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-Schechter_3-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-Schechter_3-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-Schechter_3-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-Schechter_3-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-Schechter_3-24"><sup><i><b>y</b></i></sup></a> <a href="#cite_ref-Schechter_3-25"><sup><i><b>z</b></i></sup></a> <a href="#cite_ref-Schechter_3-26"><sup><i><b>aa</b></i></sup></a> <a href="#cite_ref-Schechter_3-27"><sup><i><b>ab</b></i></sup></a> <a href="#cite_ref-Schechter_3-28"><sup><i><b>ac</b></i></sup></a> <a href="#cite_ref-Schechter_3-29"><sup><i><b>ad</b></i></sup></a> <a href="#cite_ref-Schechter_3-30"><sup><i><b>ae</b></i></sup></a> <a href="#cite_ref-Schechter_3-31"><sup><i><b>af</b></i></sup></a> <a href="#cite_ref-Schechter_3-32"><sup><i><b>ag</b></i></sup></a> <a href="#cite_ref-Schechter_3-33"><sup><i><b>ah</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchechter2013" class="citation web cs1">Schechter, Joshua (2013). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/SCHDR">"Deductive Reasoning"</a>. <i>The Encyclopedia of the Mind</i>. SAGE Reference<span class="reference-accessdate">. Retrieved <span class="nowrap">16 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Encyclopedia+of+the+Mind&rft.atitle=Deductive+Reasoning&rft.date=2013&rft.aulast=Schechter&rft.aufirst=Joshua&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FSCHDR&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNorris1975" class="citation journal cs1">Norris, Stephen E. (1975). "The Intelligibility of Practical Reasoning". <i>American Philosophical Quarterly</i>. <b>12</b> (1): 77–84. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-0481">0003-0481</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/20009561">20009561</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Philosophical+Quarterly&rft.atitle=The+Intelligibility+of+Practical+Reasoning&rft.volume=12&rft.issue=1&rft.pages=77-84&rft.date=1975&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F20009561%23id-name%3DJSTOR&rft.issn=0003-0481&rft.aulast=Norris&rft.aufirst=Stephen+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Evans-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Evans_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Evans_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Evans_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Evans_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Evans_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Evans_5-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Evans_5-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Evans_5-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Evans_5-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Evans_5-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Evans_5-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Evans_5-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Evans_5-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Evans_5-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Evans_5-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Evans_5-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Evans_5-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Evans_5-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Evans_5-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-Evans_5-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-Evans_5-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-Evans_5-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-Evans_5-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-Evans_5-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-Evans_5-24"><sup><i><b>y</b></i></sup></a> <a href="#cite_ref-Evans_5-25"><sup><i><b>z</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvans2005" class="citation book cs1">Evans, Jonathan (18 April 2005). "Deductive reasoning". In Morrison, Robert (ed.). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=znbkHaC8QeMC"><i>The Cambridge Handbook of Thinking and Reasoning</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-82417-0" title="Special:BookSources/978-0-521-82417-0"><bdi>978-0-521-82417-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deductive+reasoning&rft.btitle=The+Cambridge+Handbook+of+Thinking+and+Reasoning&rft.pub=Cambridge+University+Press&rft.date=2005-04-18&rft.isbn=978-0-521-82417-0&rft.aulast=Evans&rft.aufirst=Jonathan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DznbkHaC8QeMC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-IEPLogical-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-IEPLogical_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-IEPLogical_6-11"><sup><i><b>l</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcKeon" class="citation encyclopaedia cs1">McKeon, Matthew. <a rel="nofollow" class="external text" href="https://iep.utm.edu/logcon/">"Logical Consequence"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logical+Consequence&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=McKeon&rft.aufirst=Matthew&rft_id=https%3A%2F%2Fiep.utm.edu%2Flogcon%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Tarski-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tarski_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tarski_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Tarski_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Tarski_7-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTarski1983" class="citation book cs1">Tarski, Alfred (1983). "On The Concept of Logical Consequence". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2uhra9PEFZsC"><i>Logic, Semantics, Metamathematics: Papers from 1923 to 1938</i></a>. Hackett. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-915-14476-1" title="Special:BookSources/978-0-915-14476-1"><bdi>978-0-915-14476-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=On+The+Concept+of+Logical+Consequence&rft.btitle=Logic%2C+Semantics%2C+Metamathematics%3A+Papers+from+1923+to+1938&rft.pub=Hackett&rft.date=1983&rft.isbn=978-0-915-14476-1&rft.aulast=Tarski&rft.aufirst=Alfred&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2uhra9PEFZsC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Vorobej-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Vorobej_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Vorobej_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Vorobej_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Vorobej_8-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVorobej1992" class="citation journal cs1">Vorobej, Mark (1992). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/VORDD">"Defining Deduction"</a>. <i>Informal Logic</i>. <b>14</b> (2). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22329%2Fil.v14i2.2533">10.22329/il.v14i2.2533</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Informal+Logic&rft.atitle=Defining+Deduction&rft.volume=14&rft.issue=2&rft.date=1992&rft_id=info%3Adoi%2F10.22329%2Fil.v14i2.2533&rft.aulast=Vorobej&rft.aufirst=Mark&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FVORDD&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Wilbanks-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wilbanks_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wilbanks_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Wilbanks_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Wilbanks_9-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilbanks2010" class="citation journal cs1">Wilbanks, Jan J. (2010). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/WILDDI">"Defining Deduction, Induction, and Validity"</a>. <i>Argumentation</i>. <b>24</b> (1): 107–124. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10503-009-9131-5">10.1007/s10503-009-9131-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:144481717">144481717</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Argumentation&rft.atitle=Defining+Deduction%2C+Induction%2C+and+Validity&rft.volume=24&rft.issue=1&rft.pages=107-124&rft.date=2010&rft_id=info%3Adoi%2F10.1007%2Fs10503-009-9131-5&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A144481717%23id-name%3DS2CID&rft.aulast=Wilbanks&rft.aufirst=Jan+J.&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FWILDDI&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Copi1-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Copi1_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCopiCohenRodych2018" class="citation book cs1">Copi, Irving M.; Cohen, Carl; Rodych, Victor (3 September 2018). "1. Basic Logical Concepts". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jDOoDwAAQBAJ"><i>Introduction to Logic</i></a>. Routledge. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-351-38696-8" title="Special:BookSources/978-1-351-38696-8"><bdi>978-1-351-38696-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.+Basic+Logical+Concepts&rft.btitle=Introduction+to+Logic&rft.pub=Routledge&rft.date=2018-09-03&rft.isbn=978-1-351-38696-8&rft.aulast=Copi&rft.aufirst=Irving+M.&rft.au=Cohen%2C+Carl&rft.au=Rodych%2C+Victor&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjDOoDwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-IEPDeductiveInductive-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-IEPDeductiveInductive_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IEPDeductiveInductive_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-IEPDeductiveInductive_11-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-IEPDeductiveInductive_11-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIEP_Staff" class="citation encyclopaedia cs1">IEP Staff. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100528032124/https://iep.utm.edu/ded-ind/">"Deductive and Inductive Arguments"</a>. <i>Internet Encyclopedia of Philosophy</i>. Archived from <a rel="nofollow" class="external text" href="https://iep.utm.edu/ded-ind/">the original</a> on 28 May 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deductive+and+Inductive+Arguments&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.au=IEP+Staff&rft_id=https%3A%2F%2Fiep.utm.edu%2Fded-ind%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-BritannicaPhilosophy-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-BritannicaPhilosophy_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BritannicaPhilosophy_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BritannicaPhilosophy_12-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-BritannicaPhilosophy_12-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/philosophy-of-logic">"Philosophy of logic"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">21 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Philosophy+of+logic&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Ftopic%2Fphilosophy-of-logic&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Hintikka-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hintikka_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hintikka_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hintikka_13-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Hintikka_13-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Hintikka_13-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Hintikka_13-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Hintikka_13-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Hintikka_13-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Hintikka_13-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Hintikka_13-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Hintikka_13-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Hintikka_13-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Hintikka_13-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Hintikka_13-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Hintikka_13-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Hintikka_13-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Hintikka_13-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Hintikka_13-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Hintikka_13-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-Hintikka_13-19"><sup><i><b>t</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaakkoSandu2006" class="citation book cs1">Jaakko, Hintikka; Sandu, Gabriel (2006). "What is Logic?". <a rel="nofollow" class="external text" href="https://philpapers.org/rec/JAAWIL"><i>Philosophy of Logic</i></a>. North Holland. pp. 13–39.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=What+is+Logic%3F&rft.btitle=Philosophy+of+Logic&rft.pages=13-39&rft.pub=North+Holland&rft.date=2006&rft.aulast=Jaakko&rft.aufirst=Hintikka&rft.au=Sandu%2C+Gabriel&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FJAAWIL&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Stump-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stump_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stump_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Stump_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Stump_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStump" class="citation encyclopaedia cs1">Stump, David J. <a rel="nofollow" class="external text" href="https://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/fallacy-logical">"Fallacy, Logical"</a>. <i>New Dictionary of the History of Ideas</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fallacy%2C+Logical&rft.btitle=New+Dictionary+of+the+History+of+Ideas&rft.aulast=Stump&rft.aufirst=David+J.&rft_id=https%3A%2F%2Fwww.encyclopedia.com%2Fhistory%2Fdictionaries-thesauruses-pictures-and-press-releases%2Ffallacy-logical&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-RoutledgeFormalInformal-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-RoutledgeFormalInformal_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCraig1996" class="citation encyclopaedia cs1">Craig, Edward (1996). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/BEAREO">"Formal and informal logic"</a>. <i>Routledge Encyclopedia of Philosophy</i>. Routledge.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Formal+and+informal+logic&rft.btitle=Routledge+Encyclopedia+of+Philosophy&rft.pub=Routledge&rft.date=1996&rft.aulast=Craig&rft.aufirst=Edward&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FBEAREO&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-MacFarlane-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-MacFarlane_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacFarlane2017" class="citation encyclopaedia cs1">MacFarlane, John (2017). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/logical-constants/#SynTer">"Logical Constants"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">21 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logical+Constants&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2017&rft.aulast=MacFarlane&rft.aufirst=John&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Flogical-constants%2F%23SynTer&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Macmillan-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Macmillan_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShieh2006" class="citation encyclopaedia cs1 cs1-prop-long-vol">Shieh, Sanford (2006). <a rel="nofollow" class="external text" href="https://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/logical-knowledge">"LOGICAL KNOWLEDGE"</a>. In Borchert, Donald (ed.). <i>Macmillan Encyclopedia of Philosophy</i>. Vol. 2nd Edition. Macmillan.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=LOGICAL+KNOWLEDGE&rft.btitle=Macmillan+Encyclopedia+of+Philosophy&rft.pub=Macmillan&rft.date=2006&rft.aulast=Shieh&rft.aufirst=Sanford&rft_id=https%3A%2F%2Fwww.encyclopedia.com%2Fhumanities%2Fencyclopedias-almanacs-transcripts-and-maps%2Flogical-knowledge&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-IEPFallacies-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-IEPFallacies_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IEPFallacies_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-IEPFallacies_18-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDowden" class="citation encyclopaedia cs1">Dowden, Bradley. <a rel="nofollow" class="external text" href="https://iep.utm.edu/fallacy/">"Fallacies"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">12 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fallacies&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=Dowden&rft.aufirst=Bradley&rft_id=https%3A%2F%2Fiep.utm.edu%2Ffallacy%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Moschovakis-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Moschovakis_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoschovakis2021" class="citation encyclopaedia cs1">Moschovakis, Joan (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/logic-intuitionistic/#RejTerNonDat">"Intuitionistic Logic: 1. Rejection of Tertium Non Datur"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">11 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Intuitionistic+Logic%3A+1.+Rejection+of+Tertium+Non+Datur&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Moschovakis&rft.aufirst=Joan&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Flogic-intuitionistic%2F%23RejTerNonDat&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-MacMillanNonClassical-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-MacMillanNonClassical_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorchert2006" class="citation encyclopaedia cs1">Borchert, Donald (2006). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/BORMEO">"Logic, Non-Classical"</a>. <i>Macmillan Encyclopedia of Philosophy</i>. Vol. 2nd. Macmillan.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logic%2C+Non-Classical&rft.btitle=Macmillan+Encyclopedia+of+Philosophy&rft.pub=Macmillan&rft.date=2006&rft.aulast=Borchert&rft.aufirst=Donald&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FBORMEO&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorreau2009" class="citation journal cs1">Morreau, Michael (2009). "The Hypothetical Syllogism". <i>Journal of Philosophical Logic</i>. <b>38</b> (4): 447–464. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10992-008-9098-y">10.1007/s10992-008-9098-y</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3611">0022-3611</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/40344073">40344073</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34804481">34804481</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Philosophical+Logic&rft.atitle=The+Hypothetical+Syllogism&rft.volume=38&rft.issue=4&rft.pages=447-464&rft.date=2009&rft.issn=0022-3611&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34804481%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F40344073%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs10992-008-9098-y&rft.aulast=Morreau&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansen2020" class="citation encyclopaedia cs1">Hansen, Hans (2020). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/fallacies/">"Fallacies"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">12 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fallacies&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2020&rft.aulast=Hansen&rft.aufirst=Hans&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Ffallacies%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/thought/Expert-thinking-and-novice-thinking">"Expert thinking and novice thinking: Deduction"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">12 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Expert+thinking+and+novice+thinking%3A+Deduction&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Ftopic%2Fthought%2FExpert-thinking-and-novice-thinking&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-BritannicaThought-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-BritannicaThought_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/thought">"Thought"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Thought&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Ftopic%2Fthought&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStone2012" class="citation journal cs1">Stone, Mark A. (2012). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/STODTA">"Denying the Antecedent: Its Effective Use in Argumentation"</a>. <i>Informal Logic</i>. <b>32</b> (3): 327–356. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22329%2Fil.v32i3.3681">10.22329/il.v32i3.3681</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Informal+Logic&rft.atitle=Denying+the+Antecedent%3A+Its+Effective+Use+in+Argumentation&rft.volume=32&rft.issue=3&rft.pages=327-356&rft.date=2012&rft_id=info%3Adoi%2F10.22329%2Fil.v32i3.3681&rft.aulast=Stone&rft.aufirst=Mark+A.&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FSTODTA&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-BritannicaSystems-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-BritannicaSystems_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BritannicaSystems_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BritannicaSystems_26-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/logic/Logical-systems">"Logical systems"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">4 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logical+systems&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Ftopic%2Flogic%2FLogical-systems&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Pedemonte-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pedemonte_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pedemonte_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedemonte2018" class="citation journal cs1">Pedemonte, Bettina (25 June 2018). <a rel="nofollow" class="external text" href="https://www.ejmste.com/article/strategic-vs-definitory-rules-their-role-in-abductive-argumentation-and-their-relationship-with-5539">"Strategic vs Definitory Rules: Their Role in Abductive Argumentation and their Relationship with Deductive Proof"</a>. <i>Eurasia Journal of Mathematics, Science and Technology Education</i>. <b>14</b> (9): em1589. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.29333%2Fejmste%2F92562">10.29333/ejmste/92562</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1305-8215">1305-8215</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126245285">126245285</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eurasia+Journal+of+Mathematics%2C+Science+and+Technology+Education&rft.atitle=Strategic+vs+Definitory+Rules%3A+Their+Role+in+Abductive+Argumentation+and+their+Relationship+with+Deductive+Proof&rft.volume=14&rft.issue=9&rft.pages=em1589&rft.date=2018-06-25&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126245285%23id-name%3DS2CID&rft.issn=1305-8215&rft_id=info%3Adoi%2F10.29333%2Fejmste%2F92562&rft.aulast=Pedemonte&rft.aufirst=Bettina&rft_id=https%3A%2F%2Fwww.ejmste.com%2Farticle%2Fstrategic-vs-definitory-rules-their-role-in-abductive-argumentation-and-their-relationship-with-5539&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Backmann-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-Backmann_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Backmann_28-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Backmann_28-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Backmann_28-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBackmann2019" class="citation journal cs1">Backmann, Marius (1 June 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12136-018-0371-6">"Varieties of Justification—How (Not) to Solve the Problem of Induction"</a>. <i>Acta Analytica</i>. <b>34</b> (2): 235–255. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12136-018-0371-6">10.1007/s12136-018-0371-6</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1874-6349">1874-6349</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125767384">125767384</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Analytica&rft.atitle=Varieties+of+Justification%E2%80%94How+%28Not%29+to+Solve+the+Problem+of+Induction&rft.volume=34&rft.issue=2&rft.pages=235-255&rft.date=2019-06-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125767384%23id-name%3DS2CID&rft.issn=1874-6349&rft_id=info%3Adoi%2F10.1007%2Fs12136-018-0371-6&rft.aulast=Backmann&rft.aufirst=Marius&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs12136-018-0371-6&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-IEPArguments-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-IEPArguments_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IEPArguments_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-IEPArguments_29-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-IEPArguments_29-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100528032124/https://iep.utm.edu/ded-ind/">"Deductive and Inductive Arguments"</a>. <i>Internet Encyclopedia of Philosophy</i>. Archived from <a rel="nofollow" class="external text" href="https://iep.utm.edu/ded-ind/">the original</a> on 28 May 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">4 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deductive+and+Inductive+Arguments&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft_id=https%3A%2F%2Fiep.utm.edu%2Fded-ind%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-StanfordAbduction-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-StanfordAbduction_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-StanfordAbduction_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-StanfordAbduction_30-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-StanfordAbduction_30-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-StanfordAbduction_30-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDouven2021" class="citation encyclopaedia cs1">Douven, Igor (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/abduction/">"Abduction"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Abduction&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Douven&rft.aufirst=Igor&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fabduction%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-MacmillanInduction-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-MacmillanInduction_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorchert2006" class="citation encyclopaedia cs1 cs1-prop-foreign-lang-source">Borchert, Donald (2006). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/BORMEO">"G. W. Liebnitz"</a>. <i>Macmillan Encyclopedia of Philosophy</i> (in Portuguese) (2nd ed.). Macmillan.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=G.+W.+Liebnitz&rft.btitle=Macmillan+Encyclopedia+of+Philosophy&rft.edition=2nd&rft.pub=Macmillan&rft.date=2006&rft.aulast=Borchert&rft.aufirst=Donald&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FBORMEO&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScottMarshall2009" class="citation encyclopaedia cs1">Scott, John; Marshall, Gordon (2009). <a rel="nofollow" class="external text" href="https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095410661">"Analytic induction"</a>. <i>A Dictionary of Sociology</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-199-53300-8" title="Special:BookSources/978-0-199-53300-8"><bdi>978-0-199-53300-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Analytic+induction&rft.btitle=A+Dictionary+of+Sociology&rft.pub=Oxford+University+Press&rft.date=2009&rft.isbn=978-0-199-53300-8&rft.aulast=Scott&rft.aufirst=John&rft.au=Marshall%2C+Gordon&rft_id=https%3A%2F%2Fwww.oxfordreference.com%2Fview%2F10.1093%2Foi%2Fauthority.20110803095410661&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoudeCamacho" class="citation encyclopaedia cs1">Houde, R.; Camacho, L. <a rel="nofollow" class="external text" href="https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/electrical-engineering/induction">"Induction"</a>. <i>New Catholic Encyclopedia</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Induction&rft.btitle=New+Catholic+Encyclopedia&rft.aulast=Houde&rft.aufirst=R.&rft.au=Camacho%2C+L.&rft_id=https%3A%2F%2Fwww.encyclopedia.com%2Fscience-and-technology%2Fcomputers-and-electrical-engineering%2Felectrical-engineering%2Finduction&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Koslowski-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Koslowski_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoslowski2017" class="citation book cs1">Koslowski, Barbara (2017). <a rel="nofollow" class="external text" href="https://www.taylorfrancis.com/chapters/edit/10.4324/9781315725697-20/abductive-reasoning-explanation-barbara-koslowski">"Abductive reasoning and explanation"</a>. <i>International Handbook of Thinking and Reasoning</i>. Routledge. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-315-72569-7" title="Special:BookSources/978-1-315-72569-7"><bdi>978-1-315-72569-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Abductive+reasoning+and+explanation&rft.btitle=International+Handbook+of+Thinking+and+Reasoning&rft.pub=Routledge&rft.date=2017&rft.isbn=978-1-315-72569-7&rft.aulast=Koslowski&rft.aufirst=Barbara&rft_id=https%3A%2F%2Fwww.taylorfrancis.com%2Fchapters%2Fedit%2F10.4324%2F9781315725697-20%2Fabductive-reasoning-explanation-barbara-koslowski&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-StanfordInductive-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-StanfordInductive_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHawthorne2021" class="citation encyclopaedia cs1">Hawthorne, James (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/logic-inductive/">"Inductive Logic"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Inductive+Logic&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Hawthorne&rft.aufirst=James&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Flogic-inductive%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-StanfordInductiveLogic-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-StanfordInductiveLogic_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHawthorne2021" class="citation encyclopaedia cs1">Hawthorne, James (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/logic-inductive/">"Inductive Logic"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">13 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Inductive+Logic&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Hawthorne&rft.aufirst=James&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Flogic-inductive%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Bunge-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bunge_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBunge1960" class="citation journal cs1">Bunge, Mario (1960). "The Place of Induction in Science". <i>Philosophy of Science</i>. <b>27</b> (3): 262–270. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F287745">10.1086/287745</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-8248">0031-8248</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/185969">185969</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120566417">120566417</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophy+of+Science&rft.atitle=The+Place+of+Induction+in+Science&rft.volume=27&rft.issue=3&rft.pages=262-270&rft.date=1960&rft.issn=0031-8248&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120566417%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F185969%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1086%2F287745&rft.aulast=Bunge&rft.aufirst=Mario&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-D'Agostino-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-D'Agostino_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD'AgostinoFloridi2009" class="citation journal cs1">D'Agostino, Marcello; Floridi, Luciano (2009). "The Enduring Scandal of Deduction: Is Propositional Logic Really Uninformative?". <i>Synthese</i>. <b>167</b> (2): 271–315. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11229-008-9409-4">10.1007/s11229-008-9409-4</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2299%2F2995">2299/2995</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0039-7857">0039-7857</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/40271192">40271192</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9602882">9602882</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Synthese&rft.atitle=The+Enduring+Scandal+of+Deduction%3A+Is+Propositional+Logic+Really+Uninformative%3F&rft.volume=167&rft.issue=2&rft.pages=271-315&rft.date=2009&rft_id=info%3Ahdl%2F2299%2F2995&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F40271192%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs11229-008-9409-4&rft.issn=0039-7857&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9602882%23id-name%3DS2CID&rft.aulast=D%27Agostino&rft.aufirst=Marcello&rft.au=Floridi%2C+Luciano&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://iep.utm.edu/deductive-inductive-arguments/">"Deductive and Inductive Arguments"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">17 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deductive+and+Inductive+Arguments&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft_id=https%3A%2F%2Fiep.utm.edu%2Fdeductive-inductive-arguments%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRips1983" class="citation journal cs1">Rips, Lance J. (1983). <a rel="nofollow" class="external text" href="https://doi.org/10.1037/0033-295X.90.1.38">"Cognitive processes in propositional reasoning"</a>. <i>Psychological Review</i>. <b>90</b> (1): 38–71. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2F0033-295X.90.1.38">10.1037/0033-295X.90.1.38</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1939-1471">1939-1471</a><span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Psychological+Review&rft.atitle=Cognitive+processes+in+propositional+reasoning.&rft.volume=90&rft.issue=1&rft.pages=38-71&rft.date=1983&rft_id=info%3Adoi%2F10.1037%2F0033-295X.90.1.38&rft.issn=1939-1471&rft.aulast=Rips&rft.aufirst=Lance+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1037%2F0033-295X.90.1.38&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüllerOvertonReene2001" class="citation journal cs1">Müller, Ulrich; Overton, Willis F.; Reene, Kelly (February 2001). "Development of Conditional Reasoning: A Longitudinal Study". <i>Journal of Cognition and Development</i>. <b>2</b> (1): 27–49. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1207%2FS15327647JCD0201_2">10.1207/S15327647JCD0201_2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:143955563">143955563</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Cognition+and+Development&rft.atitle=Development+of+Conditional+Reasoning%3A+A+Longitudinal+Study&rft.volume=2&rft.issue=1&rft.pages=27-49&rft.date=2001-02&rft_id=info%3Adoi%2F10.1207%2FS15327647JCD0201_2&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A143955563%23id-name%3DS2CID&rft.aulast=M%C3%BCller&rft.aufirst=Ulrich&rft.au=Overton%2C+Willis+F.&rft.au=Reene%2C+Kelly&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvansLynch1973" class="citation journal cs1">Evans, J. St B. T.; Lynch, J. S. (August 1973). "Matching Bias in the Selection Task". <i>British Journal of Psychology</i>. <b>64</b> (3): 391–397. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.2044-8295.1973.tb01365.x">10.1111/j.2044-8295.1973.tb01365.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=British+Journal+of+Psychology&rft.atitle=Matching+Bias+in+the+Selection+Task&rft.volume=64&rft.issue=3&rft.pages=391-397&rft.date=1973-08&rft_id=info%3Adoi%2F10.1111%2Fj.2044-8295.1973.tb01365.x&rft.aulast=Evans&rft.aufirst=J.+St+B.+T.&rft.au=Lynch%2C+J.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagner-Egger2007" class="citation journal cs1">Wagner-Egger, Pascal (1 October 2007). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/abs/10.1080/13546780701415979">"Conditional reasoning and the Wason selection task: Biconditional interpretation instead of reasoning bias"</a>. <i>Thinking & Reasoning</i>. <b>13</b> (4): 484–505. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F13546780701415979">10.1080/13546780701415979</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1354-6783">1354-6783</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145011175">145011175</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Thinking+%26+Reasoning&rft.atitle=Conditional+reasoning+and+the+Wason+selection+task%3A+Biconditional+interpretation+instead+of+reasoning+bias&rft.volume=13&rft.issue=4&rft.pages=484-505&rft.date=2007-10-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145011175%23id-name%3DS2CID&rft.issn=1354-6783&rft_id=info%3Adoi%2F10.1080%2F13546780701415979&rft.aulast=Wagner-Egger&rft.aufirst=Pascal&rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F13546780701415979&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChaterOaksfordHahnHeit2011" class="citation book cs1">Chater, Nick; Oaksford, Mike; Hahn, Ulrike; Heit, Evan (2011). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/B9780444529367500148">"Inductive Logic and Empirical Psychology"</a>. <i>Inductive Logic</i>. Handbook of the History of Logic. Vol. 10. North-Holland. pp. 553–624. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-444-52936-7.50014-8">10.1016/B978-0-444-52936-7.50014-8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-52936-7" title="Special:BookSources/978-0-444-52936-7"><bdi>978-0-444-52936-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Inductive+Logic+and+Empirical+Psychology&rft.btitle=Inductive+Logic&rft.series=Handbook+of+the+History+of+Logic&rft.pages=553-624&rft.pub=North-Holland&rft.date=2011&rft_id=info%3Adoi%2F10.1016%2FB978-0-444-52936-7.50014-8&rft.isbn=978-0-444-52936-7&rft.aulast=Chater&rft.aufirst=Nick&rft.au=Oaksford%2C+Mike&rft.au=Hahn%2C+Ulrike&rft.au=Heit%2C+Evan&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FB9780444529367500148&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArreckx2007" class="citation book cs1">Arreckx, Frederique (2007). "Experiment 1: Affirmative and negative counterfactual questions". <a rel="nofollow" class="external text" href="http://hdl.handle.net/10026.1/1758"><i>COUNTERFACTUAL THINKING AND THE FALSE BELIEF TASK: A DEVELOPMENTAL STUDY</i></a> (Thesis). University of Plymouth. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.24382%2F4506">10.24382/4506</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10026.1%2F1758">10026.1/1758</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Experiment+1%3A+Affirmative+and+negative+counterfactual+questions&rft.btitle=COUNTERFACTUAL+THINKING+AND+THE+FALSE+BELIEF+TASK%3A+A+DEVELOPMENTAL+STUDY&rft.pub=University+of+Plymouth&rft.date=2007&rft_id=info%3Ahdl%2F10026.1%2F1758&rft_id=info%3Adoi%2F10.24382%2F4506&rft.aulast=Arreckx&rft.aufirst=Frederique&rft_id=http%3A%2F%2Fhdl.handle.net%2F10026.1%2F1758&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Johnson-Laird1993-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Johnson-Laird1993_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Johnson-Laird1993_46-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Johnson-Laird1993_46-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Johnson-Laird1993_46-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Johnson-Laird1993_46-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson-LairdByrne1993" class="citation journal cs1">Johnson-Laird, Philip N.; Byrne, Ruth M. J. (1993). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/JOHPOD-2">"Precis of Deduction"</a>. <i>Behavioral and Brain Sciences</i>. <b>16</b> (2): 323–333. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fs0140525x00030260">10.1017/s0140525x00030260</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Behavioral+and+Brain+Sciences&rft.atitle=Precis+of+Deduction&rft.volume=16&rft.issue=2&rft.pages=323-333&rft.date=1993&rft_id=info%3Adoi%2F10.1017%2Fs0140525x00030260&rft.aulast=Johnson-Laird&rft.aufirst=Philip+N.&rft.au=Byrne%2C+Ruth+M.+J.&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FJOHPOD-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-García-Madruga-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-García-Madruga_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-García-Madruga_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarcía-MadrugaGutiérrezCarriedoMoreno2002" class="citation journal cs1">García-Madruga, Juan A.; Gutiérrez, Francisco; Carriedo, Nuria; Moreno, Sergio; Johnson-Laird, Philip N. (November 2002). <a rel="nofollow" class="external text" href="http://revistas.ucm.es/index.php/SJOP/article/view/SJOP0202220125A">"Mental Models in Deductive Reasoning"</a>. <i>The Spanish Journal of Psychology</i>. <b>5</b> (2): 125–140. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fs1138741600005904">10.1017/s1138741600005904</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12428479">12428479</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15293848">15293848</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Spanish+Journal+of+Psychology&rft.atitle=Mental+Models+in+Deductive+Reasoning&rft.volume=5&rft.issue=2&rft.pages=125-140&rft.date=2002-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15293848%23id-name%3DS2CID&rft_id=info%3Apmid%2F12428479&rft_id=info%3Adoi%2F10.1017%2Fs1138741600005904&rft.aulast=Garc%C3%ADa-Madruga&rft.aufirst=Juan+A.&rft.au=Guti%C3%A9rrez%2C+Francisco&rft.au=Carriedo%2C+Nuria&rft.au=Moreno%2C+Sergio&rft.au=Johnson-Laird%2C+Philip+N.&rft_id=http%3A%2F%2Frevistas.ucm.es%2Findex.php%2FSJOP%2Farticle%2Fview%2FSJOP0202220125A&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson-Laird2010" class="citation journal cs1">Johnson-Laird, Philip N. (18 October 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972923">"Mental models and human reasoning"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>107</b> (43): 18243–18250. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1012933107">10.1073/pnas.1012933107</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972923">2972923</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20956326">20956326</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&rft.atitle=Mental+models+and+human+reasoning&rft.volume=107&rft.issue=43&rft.pages=18243-18250&rft.date=2010-10-18&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2972923%23id-name%3DPMC&rft.issn=0027-8424&rft_id=info%3Apmid%2F20956326&rft_id=info%3Adoi%2F10.1073%2Fpnas.1012933107&rft.aulast=Johnson-Laird&rft.aufirst=Philip+N.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2972923&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/epistemology">"Epistemology"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Epistemology&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Ftopic%2Fepistemology&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteupNeta2020" class="citation encyclopaedia cs1">Steup, Matthias; Neta, Ram (2020). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/epistemology/">"Epistemology"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Epistemology&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2020&rft.aulast=Steup&rft.aufirst=Matthias&rft.au=Neta%2C+Ram&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fepistemology%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBecker" class="citation encyclopaedia cs1">Becker, Kelly. <a rel="nofollow" class="external text" href="https://iep.utm.edu/reliabil/">"Reliabilism"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Reliabilism&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=Becker&rft.aufirst=Kelly&rft_id=https%3A%2F%2Fiep.utm.edu%2Freliabil%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldmanBeddor2021" class="citation encyclopaedia cs1">Goldman, Alvin; Beddor, Bob (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/reliabilism/">"Reliabilist Epistemology"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Reliabilist+Epistemology&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Goldman&rft.aufirst=Alvin&rft.au=Beddor%2C+Bob&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Freliabilism%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdams1998" class="citation book cs1">Adams, Ernest W. (13 October 1998). "Deduction and Probability: What Probability Logic Is About". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YxWMQgAACAAJ"><i>A Primer of Probability Logic</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-575-86066-4" title="Special:BookSources/978-1-575-86066-4"><bdi>978-1-575-86066-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deduction+and+Probability%3A+What+Probability+Logic+Is+About&rft.btitle=A+Primer+of+Probability+Logic&rft.pub=Cambridge+University+Press&rft.date=1998-10-13&rft.isbn=978-1-575-86066-4&rft.aulast=Adams&rft.aufirst=Ernest+W.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYxWMQgAACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHájek2001" class="citation book cs1">Hájek, Alan (2001). "Probability, Logic, and Probability Logic". <a rel="nofollow" class="external text" href="https://philpapers.org/rec/HJEPLA"><i>The Blackwell Guide to Philosophical Logic</i></a>. Blackwell. pp. 362–384.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Probability%2C+Logic%2C+and+Probability+Logic&rft.btitle=The+Blackwell+Guide+to+Philosophical+Logic&rft.pages=362-384&rft.pub=Blackwell&rft.date=2001&rft.aulast=H%C3%A1jek&rft.aufirst=Alan&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FHJEPLA&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvansNewsteadByrne1993" class="citation book cs1">Evans, Jonathan St. B. T.; Newstead, Stephen E.; <a href="/wiki/Ruth_M._J._Byrne" title="Ruth M. J. Byrne">Byrne, Ruth M. J.</a>, eds. (1993). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iFMhZ4dl1KcC"><i>Human Reasoning: The Psychology of Deduction</i></a> (Repr. ed.). Psychology Press. p. 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-863-77313-6" title="Special:BookSources/978-0-863-77313-6"><bdi>978-0-863-77313-6</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2015-01-26</span></span>. <q>In one sense [...] one can see the psychology of deductive reasoning as being as old as the study of logic, which originated in the writings of Aristotle.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Human+Reasoning%3A+The+Psychology+of+Deduction&rft.pages=4&rft.edition=Repr.&rft.pub=Psychology+Press&rft.date=1993&rft.isbn=978-0-863-77313-6&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DiFMhZ4dl1KcC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamaha2009" class="citation web cs1">Samaha, Raid (3 March 2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200928144146/https://www.aub.edu.lb/fas/cvsp/Documents/Descartes.pdf">"Descartes' Project of Inquiry"</a> <span class="cs1-format">(PDF)</span>. <i>American University of Beirut</i>. Archived from <a rel="nofollow" class="external text" href="http://www.aub.edu.lb/fas/cvsp/Documents/Descartes.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 28 September 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">24 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=American+University+of+Beirut&rft.atitle=Descartes%27+Project+of+Inquiry&rft.date=2009-03-03&rft.aulast=Samaha&rft.aufirst=Raid&rft_id=http%3A%2F%2Fwww.aub.edu.lb%2Ffas%2Fcvsp%2FDocuments%2FDescartes.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Bermejo-Luque-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bermejo-Luque_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bermejo-Luque_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBermejo-Luque2020" class="citation journal cs1">Bermejo-Luque, Lilian (2020). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/BERWIW-3">"What is Wrong with Deductivism?"</a>. <i>Informal Logic</i>. <b>40</b> (3): 295–316. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22329%2Fil.v40i30.6214">10.22329/il.v40i30.6214</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:217418605">217418605</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Informal+Logic&rft.atitle=What+is+Wrong+with+Deductivism%3F&rft.volume=40&rft.issue=3&rft.pages=295-316&rft.date=2020&rft_id=info%3Adoi%2F10.22329%2Fil.v40i30.6214&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A217418605%23id-name%3DS2CID&rft.aulast=Bermejo-Luque&rft.aufirst=Lilian&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FBERWIW-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Howson-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-Howson_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Howson_58-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Howson_58-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Howson_58-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowson2000" class="citation book cs1">Howson, Colin (2000). "Deductivism". <a rel="nofollow" class="external text" href="https://oxford.universitypressscholarship.com/view/10.1093/0198250371.001.0001/acprof-9780198250371-chapter-6"><i>Hume's Problem</i></a>. Oxford University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2F0198250371.001.0001">10.1093/0198250371.001.0001</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-198-25037-1" title="Special:BookSources/978-0-198-25037-1"><bdi>978-0-198-25037-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deductivism&rft.btitle=Hume%27s+Problem&rft.pub=Oxford+University+Press&rft.date=2000&rft_id=info%3Adoi%2F10.1093%2F0198250371.001.0001&rft.isbn=978-0-198-25037-1&rft.aulast=Howson&rft.aufirst=Colin&rft_id=https%3A%2F%2Foxford.universitypressscholarship.com%2Fview%2F10.1093%2F0198250371.001.0001%2Facprof-9780198250371-chapter-6&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKotarbinska1977" class="citation book cs1">Kotarbinska, Janina (1977). <a rel="nofollow" class="external text" href="https://link.springer.com/chapter/10.1007/978-94-010-1126-6_15">"The Controversy: Deductivism Versus Inductivism"</a>. <i>Twenty-Five Years of Logical Methodology in Poland</i>. Springer Netherlands. pp. 261–278. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-010-1126-6_15">10.1007/978-94-010-1126-6_15</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9-401-01126-6" title="Special:BookSources/978-9-401-01126-6"><bdi>978-9-401-01126-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Controversy%3A+Deductivism+Versus+Inductivism&rft.btitle=Twenty-Five+Years+of+Logical+Methodology+in+Poland&rft.pages=261-278&rft.pub=Springer+Netherlands&rft.date=1977&rft_id=info%3Adoi%2F10.1007%2F978-94-010-1126-6_15&rft.isbn=978-9-401-01126-6&rft.aulast=Kotarbinska&rft.aufirst=Janina&rft_id=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-94-010-1126-6_15&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-Stove-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stove_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stove_60-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStove1970" class="citation journal cs1">Stove, D. (1970). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/STOD">"Deductivism"</a>. <i>Australasian Journal of Philosophy</i>. <b>48</b> (1): 76–98. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00048407012341481">10.1080/00048407012341481</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Australasian+Journal+of+Philosophy&rft.atitle=Deductivism&rft.volume=48&rft.issue=1&rft.pages=76-98&rft.date=1970&rft_id=info%3Adoi%2F10.1080%2F00048407012341481&rft.aulast=Stove&rft.aufirst=D.&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FSTOD&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenderson2020" class="citation encyclopaedia cs1">Henderson, Leah (2020). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/induction-problem/">"The Problem of Induction"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Problem+of+Induction&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2020&rft.aulast=Henderson&rft.aufirst=Leah&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Finduction-problem%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussell2009" class="citation book cs1">Russell, Bertrand (2009) [1959]. "On Induction". <a rel="nofollow" class="external text" href="https://www.gutenberg.org/files/5827/5827-h/5827-h.htm"><i>The Problems of Philosophy</i></a> – via Project Gutenberg.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=On+Induction&rft.btitle=The+Problems+of+Philosophy&rft.date=2009&rft.aulast=Russell&rft.aufirst=Bertrand&rft_id=https%3A%2F%2Fwww.gutenberg.org%2Ffiles%2F5827%2F5827-h%2F5827-h.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThornton2021" class="citation encyclopaedia cs1">Thornton, Stephen (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/popper/#BasiStatFalsConv">"Karl Popper: 4. Basic Statements, Falsifiability and Convention"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Karl+Popper%3A+4.+Basic+Statements%2C+Falsifiability+and+Convention&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Thornton&rft.aufirst=Stephen&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fpopper%2F%23BasiStatFalsConv&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShea" class="citation encyclopaedia cs1">Shea, Brendan. <a rel="nofollow" class="external text" href="https://iep.utm.edu/pop-sci/">"Popper, Karl: Philosophy of Science"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Popper%2C+Karl%3A+Philosophy+of+Science&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=Shea&rft.aufirst=Brendan&rft_id=https%3A%2F%2Fiep.utm.edu%2Fpop-sci%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/hypothetico-deductive-method">"hypothetico-deductive method"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=hypothetico-deductive+method&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Fhypothetico-deductive-method&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095954755">"hypothetico-deductive method"</a>. <i>Oxford Reference</i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Oxford+Reference&rft.atitle=hypothetico-deductive+method&rft_id=https%3A%2F%2Fwww.oxfordreference.com%2Fview%2F10.1093%2Foi%2Fauthority.20110803095954755&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-IEPNatural-67"><span class="mw-cite-backlink">^ <a href="#cite_ref-IEPNatural_67-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IEPNatural_67-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-IEPNatural_67-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-IEPNatural_67-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-IEPNatural_67-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-IEPNatural_67-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIndrzejczak" class="citation encyclopaedia cs1">Indrzejczak, Andrzej. <a rel="nofollow" class="external text" href="https://iep.utm.edu/natural-deduction/">"Natural Deduction"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">15 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Natural+Deduction&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=Indrzejczak&rft.aufirst=Andrzej&rft_id=https%3A%2F%2Fiep.utm.edu%2Fnatural-deduction%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-StanfordNatural-68"><span class="mw-cite-backlink">^ <a href="#cite_ref-StanfordNatural_68-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-StanfordNatural_68-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-StanfordNatural_68-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-StanfordNatural_68-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPelletierHazen2021" class="citation encyclopaedia cs1">Pelletier, Francis Jeffry; Hazen, Allen (2021). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/natural-deduction/">"Natural Deduction Systems in Logic"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">15 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Natural+Deduction+Systems+in+Logic&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2021&rft.aulast=Pelletier&rft.aufirst=Francis+Jeffry&rft.au=Hazen%2C+Allen&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fnatural-deduction%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGentzen1934" class="citation journal cs1 cs1-prop-foreign-lang-source">Gentzen, Gerhard (1934). <a rel="nofollow" class="external text" href="https://gdz.sub.uni-goettingen.de/id/PPN266833020_0039?tify={%22pages%22:%5b180%5d,%22panX%22:0.559,%22panY%22:0.785,%22view%22:%22info%22,%22zoom%22:0.411}">"Untersuchungen über das logische Schließen. I"</a>. <i>Mathematische Zeitschrift</i> (in German). <b>39</b> (2): 176–210. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01201353">10.1007/BF01201353</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121546341">121546341</a>. <q>Ich wollte nun zunächst einmal einen Formalismus aufstellen, der dem wirklichen Schließen möglichst nahe kommt. So ergab sich ein "Kalkül des natürlichen Schließens. (First I wished to construct a formalism that comes as close as possible to actual reasoning. Thus arose a "calculus of natural deduction".)</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Zeitschrift&rft.atitle=Untersuchungen+%C3%BCber+das+logische+Schlie%C3%9Fen.+I&rft.volume=39&rft.issue=2&rft.pages=176-210&rft.date=1934&rft_id=info%3Adoi%2F10.1007%2FBF01201353&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121546341%23id-name%3DS2CID&rft.aulast=Gentzen&rft.aufirst=Gerhard&rft_id=https%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fid%2FPPN266833020_0039%3Ftify%3D%7B%2522pages%2522%3A%5B180%5D%2C%2522panX%2522%3A0.559%2C%2522panY%2522%3A0.785%2C%2522view%2522%3A%2522info%2522%2C%2522zoom%2522%3A0.411%7D&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-DalyHandbook-71"><span class="mw-cite-backlink">^ <a href="#cite_ref-DalyHandbook_71-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DalyHandbook_71-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-DalyHandbook_71-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-DalyHandbook_71-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaly2015" class="citation book cs1">Daly, Chris (2015). <a rel="nofollow" class="external text" href="https://link.springer.com/chapter/10.1057/9781137344557_1">"Introduction and Historical Overview"</a>. <i>The Palgrave Handbook of Philosophical Methods</i>. Palgrave Macmillan. pp. 1–30. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1057%2F9781137344557_1">10.1057/9781137344557_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-137-34455-7" title="Special:BookSources/978-1-137-34455-7"><bdi>978-1-137-34455-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Introduction+and+Historical+Overview&rft.btitle=The+Palgrave+Handbook+of+Philosophical+Methods&rft.pages=1-30&rft.pub=Palgrave+Macmillan&rft.date=2015&rft_id=info%3Adoi%2F10.1057%2F9781137344557_1&rft.isbn=978-1-137-34455-7&rft.aulast=Daly&rft.aufirst=Chris&rft_id=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1057%2F9781137344557_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDutton" class="citation web cs1">Dutton, Blake D. <a rel="nofollow" class="external text" href="https://iep.utm.edu/spinoza/#H2">"Spinoza, Benedict De"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">16 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Internet+Encyclopedia+of+Philosophy&rft.atitle=Spinoza%2C+Benedict+De&rft.aulast=Dutton&rft.aufirst=Blake+D.&rft_id=https%3A%2F%2Fiep.utm.edu%2Fspinoza%2F%23H2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldenbaum" class="citation encyclopaedia cs1">Goldenbaum, Ursula. <a rel="nofollow" class="external text" href="https://iep.utm.edu/geo-meth/">"Geometrical Method"</a>. <i>Internet Encyclopedia of Philosophy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">17 February</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Geometrical+Method&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=Goldenbaum&rft.aufirst=Ursula&rft_id=https%3A%2F%2Fiep.utm.edu%2Fgeo-meth%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNadler2006" class="citation book cs1">Nadler, Steven (2006). "The geometric method". <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/books/abs/spinozas-ethics/geometric-method/08550AF622C78ACC388069710D37036E"><i>Spinoza's 'Ethics': An Introduction</i></a>. Cambridge University Press. pp. 35–51. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-83620-3" title="Special:BookSources/978-0-521-83620-3"><bdi>978-0-521-83620-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+geometric+method&rft.btitle=Spinoza%27s+%27Ethics%27%3A+An+Introduction&rft.pages=35-51&rft.pub=Cambridge+University+Press&rft.date=2006&rft.isbn=978-0-521-83620-3&rft.aulast=Nadler&rft.aufirst=Steven&rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Fabs%2Fspinozas-ethics%2Fgeometric-method%2F08550AF622C78ACC388069710D37036E&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoppelt2010" class="citation book cs1">Doppelt, Torin (2010). "The Truth About 1A4". <a rel="nofollow" class="external text" href="https://qspace.library.queensu.ca/bitstream/handle/1974/6052/Doppelt_Torin_201009_MA.pdf"><i>Spinoza's Causal Axiom: A Defense</i></a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Truth+About+1A4&rft.btitle=Spinoza%27s+Causal+Axiom%3A+A+Defense&rft.date=2010&rft.aulast=Doppelt&rft.aufirst=Torin&rft_id=https%3A%2F%2Fqspace.library.queensu.ca%2Fbitstream%2Fhandle%2F1974%2F6052%2FDoppelt_Torin_201009_MA.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=25" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Vincent_F._Hendricks" title="Vincent F. Hendricks">Vincent F. Hendricks</a>, <i>Thought 2 Talk: A Crash Course in Reflection and Expression</i>, New York: Automatic Press / VIP, 2005, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/87-991013-7-8" title="Special:BookSources/87-991013-7-8">87-991013-7-8</a></li> <li><a href="/wiki/Philip_Johnson-Laird" title="Philip Johnson-Laird">Philip Johnson-Laird</a>, <a href="/wiki/Ruth_M._J._Byrne" title="Ruth M. J. Byrne">Ruth M. J. Byrne</a>, <i>Deduction</i>, Psychology Press 1991, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-86377-149-1" title="Special:BookSources/978-0-86377-149-1">978-0-86377-149-1</a></li> <li>Zarefsky, David, <i>Argumentation: The Study of Effective Reasoning Parts I and II</i>, The Teaching Company 2002</li> <li>Bullemore, Thomas. <a rel="nofollow" class="external text" href="https://www.academia.edu/4154895/Some_Remarks_on_the_Pragmatic_Problem_of_Induction.html">The Pragmatic Problem of Induction</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged August 2023">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Deductive_reasoning&action=edit&section=26" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/deductive_reasoning" class="extiw" title="wiktionary:deductive reasoning">deductive reasoning</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Deductive_reasoning" class="extiw" title="q:Special:Search/Deductive reasoning">Deductive reasoning</a></b></i>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/40px-Wikiversity_logo_2017.svg.png" decoding="async" width="40" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/60px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/80px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Wikiversity has learning resources about <i><b><a href="https://en.wikiversity.org/wiki/Deductive_Logic" class="extiw" title="v:Deductive Logic">Deductive Logic</a></b></i></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://philpapers.org/browse/deductive-reasoning">Deductive reasoning</a> at <a href="/wiki/PhilPapers" title="PhilPapers">PhilPapers</a></li> <li><a rel="nofollow" class="external text" href="https://www.inphoproject.org/idea/636">Deductive reasoning</a> at the <a href="/wiki/Indiana_Philosophy_Ontology_Project" class="mw-redirect" title="Indiana Philosophy Ontology Project">Indiana Philosophy Ontology Project</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="http://www.iep.utm.edu/ded-ind">"Deductive reasoning"</a>. <i><a href="/wiki/Internet_Encyclopedia_of_Philosophy" title="Internet Encyclopedia of Philosophy">Internet Encyclopedia of Philosophy</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Deductive+reasoning&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft_id=http%3A%2F%2Fwww.iep.utm.edu%2Fded-ind&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADeductive+reasoning" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Links_to_related_articles" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#e8e8ff;"><div id="Links_to_related_articles" style="font-size:114%;margin:0 4em">Links to related articles</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0;font-size:114%"><div style="padding:0px"> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Learning" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Learning" title="Template:Learning"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Learning" title="Template talk:Learning"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Learning" title="Special:EditPage/Template:Learning"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Learning" style="font-size:114%;margin:0 4em"><a href="/wiki/Learning" title="Learning">Learning</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:LightYellow;"><a href="/wiki/Learning#Non-associative_learning" title="Learning">Non-associative learning</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Habituation" title="Habituation">Habituation</a></li> <li><a href="/wiki/Sensitization" title="Sensitization">Sensitization</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:LightYellow;"><a href="/wiki/Learning#Associative_learning" title="Learning">Associative learning</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_conditioning" title="Classical conditioning">Classical conditioning</a></li> <li><a href="/wiki/Imprinting_(psychology)" title="Imprinting (psychology)">Imprinting</a></li> <li><a href="/wiki/Observational_learning" title="Observational learning">Observational learning</a></li> <li><a href="/wiki/Operant_conditioning" title="Operant conditioning">Operant conditioning</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:LightYellow;"><a href="/wiki/Insight_learning" class="mw-redirect" title="Insight learning">Insight learning</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abductive_reasoning" title="Abductive reasoning">Abductive reasoning</a></li> <li><a class="mw-selflink selflink">Deductive reasoning</a></li> <li><a href="/wiki/Inductive_reasoning" title="Inductive reasoning">Inductive reasoning</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Logic" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Logic" title="Template:Logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Logic" title="Template talk:Logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Logic" title="Special:EditPage/Template:Logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Logic" style="font-size:114%;margin:0 4em"><a href="/wiki/Logic" title="Logic">Logic</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Outline_of_logic" title="Outline of logic">Outline</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">History</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Major fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Logic_in_computer_science" title="Logic in computer science">Computer science</a></li> <li><a href="/wiki/Formal_semantics_(natural_language)" title="Formal semantics (natural language)">Formal semantics (natural language)</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Philosophy_of_logic" title="Philosophy of logic">Philosophy of logic</a></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Proof</a></li> <li><a href="/wiki/Semantics_of_logic" title="Semantics of logic">Semantics of logic</a></li> <li><a href="/wiki/Syntax_(logic)" title="Syntax (logic)">Syntax</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Logics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical</a></li> <li><a href="/wiki/Informal_logic" title="Informal logic">Informal</a> <ul><li><a href="/wiki/Critical_thinking" title="Critical thinking">Critical thinking</a></li> <li><a href="/wiki/Reason" title="Reason">Reason</a></li></ul></li> <li><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical</a></li> <li><a href="/wiki/Non-classical_logic" title="Non-classical logic">Non-classical</a></li> <li><a href="/wiki/Philosophical_logic" title="Philosophical logic">Philosophical</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Argumentation_theory" title="Argumentation theory">Argumentation</a></li> <li><a href="/wiki/Metalogic" title="Metalogic">Metalogic</a></li> <li><a href="/wiki/Metamathematics" title="Metamathematics">Metamathematics</a></li> <li><a href="/wiki/Set_theory" title="Set theory">Set</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Foundations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abductive_reasoning" title="Abductive reasoning">Abduction</a></li> <li><a href="/wiki/Analytic%E2%80%93synthetic_distinction" title="Analytic–synthetic distinction">Analytic and synthetic propositions</a></li> <li><a href="/wiki/Antecedent_(logic)" title="Antecedent (logic)">Antecedent</a></li> <li><a href="/wiki/Consequent" title="Consequent">Consequent</a></li> <li><a href="/wiki/Contradiction" title="Contradiction">Contradiction</a> <ul><li><a href="/wiki/Paradox" title="Paradox">Paradox</a></li> <li><a href="/wiki/Antinomy" title="Antinomy">Antinomy</a></li></ul></li> <li><a class="mw-selflink selflink">Deduction</a></li> <li><a href="/wiki/Deductive_closure" title="Deductive closure">Deductive closure</a></li> <li><a href="/wiki/Definition" title="Definition">Definition</a></li> <li><a href="/wiki/Description" title="Description">Description</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Entailment</a> <ul><li><a href="/wiki/Entailment_(linguistics)" title="Entailment (linguistics)">Linguistic</a></li></ul></li> <li><a href="/wiki/Logical_form" title="Logical form">Form</a></li> <li><a href="/wiki/Inductive_reasoning" title="Inductive reasoning">Induction</a></li> <li><a href="/wiki/Logical_truth" title="Logical truth">Logical truth</a></li> <li><a href="/wiki/Name" title="Name">Name</a></li> <li><a href="/wiki/Necessity_and_sufficiency" title="Necessity and sufficiency">Necessity and sufficiency</a></li> <li><a href="/wiki/Premise" title="Premise">Premise</a></li> <li><a href="/wiki/Probability" title="Probability">Probability</a></li> <li><a href="/wiki/Proposition" title="Proposition">Proposition</a></li> <li><a href="/wiki/Reference" title="Reference">Reference</a></li> <li><a href="/wiki/Statement_(logic)" title="Statement (logic)">Statement</a></li> <li><a href="/wiki/Substitution_(logic)" title="Substitution (logic)">Substitution</a></li> <li><a href="/wiki/Truth" title="Truth">Truth</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Index_of_logic_articles" title="Index of logic articles">topics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_mathematical_logic_topics" title="List of mathematical logic topics">Mathematical logic</a></li> <li><a href="/wiki/List_of_Boolean_algebra_topics" title="List of Boolean algebra topics">Boolean algebra</a></li> <li><a href="/wiki/List_of_set_theory_topics" title="List of set theory topics">Set theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_logicians" title="List of logicians">Logicians</a></li> <li><a href="/wiki/List_of_rules_of_inference" title="List of rules of inference">Rules of inference</a></li> <li><a href="/wiki/List_of_paradoxes" title="List of paradoxes">Paradoxes</a></li> <li><a href="/wiki/List_of_fallacies" title="List of fallacies">Fallacies</a></li> <li><a href="/wiki/List_of_logic_symbols" title="List of logic symbols">Logic symbols</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/18px-Socrates.png" decoding="async" width="18" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/27px-Socrates.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/36px-Socrates.png 2x" data-file-width="326" data-file-height="500" /></span></span> </span><a href="/wiki/Portal:Philosophy" title="Portal:Philosophy">Philosophy portal</a></li> <li><a href="/wiki/Category:Logic" title="Category:Logic">Category</a></li> <li><a href="/wiki/Wikipedia:WikiProject_Logic" title="Wikipedia:WikiProject Logic">WikiProject</a> (<a href="/wiki/Wikipedia_talk:WikiProject_Logic" title="Wikipedia talk:WikiProject Logic">talk</a>)</li> <li><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Special:Recentchangeslinked&target=Template:Logic&hidebots=0">changes</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Philosophical_logic" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Philosophical_logic" title="Template:Philosophical logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Philosophical_logic" title="Template talk:Philosophical logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Philosophical_logic" title="Special:EditPage/Template:Philosophical logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Philosophical_logic" style="font-size:114%;margin:0 4em"><a href="/wiki/Philosophical_logic" title="Philosophical logic">Philosophical logic</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Critical_thinking" title="Critical thinking">Critical thinking</a> and<br /><a href="/wiki/Informal_logic" title="Informal logic">informal logic</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Philosophical_analysis" title="Philosophical analysis">Analysis</a></li> <li><a href="/wiki/Ambiguity" title="Ambiguity">Ambiguity</a></li> <li><a href="/wiki/Argument" title="Argument">Argument</a></li> <li><a href="/wiki/Belief" title="Belief">Belief</a></li> <li><a href="/wiki/Bias" title="Bias">Bias</a></li> <li><a href="/wiki/Credibility" title="Credibility">Credibility</a></li> <li><a href="/wiki/Dialectic" title="Dialectic">Dialectic</a> <ul><li><a href="/wiki/Antithesis" title="Antithesis">Antithesis</a>, <a href="/wiki/Socratic_method" title="Socratic method">Socratic method</a>, <a href="/wiki/Unity_of_opposites" title="Unity of opposites">Unity of opposites</a></li></ul></li> <li><a href="/wiki/Evidence" title="Evidence">Evidence</a></li> <li><a href="/wiki/Explanation" title="Explanation">Explanation</a></li> <li><a href="/wiki/Explanatory_power" title="Explanatory power">Explanatory power</a></li> <li><a href="/wiki/Fact" title="Fact">Fact</a></li> <li><a href="/wiki/Fallacy" title="Fallacy">Fallacy</a> <ul><li><a href="/wiki/List_of_fallacies" title="List of fallacies">List of fallacies</a></li></ul></li> <li><a href="/wiki/Hypothesis" title="Hypothesis">Hypothesis</a></li> <li><a href="/wiki/Inquiry" title="Inquiry">Inquiry</a></li> <li><a href="/wiki/Opinion" title="Opinion">Opinion</a></li> <li><a href="/wiki/Occam%27s_razor" title="Occam's razor">Parsimony (Occam's razor)</a></li> <li><a href="/wiki/Premise" title="Premise">Premise</a></li> <li><a href="/wiki/Propaganda" title="Propaganda">Propaganda</a></li> <li><a href="/wiki/Prudence" title="Prudence">Prudence</a></li> <li><a href="/wiki/Reason" title="Reason">Reasoning</a></li> <li><a href="/wiki/Relevance" title="Relevance">Relevance</a></li> <li><a href="/wiki/Rhetoric" title="Rhetoric">Rhetoric</a></li> <li><a href="/wiki/Rigour" title="Rigour">Rigor</a></li> <li><a href="/wiki/Theory" title="Theory">Theory</a></li> <li><a href="/wiki/Vagueness" title="Vagueness">Vagueness</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">Theories of deduction</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constructivism_(philosophy_of_mathematics)" title="Constructivism (philosophy of mathematics)">Constructivism</a></li> <li><a href="/wiki/Dialetheism" title="Dialetheism">Dialetheism</a></li> <li><a href="/wiki/Fictionalism" title="Fictionalism">Fictionalism</a></li> <li><a href="/wiki/Finitism" title="Finitism">Finitism</a></li> <li><a href="/wiki/Formalism_(mathematics)" class="mw-redirect" title="Formalism (mathematics)">Formalism</a></li> <li><a href="/wiki/Intuitionism" title="Intuitionism">Intuitionism</a></li> <li><a href="/wiki/Logical_atomism" title="Logical atomism">Logical atomism</a></li> <li><a href="/wiki/Logicism" title="Logicism">Logicism</a></li> <li><a href="/wiki/Nominalism" title="Nominalism">Nominalism</a></li> <li><a href="/wiki/Platonic_realism" class="mw-redirect" title="Platonic realism">Platonic realism</a></li> <li><a href="/wiki/Pragmatism" title="Pragmatism">Pragmatism</a></li> <li><a href="/wiki/Philosophical_realism" title="Philosophical realism">Realism</a></li></ul> </div></td></tr></tbody></table></div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q484284#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4011271-8">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00561931">Japan</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐44nch Cached time: 20241122140601 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.378 seconds Real time usage: 1.594 seconds Preprocessor visited node count: 7061/1000000 Post‐expand include size: 209189/2097152 bytes Template argument size: 22448/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 353992/5000000 bytes Lua time usage: 0.778/10.000 seconds Lua memory usage: 7095883/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1288.300 1 -total 49.46% 637.143 2 Template:Reflist 17.87% 230.200 20 Template:Cite_journal 16.22% 208.987 34 Template:Cite_encyclopedia 9.89% 127.363 1 Template:Navboxes 8.96% 115.408 5 Template:Navbox 7.93% 102.178 17 Template:Cite_book 7.23% 93.134 1 Template:Learning 6.02% 77.550 1 Template:Short_description 4.30% 55.399 2 Template:Fix --> <!-- Saved in parser cache with key enwiki:pcache:idhash:61093-0!canonical and timestamp 20241122140601 and revision id 1254932393. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Deductive_reasoning&oldid=1254932393">https://en.wikipedia.org/w/index.php?title=Deductive_reasoning&oldid=1254932393</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Deductive_reasoning" title="Category:Deductive reasoning">Deductive reasoning</a></li><li><a href="/wiki/Category:Logic" title="Category:Logic">Logic</a></li><li><a href="/wiki/Category:Problem_solving_skills" title="Category:Problem solving skills">Problem solving skills</a></li><li><a href="/wiki/Category:Reasoning" title="Category:Reasoning">Reasoning</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_Portuguese-language_sources_(pt)" title="Category:CS1 Portuguese-language sources (pt)">CS1 Portuguese-language sources (pt)</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2018" title="Category:Articles with unsourced statements from April 2018">Articles with unsourced statements from April 2018</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_January_2015" title="Category:Articles to be expanded from January 2015">Articles to be expanded from January 2015</a></li><li><a href="/wiki/Category:All_articles_to_be_expanded" title="Category:All articles to be expanded">All articles to be expanded</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_August_2023" title="Category:Articles with dead external links from August 2023">Articles with dead external links from August 2023</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_Internet_Encyclopedia_of_Philosophy_links" title="Category:Articles with Internet Encyclopedia of Philosophy links">Articles with Internet Encyclopedia of Philosophy links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 November 2024, at 11:01<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Deductive_reasoning&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-5z8dw","wgBackendResponseTime":162,"wgPageParseReport":{"limitreport":{"cputime":"1.378","walltime":"1.594","ppvisitednodes":{"value":7061,"limit":1000000},"postexpandincludesize":{"value":209189,"limit":2097152},"templateargumentsize":{"value":22448,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":353992,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1288.300 1 -total"," 49.46% 637.143 2 Template:Reflist"," 17.87% 230.200 20 Template:Cite_journal"," 16.22% 208.987 34 Template:Cite_encyclopedia"," 9.89% 127.363 1 Template:Navboxes"," 8.96% 115.408 5 Template:Navbox"," 7.93% 102.178 17 Template:Cite_book"," 7.23% 93.134 1 Template:Learning"," 6.02% 77.550 1 Template:Short_description"," 4.30% 55.399 2 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.778","limit":"10.000"},"limitreport-memusage":{"value":7095883,"limit":52428800},"limitreport-logs":"table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-44nch","timestamp":"20241122140601","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Deductive reasoning","url":"https:\/\/en.wikipedia.org\/wiki\/Deductive_reasoning","sameAs":"http:\/\/www.wikidata.org\/entity\/Q484284","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q484284","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-07-09T00:01:19Z","dateModified":"2024-11-02T11:01:45Z","headline":"method of reasoning by which premises understood to be true produce logically certain conclusions"}</script> </body> </html>