CINXE.COM
Jose Manuel Quero | Universidad de Sevilla - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Jose Manuel Quero | Universidad de Sevilla - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="CgT7uOeEjiSZVrYUNkrpPrfnYsmBVKoeuyBUocFufbxn9qH3AD4p_jBZswNTCFy9HDQNy5Qz3UtSJ4OVZKKK4A" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero","image":"https://0.academia-photos.com/20044819/10864528/12125024/s200_jose_manuel.quero.jpg","sameAs":["http://scholar.google.com/citations?user=ANKklTQAAAAJ\u0026hl=en"]},"dateCreated":"2014-10-26T20:42:34-07:00","dateModified":"2023-12-25T22:43:56-08:00","name":"Jose Manuel Quero","description":"","image":"https://0.academia-photos.com/20044819/10864528/12125024/s200_jose_manuel.quero.jpg","thumbnailUrl":"https://0.academia-photos.com/20044819/10864528/12125024/s65_jose_manuel.quero.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/20044819/10864528/12125024/s200_jose_manuel.quero.jpg","width":200},"sameAs":["http://scholar.google.com/citations?user=ANKklTQAAAAJ\u0026hl=en"],"relatedLink":"https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="jose manuel quero" /> <meta name="description" content="Jose Manuel Quero, Universidad de Sevilla: 14 Followers, 3 Following, 167 Research papers. Research interests: Statistics, Supply Chain Management, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9744e839ffe2d813ef8b7eb988ae0a3341a6052d'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13919,"monthly_visitors":"139 million","monthly_visitor_count":139296536,"monthly_visitor_count_in_millions":139,"user_count":286075572,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743423190000); window.Aedu.timeDifference = new Date().getTime() - 1743423190000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-cf157bca4ef673abcac8051ac68ed1136134beba22a884388e7ed6391572eef4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f96ab8a6334d161855249975a57d3f3d57f65c2e7553c6d20ab43c63efb79575.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://us.academia.edu/JoseManuelQuero" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-091a194a2533e53e1630c5cfd78813a4445aff73d16c70cdba1eafe8c0939f4a.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero","photo":"https://0.academia-photos.com/20044819/10864528/12125024/s65_jose_manuel.quero.jpg","has_photo":true,"department":{"id":689352,"name":"Ingeniería electrónica","url":"https://us.academia.edu/Departments/Ingenier%C3%ADa_electr%C3%B3nica/Documents","university":{"id":1481,"name":"Universidad de Sevilla","url":"https://us.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering"},{"id":4974,"name":"Logistics","url":"https://www.academia.edu/Documents/in/Logistics"},{"id":78201,"name":"INGENIERIAS","url":"https://www.academia.edu/Documents/in/INGENIERIAS"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":6674015,"link":"http://scholar.google.com/citations?user=ANKklTQAAAAJ\u0026hl=en","name":"Google Scholar","link_domain":"scholar.google.com","icon":"//www.google.com/s2/u/0/favicons?domain=scholar.google.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://us.academia.edu/JoseManuelQuero","location":"/JoseManuelQuero","scheme":"https","host":"us.academia.edu","port":null,"pathname":"/JoseManuelQuero","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-b08b93c9-57de-4799-89ee-a42eaabcffc2"></div> <div id="ProfileCheckPaperUpdate-react-component-b08b93c9-57de-4799-89ee-a42eaabcffc2"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Jose Manuel Quero" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/20044819/10864528/12125024/s200_jose_manuel.quero.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Jose Manuel Quero</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://us.academia.edu/">Universidad de Sevilla</a>, <a class="u-tcGrayDarker" href="https://us.academia.edu/Departments/Ingenier%C3%ADa_electr%C3%B3nica/Documents">Ingeniería electrónica</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Jose Manuel" data-follow-user-id="20044819" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="20044819"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">14</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uni-tuebingen.academia.edu/BlancaArangogonzalez"><img class="profile-avatar u-positionAbsolute" alt="Blanca Arango-Gonzalez related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/36515430/132017792/121437622/s200_blanca.arango-gonzalez.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uni-tuebingen.academia.edu/BlancaArangogonzalez">Blanca Arango-Gonzalez</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Eberhard Karls Universität Tübingen</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://jku.academia.edu/AlessandroBellapianta"><img class="profile-avatar u-positionAbsolute" alt="Alessandro Bellapianta related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/107318817/77133911/65667231/s200_alessandro.bellapianta.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://jku.academia.edu/AlessandroBellapianta">Alessandro Bellapianta</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Johannes Kepler University Linz</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ucv-es.academia.edu/JavierRomeroG%C3%B3mez"><img class="profile-avatar u-positionAbsolute" alt="Javier Romero Gómez related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucv-es.academia.edu/JavierRomeroG%C3%B3mez">Javier Romero Gómez</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Católica de Valencia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/Iv%C3%A1nFernandezbueno"><img class="profile-avatar u-positionAbsolute" alt="Iván Fernandez-bueno related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/Iv%C3%A1nFernandezbueno">Iván Fernandez-bueno</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/GayosoM"><img class="profile-avatar u-positionAbsolute" alt="Manuel Gayoso related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/GayosoM">Manuel Gayoso</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/EbrahimEsfandiary"><img class="profile-avatar u-positionAbsolute" alt="Ebrahim Esfandiary related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/EbrahimEsfandiary">Ebrahim Esfandiary</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uni-giessen.academia.edu/BirgitLorenz"><img class="profile-avatar u-positionAbsolute" alt="Birgit Lorenz related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uni-giessen.academia.edu/BirgitLorenz">Birgit Lorenz</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Justus-Liebig-University Giessen</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/YoshihitoHonda"><img class="profile-avatar u-positionAbsolute" alt="Yoshihito Honda related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/YoshihitoHonda">Yoshihito Honda</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/AmyFrederick6"><img class="profile-avatar u-positionAbsolute" alt="Amy Frederick related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/8bfe8f18d539f3dace248345f6bb998f?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AmyFrederick6">Amy Frederick</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/OuriaDkhissibenyahya"><img class="profile-avatar u-positionAbsolute" alt="Ouria Dkhissi-benyahya related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/OuriaDkhissibenyahya">Ouria Dkhissi-benyahya</a></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="20044819" href="https://www.academia.edu/Documents/in/Statistics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://us.academia.edu/JoseManuelQuero","location":"/JoseManuelQuero","scheme":"https","host":"us.academia.edu","port":null,"pathname":"/JoseManuelQuero","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Statistics"]}" data-trace="false" data-dom-id="Pill-react-component-105b455a-7632-4f14-b8d3-27fe8137d29e"></div> <div id="Pill-react-component-105b455a-7632-4f14-b8d3-27fe8137d29e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="20044819" href="https://www.academia.edu/Documents/in/Supply_Chain_Management"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Supply Chain Management"]}" data-trace="false" data-dom-id="Pill-react-component-9e6b2bc5-240c-4b3e-87fa-df5dbe1f4faf"></div> <div id="Pill-react-component-9e6b2bc5-240c-4b3e-87fa-df5dbe1f4faf"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Jose Manuel Quero</h3></div><div class="js-work-strip profile--work_container" data-work-id="75944096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures"><img alt="Research paper thumbnail of Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures" class="work-thumbnail" src="https://attachments.academia-assets.com/83617139/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures">Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab3471a8e4d2722bf29af082b104e561" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617139,"asset_id":75944096,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617139/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944096]").text(description); $(".js-view-count[data-work-id=75944096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab3471a8e4d2722bf29af082b104e561" } } $('.js-work-strip[data-work-id=75944096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944096,"title":"Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures","translated_title":"","metadata":{"abstract":"Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.","publisher":"MDPI AG","ai_title_tag":"Biocompatibility of PCB in Retinal Cultures","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.","internal_url":"https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures","translated_internal_url":"","created_at":"2022-04-09T15:13:30.671-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617139/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617139/download_file","bulk_download_file_name":"Biocompatibility_Study_of_a_Commercial_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617139/pdf-libre.pdf?1649542619=\u0026response-content-disposition=attachment%3B+filename%3DBiocompatibility_Study_of_a_Commercial_P.pdf\u0026Expires=1743410722\u0026Signature=QGveeJn~ASoTo3SS7uDxOU3Vx77D7x-xpwldFHynuEK-5L7c5YFRbHrbQXIf3p1iwBOc740ERLVeNxGuKXJBvO9JHw65SQ2r9ZBDlzoLn~ddgdO4RXsv3xO5NebtwzTiwcZpZrbFRLrIg8QiqnhWfm1aB7REGV0PDJcOJO6OVZ9mRR8RW3a-Q7rYIteUH~Ne42oXdVbC6Z1nTkN-3~CMkaR8x~FNSv0sxA3FrrCUVIxCy4TMCm9URpSszdK20bZq2dENP13ipN9~j1cLnuhz8i7NVWDCENqPyOgIrtv3P1zjDPMeOTi9KAHKcMrq6tILn7-d-gGUjVsM99jFxExKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617139/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617139/download_file","bulk_download_file_name":"Biocompatibility_Study_of_a_Commercial_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617139/pdf-libre.pdf?1649542619=\u0026response-content-disposition=attachment%3B+filename%3DBiocompatibility_Study_of_a_Commercial_P.pdf\u0026Expires=1743410722\u0026Signature=QGveeJn~ASoTo3SS7uDxOU3Vx77D7x-xpwldFHynuEK-5L7c5YFRbHrbQXIf3p1iwBOc740ERLVeNxGuKXJBvO9JHw65SQ2r9ZBDlzoLn~ddgdO4RXsv3xO5NebtwzTiwcZpZrbFRLrIg8QiqnhWfm1aB7REGV0PDJcOJO6OVZ9mRR8RW3a-Q7rYIteUH~Ne42oXdVbC6Z1nTkN-3~CMkaR8x~FNSv0sxA3FrrCUVIxCy4TMCm9URpSszdK20bZq2dENP13ipN9~j1cLnuhz8i7NVWDCENqPyOgIrtv3P1zjDPMeOTi9KAHKcMrq6tILn7-d-gGUjVsM99jFxExKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":19297747,"url":"https://www.mdpi.com/2072-666X/12/12/1469/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944096-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944095/Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering"><img alt="Research paper thumbnail of Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering" class="work-thumbnail" src="https://attachments.academia-assets.com/83617144/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944095/Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering">Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944095-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944095-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551006/figure-1-cross-sectional-view-of-generic-structure-of"><img alt="Figure 1. Cross-sectional view of a generic structure of a Printed Circuit Board (PCB). (A) Double-side copper layer PCB, where the Flame Retardant 4 (FR4) (green) and the metal (yellow) can be seen. (B) Double-side PCB with a copper line, a plated through hole (PTH) via, and a hole (non-plated through hole (NPTH)). (C) Four layer PCB with through hole via, blind via, buried via, and a blue solder mask covering the top and bottom layers. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551029/figure-2-microheater-fabricated-using-commercially-available"><img alt="Figure 2. Microheater fabricated using commercially available PCB for agarose gel preparations (reprinted from [32], copyright (2021), Creative Commons License). For example, the microheaters were used to prepare agarose gel using lab-on-PCB devices [32]. This microheater was fabricated using commercially available PCB substrates, as can be seen in Figure 2. The majority of microheaters are integrated with a thermal sensor to control the temperature set point. In the case of the Figure 2, the sensor is a negative temperature coefficient (NTC) resistor with a surface-mounted device (SMD) package. However, the proper microheater can be used as a temperature sensor [25,28]. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551037/figure-1-the-integration-of-coils-on-flexible-or-rigid-pcb"><img alt="The integration of coils on flexible or rigid PCB substrates has been used for wireless power-transmission applications. These coils are fabricated using one copper layer to define he whole structure of the device. The structure is simple: a spiral-shaped copper line ina copper layer, as in Figure 1B, although different topologies are possible [37]. Many devices have been developed using this configuration, for example, printed spiral coils for efficient ranscutaneous inductive power transmission [39]. This device is fabricated on a 1-0z copper layer over an FR4 substrate as insulation layer. Similar structures were fabricated for a system with a transmitter and receiver, both of them based on this kind of coil. They are intended for the study of a series of PCB coil matrixes for misalignment-insensitive wireless charging [40]. A current application of these coils is the contactless charger used for handheld devices; for example, smart phones [41]. In addition, the electromagnetic analysis of the alternating current (AC) losses and the practical implementation of PCB planar inductors with a Litz structure were reported [42], as well as the optimization of printed spiral coils for wireless passive sensors [43]. These coils can be fabricated using more than one PCB copper layer; for example, the flow-based electromagnetic-type energy harvester described in [44] included double-sided PCB coils, and the device reported in [45 uses four copper layers two fabricating four coils that are connected in series. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551046/figure-4-top-pcb-rogowski-coil-bottom-four-layer-board"><img alt="Figure 4. (Top) PCB Rogowski coil. (Bottom) four-layer board design pattern (reprinted from [51] copyright (2020), Creative Commons License). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551061/figure-5-pcb-based-transformer-integrated-on-printed-circuit"><img alt="Figure 5. (A) PCB-based transformer integrated on a Printed Circuit Board (reprinted from [65], copyright (2020), Creative Commons License). (B) Improved PCB stator of a synchronous motor and prototype (reprinted from [67], copyright (2018), Creative Commons License). Multilayer PCBs have been used to fabricate the motors: for example, the PCB stator reported in [67] has 12 layers (Figure 5B); the PCB-based motor for hard disk has six layers in 1-mm-thick PCB, where each layer has nine concentric patterns interconnected by through- holes [68]; a PCB motor intended for use in nanosatellites used a double-layer PCB to integrate the coils [69]; the device reported in [73] requires multilayer PCB (four layers), with 10 PCB-based coils per layer. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551069/figure-6-printed-circuit-board-technology-has-been-used-to"><img alt="Printed Circuit Board technology has been used to develop a triboelectric nanogen- erator [80-85]. These devices are composed of a stator and a rotor, both fabricated using a single-layer PCB. The stator and the rotor have a circular shape, with the FR4 as the substrate, while radial copper electrodes are fabricated in the copper layer. They are radial- arrayed Cu strips with a unit central angle from 10° [81] to 1° [85], depending on the design of the device. An example of the structure can be seen in Figure 6. Figure 6. (a) Exploded view; (b) photograph of a typical rotary disc-shaped triboelectric nanogenera- tor (reprinted from [83], copyright (2019), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551080/figure-7-direct-methanol-fuel-cell-fuel-chamber-with-anode"><img alt="Figure 7. Direct methanol fuel cell: (a) fuel chamber with anode; (b) air breathing window with the cathode (reprinted from [94], copyright (2015), with permission from Elsevier). As can be seen, the anode and cathode are covered with gold. Figure 7. The geometry of the anode and cathode openings was studied on [97,98] for PCB devices. In addition, flexible PCBs have been used for fabrication as a current collector [99]. he copper layer corrodes in this kind of device. For that reason, a gold layer covers the copper [100]. This gold layer is an additional material provided by the PCB manufacturer. he gold layers can be seen in Figure 7. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551085/figure-8-two-layers-of-um-thick-dry-film-photoresist-dfr"><img alt="Figure 8. (A) Two layers of 30 um thick dry film photoresist (DFR) laminated on top of electrodes on a PCB (reprinted from [115], copyright (2011), with permission from Elsevier). (B) Device with the previously noted electrodes integrated on the PCB (reprinted from [115], copyright (2011), with permission from Elsevier). (C) Cross-section view of a pressure sensor with the gap defined using the thickness of the copper layer (copyright (2015) IEEE. Reprinted, with permission, from [104]). (D) Sensor fabricated: (a) radiation patch on the upper surface; and (b) metallic ground on the lower surface (reprinted from [111], copyright (2018), Creative Commons License). icine = Meehan iia The temperature sensors were fabricated using PCBs governed by different working using a doub material due as a microhea is used as a multisensor p principles. For instance, principle is based on two of the FR4 de emperature sensing. A d temperature a e-sided, cop he wireless temperature sensor reported in [111] is fabricated per layer PCB, Figure 8D. In this case, he FR4 layer is chosen as 0 its good properties for microwave and RF applications [112]. The working pend on the ependence o factors: the metal thermal expansion and the dielectric constant temperature. Similarly to this sensor, uses the copper foil on the polyimide (flexible PCB) as a form of thermal resistance to ifferent method for sensing temperat he one reported on [113] ure consists of using the per line has two functions f a copper line [25]. In this case, the cop ter and the temperature sensor. Finally, the PCB-based device reported in [114] atform to measure temperature, conductivity and pressure. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551093/figure-9-structure-of-capacitive-pcb-based-accelerometer-the"><img alt="Figure 9. Structure of capacitive PCB-based accelerometer. The beams were fabricated using the copper layer, and the proof mass was defined with the FR4 substrate (reprinted from [124], copyright (2011), with permission from Elsevier). Figure 9. Structure of capacitive PCB-based accelerometer. The beams were fabricated using the Printed Circuit Board substrates have also been used to develop accelerometers. The device reported in [123] consists of a metal proof mass, an adhesive tape, and a piece of PCB. The copper layer of the PCB was patterned to fabricate the fixed electrode of capacitive sensor, and the proof mass was the movable electrode. This device includes he he electronic circuit and the sensor in the same PCB substrate. A different device structure was reported in [124], Figure 9. In this case, two rigid Printed Circuit Boards were used to fabricate both the movable and the fixed electrodes. The copper layer of the top mova ble PCB was used to fabricate the metal plate and the supporting beams. These beams were released by removing the FR4. The FR4over the top metal electrode was not removed in order to define the proof mass and increase the sensitivity. Therefore, the copper layer two functions: as a metallic electrode and as a movable mechanical structure. nas " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551109/figure-10-layout-of-the-platform-with-double-layer-copper"><img alt="Figure 10. (a) Layout of the platform with double-layer copper coils; (b) electromagnetic actuation and sensing of the platform with the mirror plate; (c) schematic of the assembled scanning micromirror (reprinted from [126], copyright (2018), Creative Commons License). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551119/figure-11-prototype-of-the-electromagnetic-scanning"><img alt="Figure 11. (a) Prototype of the electromagnetic scanning micromirror with a plexiglass package; (b) front-side view of the platform integrated with copper coils for sensing; (c) back-side view of the platform integrated with copper coils for sensing and driving (reprinted from [126], copyright (2018), Creative Commons License). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551131/figure-12-impulsion-system-based-on-an-su-pressurized"><img alt="Figure 12. (A) Impulsion system based on an SU-8 pressurized chamber and a copper line fuse. (reprinted from [136], copyright (2015), with permission from Elsevier). (B) Close view of the electroosmotic part of a PCB-device where the microchannels can be seen (copyright (2013) IEEE. Reprinted, with permission, from [144]). (C) Device for fluid manipulation using electrowetting on dielectric on Printed Circuit Board (reprinted from [145], copyright (2020), Creative Commons License). (D) Electrochemical PCB-based impulsion chip with detail of the microelectrode fingers (reprinted from [150], copyright (2018), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551144/figure-13-left-lab-on-pcb-integrating-microfluidics-and-pcb"><img alt="Figure 13. (A) Left: Lab-on-PCB integrating microfluidics and PCB microchambers and reference electrodes, right: two-layer PCB before the assembly of microfluidics, comprising microchambers in the top layer and PCB reference electrodes in the bottom layer (reprinted from [174], copyright (2015), Creative Commons License). (B) a: schematic diagram of a wearable electrocardiography system, b: flexible electrocardiography module, c: wearable thermoelectric generator, d: polymer-based flexi- ble heat sink (reprinted with permission from [179], copyright (2011), American Chemical Society). The PCB-based chemiresistive carbon dioxide sensor reported in Reference [177] uses silver paste to finish the fabrication of the device. Although this kind of device requires additional processes, it is worth using commercial PCBs to develop them. Many wearable biosensors are based on a flexible printed circuit boards [117,178—181]; for example, the device reported in Reference [179] can be seen in Figure 13B. In addition, a biosensor for SARS-CoV-2 detection was fabricated using flexible PBCs. In that case, graphene was used as an auxiliary material [182]. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551154/figure-14-the-first-lab-on-pcb-reported-by-stefan-gassmann"><img alt="Figure 14. The first lab-on-PCB reported by Stefan Gassmann et al. (reprinted from [11], copyright (2007), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551166/figure-15-recombinase-polymerase-amplification-rpa-on-pcb"><img alt="Figure 15. (A) Recombinase Polymerase Amplification (RPA)-on-PCB chip design for DNA am- plification. The meandering microfluidic channel, the microheater with its electrical pads, and a solid copper layer beneath the microchannel for optimum temperature uniformity are depicted (reprinted from [25], copyright (2021), Creative Commons License). (B) a: Poly(methyl methacry- late) PMMA fluidic chip with 4 u-shaped chambers; b: PMMA fluidic with 6 u-shaped chambers; c: PMMA fluidic chip on top of a thin Printed Circuit Board (PCB) microheater with an external temperature-homogenizing copper layer; d: Experimental set-up for temperature measurements during thermocycling of a static micro-polymerase chain reaction (microPCR) chip (reprinted from [24], copyright (2020), Creative Commons License). The microchannel can also be defined using the solder mask; for example, the } channel reported in [200], the microchannels fabricated in [186,187], and the Lab-on-PC] for the isothermal recombinase polymerase amplification of DNA [25]. This last wor included a PCB-based microheater, which simultaneously acts as a temperature sensor. Th device is fabricated in a four-layer PCB, where the top and bottom copper layers includ the contact pads, and the first and second inner layers define a copper plate for temperatur uniformity and the microheater, respectively, Figure 15A . The amplification of DNA ha also been performed using several Lab-on-PCB devices. The use of flexible PCB has bee: studied for both continuous-flow and static-chamber configurations [201]. For example, th continuous-flow PCR microdevices [202-204], and the static-chamber device reported is Reference [24], Figure 15B. All of them include PCB-based microheaters to define a therme area to perform the PCR. Finally, the work reported in [205] proposed a structure based o: two PCBs. The first one was used to define the microchannels on FR4 by milling, and th second one (multilayer PCB) used integrated microheaters, a copper plate for uniformity, bottom copper layer for wiring, and a top copper layer for electrodes, which were partiall defined by the solder mask. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551177/figure-16-the-exploited-lab-on-pcb-biosensing-platform"><img alt="Figure 16. The exploited Lab-on-PCB biosensing platform: (a) integrated Lab-on-PCB stack-up; (b) Electrochemical Impedance Spectroscopy electrode configuration; (c) commercially fabricated PCB biosensing platform; (d) sample delivery microfluidics (reprinted from [206], copyright (2019), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551190/figure-17-commercial-pcb-based-microelectrodes-arrays-of"><img alt="Figure 17. (A) Commercial PCB-based microelectrodes arrays of Multichannel Microsystems (model: 60EcoMEA). (B) Commercial PCB-based microelectrodes arrays of Ayanda Biosystems™ (model: MEA60 4 x 15 3D). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551201/figure-18-dual-frequency-siw-based-cavity-backed-pcb-based"><img alt="Figure 18. Dual-frequency SIW-based cavity-backed PCB-based antenna. (Top): top view where a pair of triangular-complementary-split-ring slots, and vias can be seen; and (Bottom): bottom view where the vias can be seen. (reprinted from [229], copyright (2018), with permission from Elsevier). Figure 18. Dual-frequency SIW-based cavity-backed PCB-based antenna. (Top): top view where a pair of triangular-complementary-split-ring slots, and vias can be seen; and (Bottom): bottom view " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551211/figure-19-photolitographic-mask-for-fabricating-the-pcb"><img alt="Figure 19. (A) Photolitographic mask for fabricating the PCB-based mold. (B) Mold for a serpentine microchannel. (C) PDMS fabricated device using the mold. The fabrication of microfluidic devices takes advantage of the use of Printed Circuit Boards. The fabrication of PDMS microfluidic circuit is based on soft lithography; thus, a mold is required. Typically, the molds are fabricated using silicon or SU-8. However, if the dimensional requirements are less demanding, PCB substrates are a good choice. These molds are built using a single-copper-layer PCB [232,233]. In addition, these molds can be used in the hot embossing technique [157,234]. Therefore, thermoplastic materials such as PMMA or polycarbonate can be processed to develop microfluidic devices. Figure 19 shows the photolitographic mask used for fabricating a PCB-based mold, the mold for a serpentine microchannel and the PDMS-fabricated device using that mold. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_019.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551223/figure-20-photograph-of-the-flow-focusing-device-obtained"><img alt="Figure 20. Photograph of the flow-focusing device obtained after the manufacturing process (copy- right (2011) IEEE. Reprinted, with permission, from [235]). As previously noted, the PCB can be used to fabricate microchannels and chambers. The PCB substrates can be used to fabricate flow-focusing devices. A three-dimensional flow- focusing device for microbubble generation was developed [235], as in Figure 20. This device is fabricated using two single-copper-layer PCBs, where the copper lines are used for the microchannels and microchamber, and the vias are used for inserting the core and shell fluids, that is, gas and water, respectively. In addition, a via is used as a microbubbles outlet. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_020.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551232/figure-21-safety-valve-where-the-free-standing-is-not"><img alt="Figure 21. (A) Safety valve where the free-standing is not released due to the copper layer (copyright (2010) IEEE. Reprinted, with permission, from [238]). (B) Safety valve where the free-standing was released due to the copper layer etching (copyright (2010) IEEE. Reprinted, with permission, from [238]). (C) Released wheel for flow measurement made of SU-8 by etching a copper sacrificial layer (copyright (2013) IEEE. Reprinted, with permission, from [240)). Figure 21. (A) Safety valve where the free-standing is not released due to the copper layer (copyright One of the most important steps in MEMS fabrication is based on the use of a sacrificial layer to fabricate free-standing structures. The copper layer of the PCB can be used as a sacrificial layer to fabricate free-standing SU-8 structures [237]. The chemical etching of the copper does not affect the SU-8. For example, the safety valve reported in Reference [238] was fabricated using the copper as a sacrificial layer; Figure 21A shows the system before the copper etching, and Figure 21B shows the final device. The copper layer thickness defines the gap between the free-standing structure and the substrate. This gap can be selected as a function of the available Cu layer thickness offered by the manufacturer. In addition, the copper layer can be used to release SU-8 structures from the PCB substrate [239,240]. Figure 21C shows a released SU-8 wheel for flow measurement, made of SU-8, by etching a sacrificial copper layer. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_021.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551241/table-1-metallic-layers-functions-and-devices-vias-solder"><img alt="Table 1. Metallic layers functions and devices. Table 2. Vias, solder mask, flexible and rigid substrate functions and devices. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551245/table-2-the-opportunity-to-order-pcb-for-commercial-company"><img alt="The opportunity to order PCB for a commercial company facilitates its development by researchers and companies, in the same way that foundries offer their services for silicon and glass fabrication for microelectronics and microsystems. Moreover, PCB processing " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/table_002.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944095-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f34551421619dfb4b73f7a0832b2905c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617144,"asset_id":75944095,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617144/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944095]").text(description); $(".js-view-count[data-work-id=75944095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f34551421619dfb4b73f7a0832b2905c" } } $('.js-work-strip[data-work-id=75944095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944095,"title":"Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering","translated_title":"","metadata":{"abstract":"This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...","internal_url":"https://www.academia.edu/75944095/Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering","translated_internal_url":"","created_at":"2022-04-09T15:13:30.459-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617144/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617144/download_file","bulk_download_file_name":"Printed_Circuit_Boards_The_Layers_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617144/pdf-libre.pdf?1649542629=\u0026response-content-disposition=attachment%3B+filename%3DPrinted_Circuit_Boards_The_Layers_Functi.pdf\u0026Expires=1743426789\u0026Signature=RZ-kG4kMpIyNWzS9uDDFac7YuPLd8Bw4-9G5NLD9R4GIkz1C9YyC1FW95FyD8i9wZQph5JvJka5-j1vf~z-ostEr7zVTcirhRp0Z0Luc0MK5BUfhZhRzBY~P6UxB30QH2qoX2TJPLrLOexnNmgns6jvW6Er3JSMVcZMUGH~izMmT-y6go2qdhSSC-~je2PX8i97V2CXV-jDRnrVlOysYnci~m~WMV0dy3I3p3e1w-jLUWRbKu~xbEmpFg2oYUGBVs2vAYqdIcUvX9SYuiD9PsiyGvYC9r6pgm12plUoLEJGxz-0pp179yEt5kOrQ4zvgWiKgQ1zxzSKP3I~TaNdXIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617144/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617144/download_file","bulk_download_file_name":"Printed_Circuit_Boards_The_Layers_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617144/pdf-libre.pdf?1649542629=\u0026response-content-disposition=attachment%3B+filename%3DPrinted_Circuit_Boards_The_Layers_Functi.pdf\u0026Expires=1743426789\u0026Signature=RZ-kG4kMpIyNWzS9uDDFac7YuPLd8Bw4-9G5NLD9R4GIkz1C9YyC1FW95FyD8i9wZQph5JvJka5-j1vf~z-ostEr7zVTcirhRp0Z0Luc0MK5BUfhZhRzBY~P6UxB30QH2qoX2TJPLrLOexnNmgns6jvW6Er3JSMVcZMUGH~izMmT-y6go2qdhSSC-~je2PX8i97V2CXV-jDRnrVlOysYnci~m~WMV0dy3I3p3e1w-jLUWRbKu~xbEmpFg2oYUGBVs2vAYqdIcUvX9SYuiD9PsiyGvYC9r6pgm12plUoLEJGxz-0pp179yEt5kOrQ4zvgWiKgQ1zxzSKP3I~TaNdXIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83617147,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617147/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617147/download_file","bulk_download_file_name":"Printed_Circuit_Boards_The_Layers_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617147/pdf-libre.pdf?1649542626=\u0026response-content-disposition=attachment%3B+filename%3DPrinted_Circuit_Boards_The_Layers_Functi.pdf\u0026Expires=1743426789\u0026Signature=E7e01Ek7qhIrFbCv90tWP~uRp~PqO-2JKhTtaVP4asGBFq9pL2AVBvj2AAE2K2qAh9nXdB3Py-RTPlgmtT1zkA61pgmGJXc41di8eiHJYUv-kz6yU73loqNR5gx0XJ1JqudEcFF-wWhuSeSYEcWPRfI5liDslih2K3gCzZlVljt1zszXEXo17AEwydHCY6or5-0COwYZmNmLsGZD9i-8VujEIsHRvgORzyb4Eg5Og-pp8EM3aF~EbID8MWNxXKAsb2tVdsU5zbW~80FLkQImWW5jqqFOPUmltdKmSB41E7qx3SA~fUcyAaf4EdvbUjAqg2bQakvk6mtvYpdJiE-yXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":19297746,"url":"https://www.mdpi.com/2072-666X/13/3/460/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944095-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944092"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944092/Tracking_Control_System_Using_an_Incident_Radiation"><img alt="Research paper thumbnail of Tracking Control System Using an Incident Radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/83617263/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944092/Tracking_Control_System_Using_an_Incident_Radiation">Tracking Control System Using an Incident Radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract—For some industrial applications, an accurate estima-tion of a light source position is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d78f2dca488fb4478ca08aad8673d6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617263,"asset_id":75944092,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617263/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944092"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944092"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944092; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944092]").text(description); $(".js-view-count[data-work-id=75944092]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944092; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944092']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d78f2dca488fb4478ca08aad8673d6d" } } $('.js-work-strip[data-work-id=75944092]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944092,"title":"Tracking Control System Using an Incident Radiation","translated_title":"","metadata":{"abstract":"Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.","ai_title_tag":"MEMS Sensor for Precise Sun-Tracking Control","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.","internal_url":"https://www.academia.edu/75944092/Tracking_Control_System_Using_an_Incident_Radiation","translated_internal_url":"","created_at":"2022-04-09T15:13:30.240-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617263/thumbnails/1.jpg","file_name":"Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf","download_url":"https://www.academia.edu/attachments/83617263/download_file","bulk_download_file_name":"Tracking_Control_System_Using_an_Inciden.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617263/Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DTracking_Control_System_Using_an_Inciden.pdf\u0026Expires=1743410722\u0026Signature=B-OBQRXjlDqATW8yA84piJo~Nc1SlffDAo3vUwJr91-GgHs5G8qsE7wLkcQw39gkPeXpaUQZhNxS-XCYCp7U8IvGR3s7mh-mMGuQui8SNvNDwdWLiVIPaAnugwStrTmdr3~tj25-hY5oFku3-Ao0qUvCjkQS7iZtekLM5ohbI5e2kq08ws4F2eNro-HuRe0vRM0TpQFo1c8Z9Jn6NUvw-VBLaKOm9ASaIp14Ik6ziFiyn6dP9armrJ3YiHzVGDncKWhiduXHrwdc29C7BR6pXh3GkX-0~e44fggcx~s-Ku7aWl59oLLZZZResPkj7HeOUdEXUCTy7IM6FGQzJB1i-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tracking_Control_System_Using_an_Incident_Radiation","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617263/thumbnails/1.jpg","file_name":"Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf","download_url":"https://www.academia.edu/attachments/83617263/download_file","bulk_download_file_name":"Tracking_Control_System_Using_an_Inciden.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617263/Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DTracking_Control_System_Using_an_Inciden.pdf\u0026Expires=1743410722\u0026Signature=B-OBQRXjlDqATW8yA84piJo~Nc1SlffDAo3vUwJr91-GgHs5G8qsE7wLkcQw39gkPeXpaUQZhNxS-XCYCp7U8IvGR3s7mh-mMGuQui8SNvNDwdWLiVIPaAnugwStrTmdr3~tj25-hY5oFku3-Ao0qUvCjkQS7iZtekLM5ohbI5e2kq08ws4F2eNro-HuRe0vRM0TpQFo1c8Z9Jn6NUvw-VBLaKOm9ASaIp14Ik6ziFiyn6dP9armrJ3YiHzVGDncKWhiduXHrwdc29C7BR6pXh3GkX-0~e44fggcx~s-Ku7aWl59oLLZZZResPkj7HeOUdEXUCTy7IM6FGQzJB1i-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[{"id":19297744,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1006.5751\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944092-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944090"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944090/Stochastic_pulse_coded_arithmetic"><img alt="Research paper thumbnail of Stochastic pulse coded arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/83617265/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944090/Stochastic_pulse_coded_arithmetic">Stochastic pulse coded arithmetic</a></div><div class="wp-workCard_item"><span>2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Among the different pulse codification techniques, stochastic pulse codification has its own arit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Among the different pulse codification techniques, stochastic pulse codification has its own arithmetic based on the similarity between boolean algebra and statistic algebra. Summation and multiplication are the two basic arithmetic operations deeply treated in literature. In this paper we present two digital stochastic circuits that extend traditional stochastic algebra: a division circuit and a square-root circuit, and the interfaces between the analog and stochastic domain. As result, we are able to process analog input signals with a simple and complete processing system. These circuits can be implemented in low-cost and low-power digital programmable devices.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944090-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944090-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548356/figure-1-digital-to-stochastic-conversion-dsc-stochastic"><img alt="Figure 1: Digital to stochastic conversion (DSC). Stochastic systems make pseudo analog operations using stochastically coded pulse sequences [1], [2]. Information is represented by the statistical mean value of a pulse se- quence. In a binary logic, it is the probability of taking a “high” level. Figure 1 shows the generation of a stochas- tic pulse stream from a digital value. The value stored " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548376/figure-4-analog-to-stochastic-conversion-based-on-sigma"><img alt="Figure 4: Analog to stochastic conversion based on sigma- delta modulation conversion circuit based on sigma-delta modulation that improve bandwidth and accuracy. The reason is that, in figure 4, we integrate the error signal between the analog input and the stochastic pulse stream, without a previous RC filtering. Once we have presented the converters be- " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548394/figure-3-analog-to-stochastic-conversion-circuits-proposed"><img alt="Figure 3: Analog to stochastic conversion circuits proposed are based in a negative feedback scheme in which the analog input is compared with the analog signal obtained from the digital stochastic pulse stream [9]. The problem is that the RC integration of the digital pulse stream of figure 3 is not a fast integration, because cut off frequency of the RC filter must be low to recover the mean value. So, the bandwidth of the converter is lim- ited below 1kHz for 8-bit accuracy and a digital clock fre- quency of 10 MHz [9]. In [10] has been proposed a novel " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548403/figure-2-analog-mean-value-of-stochastic-pulse-stream"><img alt="Figure 2: Analog mean value of a stochastic pulse stream " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548412/figure-5-stochastic-processing-system-stochastically"><img alt="Figure 5: Stochastic processing system stochastically converted, then processed, and finally re covered from the stochastic pulse stream as an analos or digital value. Figure 5 is a block diagram that illus trates the whole processing system. The main advantags of the stochastic processing system is the possibility of do ing pseudo-analog functions working with the mean value of the pulse stream, but with a digital implementation. " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548422/figure-7-stochastic-division-circuit"><img alt="Figure 7: Stochastic division circuit " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548432/figure-7-stochastic-pulse-coded-arithmetic"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548446/figure-8-stochastic-pulse-coded-arithmetic"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548466/figure-8-experimental-results-of-the-stochastic-division"><img alt="Figure 8: Experimental results of the stochastic division circuit as a function of p2 for different values of p: " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548480/figure-10-experimental-results-of-the-stochastic-square-root"><img alt="Figure 10: Experimental results of the stochastic square root circuit " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_010.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944090-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a65dc13865c29d3adc009735569cd404" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617265,"asset_id":75944090,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617265/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944090"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944090]").text(description); $(".js-view-count[data-work-id=75944090]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944090']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a65dc13865c29d3adc009735569cd404" } } $('.js-work-strip[data-work-id=75944090]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944090,"title":"Stochastic pulse coded arithmetic","translated_title":"","metadata":{"publisher":"Presses Polytech. Univ. Romandes","grobid_abstract":"Among the different pulse codification techniques, stochastic pulse codification has its own arithmetic based on the similarity between boolean algebra and statistic algebra. Summation and multiplication are the two basic arithmetic operations deeply treated in literature. In this paper we present two digital stochastic circuits that extend traditional stochastic algebra: a division circuit and a square-root circuit, and the interfaces between the analog and stochastic domain. As result, we are able to process analog input signals with a simple and complete processing system. These circuits can be implemented in low-cost and low-power digital programmable devices.","publication_name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","grobid_abstract_attachment_id":83617265},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944090/Stochastic_pulse_coded_arithmetic","translated_internal_url":"","created_at":"2022-04-09T15:13:30.006-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617265/thumbnails/1.jpg","file_name":"file_1.pdf","download_url":"https://www.academia.edu/attachments/83617265/download_file","bulk_download_file_name":"Stochastic_pulse_coded_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617265/file_1-libre.pdf?1649542610=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_pulse_coded_arithmetic.pdf\u0026Expires=1743410722\u0026Signature=Ab6QV6e04UY6SzscAclh7RyE9jt2TLhiwv5ykVsv-1dVqwddBnKGICDyt9vQ01bNa44DVIrE736AQNfCfYxTxDr9rW3jEcotyhBSaFNTDOZvQBp3TnA7CbeIWW3qvvg9VHVJp9oykfJqPeN0yzplN~t~F1CGYlzeq0pYqLhtKbQQM-EGjS1GdrhDnyiLkRTTCweSxJ6WI0Z-IBr0Z71ZJ2RwOVivfEOoPQu6RXUWWfc2U5tSb~PnUeNDNNttZtqF5OUmomV3gdfbaidU6mjLKnleqrpL8Dc7ubG6PPVZeax-ck3IXo6oSWCoj83UfNlEfyyS34uYjbBR9cj~WiftGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stochastic_pulse_coded_arithmetic","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Among the different pulse codification techniques, stochastic pulse codification has its own arithmetic based on the similarity between boolean algebra and statistic algebra. Summation and multiplication are the two basic arithmetic operations deeply treated in literature. In this paper we present two digital stochastic circuits that extend traditional stochastic algebra: a division circuit and a square-root circuit, and the interfaces between the analog and stochastic domain. As result, we are able to process analog input signals with a simple and complete processing system. These circuits can be implemented in low-cost and low-power digital programmable devices.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617265/thumbnails/1.jpg","file_name":"file_1.pdf","download_url":"https://www.academia.edu/attachments/83617265/download_file","bulk_download_file_name":"Stochastic_pulse_coded_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617265/file_1-libre.pdf?1649542610=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_pulse_coded_arithmetic.pdf\u0026Expires=1743410722\u0026Signature=Ab6QV6e04UY6SzscAclh7RyE9jt2TLhiwv5ykVsv-1dVqwddBnKGICDyt9vQ01bNa44DVIrE736AQNfCfYxTxDr9rW3jEcotyhBSaFNTDOZvQBp3TnA7CbeIWW3qvvg9VHVJp9oykfJqPeN0yzplN~t~F1CGYlzeq0pYqLhtKbQQM-EGjS1GdrhDnyiLkRTTCweSxJ6WI0Z-IBr0Z71ZJ2RwOVivfEOoPQu6RXUWWfc2U5tSb~PnUeNDNNttZtqF5OUmomV3gdfbaidU6mjLKnleqrpL8Dc7ubG6PPVZeax-ck3IXo6oSWCoj83UfNlEfyyS34uYjbBR9cj~WiftGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":39020,"name":"Boolean Algebra","url":"https://www.academia.edu/Documents/in/Boolean_Algebra"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":181287,"name":"Low Power","url":"https://www.academia.edu/Documents/in/Low_Power"},{"id":256048,"name":"Circuits","url":"https://www.academia.edu/Documents/in/Circuits"},{"id":672713,"name":"Random Number Generation","url":"https://www.academia.edu/Documents/in/Random_Number_Generation"},{"id":2039711,"name":"Logic circuits","url":"https://www.academia.edu/Documents/in/Logic_circuits"}],"urls":[{"id":19297742,"url":"http://xplorestaging.ieee.org/ielx5/6910/18601/00857166.pdf?arnumber=857166"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944090-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944089"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944089/Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications"><img alt="Research paper thumbnail of Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/83617141/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944089/Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications">Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944089-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944089-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498273/figure-1-printed-circuit-board-substrate-for-agarose-mixing"><img alt="Figure 1. Printed circuit board substrate for agarose mixing and curing, and electrophoresis. (Left) Conductivity sensor and electrophoresis electrodes are shown. (Right) The microheater and the thermistor can be seen. The dimensions of the device are 38 x 34 mm. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498281/figure-2-the-lab-on-pcb-with-the-thermoplastic-wall-and-the"><img alt="Figure 2. The lab-on-PCB with the thermoplastic wall and the auxiliary structure are shown. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498300/figure-3-the-cross-sectional-view-of-the-prototype-is-shown"><img alt="Figure 3. The cross-sectional view of the prototype is shown. The supporting structure, the bread- board and the location of the sensors and the transparent film can be seen. The negative temperature coefficient (NTC) sensor is not under the light dependent resistor (LDR), it is in a different plane. Figure 3. The cross-sectional view of the prototype is shown. The supporting structure, the bread- In order to clarify the assembly, a drawing of a cross-sectional view of the lab-on-PCB is shown in Figure 3. As can be seen, the transparent film is placed on the top side of the PCB substrate, and the LDR sensor is located below the transparent film. The detection system is not included because it is an independent part of the system. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498308/figure-4-basic-signal-conditioning-electronic-circuit"><img alt="Figure 4. (A) Basic signal conditioning electronic circuit connected to the microcontroller. (B) Th electrophoresis schematic circuit. The arrows indicate the direction of the migration. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498319/figure-5-temperature-of-both-the-agarose-tae-solution"><img alt="Figure 5. Temperature of both the agarose-TAE solution (thermocouple) and the NTC thermistor as a function of the current. control the process, the characterisation of the sensors and actuators 1s required. The microheater characterisation consists of relating the temperature of the agarose- TAE solution with the temperature of the negative temperature coefficient (NTC) thermistor. In order to do so, a thermocouple is used for measuring the temperature of the liquid of the cavity (agarose-TAE solution). In addition, the current supplied to microheater has to be defined. The results for the microheater can be seen in Figure 5. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498329/figure-6-the-output-of-the-voltage-divider-as-function-of"><img alt="Figure 6. The output of the voltage divider as a function of the time is shown. The starting point is marked using an asterisk. to a resistance of 20 kQ. This value is chosen to define the starting point of the process, that is, the process starts when the conductivity sensor reaches 0.04 mS. The electronic circuit is a voltage divider. Finally, this characterisation is carried out using an oscilloscope (Tektronix TDS 2012B, single seq. “falling” procedure); Figure 6. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498339/figure-7-different-values-of-the-optical-sensor-voltage-as"><img alt="Figure 7. Different values of the optical sensor voltage as a function of the time. The characterisation of the optical sensor consists of measuring the degree of trans- parency of the agarose-TAE solution; Figure 7. In order to do so, another voltage divider is used, where the voltage of the LDR is measured. In this case, the agarose gel performed is 2.5% w/v in the TAE buffer. The choice of the final transparency of the mixture is defined, taking into account the expertise of the authors. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498354/figure-8-the-result-of-the-mixing-and-curing-after-removing"><img alt="Figure 8. The result of the mixing and curing after removing the structure can be seen. In addition, the wells are filled with liquids. Once the sensors and actuators are characterised and the microcontroller is pro- grammed, the experiments are carried out. The resulting agarose gel after both the mixing and the curing is shown in Figure 8. In addition, the wells loaded with liquids can be seen. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498365/figure-9-bands-obtained-after-migrating-the-dna-by"><img alt="Figure 9. Bands obtained after migrating the DNA by electrophoresis. The device is checked with DNA in order to verify the correct migration of DNA along the agarose gel; Figure 9. This is important to analyse the homogeneity of the agarose gel. In order to do so, the electrophoresis is performed at 40 V with a required current of 20 mA. The negative and positive electrodes are shown in Figure 1 with black and red arrows, respectively. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498377/table-1-whole-process-sequence-for-agarose-gel-preparation"><img alt="Table 1. Whole process sequence for agarose gel preparation and electrophoresis. The device with the PMMA structure assembled can include the agarose powder (CSL-AG500 Cleaver Scientific, Rugby, Warwickshire, UK) over the surface before starting the process, in this case 100 mg for a 4 ml agarose gel (final concentration 2.5% w/v). The first step consists of filling the cavity with the agarose-TAE mixture with SYBRSafe DNA staining solution (533102 ThermoFisher Scientific, Waltham, Massachusetts, USA) to perform the mixing, where the TAE buffer is (15558042 ThermoFisher Scientific). This filling is performed using a syringe pump (NewEra Pump Systems NE-1000), with a volume of 4 mL. The percentage of agarose can be the conductivity sensor, supplying the this step, the LDR sensor continues to the cured agarose is lower than the fres. modified by changing the TAE buffer volume, the quantity of agarose or both of them. This step is detected by the conductivity sensor, which sends the signal for starting the automatic process. The next step consists of disabling required current to the microheater, and sensing the degree of transparency. Once the transparency is achieved, the third step takes place automatically, that is, the microheater is disabled in order to cool down the mixture. In be enabled because the degree of transparency of hly mixed agarose. The automatic process finishes when the agarose is cured, after which the microcontroller activates a LED in order to inform that the process is finished, and not automatic; it consists of removing the cavities to pour the TAE buffer. A disable the sensors. Finally, the following step is the PMMA structure to define both the wells and fter this process, the device is ready to be loaded with the liquid to be migrated, using e ectrophoresis. The experimental results show the performance of the fabricated agarose gel for electrophoresis. F a ns ey es a: rn Oe i i oh ar mr a a ee i es : es i a ae " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944089-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="248788759aff89e043bd5667dca7758c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617141,"asset_id":75944089,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617141/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944089"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944089"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944089; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944089]").text(description); $(".js-view-count[data-work-id=75944089]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944089; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944089']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "248788759aff89e043bd5667dca7758c" } } $('.js-work-strip[data-work-id=75944089]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944089,"title":"Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications","translated_title":"","metadata":{"abstract":"In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...","internal_url":"https://www.academia.edu/75944089/Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications","translated_internal_url":"","created_at":"2022-04-09T15:13:29.769-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617141/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617141/download_file","bulk_download_file_name":"Semi_Automatic_Lab_on_PCB_System_for_Aga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617141/pdf-libre.pdf?1649542618=\u0026response-content-disposition=attachment%3B+filename%3DSemi_Automatic_Lab_on_PCB_System_for_Aga.pdf\u0026Expires=1743410722\u0026Signature=Ke3KF9pgeTm0~DegL5SrSGwlcJAy3-4sFsMtm3Rd8KK8OaK6GyTyRjfdXGes9PV8vgPih~CRJo9j8ZLlugrP042xJQxIpZGWMo2MlLj5yxuPy7tqloFt9qjzVxFylPAaoutISntIiiUuFjCfiBn9O0Q7P0LpN30DfV0vUoKoYUFDS-tObEyaboaXrQsRqY~a91AnRxdzq2bS~GUdkHBOqhtudawK0LhtItnVNmt7hebupuSt~b5~BY9yQM6wRF1-iWnUnyaIT8tw6mprWiuE7Zz4VS092~CCaMu6ju-z4QcKeEGRpxrrVVa8kuulfL6sHveUdgLvRbmKglr~-XTzsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617141/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617141/download_file","bulk_download_file_name":"Semi_Automatic_Lab_on_PCB_System_for_Aga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617141/pdf-libre.pdf?1649542618=\u0026response-content-disposition=attachment%3B+filename%3DSemi_Automatic_Lab_on_PCB_System_for_Aga.pdf\u0026Expires=1743410722\u0026Signature=Ke3KF9pgeTm0~DegL5SrSGwlcJAy3-4sFsMtm3Rd8KK8OaK6GyTyRjfdXGes9PV8vgPih~CRJo9j8ZLlugrP042xJQxIpZGWMo2MlLj5yxuPy7tqloFt9qjzVxFylPAaoutISntIiiUuFjCfiBn9O0Q7P0LpN30DfV0vUoKoYUFDS-tObEyaboaXrQsRqY~a91AnRxdzq2bS~GUdkHBOqhtudawK0LhtItnVNmt7hebupuSt~b5~BY9yQM6wRF1-iWnUnyaIT8tw6mprWiuE7Zz4VS092~CCaMu6ju-z4QcKeEGRpxrrVVa8kuulfL6sHveUdgLvRbmKglr~-XTzsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83617142,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617142/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617142/download_file","bulk_download_file_name":"Semi_Automatic_Lab_on_PCB_System_for_Aga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617142/pdf-libre.pdf?1649542619=\u0026response-content-disposition=attachment%3B+filename%3DSemi_Automatic_Lab_on_PCB_System_for_Aga.pdf\u0026Expires=1743410722\u0026Signature=TomYxJsXegVVnKLyGuxKpNCJfFtOtgEMEf25yJU2xcW~DaLsFLc-ZiZe0wPrgmu4-Ar4rufBuoh6pdnbD6u8OyfTFnzzjUNLcPSQSfsrRa5IEkxEV-UG1WzzvcV-~gQF6ZEBGfzfuWwxF4YPNLCLGXo3jd1zuxvbV7hCqnvLR88bFOpvudDOqW5oFgfHw6Ann1~Wv9oafHk8nUQAnMTL4yYyx5MPpOQJTKj40x6me5poqBH6CUFlFHUqQ9UjiQYfc8mk~hZJ~RWDn9Q8n-hvTFq4Q3DIBF5xkFLgskq8LesxgQLnugX~ztsIrrzpBrmbGpS7VoWzj1Sht5Wd7bN0pg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":19297741,"url":"https://www.mdpi.com/2072-666X/12/9/1071/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944089-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944088"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944088/Highly_Integrable_Microfluidic_Impulsion_System_for_Precise_Displacement_of_Liquids_on_Lab_on_PCBs"><img alt="Research paper thumbnail of Highly Integrable Microfluidic Impulsion System for Precise Displacement of Liquids on Lab on PCBs" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Highly Integrable Microfluidic Impulsion System for Precise Displacement of Liquids on Lab on PCBs</div><div class="wp-workCard_item"><span>Journal of Microelectromechanical Systems</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. Th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mu \text{L}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; during about 24s, and 21.3 &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mu \text{L}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944088"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944088"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944088; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944088]").text(description); $(".js-view-count[data-work-id=75944088]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944088; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944088']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944088]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944088,"title":"Highly Integrable Microfluidic Impulsion System for Precise Displacement of Liquids on Lab on PCBs","translated_title":"","metadata":{"abstract":"In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during about 24s, and 21.3 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Journal of Microelectromechanical Systems"},"translated_abstract":"In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during about 24s, and 21.3 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]","internal_url":"https://www.academia.edu/75944088/Highly_Integrable_Microfluidic_Impulsion_System_for_Precise_Displacement_of_Liquids_on_Lab_on_PCBs","translated_internal_url":"","created_at":"2022-04-09T15:13:29.540-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Highly_Integrable_Microfluidic_Impulsion_System_for_Precise_Displacement_of_Liquids_on_Lab_on_PCBs","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during about 24s, and 21.3 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":19297740,"url":"http://xplorestaging.ieee.org/ielx7/84/8370017/08351935.pdf?arnumber=8351935"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944088-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944087"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944087/Cover_EPE_1991_A_neural_controller_for_quasi_resonant_converters"><img alt="Research paper thumbnail of Cover EPE 1991 A neural controller for quasi-resonant converters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Cover EPE 1991 A neural controller for quasi-resonant converters</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944087"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944087"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944087; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944087]").text(description); $(".js-view-count[data-work-id=75944087]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944087; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944087']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944087]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944087,"title":"Cover EPE 1991 A neural controller for quasi-resonant converters","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944087/Cover_EPE_1991_A_neural_controller_for_quasi_resonant_converters","translated_internal_url":"","created_at":"2022-04-09T15:13:29.388-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cover_EPE_1991_A_neural_controller_for_quasi_resonant_converters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944087-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944086/EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control"><img alt="Research paper thumbnail of EC-RASP: A new Electrical Energy Static Counter based on Random Signal Processing Conference Topic: IC's for instrumentation and control" class="work-thumbnail" src="https://attachments.academia-assets.com/83617279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944086/EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control">EC-RASP: A new Electrical Energy Static Counter based on Random Signal Processing Conference Topic: IC's for instrumentation and control</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper concerns the design and development of electrical energy static counter, based on rand...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper concerns the design and development of electrical energy static counter, based on random pulse stream processing. Measurement proceeding, calibration and hardware implementation are checked in a prototype. As a result, a simple low cost measurement system has been obtained. The resulting measures have been compared with the ones obtained using a poly phase commercial analyzer. A maximum 2% error has been achieved. This measurement proceeding is patent pending.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c13d9afeec2bbe81c52c4d3ea85bcace" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617279,"asset_id":75944086,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617279/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944086]").text(description); $(".js-view-count[data-work-id=75944086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c13d9afeec2bbe81c52c4d3ea85bcace" } } $('.js-work-strip[data-work-id=75944086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944086,"title":"EC-RASP: A new Electrical Energy Static Counter based on Random Signal Processing Conference Topic: IC's for instrumentation and control","translated_title":"","metadata":{"grobid_abstract":"This paper concerns the design and development of electrical energy static counter, based on random pulse stream processing. Measurement proceeding, calibration and hardware implementation are checked in a prototype. As a result, a simple low cost measurement system has been obtained. The resulting measures have been compared with the ones obtained using a poly phase commercial analyzer. A maximum 2% error has been achieved. This measurement proceeding is patent pending.","grobid_abstract_attachment_id":83617279},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944086/EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control","translated_internal_url":"","created_at":"2022-04-09T15:13:29.238-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617279/thumbnails/1.jpg","file_name":"EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf","download_url":"https://www.academia.edu/attachments/83617279/download_file","bulk_download_file_name":"EC_RASP_A_new_Electrical_Energy_Static_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617279/EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DEC_RASP_A_new_Electrical_Energy_Static_C.pdf\u0026Expires=1743410722\u0026Signature=guCrKLphEZ7fDKcqIUnoEoFnSNxumJpFXV9hPKhuU3kGi0jqhU~8oZcVLV7KtY7heFdbg~B0gvDXt3z-6pMjVZyxISe2Oi0jvAy3O1Wn0GQVtYOok6jD-~-ZSExeaw74NwlLBxa0ArRWSXbyNLXtSB~6vK15hOnAm03tcOQza3fAnNf~lldkpVkSw3V4XSQvxn-trqkRNWkiJZnccSNzdeE7Uy2sLy5c7sheAUKJLIbmwsRDw82wClD~Pg2-3Lr5gZVDJsPO4MKrzzRXcaInh0FenEHoXf9BeYar8-ckdXfZxIhTCch~UkdiiuE0xqcCLSmbH-ZZr46cDNMt7UWgeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"This paper concerns the design and development of electrical energy static counter, based on random pulse stream processing. Measurement proceeding, calibration and hardware implementation are checked in a prototype. As a result, a simple low cost measurement system has been obtained. The resulting measures have been compared with the ones obtained using a poly phase commercial analyzer. A maximum 2% error has been achieved. This measurement proceeding is patent pending.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617279/thumbnails/1.jpg","file_name":"EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf","download_url":"https://www.academia.edu/attachments/83617279/download_file","bulk_download_file_name":"EC_RASP_A_new_Electrical_Energy_Static_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617279/EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DEC_RASP_A_new_Electrical_Energy_Static_C.pdf\u0026Expires=1743410722\u0026Signature=guCrKLphEZ7fDKcqIUnoEoFnSNxumJpFXV9hPKhuU3kGi0jqhU~8oZcVLV7KtY7heFdbg~B0gvDXt3z-6pMjVZyxISe2Oi0jvAy3O1Wn0GQVtYOok6jD-~-ZSExeaw74NwlLBxa0ArRWSXbyNLXtSB~6vK15hOnAm03tcOQza3fAnNf~lldkpVkSw3V4XSQvxn-trqkRNWkiJZnccSNzdeE7Uy2sLy5c7sheAUKJLIbmwsRDw82wClD~Pg2-3Lr5gZVDJsPO4MKrzzRXcaInh0FenEHoXf9BeYar8-ckdXfZxIhTCch~UkdiiuE0xqcCLSmbH-ZZr46cDNMt7UWgeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944086-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944083"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944083/Multi_input_variable_structure_controller_for_electronic_power_converters_implemented_by_neural_network_techniques"><img alt="Research paper thumbnail of Multi-input variable structure controller for electronic power converters implemented by neural network techniques" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Multi-input variable structure controller for electronic power converters implemented by neural network techniques</div><div class="wp-workCard_item"><span>Proceedings of PESC '95 - Power Electronics Specialist Conference</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944083"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944083"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944083; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944083]").text(description); $(".js-view-count[data-work-id=75944083]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944083; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944083']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944083]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944083,"title":"Multi-input variable structure controller for electronic power converters implemented by neural network techniques","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Proceedings of PESC '95 - Power Electronics Specialist Conference"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/75944083/Multi_input_variable_structure_controller_for_electronic_power_converters_implemented_by_neural_network_techniques","translated_internal_url":"","created_at":"2022-04-09T15:13:29.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multi_input_variable_structure_controller_for_electronic_power_converters_implemented_by_neural_network_techniques","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944083-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944081"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944081/Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology"><img alt="Research paper thumbnail of Design of a mobile telecardiology system using GPRS/GSM technology" class="work-thumbnail" src="https://attachments.academia-assets.com/83617264/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944081/Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology">Design of a mobile telecardiology system using GPRS/GSM technology</a></div><div class="wp-workCard_item"><span>Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the design and development of a portable electrocardiograph to allow the on-l...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the design and development of a portable electrocardiograph to allow the on-line remote monitoring and real-time cardiac diseases diagnostics of patients from the specialist. This prototype has been satisfactory implemented finding a good balance between optimal signal processing and power consumption using a GPRS/GSM modem and a SMT low voltage microprocessor board.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944081-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944081-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/50837843/figure-1-to-transmit-the-continuous-ecg-with-minimum-delay"><img alt="to transmit the continuous ECG with a minimum delay; the GSM voice channel to allow a doctor to establish a direct call and the Internet access to a database host center to monitor patient from an authorised European hospital, may become a complete cardiology network. The database system module saves the patient records along with their ECGs and other relative information including all the fields that requires at the appropriate format such as clinical treatment, symptoms, etc. This open database architecture can be used as a telemedicine gateway to other systems located at rural or isolated areas [5]. " class="figure-slide-image" src="https://figures.academia-assets.com/83617264/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/50837848/figure-2-block-diagram-of-pac-for-interfacing-timers-and"><img alt="Figure 2. A block diagram of PAC for interfacing, timers and multichannel 8-bit A/D converters. The Motorola MC68L11 is the low voltage version of the MC68HC11 microcontroller family. That implements the whole digital processing stage that includes heart rate detection, the IP protocol and link with the GPRS/GSM modem. As this GPRS/GSM modem includes a data and a voice channel for the direct communicatior between the patient and the cardiology specialist, microphone and a loudspeaker has been included. " class="figure-slide-image" src="https://figures.academia-assets.com/83617264/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/50837853/figure-3-on-line-electrocardiogram-monitoring-of-the-current"><img alt="Figure 3. A on-line electrocardiogram monitoring of the current cardiology devices. Thi: prototype can be used autonomously, with the moder GPRS/GSM equipment. The main target of the prototype consist of providing customers a teleassistance service with a 24 hours medical center. This system will also set up < novel collaborative environment to share data fo! continuity of care. The feedback information from the medical center has demonstrated that the algorithr implemented is well suited for the majority of patients. " class="figure-slide-image" src="https://figures.academia-assets.com/83617264/figure_003.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944081-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e71de47749c28bbb9396f8f6cba7bc52" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617264,"asset_id":75944081,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617264/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944081"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944081"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944081; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944081]").text(description); $(".js-view-count[data-work-id=75944081]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944081; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944081']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e71de47749c28bbb9396f8f6cba7bc52" } } $('.js-work-strip[data-work-id=75944081]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944081,"title":"Design of a mobile telecardiology system using GPRS/GSM technology","translated_title":"","metadata":{"grobid_abstract":"This paper presents the design and development of a portable electrocardiograph to allow the on-line remote monitoring and real-time cardiac diseases diagnostics of patients from the specialist. This prototype has been satisfactory implemented finding a good balance between optimal signal processing and power consumption using a GPRS/GSM modem and a SMT low voltage microprocessor board.","publication_name":"Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology","grobid_abstract_attachment_id":83617264},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944081/Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology","translated_internal_url":"","created_at":"2022-04-09T15:13:28.940-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617264/thumbnails/1.jpg","file_name":"Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf","download_url":"https://www.academia.edu/attachments/83617264/download_file","bulk_download_file_name":"Design_of_a_mobile_telecardiology_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617264/Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_a_mobile_telecardiology_system.pdf\u0026Expires=1743410722\u0026Signature=O1t2MF6kqf1gh~6loTSkL1zmKLFO1xGoG4PVR2oSagrQKPWjntsWgWbrJr4igamyeGUOkjG8HjOPG3YS~b6uWfOO43yiq5wuNT9WG-9pYt2fvBEDLGFMTzENhKltjt4Z7xSe2n8Csq5kjZtcejnJhCISlpL3KvkuncuR52iwIAm7WNeeSCxJ3H98NUHwET-Ge0R1JX49S-FnegPH3EUCbx2jeZ8vLSm0T5sAdNtLhuiSgzsdQJrpk~P75eGwXjDx8S0boOTUioTVfAr1jEGVDfiOVWc~Ors293lQ-CAyKEw5H4MoTDw9NB4~X47UjZp96G5RFATIVU0EV-b9XWVUbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":"This paper presents the design and development of a portable electrocardiograph to allow the on-line remote monitoring and real-time cardiac diseases diagnostics of patients from the specialist. This prototype has been satisfactory implemented finding a good balance between optimal signal processing and power consumption using a GPRS/GSM modem and a SMT low voltage microprocessor board.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617264/thumbnails/1.jpg","file_name":"Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf","download_url":"https://www.academia.edu/attachments/83617264/download_file","bulk_download_file_name":"Design_of_a_mobile_telecardiology_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617264/Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_a_mobile_telecardiology_system.pdf\u0026Expires=1743410722\u0026Signature=O1t2MF6kqf1gh~6loTSkL1zmKLFO1xGoG4PVR2oSagrQKPWjntsWgWbrJr4igamyeGUOkjG8HjOPG3YS~b6uWfOO43yiq5wuNT9WG-9pYt2fvBEDLGFMTzENhKltjt4Z7xSe2n8Csq5kjZtcejnJhCISlpL3KvkuncuR52iwIAm7WNeeSCxJ3H98NUHwET-Ge0R1JX49S-FnegPH3EUCbx2jeZ8vLSm0T5sAdNtLhuiSgzsdQJrpk~P75eGwXjDx8S0boOTUioTVfAr1jEGVDfiOVWc~Ors293lQ-CAyKEw5H4MoTDw9NB4~X47UjZp96G5RFATIVU0EV-b9XWVUbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":123710,"name":"Power Consumption","url":"https://www.academia.edu/Documents/in/Power_Consumption"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time"},{"id":413487,"name":"Design and Development","url":"https://www.academia.edu/Documents/in/Design_and_Development"},{"id":491368,"name":"Remote Monitoring","url":"https://www.academia.edu/Documents/in/Remote_Monitoring"},{"id":1309032,"name":"Cardiac Disease","url":"https://www.academia.edu/Documents/in/Cardiac_Disease"},{"id":1964942,"name":"Low voltage","url":"https://www.academia.edu/Documents/in/Low_voltage"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944081-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944078/Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network"><img alt="Research paper thumbnail of Health Care Applications Based on Mobile Phone Centric Smart Sensor Network" class="work-thumbnail" src="https://attachments.academia-assets.com/83617292/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944078/Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network">Health Care Applications Based on Mobile Phone Centric Smart Sensor Network</a></div><div class="wp-workCard_item"><span>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the MIMOSA architecture and development platform to create Ambient Intelligen...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities. I.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0209d9cc57f5dd940bf21c47c4fcca19" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617292,"asset_id":75944078,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617292/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944078]").text(description); $(".js-view-count[data-work-id=75944078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0209d9cc57f5dd940bf21c47c4fcca19" } } $('.js-work-strip[data-work-id=75944078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944078,"title":"Health Care Applications Based on Mobile Phone Centric Smart Sensor Network","translated_title":"","metadata":{"publisher":"IEEE","ai_title_tag":"MIMOSA: Mobile Sensor Networks for Healthcare","grobid_abstract":"This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities. I.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","grobid_abstract_attachment_id":83617292},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944078/Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network","translated_internal_url":"","created_at":"2022-04-09T15:13:28.798-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617292,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617292/thumbnails/1.jpg","file_name":"Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf","download_url":"https://www.academia.edu/attachments/83617292/download_file","bulk_download_file_name":"Health_Care_Applications_Based_on_Mobile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617292/Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf?1738489527=\u0026response-content-disposition=attachment%3B+filename%3DHealth_Care_Applications_Based_on_Mobile.pdf\u0026Expires=1743410722\u0026Signature=DiRU2COv9qZi6vcHLcxKsxQjnoL2Wk2EYL~6MRjp2M03-073yKmCOQtjqcauAmUl7BJRt1oZg1exD~f7LcSsDy2kFKmLNDjMVjL46tgtq6vmjNeGVDw8hE-3Awtwopf6Fs5S~~mbvNQZwWsW3ru5nlABHt~Um5MvE9dJxKT5-UagLXIWzn78VEHoY1xgHQ-8TzRujKWcXU1rsNsuQrPYbDJA3BQTxiZmS3kfjeu1K0kirkJ1HNzCsk8TnGYu1HigVLdUNponOlrgB9PyQsmupouywiu9WrA4U64o-qqNgWXf~ymdesKmHOPORqUmTaTc79OSwowCFnY0-b6gDdYdMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities. I.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617292,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617292/thumbnails/1.jpg","file_name":"Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf","download_url":"https://www.academia.edu/attachments/83617292/download_file","bulk_download_file_name":"Health_Care_Applications_Based_on_Mobile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617292/Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf?1738489527=\u0026response-content-disposition=attachment%3B+filename%3DHealth_Care_Applications_Based_on_Mobile.pdf\u0026Expires=1743410722\u0026Signature=DiRU2COv9qZi6vcHLcxKsxQjnoL2Wk2EYL~6MRjp2M03-073yKmCOQtjqcauAmUl7BJRt1oZg1exD~f7LcSsDy2kFKmLNDjMVjL46tgtq6vmjNeGVDw8hE-3Awtwopf6Fs5S~~mbvNQZwWsW3ru5nlABHt~Um5MvE9dJxKT5-UagLXIWzn78VEHoY1xgHQ-8TzRujKWcXU1rsNsuQrPYbDJA3BQTxiZmS3kfjeu1K0kirkJ1HNzCsk8TnGYu1HigVLdUNponOlrgB9PyQsmupouywiu9WrA4U64o-qqNgWXf~ymdesKmHOPORqUmTaTc79OSwowCFnY0-b6gDdYdMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":4441,"name":"Health Care","url":"https://www.academia.edu/Documents/in/Health_Care"},{"id":8202,"name":"Cell Phones","url":"https://www.academia.edu/Documents/in/Cell_Phones"},{"id":23324,"name":"Telemedicine","url":"https://www.academia.edu/Documents/in/Telemedicine"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":39433,"name":"Ambient Intelligence","url":"https://www.academia.edu/Documents/in/Ambient_Intelligence"},{"id":67357,"name":"Transducers","url":"https://www.academia.edu/Documents/in/Transducers"},{"id":75826,"name":"Europe","url":"https://www.academia.edu/Documents/in/Europe"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device"},{"id":217280,"name":"Mobile phone","url":"https://www.academia.edu/Documents/in/Mobile_phone"},{"id":228334,"name":"Low Power Consumption","url":"https://www.academia.edu/Documents/in/Low_Power_Consumption"},{"id":255094,"name":"Computer User Interface Design","url":"https://www.academia.edu/Documents/in/Computer_User_Interface_Design"},{"id":526193,"name":"Computer communication networks","url":"https://www.academia.edu/Documents/in/Computer_communication_networks"},{"id":581539,"name":"Ambulatory BP monitoring","url":"https://www.academia.edu/Documents/in/Ambulatory_BP_monitoring"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":1157424,"name":"Equipment Failure Analysis","url":"https://www.academia.edu/Documents/in/Equipment_Failure_Analysis"},{"id":2749012,"name":"Delivery of Health Care","url":"https://www.academia.edu/Documents/in/Delivery_of_Health_Care"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944078-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944076/On_line_continuous_weld_monitoring_using_neural_networks"><img alt="Research paper thumbnail of On-line continuous weld monitoring using neural networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On-line continuous weld monitoring using neural networks</div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944076]").text(description); $(".js-view-count[data-work-id=75944076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944076,"title":"On-line continuous weld monitoring using neural networks","translated_title":"","metadata":{"abstract":"Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...","internal_url":"https://www.academia.edu/75944076/On_line_continuous_weld_monitoring_using_neural_networks","translated_internal_url":"","created_at":"2022-04-09T15:13:28.648-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_line_continuous_weld_monitoring_using_neural_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":41009,"name":"Non Destructive Testing","url":"https://www.academia.edu/Documents/in/Non_Destructive_Testing"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944076-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944074"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944074/Light_source_position_microsensor"><img alt="Research paper thumbnail of Light source position microsensor" class="work-thumbnail" src="https://attachments.academia-assets.com/83617257/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944074/Light_source_position_microsensor">Light source position microsensor</a></div><div class="wp-workCard_item"><span>ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There exist industrial applications where an accurate estimation of a light source position is ne...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There exist industrial applications where an accurate estimation of a light source position is needed. That is the case of a heliostat, a device that projects sun light upon a focus hundreds of meters distant. In this paper a novel sensor design to generate an alignment sensor signal is presented. A detailed study of its response is included, showing that there exist several design parameters to achieve a desired accuracy. This sensor has been implemented using bipolar technology and chip to board bonding, and experimental results obtained in laboratory are given</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1e0f9e337e30c0bbf2bc8149305391f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617257,"asset_id":75944074,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617257/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944074"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944074"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944074; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944074]").text(description); $(".js-view-count[data-work-id=75944074]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944074; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944074']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1e0f9e337e30c0bbf2bc8149305391f6" } } $('.js-work-strip[data-work-id=75944074]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944074,"title":"Light source position microsensor","translated_title":"","metadata":{"grobid_abstract":"There exist industrial applications where an accurate estimation of a light source position is needed. That is the case of a heliostat, a device that projects sun light upon a focus hundreds of meters distant. In this paper a novel sensor design to generate an alignment sensor signal is presented. A detailed study of its response is included, showing that there exist several design parameters to achieve a desired accuracy. This sensor has been implemented using bipolar technology and chip to board bonding, and experimental results obtained in laboratory are given","publication_name":"ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196)","grobid_abstract_attachment_id":83617257},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944074/Light_source_position_microsensor","translated_internal_url":"","created_at":"2022-04-09T15:13:28.502-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617257,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617257/thumbnails/1.jpg","file_name":"00921394.pdf","download_url":"https://www.academia.edu/attachments/83617257/download_file","bulk_download_file_name":"Light_source_position_microsensor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617257/00921394-libre.pdf?1649542611=\u0026response-content-disposition=attachment%3B+filename%3DLight_source_position_microsensor.pdf\u0026Expires=1743319978\u0026Signature=LpLS88Oag~y4Y78tFf7g3cE320pfwd74FUz4XruFZcPIZvCAR9NHc5h~XGRdl4Eh7Vn~Fx~70spJpxMDQSAZHyyxaYwV8YxULcNpi7Gdr7AmaTHbgqc0Vjj~HxW~-~CGdFRoACHbuqAGCqJdfGU2SI7GicZHjOKov7VsG7EeR508GFW2zW4-7dUNIau1ObkzJesfqd04Y1bP3Sq11lUX78u88MxkM5htt27FbVSDXo9D9oNkmADCr93D5ZC1G8fKgsdhgTghvZxGLYm5iwJwcKXPXiT0p9Iflz6bElBdFBwwuSgRdEd60ktsE~ny84~sxP6L4hl-bjOoF-gT2tPmwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Light_source_position_microsensor","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"There exist industrial applications where an accurate estimation of a light source position is needed. That is the case of a heliostat, a device that projects sun light upon a focus hundreds of meters distant. In this paper a novel sensor design to generate an alignment sensor signal is presented. A detailed study of its response is included, showing that there exist several design parameters to achieve a desired accuracy. This sensor has been implemented using bipolar technology and chip to board bonding, and experimental results obtained in laboratory are given","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617257,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617257/thumbnails/1.jpg","file_name":"00921394.pdf","download_url":"https://www.academia.edu/attachments/83617257/download_file","bulk_download_file_name":"Light_source_position_microsensor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617257/00921394-libre.pdf?1649542611=\u0026response-content-disposition=attachment%3B+filename%3DLight_source_position_microsensor.pdf\u0026Expires=1743319978\u0026Signature=LpLS88Oag~y4Y78tFf7g3cE320pfwd74FUz4XruFZcPIZvCAR9NHc5h~XGRdl4Eh7Vn~Fx~70spJpxMDQSAZHyyxaYwV8YxULcNpi7Gdr7AmaTHbgqc0Vjj~HxW~-~CGdFRoACHbuqAGCqJdfGU2SI7GicZHjOKov7VsG7EeR508GFW2zW4-7dUNIau1ObkzJesfqd04Y1bP3Sq11lUX78u88MxkM5htt27FbVSDXo9D9oNkmADCr93D5ZC1G8fKgsdhgTghvZxGLYm5iwJwcKXPXiT0p9Iflz6bElBdFBwwuSgRdEd60ktsE~ny84~sxP6L4hl-bjOoF-gT2tPmwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"},{"id":245964,"name":"Industrial Application","url":"https://www.academia.edu/Documents/in/Industrial_Application"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944074-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944072"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944072/Towards_a_low_cost_production_of_monodispersed_microbubbles_using_PCB_MEMS_technology"><img alt="Research paper thumbnail of Towards a low-cost production of monodispersed microbubbles using PCB-MEMS technology" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Towards a low-cost production of monodispersed microbubbles using PCB-MEMS technology</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944072"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944072"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944072; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944072]").text(description); $(".js-view-count[data-work-id=75944072]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944072; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944072']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944072]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944072,"title":"Towards a low-cost production of monodispersed microbubbles using PCB-MEMS technology","translated_title":"","metadata":{"abstract":"ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":"ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique","internal_url":"https://www.academia.edu/75944072/Towards_a_low_cost_production_of_monodispersed_microbubbles_using_PCB_MEMS_technology","translated_internal_url":"","created_at":"2022-04-09T15:13:28.352-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_a_low_cost_production_of_monodispersed_microbubbles_using_PCB_MEMS_technology","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944072-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944071"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944071/Pneumatic_impulsion_device_for_microfluidic_systems"><img alt="Research paper thumbnail of Pneumatic impulsion device for microfluidic systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pneumatic impulsion device for microfluidic systems</div><div class="wp-workCard_item"><span>Sensors and Actuators A: Physical</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Design, fabrication and characterization of a highly integrable fluid impulsion microdevice devel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944071"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944071"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944071; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944071]").text(description); $(".js-view-count[data-work-id=75944071]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944071; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944071']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944071]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944071,"title":"Pneumatic impulsion device for microfluidic systems","translated_title":"","metadata":{"abstract":"Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Sensors and Actuators A: Physical"},"translated_abstract":"Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is","internal_url":"https://www.academia.edu/75944071/Pneumatic_impulsion_device_for_microfluidic_systems","translated_internal_url":"","created_at":"2022-04-09T15:13:28.210-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pneumatic_impulsion_device_for_microfluidic_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":234162,"name":"Su","url":"https://www.academia.edu/Documents/in/Su"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944071-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944070"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944070/Fabrication_process_for_a_microfluidic_valve"><img alt="Research paper thumbnail of Fabrication process for a microfluidic valve" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Fabrication process for a microfluidic valve</div><div class="wp-workCard_item"><span>Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03.</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for su...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944070"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944070"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944070; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944070]").text(description); $(".js-view-count[data-work-id=75944070]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944070; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944070']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944070]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944070,"title":"Fabrication process for a microfluidic valve","translated_title":"","metadata":{"abstract":"ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.","publication_name":"Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03."},"translated_abstract":"ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.","internal_url":"https://www.academia.edu/75944070/Fabrication_process_for_a_microfluidic_valve","translated_internal_url":"","created_at":"2022-04-09T15:13:28.069-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fabrication_process_for_a_microfluidic_valve","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944070-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944069"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944069/Design_of_a_programmable_pressure_switch_suspended_gate_MOSFET"><img alt="Research paper thumbnail of Design of a programmable pressure switch suspended gate MOSFET" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Design of a programmable pressure switch suspended gate MOSFET</div><div class="wp-workCard_item"><span>Conference on Electron Devices, 2005 Spanish</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944069"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944069"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944069; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944069]").text(description); $(".js-view-count[data-work-id=75944069]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944069; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944069']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944069]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944069,"title":"Design of a programmable pressure switch suspended gate MOSFET","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IEEE","publication_name":"Conference on Electron Devices, 2005 Spanish"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/75944069/Design_of_a_programmable_pressure_switch_suspended_gate_MOSFET","translated_internal_url":"","created_at":"2022-04-09T15:13:27.916-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_of_a_programmable_pressure_switch_suspended_gate_MOSFET","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":160886,"name":"Silicon on Insulator","url":"https://www.academia.edu/Documents/in/Silicon_on_Insulator"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":315441,"name":"Etching","url":"https://www.academia.edu/Documents/in/Etching"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944069-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944068"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944068/Modeling_and_numerical_simulation_of_a_MEMS_pneumatic_valve"><img alt="Research paper thumbnail of Modeling and numerical simulation of a MEMS pneumatic valve" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Modeling and numerical simulation of a MEMS pneumatic valve</div><div class="wp-workCard_item"><span>Conference on Electron Devices, 2005 Spanish</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944068"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944068"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944068; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944068]").text(description); $(".js-view-count[data-work-id=75944068]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944068; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944068']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944068]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944068,"title":"Modeling and numerical simulation of a MEMS pneumatic valve","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IEEE","publication_name":"Conference on Electron Devices, 2005 Spanish"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/75944068/Modeling_and_numerical_simulation_of_a_MEMS_pneumatic_valve","translated_internal_url":"","created_at":"2022-04-09T15:13:27.772-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Modeling_and_numerical_simulation_of_a_MEMS_pneumatic_valve","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":49273,"name":"Finite Element Analysis","url":"https://www.academia.edu/Documents/in/Finite_Element_Analysis"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":291387,"name":"Mathematical Model","url":"https://www.academia.edu/Documents/in/Mathematical_Model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944068-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944067"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944067/Stochastic_Resonance_as_a_null_distortion_demodulation"><img alt="Research paper thumbnail of Stochastic Resonance as a null distortion demodulation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Stochastic Resonance as a null distortion demodulation</div><div class="wp-workCard_item"><span>2008 IEEE Instrumentation and Measurement Technology Conference</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944067"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944067"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944067; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944067]").text(description); $(".js-view-count[data-work-id=75944067]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944067; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944067']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944067]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944067,"title":"Stochastic Resonance as a null distortion demodulation","translated_title":"","metadata":{"abstract":"We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"2008 IEEE Instrumentation and Measurement Technology Conference"},"translated_abstract":"We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.","internal_url":"https://www.academia.edu/75944067/Stochastic_Resonance_as_a_null_distortion_demodulation","translated_internal_url":"","created_at":"2022-04-09T15:13:27.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stochastic_Resonance_as_a_null_distortion_demodulation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":209974,"name":"Digital filtering","url":"https://www.academia.edu/Documents/in/Digital_filtering"},{"id":412076,"name":"Demodulation","url":"https://www.academia.edu/Documents/in/Demodulation"},{"id":417922,"name":"Tuning","url":"https://www.academia.edu/Documents/in/Tuning"},{"id":422164,"name":"Digital Filter Design","url":"https://www.academia.edu/Documents/in/Digital_Filter_Design"},{"id":472459,"name":"Stochastic Resonance","url":"https://www.academia.edu/Documents/in/Stochastic_Resonance"},{"id":555515,"name":"Harmonic distortion","url":"https://www.academia.edu/Documents/in/Harmonic_distortion"},{"id":780968,"name":"Noise Figure","url":"https://www.academia.edu/Documents/in/Noise_Figure"},{"id":838393,"name":"Digital Filters","url":"https://www.academia.edu/Documents/in/Digital_Filters"},{"id":991311,"name":"Signal to Noise Ratio","url":"https://www.academia.edu/Documents/in/Signal_to_Noise_Ratio"},{"id":1594011,"name":"Fm Modulation","url":"https://www.academia.edu/Documents/in/Fm_Modulation"},{"id":3007784,"name":"Digital filter","url":"https://www.academia.edu/Documents/in/Digital_filter"},{"id":3257072,"name":"Virtual Instrument","url":"https://www.academia.edu/Documents/in/Virtual_Instrument"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944067-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944066"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944066/Tracking_system_for_solar_power_plants"><img alt="Research paper thumbnail of Tracking system for solar power plants" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Tracking system for solar power plants</div><div class="wp-workCard_item"><span>IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Traditionally solar trackers are open loop systems, where some algorithms are designed to imp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944066"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944066"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944066; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944066]").text(description); $(".js-view-count[data-work-id=75944066]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944066; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944066']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944066]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944066,"title":"Tracking system for solar power plants","translated_title":"","metadata":{"abstract":"... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics"},"translated_abstract":"... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...","internal_url":"https://www.academia.edu/75944066/Tracking_system_for_solar_power_plants","translated_internal_url":"","created_at":"2022-04-09T15:13:27.345-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tracking_system_for_solar_power_plants","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":35399,"name":"Control system","url":"https://www.academia.edu/Documents/in/Control_system"},{"id":106539,"name":"Photovoltaic Cell","url":"https://www.academia.edu/Documents/in/Photovoltaic_Cell"},{"id":1438204,"name":"Solar Power Plant","url":"https://www.academia.edu/Documents/in/Solar_Power_Plant"},{"id":1815859,"name":"Tracking system","url":"https://www.academia.edu/Documents/in/Tracking_system"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944066-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2031885" id="papers"><div class="js-work-strip profile--work_container" data-work-id="75944096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures"><img alt="Research paper thumbnail of Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures" class="work-thumbnail" src="https://attachments.academia-assets.com/83617139/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures">Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab3471a8e4d2722bf29af082b104e561" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617139,"asset_id":75944096,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617139/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944096]").text(description); $(".js-view-count[data-work-id=75944096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab3471a8e4d2722bf29af082b104e561" } } $('.js-work-strip[data-work-id=75944096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944096,"title":"Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures","translated_title":"","metadata":{"abstract":"Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.","publisher":"MDPI AG","ai_title_tag":"Biocompatibility of PCB in Retinal Cultures","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.","internal_url":"https://www.academia.edu/75944096/Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures","translated_internal_url":"","created_at":"2022-04-09T15:13:30.671-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617139/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617139/download_file","bulk_download_file_name":"Biocompatibility_Study_of_a_Commercial_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617139/pdf-libre.pdf?1649542619=\u0026response-content-disposition=attachment%3B+filename%3DBiocompatibility_Study_of_a_Commercial_P.pdf\u0026Expires=1743410722\u0026Signature=QGveeJn~ASoTo3SS7uDxOU3Vx77D7x-xpwldFHynuEK-5L7c5YFRbHrbQXIf3p1iwBOc740ERLVeNxGuKXJBvO9JHw65SQ2r9ZBDlzoLn~ddgdO4RXsv3xO5NebtwzTiwcZpZrbFRLrIg8QiqnhWfm1aB7REGV0PDJcOJO6OVZ9mRR8RW3a-Q7rYIteUH~Ne42oXdVbC6Z1nTkN-3~CMkaR8x~FNSv0sxA3FrrCUVIxCy4TMCm9URpSszdK20bZq2dENP13ipN9~j1cLnuhz8i7NVWDCENqPyOgIrtv3P1zjDPMeOTi9KAHKcMrq6tILn7-d-gGUjVsM99jFxExKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biocompatibility_Study_of_a_Commercial_Printed_Circuit_Board_for_Biomedical_Applications_Lab_on_PCB_for_Organotypic_Retina_Cultures","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617139/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617139/download_file","bulk_download_file_name":"Biocompatibility_Study_of_a_Commercial_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617139/pdf-libre.pdf?1649542619=\u0026response-content-disposition=attachment%3B+filename%3DBiocompatibility_Study_of_a_Commercial_P.pdf\u0026Expires=1743410722\u0026Signature=QGveeJn~ASoTo3SS7uDxOU3Vx77D7x-xpwldFHynuEK-5L7c5YFRbHrbQXIf3p1iwBOc740ERLVeNxGuKXJBvO9JHw65SQ2r9ZBDlzoLn~ddgdO4RXsv3xO5NebtwzTiwcZpZrbFRLrIg8QiqnhWfm1aB7REGV0PDJcOJO6OVZ9mRR8RW3a-Q7rYIteUH~Ne42oXdVbC6Z1nTkN-3~CMkaR8x~FNSv0sxA3FrrCUVIxCy4TMCm9URpSszdK20bZq2dENP13ipN9~j1cLnuhz8i7NVWDCENqPyOgIrtv3P1zjDPMeOTi9KAHKcMrq6tILn7-d-gGUjVsM99jFxExKHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":19297747,"url":"https://www.mdpi.com/2072-666X/12/12/1469/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944096-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944095/Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering"><img alt="Research paper thumbnail of Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering" class="work-thumbnail" src="https://attachments.academia-assets.com/83617144/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944095/Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering">Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944095-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944095-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551006/figure-1-cross-sectional-view-of-generic-structure-of"><img alt="Figure 1. Cross-sectional view of a generic structure of a Printed Circuit Board (PCB). (A) Double-side copper layer PCB, where the Flame Retardant 4 (FR4) (green) and the metal (yellow) can be seen. (B) Double-side PCB with a copper line, a plated through hole (PTH) via, and a hole (non-plated through hole (NPTH)). (C) Four layer PCB with through hole via, blind via, buried via, and a blue solder mask covering the top and bottom layers. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551029/figure-2-microheater-fabricated-using-commercially-available"><img alt="Figure 2. Microheater fabricated using commercially available PCB for agarose gel preparations (reprinted from [32], copyright (2021), Creative Commons License). For example, the microheaters were used to prepare agarose gel using lab-on-PCB devices [32]. This microheater was fabricated using commercially available PCB substrates, as can be seen in Figure 2. The majority of microheaters are integrated with a thermal sensor to control the temperature set point. In the case of the Figure 2, the sensor is a negative temperature coefficient (NTC) resistor with a surface-mounted device (SMD) package. However, the proper microheater can be used as a temperature sensor [25,28]. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551037/figure-1-the-integration-of-coils-on-flexible-or-rigid-pcb"><img alt="The integration of coils on flexible or rigid PCB substrates has been used for wireless power-transmission applications. These coils are fabricated using one copper layer to define he whole structure of the device. The structure is simple: a spiral-shaped copper line ina copper layer, as in Figure 1B, although different topologies are possible [37]. Many devices have been developed using this configuration, for example, printed spiral coils for efficient ranscutaneous inductive power transmission [39]. This device is fabricated on a 1-0z copper layer over an FR4 substrate as insulation layer. Similar structures were fabricated for a system with a transmitter and receiver, both of them based on this kind of coil. They are intended for the study of a series of PCB coil matrixes for misalignment-insensitive wireless charging [40]. A current application of these coils is the contactless charger used for handheld devices; for example, smart phones [41]. In addition, the electromagnetic analysis of the alternating current (AC) losses and the practical implementation of PCB planar inductors with a Litz structure were reported [42], as well as the optimization of printed spiral coils for wireless passive sensors [43]. These coils can be fabricated using more than one PCB copper layer; for example, the flow-based electromagnetic-type energy harvester described in [44] included double-sided PCB coils, and the device reported in [45 uses four copper layers two fabricating four coils that are connected in series. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551046/figure-4-top-pcb-rogowski-coil-bottom-four-layer-board"><img alt="Figure 4. (Top) PCB Rogowski coil. (Bottom) four-layer board design pattern (reprinted from [51] copyright (2020), Creative Commons License). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551061/figure-5-pcb-based-transformer-integrated-on-printed-circuit"><img alt="Figure 5. (A) PCB-based transformer integrated on a Printed Circuit Board (reprinted from [65], copyright (2020), Creative Commons License). (B) Improved PCB stator of a synchronous motor and prototype (reprinted from [67], copyright (2018), Creative Commons License). Multilayer PCBs have been used to fabricate the motors: for example, the PCB stator reported in [67] has 12 layers (Figure 5B); the PCB-based motor for hard disk has six layers in 1-mm-thick PCB, where each layer has nine concentric patterns interconnected by through- holes [68]; a PCB motor intended for use in nanosatellites used a double-layer PCB to integrate the coils [69]; the device reported in [73] requires multilayer PCB (four layers), with 10 PCB-based coils per layer. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551069/figure-6-printed-circuit-board-technology-has-been-used-to"><img alt="Printed Circuit Board technology has been used to develop a triboelectric nanogen- erator [80-85]. These devices are composed of a stator and a rotor, both fabricated using a single-layer PCB. The stator and the rotor have a circular shape, with the FR4 as the substrate, while radial copper electrodes are fabricated in the copper layer. They are radial- arrayed Cu strips with a unit central angle from 10° [81] to 1° [85], depending on the design of the device. An example of the structure can be seen in Figure 6. Figure 6. (a) Exploded view; (b) photograph of a typical rotary disc-shaped triboelectric nanogenera- tor (reprinted from [83], copyright (2019), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551080/figure-7-direct-methanol-fuel-cell-fuel-chamber-with-anode"><img alt="Figure 7. Direct methanol fuel cell: (a) fuel chamber with anode; (b) air breathing window with the cathode (reprinted from [94], copyright (2015), with permission from Elsevier). As can be seen, the anode and cathode are covered with gold. Figure 7. The geometry of the anode and cathode openings was studied on [97,98] for PCB devices. In addition, flexible PCBs have been used for fabrication as a current collector [99]. he copper layer corrodes in this kind of device. For that reason, a gold layer covers the copper [100]. This gold layer is an additional material provided by the PCB manufacturer. he gold layers can be seen in Figure 7. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551085/figure-8-two-layers-of-um-thick-dry-film-photoresist-dfr"><img alt="Figure 8. (A) Two layers of 30 um thick dry film photoresist (DFR) laminated on top of electrodes on a PCB (reprinted from [115], copyright (2011), with permission from Elsevier). (B) Device with the previously noted electrodes integrated on the PCB (reprinted from [115], copyright (2011), with permission from Elsevier). (C) Cross-section view of a pressure sensor with the gap defined using the thickness of the copper layer (copyright (2015) IEEE. Reprinted, with permission, from [104]). (D) Sensor fabricated: (a) radiation patch on the upper surface; and (b) metallic ground on the lower surface (reprinted from [111], copyright (2018), Creative Commons License). icine = Meehan iia The temperature sensors were fabricated using PCBs governed by different working using a doub material due as a microhea is used as a multisensor p principles. For instance, principle is based on two of the FR4 de emperature sensing. A d temperature a e-sided, cop he wireless temperature sensor reported in [111] is fabricated per layer PCB, Figure 8D. In this case, he FR4 layer is chosen as 0 its good properties for microwave and RF applications [112]. The working pend on the ependence o factors: the metal thermal expansion and the dielectric constant temperature. Similarly to this sensor, uses the copper foil on the polyimide (flexible PCB) as a form of thermal resistance to ifferent method for sensing temperat he one reported on [113] ure consists of using the per line has two functions f a copper line [25]. In this case, the cop ter and the temperature sensor. Finally, the PCB-based device reported in [114] atform to measure temperature, conductivity and pressure. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551093/figure-9-structure-of-capacitive-pcb-based-accelerometer-the"><img alt="Figure 9. Structure of capacitive PCB-based accelerometer. The beams were fabricated using the copper layer, and the proof mass was defined with the FR4 substrate (reprinted from [124], copyright (2011), with permission from Elsevier). Figure 9. Structure of capacitive PCB-based accelerometer. The beams were fabricated using the Printed Circuit Board substrates have also been used to develop accelerometers. The device reported in [123] consists of a metal proof mass, an adhesive tape, and a piece of PCB. The copper layer of the PCB was patterned to fabricate the fixed electrode of capacitive sensor, and the proof mass was the movable electrode. This device includes he he electronic circuit and the sensor in the same PCB substrate. A different device structure was reported in [124], Figure 9. In this case, two rigid Printed Circuit Boards were used to fabricate both the movable and the fixed electrodes. The copper layer of the top mova ble PCB was used to fabricate the metal plate and the supporting beams. These beams were released by removing the FR4. The FR4over the top metal electrode was not removed in order to define the proof mass and increase the sensitivity. Therefore, the copper layer two functions: as a metallic electrode and as a movable mechanical structure. nas " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551109/figure-10-layout-of-the-platform-with-double-layer-copper"><img alt="Figure 10. (a) Layout of the platform with double-layer copper coils; (b) electromagnetic actuation and sensing of the platform with the mirror plate; (c) schematic of the assembled scanning micromirror (reprinted from [126], copyright (2018), Creative Commons License). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551119/figure-11-prototype-of-the-electromagnetic-scanning"><img alt="Figure 11. (a) Prototype of the electromagnetic scanning micromirror with a plexiglass package; (b) front-side view of the platform integrated with copper coils for sensing; (c) back-side view of the platform integrated with copper coils for sensing and driving (reprinted from [126], copyright (2018), Creative Commons License). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551131/figure-12-impulsion-system-based-on-an-su-pressurized"><img alt="Figure 12. (A) Impulsion system based on an SU-8 pressurized chamber and a copper line fuse. (reprinted from [136], copyright (2015), with permission from Elsevier). (B) Close view of the electroosmotic part of a PCB-device where the microchannels can be seen (copyright (2013) IEEE. Reprinted, with permission, from [144]). (C) Device for fluid manipulation using electrowetting on dielectric on Printed Circuit Board (reprinted from [145], copyright (2020), Creative Commons License). (D) Electrochemical PCB-based impulsion chip with detail of the microelectrode fingers (reprinted from [150], copyright (2018), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551144/figure-13-left-lab-on-pcb-integrating-microfluidics-and-pcb"><img alt="Figure 13. (A) Left: Lab-on-PCB integrating microfluidics and PCB microchambers and reference electrodes, right: two-layer PCB before the assembly of microfluidics, comprising microchambers in the top layer and PCB reference electrodes in the bottom layer (reprinted from [174], copyright (2015), Creative Commons License). (B) a: schematic diagram of a wearable electrocardiography system, b: flexible electrocardiography module, c: wearable thermoelectric generator, d: polymer-based flexi- ble heat sink (reprinted with permission from [179], copyright (2011), American Chemical Society). The PCB-based chemiresistive carbon dioxide sensor reported in Reference [177] uses silver paste to finish the fabrication of the device. Although this kind of device requires additional processes, it is worth using commercial PCBs to develop them. Many wearable biosensors are based on a flexible printed circuit boards [117,178—181]; for example, the device reported in Reference [179] can be seen in Figure 13B. In addition, a biosensor for SARS-CoV-2 detection was fabricated using flexible PBCs. In that case, graphene was used as an auxiliary material [182]. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551154/figure-14-the-first-lab-on-pcb-reported-by-stefan-gassmann"><img alt="Figure 14. The first lab-on-PCB reported by Stefan Gassmann et al. (reprinted from [11], copyright (2007), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551166/figure-15-recombinase-polymerase-amplification-rpa-on-pcb"><img alt="Figure 15. (A) Recombinase Polymerase Amplification (RPA)-on-PCB chip design for DNA am- plification. The meandering microfluidic channel, the microheater with its electrical pads, and a solid copper layer beneath the microchannel for optimum temperature uniformity are depicted (reprinted from [25], copyright (2021), Creative Commons License). (B) a: Poly(methyl methacry- late) PMMA fluidic chip with 4 u-shaped chambers; b: PMMA fluidic with 6 u-shaped chambers; c: PMMA fluidic chip on top of a thin Printed Circuit Board (PCB) microheater with an external temperature-homogenizing copper layer; d: Experimental set-up for temperature measurements during thermocycling of a static micro-polymerase chain reaction (microPCR) chip (reprinted from [24], copyright (2020), Creative Commons License). The microchannel can also be defined using the solder mask; for example, the } channel reported in [200], the microchannels fabricated in [186,187], and the Lab-on-PC] for the isothermal recombinase polymerase amplification of DNA [25]. This last wor included a PCB-based microheater, which simultaneously acts as a temperature sensor. Th device is fabricated in a four-layer PCB, where the top and bottom copper layers includ the contact pads, and the first and second inner layers define a copper plate for temperatur uniformity and the microheater, respectively, Figure 15A . The amplification of DNA ha also been performed using several Lab-on-PCB devices. The use of flexible PCB has bee: studied for both continuous-flow and static-chamber configurations [201]. For example, th continuous-flow PCR microdevices [202-204], and the static-chamber device reported is Reference [24], Figure 15B. All of them include PCB-based microheaters to define a therme area to perform the PCR. Finally, the work reported in [205] proposed a structure based o: two PCBs. The first one was used to define the microchannels on FR4 by milling, and th second one (multilayer PCB) used integrated microheaters, a copper plate for uniformity, bottom copper layer for wiring, and a top copper layer for electrodes, which were partiall defined by the solder mask. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551177/figure-16-the-exploited-lab-on-pcb-biosensing-platform"><img alt="Figure 16. The exploited Lab-on-PCB biosensing platform: (a) integrated Lab-on-PCB stack-up; (b) Electrochemical Impedance Spectroscopy electrode configuration; (c) commercially fabricated PCB biosensing platform; (d) sample delivery microfluidics (reprinted from [206], copyright (2019), with permission from Elsevier). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551190/figure-17-commercial-pcb-based-microelectrodes-arrays-of"><img alt="Figure 17. (A) Commercial PCB-based microelectrodes arrays of Multichannel Microsystems (model: 60EcoMEA). (B) Commercial PCB-based microelectrodes arrays of Ayanda Biosystems™ (model: MEA60 4 x 15 3D). " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551201/figure-18-dual-frequency-siw-based-cavity-backed-pcb-based"><img alt="Figure 18. Dual-frequency SIW-based cavity-backed PCB-based antenna. (Top): top view where a pair of triangular-complementary-split-ring slots, and vias can be seen; and (Bottom): bottom view where the vias can be seen. (reprinted from [229], copyright (2018), with permission from Elsevier). Figure 18. Dual-frequency SIW-based cavity-backed PCB-based antenna. (Top): top view where a pair of triangular-complementary-split-ring slots, and vias can be seen; and (Bottom): bottom view " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551211/figure-19-photolitographic-mask-for-fabricating-the-pcb"><img alt="Figure 19. (A) Photolitographic mask for fabricating the PCB-based mold. (B) Mold for a serpentine microchannel. (C) PDMS fabricated device using the mold. The fabrication of microfluidic devices takes advantage of the use of Printed Circuit Boards. The fabrication of PDMS microfluidic circuit is based on soft lithography; thus, a mold is required. Typically, the molds are fabricated using silicon or SU-8. However, if the dimensional requirements are less demanding, PCB substrates are a good choice. These molds are built using a single-copper-layer PCB [232,233]. In addition, these molds can be used in the hot embossing technique [157,234]. Therefore, thermoplastic materials such as PMMA or polycarbonate can be processed to develop microfluidic devices. Figure 19 shows the photolitographic mask used for fabricating a PCB-based mold, the mold for a serpentine microchannel and the PDMS-fabricated device using that mold. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_019.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551223/figure-20-photograph-of-the-flow-focusing-device-obtained"><img alt="Figure 20. Photograph of the flow-focusing device obtained after the manufacturing process (copy- right (2011) IEEE. Reprinted, with permission, from [235]). As previously noted, the PCB can be used to fabricate microchannels and chambers. The PCB substrates can be used to fabricate flow-focusing devices. A three-dimensional flow- focusing device for microbubble generation was developed [235], as in Figure 20. This device is fabricated using two single-copper-layer PCBs, where the copper lines are used for the microchannels and microchamber, and the vias are used for inserting the core and shell fluids, that is, gas and water, respectively. In addition, a via is used as a microbubbles outlet. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_020.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551232/figure-21-safety-valve-where-the-free-standing-is-not"><img alt="Figure 21. (A) Safety valve where the free-standing is not released due to the copper layer (copyright (2010) IEEE. Reprinted, with permission, from [238]). (B) Safety valve where the free-standing was released due to the copper layer etching (copyright (2010) IEEE. Reprinted, with permission, from [238]). (C) Released wheel for flow measurement made of SU-8 by etching a copper sacrificial layer (copyright (2013) IEEE. Reprinted, with permission, from [240)). Figure 21. (A) Safety valve where the free-standing is not released due to the copper layer (copyright One of the most important steps in MEMS fabrication is based on the use of a sacrificial layer to fabricate free-standing structures. The copper layer of the PCB can be used as a sacrificial layer to fabricate free-standing SU-8 structures [237]. The chemical etching of the copper does not affect the SU-8. For example, the safety valve reported in Reference [238] was fabricated using the copper as a sacrificial layer; Figure 21A shows the system before the copper etching, and Figure 21B shows the final device. The copper layer thickness defines the gap between the free-standing structure and the substrate. This gap can be selected as a function of the available Cu layer thickness offered by the manufacturer. In addition, the copper layer can be used to release SU-8 structures from the PCB substrate [239,240]. Figure 21C shows a released SU-8 wheel for flow measurement, made of SU-8, by etching a sacrificial copper layer. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/figure_021.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551241/table-1-metallic-layers-functions-and-devices-vias-solder"><img alt="Table 1. Metallic layers functions and devices. Table 2. Vias, solder mask, flexible and rigid substrate functions and devices. " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17551245/table-2-the-opportunity-to-order-pcb-for-commercial-company"><img alt="The opportunity to order PCB for a commercial company facilitates its development by researchers and companies, in the same way that foundries offer their services for silicon and glass fabrication for microelectronics and microsystems. Moreover, PCB processing " class="figure-slide-image" src="https://figures.academia-assets.com/83617144/table_002.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944095-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f34551421619dfb4b73f7a0832b2905c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617144,"asset_id":75944095,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617144/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944095]").text(description); $(".js-view-count[data-work-id=75944095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f34551421619dfb4b73f7a0832b2905c" } } $('.js-work-strip[data-work-id=75944095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944095,"title":"Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering","translated_title":"","metadata":{"abstract":"This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...","internal_url":"https://www.academia.edu/75944095/Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering","translated_internal_url":"","created_at":"2022-04-09T15:13:30.459-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617144/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617144/download_file","bulk_download_file_name":"Printed_Circuit_Boards_The_Layers_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617144/pdf-libre.pdf?1649542629=\u0026response-content-disposition=attachment%3B+filename%3DPrinted_Circuit_Boards_The_Layers_Functi.pdf\u0026Expires=1743426789\u0026Signature=RZ-kG4kMpIyNWzS9uDDFac7YuPLd8Bw4-9G5NLD9R4GIkz1C9YyC1FW95FyD8i9wZQph5JvJka5-j1vf~z-ostEr7zVTcirhRp0Z0Luc0MK5BUfhZhRzBY~P6UxB30QH2qoX2TJPLrLOexnNmgns6jvW6Er3JSMVcZMUGH~izMmT-y6go2qdhSSC-~je2PX8i97V2CXV-jDRnrVlOysYnci~m~WMV0dy3I3p3e1w-jLUWRbKu~xbEmpFg2oYUGBVs2vAYqdIcUvX9SYuiD9PsiyGvYC9r6pgm12plUoLEJGxz-0pp179yEt5kOrQ4zvgWiKgQ1zxzSKP3I~TaNdXIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Printed_Circuit_Boards_The_Layers_Functions_for_Electronic_and_Biomedical_Engineering","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deox...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617144/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617144/download_file","bulk_download_file_name":"Printed_Circuit_Boards_The_Layers_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617144/pdf-libre.pdf?1649542629=\u0026response-content-disposition=attachment%3B+filename%3DPrinted_Circuit_Boards_The_Layers_Functi.pdf\u0026Expires=1743426789\u0026Signature=RZ-kG4kMpIyNWzS9uDDFac7YuPLd8Bw4-9G5NLD9R4GIkz1C9YyC1FW95FyD8i9wZQph5JvJka5-j1vf~z-ostEr7zVTcirhRp0Z0Luc0MK5BUfhZhRzBY~P6UxB30QH2qoX2TJPLrLOexnNmgns6jvW6Er3JSMVcZMUGH~izMmT-y6go2qdhSSC-~je2PX8i97V2CXV-jDRnrVlOysYnci~m~WMV0dy3I3p3e1w-jLUWRbKu~xbEmpFg2oYUGBVs2vAYqdIcUvX9SYuiD9PsiyGvYC9r6pgm12plUoLEJGxz-0pp179yEt5kOrQ4zvgWiKgQ1zxzSKP3I~TaNdXIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83617147,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617147/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617147/download_file","bulk_download_file_name":"Printed_Circuit_Boards_The_Layers_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617147/pdf-libre.pdf?1649542626=\u0026response-content-disposition=attachment%3B+filename%3DPrinted_Circuit_Boards_The_Layers_Functi.pdf\u0026Expires=1743426789\u0026Signature=E7e01Ek7qhIrFbCv90tWP~uRp~PqO-2JKhTtaVP4asGBFq9pL2AVBvj2AAE2K2qAh9nXdB3Py-RTPlgmtT1zkA61pgmGJXc41di8eiHJYUv-kz6yU73loqNR5gx0XJ1JqudEcFF-wWhuSeSYEcWPRfI5liDslih2K3gCzZlVljt1zszXEXo17AEwydHCY6or5-0COwYZmNmLsGZD9i-8VujEIsHRvgORzyb4Eg5Og-pp8EM3aF~EbID8MWNxXKAsb2tVdsU5zbW~80FLkQImWW5jqqFOPUmltdKmSB41E7qx3SA~fUcyAaf4EdvbUjAqg2bQakvk6mtvYpdJiE-yXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":19297746,"url":"https://www.mdpi.com/2072-666X/13/3/460/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944095-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944092"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944092/Tracking_Control_System_Using_an_Incident_Radiation"><img alt="Research paper thumbnail of Tracking Control System Using an Incident Radiation" class="work-thumbnail" src="https://attachments.academia-assets.com/83617263/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944092/Tracking_Control_System_Using_an_Incident_Radiation">Tracking Control System Using an Incident Radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract—For some industrial applications, an accurate estima-tion of a light source position is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d78f2dca488fb4478ca08aad8673d6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617263,"asset_id":75944092,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617263/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944092"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944092"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944092; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944092]").text(description); $(".js-view-count[data-work-id=75944092]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944092; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944092']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d78f2dca488fb4478ca08aad8673d6d" } } $('.js-work-strip[data-work-id=75944092]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944092,"title":"Tracking Control System Using an Incident Radiation","translated_title":"","metadata":{"abstract":"Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.","ai_title_tag":"MEMS Sensor for Precise Sun-Tracking Control","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.","internal_url":"https://www.academia.edu/75944092/Tracking_Control_System_Using_an_Incident_Radiation","translated_internal_url":"","created_at":"2022-04-09T15:13:30.240-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617263/thumbnails/1.jpg","file_name":"Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf","download_url":"https://www.academia.edu/attachments/83617263/download_file","bulk_download_file_name":"Tracking_Control_System_Using_an_Inciden.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617263/Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DTracking_Control_System_Using_an_Inciden.pdf\u0026Expires=1743410722\u0026Signature=B-OBQRXjlDqATW8yA84piJo~Nc1SlffDAo3vUwJr91-GgHs5G8qsE7wLkcQw39gkPeXpaUQZhNxS-XCYCp7U8IvGR3s7mh-mMGuQui8SNvNDwdWLiVIPaAnugwStrTmdr3~tj25-hY5oFku3-Ao0qUvCjkQS7iZtekLM5ohbI5e2kq08ws4F2eNro-HuRe0vRM0TpQFo1c8Z9Jn6NUvw-VBLaKOm9ASaIp14Ik6ziFiyn6dP9armrJ3YiHzVGDncKWhiduXHrwdc29C7BR6pXh3GkX-0~e44fggcx~s-Ku7aWl59oLLZZZResPkj7HeOUdEXUCTy7IM6FGQzJB1i-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tracking_Control_System_Using_an_Incident_Radiation","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Abstract—For some industrial applications, an accurate estima-tion of a light source position is needed. That is the case for a heliostat, a device that projects sunlight onto a focus hundreds of meters away from its aiming point. In this paper, we present a novel sensor design for generating an alignment error signal. Included is a detailed study of its response, which shows that certain geometrical design parameters are necessary to achieve desired accuracy. This sensor has been implemented using micro-electromechanical system techniques to achieve a robust structure at low cost and it has been successfully applied to sun-tracking systems. Experimental results obtained in field tests are included. Index Terms—Microelectromechanical system (MEMS), micro-sensors, power generation, solar energy, sun-tracking control. I.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617263/thumbnails/1.jpg","file_name":"Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf","download_url":"https://www.academia.edu/attachments/83617263/download_file","bulk_download_file_name":"Tracking_Control_System_Using_an_Inciden.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617263/Tracking_control_system_using_an_inciden20220409-9064-mh0rbh.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DTracking_Control_System_Using_an_Inciden.pdf\u0026Expires=1743410722\u0026Signature=B-OBQRXjlDqATW8yA84piJo~Nc1SlffDAo3vUwJr91-GgHs5G8qsE7wLkcQw39gkPeXpaUQZhNxS-XCYCp7U8IvGR3s7mh-mMGuQui8SNvNDwdWLiVIPaAnugwStrTmdr3~tj25-hY5oFku3-Ao0qUvCjkQS7iZtekLM5ohbI5e2kq08ws4F2eNro-HuRe0vRM0TpQFo1c8Z9Jn6NUvw-VBLaKOm9ASaIp14Ik6ziFiyn6dP9armrJ3YiHzVGDncKWhiduXHrwdc29C7BR6pXh3GkX-0~e44fggcx~s-Ku7aWl59oLLZZZResPkj7HeOUdEXUCTy7IM6FGQzJB1i-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[{"id":19297744,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1006.5751\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944092-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944090"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944090/Stochastic_pulse_coded_arithmetic"><img alt="Research paper thumbnail of Stochastic pulse coded arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/83617265/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944090/Stochastic_pulse_coded_arithmetic">Stochastic pulse coded arithmetic</a></div><div class="wp-workCard_item"><span>2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Among the different pulse codification techniques, stochastic pulse codification has its own arit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Among the different pulse codification techniques, stochastic pulse codification has its own arithmetic based on the similarity between boolean algebra and statistic algebra. Summation and multiplication are the two basic arithmetic operations deeply treated in literature. In this paper we present two digital stochastic circuits that extend traditional stochastic algebra: a division circuit and a square-root circuit, and the interfaces between the analog and stochastic domain. As result, we are able to process analog input signals with a simple and complete processing system. These circuits can be implemented in low-cost and low-power digital programmable devices.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944090-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944090-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548356/figure-1-digital-to-stochastic-conversion-dsc-stochastic"><img alt="Figure 1: Digital to stochastic conversion (DSC). Stochastic systems make pseudo analog operations using stochastically coded pulse sequences [1], [2]. Information is represented by the statistical mean value of a pulse se- quence. In a binary logic, it is the probability of taking a “high” level. Figure 1 shows the generation of a stochas- tic pulse stream from a digital value. The value stored " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548376/figure-4-analog-to-stochastic-conversion-based-on-sigma"><img alt="Figure 4: Analog to stochastic conversion based on sigma- delta modulation conversion circuit based on sigma-delta modulation that improve bandwidth and accuracy. The reason is that, in figure 4, we integrate the error signal between the analog input and the stochastic pulse stream, without a previous RC filtering. Once we have presented the converters be- " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548394/figure-3-analog-to-stochastic-conversion-circuits-proposed"><img alt="Figure 3: Analog to stochastic conversion circuits proposed are based in a negative feedback scheme in which the analog input is compared with the analog signal obtained from the digital stochastic pulse stream [9]. The problem is that the RC integration of the digital pulse stream of figure 3 is not a fast integration, because cut off frequency of the RC filter must be low to recover the mean value. So, the bandwidth of the converter is lim- ited below 1kHz for 8-bit accuracy and a digital clock fre- quency of 10 MHz [9]. In [10] has been proposed a novel " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548403/figure-2-analog-mean-value-of-stochastic-pulse-stream"><img alt="Figure 2: Analog mean value of a stochastic pulse stream " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548412/figure-5-stochastic-processing-system-stochastically"><img alt="Figure 5: Stochastic processing system stochastically converted, then processed, and finally re covered from the stochastic pulse stream as an analos or digital value. Figure 5 is a block diagram that illus trates the whole processing system. The main advantags of the stochastic processing system is the possibility of do ing pseudo-analog functions working with the mean value of the pulse stream, but with a digital implementation. " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548422/figure-7-stochastic-division-circuit"><img alt="Figure 7: Stochastic division circuit " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548432/figure-7-stochastic-pulse-coded-arithmetic"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548446/figure-8-stochastic-pulse-coded-arithmetic"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548466/figure-8-experimental-results-of-the-stochastic-division"><img alt="Figure 8: Experimental results of the stochastic division circuit as a function of p2 for different values of p: " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29548480/figure-10-experimental-results-of-the-stochastic-square-root"><img alt="Figure 10: Experimental results of the stochastic square root circuit " class="figure-slide-image" src="https://figures.academia-assets.com/83617265/figure_010.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944090-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a65dc13865c29d3adc009735569cd404" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617265,"asset_id":75944090,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617265/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944090"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944090]").text(description); $(".js-view-count[data-work-id=75944090]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944090']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a65dc13865c29d3adc009735569cd404" } } $('.js-work-strip[data-work-id=75944090]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944090,"title":"Stochastic pulse coded arithmetic","translated_title":"","metadata":{"publisher":"Presses Polytech. Univ. Romandes","grobid_abstract":"Among the different pulse codification techniques, stochastic pulse codification has its own arithmetic based on the similarity between boolean algebra and statistic algebra. Summation and multiplication are the two basic arithmetic operations deeply treated in literature. In this paper we present two digital stochastic circuits that extend traditional stochastic algebra: a division circuit and a square-root circuit, and the interfaces between the analog and stochastic domain. As result, we are able to process analog input signals with a simple and complete processing system. These circuits can be implemented in low-cost and low-power digital programmable devices.","publication_name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","grobid_abstract_attachment_id":83617265},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944090/Stochastic_pulse_coded_arithmetic","translated_internal_url":"","created_at":"2022-04-09T15:13:30.006-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617265/thumbnails/1.jpg","file_name":"file_1.pdf","download_url":"https://www.academia.edu/attachments/83617265/download_file","bulk_download_file_name":"Stochastic_pulse_coded_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617265/file_1-libre.pdf?1649542610=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_pulse_coded_arithmetic.pdf\u0026Expires=1743410722\u0026Signature=Ab6QV6e04UY6SzscAclh7RyE9jt2TLhiwv5ykVsv-1dVqwddBnKGICDyt9vQ01bNa44DVIrE736AQNfCfYxTxDr9rW3jEcotyhBSaFNTDOZvQBp3TnA7CbeIWW3qvvg9VHVJp9oykfJqPeN0yzplN~t~F1CGYlzeq0pYqLhtKbQQM-EGjS1GdrhDnyiLkRTTCweSxJ6WI0Z-IBr0Z71ZJ2RwOVivfEOoPQu6RXUWWfc2U5tSb~PnUeNDNNttZtqF5OUmomV3gdfbaidU6mjLKnleqrpL8Dc7ubG6PPVZeax-ck3IXo6oSWCoj83UfNlEfyyS34uYjbBR9cj~WiftGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stochastic_pulse_coded_arithmetic","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Among the different pulse codification techniques, stochastic pulse codification has its own arithmetic based on the similarity between boolean algebra and statistic algebra. Summation and multiplication are the two basic arithmetic operations deeply treated in literature. In this paper we present two digital stochastic circuits that extend traditional stochastic algebra: a division circuit and a square-root circuit, and the interfaces between the analog and stochastic domain. As result, we are able to process analog input signals with a simple and complete processing system. These circuits can be implemented in low-cost and low-power digital programmable devices.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617265/thumbnails/1.jpg","file_name":"file_1.pdf","download_url":"https://www.academia.edu/attachments/83617265/download_file","bulk_download_file_name":"Stochastic_pulse_coded_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617265/file_1-libre.pdf?1649542610=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_pulse_coded_arithmetic.pdf\u0026Expires=1743410722\u0026Signature=Ab6QV6e04UY6SzscAclh7RyE9jt2TLhiwv5ykVsv-1dVqwddBnKGICDyt9vQ01bNa44DVIrE736AQNfCfYxTxDr9rW3jEcotyhBSaFNTDOZvQBp3TnA7CbeIWW3qvvg9VHVJp9oykfJqPeN0yzplN~t~F1CGYlzeq0pYqLhtKbQQM-EGjS1GdrhDnyiLkRTTCweSxJ6WI0Z-IBr0Z71ZJ2RwOVivfEOoPQu6RXUWWfc2U5tSb~PnUeNDNNttZtqF5OUmomV3gdfbaidU6mjLKnleqrpL8Dc7ubG6PPVZeax-ck3IXo6oSWCoj83UfNlEfyyS34uYjbBR9cj~WiftGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":39020,"name":"Boolean Algebra","url":"https://www.academia.edu/Documents/in/Boolean_Algebra"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":181287,"name":"Low Power","url":"https://www.academia.edu/Documents/in/Low_Power"},{"id":256048,"name":"Circuits","url":"https://www.academia.edu/Documents/in/Circuits"},{"id":672713,"name":"Random Number Generation","url":"https://www.academia.edu/Documents/in/Random_Number_Generation"},{"id":2039711,"name":"Logic circuits","url":"https://www.academia.edu/Documents/in/Logic_circuits"}],"urls":[{"id":19297742,"url":"http://xplorestaging.ieee.org/ielx5/6910/18601/00857166.pdf?arnumber=857166"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944090-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944089"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944089/Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications"><img alt="Research paper thumbnail of Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/83617141/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944089/Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications">Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944089-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944089-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498273/figure-1-printed-circuit-board-substrate-for-agarose-mixing"><img alt="Figure 1. Printed circuit board substrate for agarose mixing and curing, and electrophoresis. (Left) Conductivity sensor and electrophoresis electrodes are shown. (Right) The microheater and the thermistor can be seen. The dimensions of the device are 38 x 34 mm. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498281/figure-2-the-lab-on-pcb-with-the-thermoplastic-wall-and-the"><img alt="Figure 2. The lab-on-PCB with the thermoplastic wall and the auxiliary structure are shown. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498300/figure-3-the-cross-sectional-view-of-the-prototype-is-shown"><img alt="Figure 3. The cross-sectional view of the prototype is shown. The supporting structure, the bread- board and the location of the sensors and the transparent film can be seen. The negative temperature coefficient (NTC) sensor is not under the light dependent resistor (LDR), it is in a different plane. Figure 3. The cross-sectional view of the prototype is shown. The supporting structure, the bread- In order to clarify the assembly, a drawing of a cross-sectional view of the lab-on-PCB is shown in Figure 3. As can be seen, the transparent film is placed on the top side of the PCB substrate, and the LDR sensor is located below the transparent film. The detection system is not included because it is an independent part of the system. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498308/figure-4-basic-signal-conditioning-electronic-circuit"><img alt="Figure 4. (A) Basic signal conditioning electronic circuit connected to the microcontroller. (B) Th electrophoresis schematic circuit. The arrows indicate the direction of the migration. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498319/figure-5-temperature-of-both-the-agarose-tae-solution"><img alt="Figure 5. Temperature of both the agarose-TAE solution (thermocouple) and the NTC thermistor as a function of the current. control the process, the characterisation of the sensors and actuators 1s required. The microheater characterisation consists of relating the temperature of the agarose- TAE solution with the temperature of the negative temperature coefficient (NTC) thermistor. In order to do so, a thermocouple is used for measuring the temperature of the liquid of the cavity (agarose-TAE solution). In addition, the current supplied to microheater has to be defined. The results for the microheater can be seen in Figure 5. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498329/figure-6-the-output-of-the-voltage-divider-as-function-of"><img alt="Figure 6. The output of the voltage divider as a function of the time is shown. The starting point is marked using an asterisk. to a resistance of 20 kQ. This value is chosen to define the starting point of the process, that is, the process starts when the conductivity sensor reaches 0.04 mS. The electronic circuit is a voltage divider. Finally, this characterisation is carried out using an oscilloscope (Tektronix TDS 2012B, single seq. “falling” procedure); Figure 6. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498339/figure-7-different-values-of-the-optical-sensor-voltage-as"><img alt="Figure 7. Different values of the optical sensor voltage as a function of the time. The characterisation of the optical sensor consists of measuring the degree of trans- parency of the agarose-TAE solution; Figure 7. In order to do so, another voltage divider is used, where the voltage of the LDR is measured. In this case, the agarose gel performed is 2.5% w/v in the TAE buffer. The choice of the final transparency of the mixture is defined, taking into account the expertise of the authors. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498354/figure-8-the-result-of-the-mixing-and-curing-after-removing"><img alt="Figure 8. The result of the mixing and curing after removing the structure can be seen. In addition, the wells are filled with liquids. Once the sensors and actuators are characterised and the microcontroller is pro- grammed, the experiments are carried out. The resulting agarose gel after both the mixing and the curing is shown in Figure 8. In addition, the wells loaded with liquids can be seen. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498365/figure-9-bands-obtained-after-migrating-the-dna-by"><img alt="Figure 9. Bands obtained after migrating the DNA by electrophoresis. The device is checked with DNA in order to verify the correct migration of DNA along the agarose gel; Figure 9. This is important to analyse the homogeneity of the agarose gel. In order to do so, the electrophoresis is performed at 40 V with a required current of 20 mA. The negative and positive electrodes are shown in Figure 1 with black and red arrows, respectively. " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48498377/table-1-whole-process-sequence-for-agarose-gel-preparation"><img alt="Table 1. Whole process sequence for agarose gel preparation and electrophoresis. The device with the PMMA structure assembled can include the agarose powder (CSL-AG500 Cleaver Scientific, Rugby, Warwickshire, UK) over the surface before starting the process, in this case 100 mg for a 4 ml agarose gel (final concentration 2.5% w/v). The first step consists of filling the cavity with the agarose-TAE mixture with SYBRSafe DNA staining solution (533102 ThermoFisher Scientific, Waltham, Massachusetts, USA) to perform the mixing, where the TAE buffer is (15558042 ThermoFisher Scientific). This filling is performed using a syringe pump (NewEra Pump Systems NE-1000), with a volume of 4 mL. The percentage of agarose can be the conductivity sensor, supplying the this step, the LDR sensor continues to the cured agarose is lower than the fres. modified by changing the TAE buffer volume, the quantity of agarose or both of them. This step is detected by the conductivity sensor, which sends the signal for starting the automatic process. The next step consists of disabling required current to the microheater, and sensing the degree of transparency. Once the transparency is achieved, the third step takes place automatically, that is, the microheater is disabled in order to cool down the mixture. In be enabled because the degree of transparency of hly mixed agarose. The automatic process finishes when the agarose is cured, after which the microcontroller activates a LED in order to inform that the process is finished, and not automatic; it consists of removing the cavities to pour the TAE buffer. A disable the sensors. Finally, the following step is the PMMA structure to define both the wells and fter this process, the device is ready to be loaded with the liquid to be migrated, using e ectrophoresis. The experimental results show the performance of the fabricated agarose gel for electrophoresis. F a ns ey es a: rn Oe i i oh ar mr a a ee i es : es i a ae " class="figure-slide-image" src="https://figures.academia-assets.com/83617141/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944089-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="248788759aff89e043bd5667dca7758c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617141,"asset_id":75944089,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617141/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944089"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944089"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944089; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944089]").text(description); $(".js-view-count[data-work-id=75944089]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944089; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944089']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "248788759aff89e043bd5667dca7758c" } } $('.js-work-strip[data-work-id=75944089]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944089,"title":"Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications","translated_title":"","metadata":{"abstract":"In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...","internal_url":"https://www.academia.edu/75944089/Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications","translated_internal_url":"","created_at":"2022-04-09T15:13:29.769-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617141/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617141/download_file","bulk_download_file_name":"Semi_Automatic_Lab_on_PCB_System_for_Aga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617141/pdf-libre.pdf?1649542618=\u0026response-content-disposition=attachment%3B+filename%3DSemi_Automatic_Lab_on_PCB_System_for_Aga.pdf\u0026Expires=1743410722\u0026Signature=Ke3KF9pgeTm0~DegL5SrSGwlcJAy3-4sFsMtm3Rd8KK8OaK6GyTyRjfdXGes9PV8vgPih~CRJo9j8ZLlugrP042xJQxIpZGWMo2MlLj5yxuPy7tqloFt9qjzVxFylPAaoutISntIiiUuFjCfiBn9O0Q7P0LpN30DfV0vUoKoYUFDS-tObEyaboaXrQsRqY~a91AnRxdzq2bS~GUdkHBOqhtudawK0LhtItnVNmt7hebupuSt~b5~BY9yQM6wRF1-iWnUnyaIT8tw6mprWiuE7Zz4VS092~CCaMu6ju-z4QcKeEGRpxrrVVa8kuulfL6sHveUdgLvRbmKglr~-XTzsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Semi_Automatic_Lab_on_PCB_System_for_Agarose_Gel_Preparation_and_Electrophoresis_for_Biomedical_Applications","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617141/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617141/download_file","bulk_download_file_name":"Semi_Automatic_Lab_on_PCB_System_for_Aga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617141/pdf-libre.pdf?1649542618=\u0026response-content-disposition=attachment%3B+filename%3DSemi_Automatic_Lab_on_PCB_System_for_Aga.pdf\u0026Expires=1743410722\u0026Signature=Ke3KF9pgeTm0~DegL5SrSGwlcJAy3-4sFsMtm3Rd8KK8OaK6GyTyRjfdXGes9PV8vgPih~CRJo9j8ZLlugrP042xJQxIpZGWMo2MlLj5yxuPy7tqloFt9qjzVxFylPAaoutISntIiiUuFjCfiBn9O0Q7P0LpN30DfV0vUoKoYUFDS-tObEyaboaXrQsRqY~a91AnRxdzq2bS~GUdkHBOqhtudawK0LhtItnVNmt7hebupuSt~b5~BY9yQM6wRF1-iWnUnyaIT8tw6mprWiuE7Zz4VS092~CCaMu6ju-z4QcKeEGRpxrrVVa8kuulfL6sHveUdgLvRbmKglr~-XTzsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83617142,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617142/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/83617142/download_file","bulk_download_file_name":"Semi_Automatic_Lab_on_PCB_System_for_Aga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617142/pdf-libre.pdf?1649542619=\u0026response-content-disposition=attachment%3B+filename%3DSemi_Automatic_Lab_on_PCB_System_for_Aga.pdf\u0026Expires=1743410722\u0026Signature=TomYxJsXegVVnKLyGuxKpNCJfFtOtgEMEf25yJU2xcW~DaLsFLc-ZiZe0wPrgmu4-Ar4rufBuoh6pdnbD6u8OyfTFnzzjUNLcPSQSfsrRa5IEkxEV-UG1WzzvcV-~gQF6ZEBGfzfuWwxF4YPNLCLGXo3jd1zuxvbV7hCqnvLR88bFOpvudDOqW5oFgfHw6Ann1~Wv9oafHk8nUQAnMTL4yYyx5MPpOQJTKj40x6me5poqBH6CUFlFHUqQ9UjiQYfc8mk~hZJ~RWDn9Q8n-hvTFq4Q3DIBF5xkFLgskq8LesxgQLnugX~ztsIrrzpBrmbGpS7VoWzj1Sht5Wd7bN0pg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":19297741,"url":"https://www.mdpi.com/2072-666X/12/9/1071/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944089-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944088"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944088/Highly_Integrable_Microfluidic_Impulsion_System_for_Precise_Displacement_of_Liquids_on_Lab_on_PCBs"><img alt="Research paper thumbnail of Highly Integrable Microfluidic Impulsion System for Precise Displacement of Liquids on Lab on PCBs" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Highly Integrable Microfluidic Impulsion System for Precise Displacement of Liquids on Lab on PCBs</div><div class="wp-workCard_item"><span>Journal of Microelectromechanical Systems</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. Th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mu \text{L}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; during about 24s, and 21.3 &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mu \text{L}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944088"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944088"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944088; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944088]").text(description); $(".js-view-count[data-work-id=75944088]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944088; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944088']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944088]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944088,"title":"Highly Integrable Microfluidic Impulsion System for Precise Displacement of Liquids on Lab on PCBs","translated_title":"","metadata":{"abstract":"In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during about 24s, and 21.3 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Journal of Microelectromechanical Systems"},"translated_abstract":"In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during about 24s, and 21.3 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]","internal_url":"https://www.academia.edu/75944088/Highly_Integrable_Microfluidic_Impulsion_System_for_Precise_Displacement_of_Liquids_on_Lab_on_PCBs","translated_internal_url":"","created_at":"2022-04-09T15:13:29.540-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Highly_Integrable_Microfluidic_Impulsion_System_for_Precise_Displacement_of_Liquids_on_Lab_on_PCBs","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, an impulsion system for laboratory on printed circuit board (LOP) is described. The proposed system is intended to place the working liquids in a designed location of the LOP. The system is composed of a pressurization system, a microvalve, and a damping chamber. All these parts have been integrated in a microfluidic system to test the behavior of the whole system. The pressurization system allows the storage of mechanical energy to impulse liquids samples. The microvalve releases the pressure of the commented pressurization system toward the damping chamber. The blast wave effect of the microvalve opening has to be dampened. In this regard, the function of the damping chamber is to reduce the effects of the microvalve activation, resulting in good behavior. The materials used for fabricating the device are polymethylmethacrylate and printed circuit board. These materials and the fabrication process can be considered as mass production. The fabricated devices impulse 32.5 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during about 24s, and 21.3 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$\\mu \\text{L}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; during 10 s, for the proposed microfluidic configurations. The errors for those impulsions are 5.3% and 6.5%, respectively. Finally, the experimental results and simulations show a good behavior of the system regarding liquid placement and time response. [2017-0293]","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":19297740,"url":"http://xplorestaging.ieee.org/ielx7/84/8370017/08351935.pdf?arnumber=8351935"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944088-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944087"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944087/Cover_EPE_1991_A_neural_controller_for_quasi_resonant_converters"><img alt="Research paper thumbnail of Cover EPE 1991 A neural controller for quasi-resonant converters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Cover EPE 1991 A neural controller for quasi-resonant converters</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944087"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944087"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944087; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944087]").text(description); $(".js-view-count[data-work-id=75944087]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944087; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944087']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944087]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944087,"title":"Cover EPE 1991 A neural controller for quasi-resonant converters","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944087/Cover_EPE_1991_A_neural_controller_for_quasi_resonant_converters","translated_internal_url":"","created_at":"2022-04-09T15:13:29.388-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cover_EPE_1991_A_neural_controller_for_quasi_resonant_converters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944087-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944086/EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control"><img alt="Research paper thumbnail of EC-RASP: A new Electrical Energy Static Counter based on Random Signal Processing Conference Topic: IC's for instrumentation and control" class="work-thumbnail" src="https://attachments.academia-assets.com/83617279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944086/EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control">EC-RASP: A new Electrical Energy Static Counter based on Random Signal Processing Conference Topic: IC's for instrumentation and control</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper concerns the design and development of electrical energy static counter, based on rand...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper concerns the design and development of electrical energy static counter, based on random pulse stream processing. Measurement proceeding, calibration and hardware implementation are checked in a prototype. As a result, a simple low cost measurement system has been obtained. The resulting measures have been compared with the ones obtained using a poly phase commercial analyzer. A maximum 2% error has been achieved. This measurement proceeding is patent pending.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c13d9afeec2bbe81c52c4d3ea85bcace" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617279,"asset_id":75944086,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617279/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944086]").text(description); $(".js-view-count[data-work-id=75944086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c13d9afeec2bbe81c52c4d3ea85bcace" } } $('.js-work-strip[data-work-id=75944086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944086,"title":"EC-RASP: A new Electrical Energy Static Counter based on Random Signal Processing Conference Topic: IC's for instrumentation and control","translated_title":"","metadata":{"grobid_abstract":"This paper concerns the design and development of electrical energy static counter, based on random pulse stream processing. Measurement proceeding, calibration and hardware implementation are checked in a prototype. As a result, a simple low cost measurement system has been obtained. The resulting measures have been compared with the ones obtained using a poly phase commercial analyzer. A maximum 2% error has been achieved. This measurement proceeding is patent pending.","grobid_abstract_attachment_id":83617279},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944086/EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control","translated_internal_url":"","created_at":"2022-04-09T15:13:29.238-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617279/thumbnails/1.jpg","file_name":"EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf","download_url":"https://www.academia.edu/attachments/83617279/download_file","bulk_download_file_name":"EC_RASP_A_new_Electrical_Energy_Static_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617279/EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DEC_RASP_A_new_Electrical_Energy_Static_C.pdf\u0026Expires=1743410722\u0026Signature=guCrKLphEZ7fDKcqIUnoEoFnSNxumJpFXV9hPKhuU3kGi0jqhU~8oZcVLV7KtY7heFdbg~B0gvDXt3z-6pMjVZyxISe2Oi0jvAy3O1Wn0GQVtYOok6jD-~-ZSExeaw74NwlLBxa0ArRWSXbyNLXtSB~6vK15hOnAm03tcOQza3fAnNf~lldkpVkSw3V4XSQvxn-trqkRNWkiJZnccSNzdeE7Uy2sLy5c7sheAUKJLIbmwsRDw82wClD~Pg2-3Lr5gZVDJsPO4MKrzzRXcaInh0FenEHoXf9BeYar8-ckdXfZxIhTCch~UkdiiuE0xqcCLSmbH-ZZr46cDNMt7UWgeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"EC_RASP_A_new_Electrical_Energy_Static_Counter_based_on_Random_Signal_Processing_Conference_Topic_ICs_for_instrumentation_and_control","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"This paper concerns the design and development of electrical energy static counter, based on random pulse stream processing. Measurement proceeding, calibration and hardware implementation are checked in a prototype. As a result, a simple low cost measurement system has been obtained. The resulting measures have been compared with the ones obtained using a poly phase commercial analyzer. A maximum 2% error has been achieved. This measurement proceeding is patent pending.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617279/thumbnails/1.jpg","file_name":"EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf","download_url":"https://www.academia.edu/attachments/83617279/download_file","bulk_download_file_name":"EC_RASP_A_new_Electrical_Energy_Static_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617279/EC-RASP_A_new_Electrical_Energy_Static_C20220409-673-1wu59yb.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DEC_RASP_A_new_Electrical_Energy_Static_C.pdf\u0026Expires=1743410722\u0026Signature=guCrKLphEZ7fDKcqIUnoEoFnSNxumJpFXV9hPKhuU3kGi0jqhU~8oZcVLV7KtY7heFdbg~B0gvDXt3z-6pMjVZyxISe2Oi0jvAy3O1Wn0GQVtYOok6jD-~-ZSExeaw74NwlLBxa0ArRWSXbyNLXtSB~6vK15hOnAm03tcOQza3fAnNf~lldkpVkSw3V4XSQvxn-trqkRNWkiJZnccSNzdeE7Uy2sLy5c7sheAUKJLIbmwsRDw82wClD~Pg2-3Lr5gZVDJsPO4MKrzzRXcaInh0FenEHoXf9BeYar8-ckdXfZxIhTCch~UkdiiuE0xqcCLSmbH-ZZr46cDNMt7UWgeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944086-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944083"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944083/Multi_input_variable_structure_controller_for_electronic_power_converters_implemented_by_neural_network_techniques"><img alt="Research paper thumbnail of Multi-input variable structure controller for electronic power converters implemented by neural network techniques" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Multi-input variable structure controller for electronic power converters implemented by neural network techniques</div><div class="wp-workCard_item"><span>Proceedings of PESC '95 - Power Electronics Specialist Conference</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944083"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944083"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944083; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944083]").text(description); $(".js-view-count[data-work-id=75944083]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944083; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944083']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944083]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944083,"title":"Multi-input variable structure controller for electronic power converters implemented by neural network techniques","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Proceedings of PESC '95 - Power Electronics Specialist Conference"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/75944083/Multi_input_variable_structure_controller_for_electronic_power_converters_implemented_by_neural_network_techniques","translated_internal_url":"","created_at":"2022-04-09T15:13:29.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multi_input_variable_structure_controller_for_electronic_power_converters_implemented_by_neural_network_techniques","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944083-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944081"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944081/Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology"><img alt="Research paper thumbnail of Design of a mobile telecardiology system using GPRS/GSM technology" class="work-thumbnail" src="https://attachments.academia-assets.com/83617264/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944081/Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology">Design of a mobile telecardiology system using GPRS/GSM technology</a></div><div class="wp-workCard_item"><span>Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the design and development of a portable electrocardiograph to allow the on-l...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the design and development of a portable electrocardiograph to allow the on-line remote monitoring and real-time cardiac diseases diagnostics of patients from the specialist. This prototype has been satisfactory implemented finding a good balance between optimal signal processing and power consumption using a GPRS/GSM modem and a SMT low voltage microprocessor board.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-75944081-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-75944081-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/50837843/figure-1-to-transmit-the-continuous-ecg-with-minimum-delay"><img alt="to transmit the continuous ECG with a minimum delay; the GSM voice channel to allow a doctor to establish a direct call and the Internet access to a database host center to monitor patient from an authorised European hospital, may become a complete cardiology network. The database system module saves the patient records along with their ECGs and other relative information including all the fields that requires at the appropriate format such as clinical treatment, symptoms, etc. This open database architecture can be used as a telemedicine gateway to other systems located at rural or isolated areas [5]. " class="figure-slide-image" src="https://figures.academia-assets.com/83617264/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/50837848/figure-2-block-diagram-of-pac-for-interfacing-timers-and"><img alt="Figure 2. A block diagram of PAC for interfacing, timers and multichannel 8-bit A/D converters. The Motorola MC68L11 is the low voltage version of the MC68HC11 microcontroller family. That implements the whole digital processing stage that includes heart rate detection, the IP protocol and link with the GPRS/GSM modem. As this GPRS/GSM modem includes a data and a voice channel for the direct communicatior between the patient and the cardiology specialist, microphone and a loudspeaker has been included. " class="figure-slide-image" src="https://figures.academia-assets.com/83617264/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/50837853/figure-3-on-line-electrocardiogram-monitoring-of-the-current"><img alt="Figure 3. A on-line electrocardiogram monitoring of the current cardiology devices. Thi: prototype can be used autonomously, with the moder GPRS/GSM equipment. The main target of the prototype consist of providing customers a teleassistance service with a 24 hours medical center. This system will also set up < novel collaborative environment to share data fo! continuity of care. The feedback information from the medical center has demonstrated that the algorithr implemented is well suited for the majority of patients. " class="figure-slide-image" src="https://figures.academia-assets.com/83617264/figure_003.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-75944081-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e71de47749c28bbb9396f8f6cba7bc52" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617264,"asset_id":75944081,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617264/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944081"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944081"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944081; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944081]").text(description); $(".js-view-count[data-work-id=75944081]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944081; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944081']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e71de47749c28bbb9396f8f6cba7bc52" } } $('.js-work-strip[data-work-id=75944081]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944081,"title":"Design of a mobile telecardiology system using GPRS/GSM technology","translated_title":"","metadata":{"grobid_abstract":"This paper presents the design and development of a portable electrocardiograph to allow the on-line remote monitoring and real-time cardiac diseases diagnostics of patients from the specialist. This prototype has been satisfactory implemented finding a good balance between optimal signal processing and power consumption using a GPRS/GSM modem and a SMT low voltage microprocessor board.","publication_name":"Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology","grobid_abstract_attachment_id":83617264},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944081/Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology","translated_internal_url":"","created_at":"2022-04-09T15:13:28.940-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617264/thumbnails/1.jpg","file_name":"Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf","download_url":"https://www.academia.edu/attachments/83617264/download_file","bulk_download_file_name":"Design_of_a_mobile_telecardiology_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617264/Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_a_mobile_telecardiology_system.pdf\u0026Expires=1743410722\u0026Signature=O1t2MF6kqf1gh~6loTSkL1zmKLFO1xGoG4PVR2oSagrQKPWjntsWgWbrJr4igamyeGUOkjG8HjOPG3YS~b6uWfOO43yiq5wuNT9WG-9pYt2fvBEDLGFMTzENhKltjt4Z7xSe2n8Csq5kjZtcejnJhCISlpL3KvkuncuR52iwIAm7WNeeSCxJ3H98NUHwET-Ge0R1JX49S-FnegPH3EUCbx2jeZ8vLSm0T5sAdNtLhuiSgzsdQJrpk~P75eGwXjDx8S0boOTUioTVfAr1jEGVDfiOVWc~Ors293lQ-CAyKEw5H4MoTDw9NB4~X47UjZp96G5RFATIVU0EV-b9XWVUbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_a_mobile_telecardiology_system_using_GPRS_GSM_technology","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":"This paper presents the design and development of a portable electrocardiograph to allow the on-line remote monitoring and real-time cardiac diseases diagnostics of patients from the specialist. This prototype has been satisfactory implemented finding a good balance between optimal signal processing and power consumption using a GPRS/GSM modem and a SMT low voltage microprocessor board.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617264/thumbnails/1.jpg","file_name":"Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf","download_url":"https://www.academia.edu/attachments/83617264/download_file","bulk_download_file_name":"Design_of_a_mobile_telecardiology_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617264/Design_of_a_mobile_telecardiology_system20220409-9064-w0lfg6.pdf?1738489526=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_a_mobile_telecardiology_system.pdf\u0026Expires=1743410722\u0026Signature=O1t2MF6kqf1gh~6loTSkL1zmKLFO1xGoG4PVR2oSagrQKPWjntsWgWbrJr4igamyeGUOkjG8HjOPG3YS~b6uWfOO43yiq5wuNT9WG-9pYt2fvBEDLGFMTzENhKltjt4Z7xSe2n8Csq5kjZtcejnJhCISlpL3KvkuncuR52iwIAm7WNeeSCxJ3H98NUHwET-Ge0R1JX49S-FnegPH3EUCbx2jeZ8vLSm0T5sAdNtLhuiSgzsdQJrpk~P75eGwXjDx8S0boOTUioTVfAr1jEGVDfiOVWc~Ors293lQ-CAyKEw5H4MoTDw9NB4~X47UjZp96G5RFATIVU0EV-b9XWVUbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":123710,"name":"Power Consumption","url":"https://www.academia.edu/Documents/in/Power_Consumption"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time"},{"id":413487,"name":"Design and Development","url":"https://www.academia.edu/Documents/in/Design_and_Development"},{"id":491368,"name":"Remote Monitoring","url":"https://www.academia.edu/Documents/in/Remote_Monitoring"},{"id":1309032,"name":"Cardiac Disease","url":"https://www.academia.edu/Documents/in/Cardiac_Disease"},{"id":1964942,"name":"Low voltage","url":"https://www.academia.edu/Documents/in/Low_voltage"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-75944081-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944078/Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network"><img alt="Research paper thumbnail of Health Care Applications Based on Mobile Phone Centric Smart Sensor Network" class="work-thumbnail" src="https://attachments.academia-assets.com/83617292/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944078/Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network">Health Care Applications Based on Mobile Phone Centric Smart Sensor Network</a></div><div class="wp-workCard_item"><span>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the MIMOSA architecture and development platform to create Ambient Intelligen...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities. I.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0209d9cc57f5dd940bf21c47c4fcca19" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617292,"asset_id":75944078,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617292/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944078]").text(description); $(".js-view-count[data-work-id=75944078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0209d9cc57f5dd940bf21c47c4fcca19" } } $('.js-work-strip[data-work-id=75944078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944078,"title":"Health Care Applications Based on Mobile Phone Centric Smart Sensor Network","translated_title":"","metadata":{"publisher":"IEEE","ai_title_tag":"MIMOSA: Mobile Sensor Networks for Healthcare","grobid_abstract":"This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities. I.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","grobid_abstract_attachment_id":83617292},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944078/Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network","translated_internal_url":"","created_at":"2022-04-09T15:13:28.798-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617292,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617292/thumbnails/1.jpg","file_name":"Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf","download_url":"https://www.academia.edu/attachments/83617292/download_file","bulk_download_file_name":"Health_Care_Applications_Based_on_Mobile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617292/Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf?1738489527=\u0026response-content-disposition=attachment%3B+filename%3DHealth_Care_Applications_Based_on_Mobile.pdf\u0026Expires=1743410722\u0026Signature=DiRU2COv9qZi6vcHLcxKsxQjnoL2Wk2EYL~6MRjp2M03-073yKmCOQtjqcauAmUl7BJRt1oZg1exD~f7LcSsDy2kFKmLNDjMVjL46tgtq6vmjNeGVDw8hE-3Awtwopf6Fs5S~~mbvNQZwWsW3ru5nlABHt~Um5MvE9dJxKT5-UagLXIWzn78VEHoY1xgHQ-8TzRujKWcXU1rsNsuQrPYbDJA3BQTxiZmS3kfjeu1K0kirkJ1HNzCsk8TnGYu1HigVLdUNponOlrgB9PyQsmupouywiu9WrA4U64o-qqNgWXf~ymdesKmHOPORqUmTaTc79OSwowCFnY0-b6gDdYdMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Health_Care_Applications_Based_on_Mobile_Phone_Centric_Smart_Sensor_Network","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities. I.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617292,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617292/thumbnails/1.jpg","file_name":"Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf","download_url":"https://www.academia.edu/attachments/83617292/download_file","bulk_download_file_name":"Health_Care_Applications_Based_on_Mobile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617292/Health_care_applications_based_on_mobile20220409-1617-e011gz.pdf?1738489527=\u0026response-content-disposition=attachment%3B+filename%3DHealth_Care_Applications_Based_on_Mobile.pdf\u0026Expires=1743410722\u0026Signature=DiRU2COv9qZi6vcHLcxKsxQjnoL2Wk2EYL~6MRjp2M03-073yKmCOQtjqcauAmUl7BJRt1oZg1exD~f7LcSsDy2kFKmLNDjMVjL46tgtq6vmjNeGVDw8hE-3Awtwopf6Fs5S~~mbvNQZwWsW3ru5nlABHt~Um5MvE9dJxKT5-UagLXIWzn78VEHoY1xgHQ-8TzRujKWcXU1rsNsuQrPYbDJA3BQTxiZmS3kfjeu1K0kirkJ1HNzCsk8TnGYu1HigVLdUNponOlrgB9PyQsmupouywiu9WrA4U64o-qqNgWXf~ymdesKmHOPORqUmTaTc79OSwowCFnY0-b6gDdYdMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":4441,"name":"Health Care","url":"https://www.academia.edu/Documents/in/Health_Care"},{"id":8202,"name":"Cell Phones","url":"https://www.academia.edu/Documents/in/Cell_Phones"},{"id":23324,"name":"Telemedicine","url":"https://www.academia.edu/Documents/in/Telemedicine"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":39433,"name":"Ambient Intelligence","url":"https://www.academia.edu/Documents/in/Ambient_Intelligence"},{"id":67357,"name":"Transducers","url":"https://www.academia.edu/Documents/in/Transducers"},{"id":75826,"name":"Europe","url":"https://www.academia.edu/Documents/in/Europe"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device"},{"id":217280,"name":"Mobile phone","url":"https://www.academia.edu/Documents/in/Mobile_phone"},{"id":228334,"name":"Low Power Consumption","url":"https://www.academia.edu/Documents/in/Low_Power_Consumption"},{"id":255094,"name":"Computer User Interface Design","url":"https://www.academia.edu/Documents/in/Computer_User_Interface_Design"},{"id":526193,"name":"Computer communication networks","url":"https://www.academia.edu/Documents/in/Computer_communication_networks"},{"id":581539,"name":"Ambulatory BP monitoring","url":"https://www.academia.edu/Documents/in/Ambulatory_BP_monitoring"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":1157424,"name":"Equipment Failure Analysis","url":"https://www.academia.edu/Documents/in/Equipment_Failure_Analysis"},{"id":2749012,"name":"Delivery of Health Care","url":"https://www.academia.edu/Documents/in/Delivery_of_Health_Care"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944078-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944076/On_line_continuous_weld_monitoring_using_neural_networks"><img alt="Research paper thumbnail of On-line continuous weld monitoring using neural networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">On-line continuous weld monitoring using neural networks</div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944076]").text(description); $(".js-view-count[data-work-id=75944076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944076,"title":"On-line continuous weld monitoring using neural networks","translated_title":"","metadata":{"abstract":"Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...","internal_url":"https://www.academia.edu/75944076/On_line_continuous_weld_monitoring_using_neural_networks","translated_internal_url":"","created_at":"2022-04-09T15:13:28.648-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_line_continuous_weld_monitoring_using_neural_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Page 1. On-Line Continuous Weld Monitoring Using Neural Networks Rafael L. Mills Jos@ M. Quero and Leopoldo G. Franquelo Dpto de Ingenierfa de Sistemas y Automs Escuela Superior de Ingenieros Avda. ... 1323 References 1. Hull, B., John, V.: Non-destructive testing. ...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":41009,"name":"Non Destructive Testing","url":"https://www.academia.edu/Documents/in/Non_Destructive_Testing"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944076-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944074"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75944074/Light_source_position_microsensor"><img alt="Research paper thumbnail of Light source position microsensor" class="work-thumbnail" src="https://attachments.academia-assets.com/83617257/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75944074/Light_source_position_microsensor">Light source position microsensor</a></div><div class="wp-workCard_item"><span>ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There exist industrial applications where an accurate estimation of a light source position is ne...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There exist industrial applications where an accurate estimation of a light source position is needed. That is the case of a heliostat, a device that projects sun light upon a focus hundreds of meters distant. In this paper a novel sensor design to generate an alignment sensor signal is presented. A detailed study of its response is included, showing that there exist several design parameters to achieve a desired accuracy. This sensor has been implemented using bipolar technology and chip to board bonding, and experimental results obtained in laboratory are given</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1e0f9e337e30c0bbf2bc8149305391f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83617257,"asset_id":75944074,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83617257/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944074"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944074"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944074; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944074]").text(description); $(".js-view-count[data-work-id=75944074]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944074; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944074']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1e0f9e337e30c0bbf2bc8149305391f6" } } $('.js-work-strip[data-work-id=75944074]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944074,"title":"Light source position microsensor","translated_title":"","metadata":{"grobid_abstract":"There exist industrial applications where an accurate estimation of a light source position is needed. That is the case of a heliostat, a device that projects sun light upon a focus hundreds of meters distant. In this paper a novel sensor design to generate an alignment sensor signal is presented. A detailed study of its response is included, showing that there exist several design parameters to achieve a desired accuracy. This sensor has been implemented using bipolar technology and chip to board bonding, and experimental results obtained in laboratory are given","publication_name":"ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196)","grobid_abstract_attachment_id":83617257},"translated_abstract":null,"internal_url":"https://www.academia.edu/75944074/Light_source_position_microsensor","translated_internal_url":"","created_at":"2022-04-09T15:13:28.502-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83617257,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617257/thumbnails/1.jpg","file_name":"00921394.pdf","download_url":"https://www.academia.edu/attachments/83617257/download_file","bulk_download_file_name":"Light_source_position_microsensor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617257/00921394-libre.pdf?1649542611=\u0026response-content-disposition=attachment%3B+filename%3DLight_source_position_microsensor.pdf\u0026Expires=1743319978\u0026Signature=LpLS88Oag~y4Y78tFf7g3cE320pfwd74FUz4XruFZcPIZvCAR9NHc5h~XGRdl4Eh7Vn~Fx~70spJpxMDQSAZHyyxaYwV8YxULcNpi7Gdr7AmaTHbgqc0Vjj~HxW~-~CGdFRoACHbuqAGCqJdfGU2SI7GicZHjOKov7VsG7EeR508GFW2zW4-7dUNIau1ObkzJesfqd04Y1bP3Sq11lUX78u88MxkM5htt27FbVSDXo9D9oNkmADCr93D5ZC1G8fKgsdhgTghvZxGLYm5iwJwcKXPXiT0p9Iflz6bElBdFBwwuSgRdEd60ktsE~ny84~sxP6L4hl-bjOoF-gT2tPmwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Light_source_position_microsensor","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"There exist industrial applications where an accurate estimation of a light source position is needed. That is the case of a heliostat, a device that projects sun light upon a focus hundreds of meters distant. In this paper a novel sensor design to generate an alignment sensor signal is presented. A detailed study of its response is included, showing that there exist several design parameters to achieve a desired accuracy. This sensor has been implemented using bipolar technology and chip to board bonding, and experimental results obtained in laboratory are given","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[{"id":83617257,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83617257/thumbnails/1.jpg","file_name":"00921394.pdf","download_url":"https://www.academia.edu/attachments/83617257/download_file","bulk_download_file_name":"Light_source_position_microsensor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83617257/00921394-libre.pdf?1649542611=\u0026response-content-disposition=attachment%3B+filename%3DLight_source_position_microsensor.pdf\u0026Expires=1743319978\u0026Signature=LpLS88Oag~y4Y78tFf7g3cE320pfwd74FUz4XruFZcPIZvCAR9NHc5h~XGRdl4Eh7Vn~Fx~70spJpxMDQSAZHyyxaYwV8YxULcNpi7Gdr7AmaTHbgqc0Vjj~HxW~-~CGdFRoACHbuqAGCqJdfGU2SI7GicZHjOKov7VsG7EeR508GFW2zW4-7dUNIau1ObkzJesfqd04Y1bP3Sq11lUX78u88MxkM5htt27FbVSDXo9D9oNkmADCr93D5ZC1G8fKgsdhgTghvZxGLYm5iwJwcKXPXiT0p9Iflz6bElBdFBwwuSgRdEd60ktsE~ny84~sxP6L4hl-bjOoF-gT2tPmwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"},{"id":245964,"name":"Industrial Application","url":"https://www.academia.edu/Documents/in/Industrial_Application"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944074-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944072"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944072/Towards_a_low_cost_production_of_monodispersed_microbubbles_using_PCB_MEMS_technology"><img alt="Research paper thumbnail of Towards a low-cost production of monodispersed microbubbles using PCB-MEMS technology" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Towards a low-cost production of monodispersed microbubbles using PCB-MEMS technology</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944072"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944072"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944072; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944072]").text(description); $(".js-view-count[data-work-id=75944072]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944072; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944072']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944072]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944072,"title":"Towards a low-cost production of monodispersed microbubbles using PCB-MEMS technology","translated_title":"","metadata":{"abstract":"ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":"ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique","internal_url":"https://www.academia.edu/75944072/Towards_a_low_cost_production_of_monodispersed_microbubbles_using_PCB_MEMS_technology","translated_internal_url":"","created_at":"2022-04-09T15:13:28.352-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_a_low_cost_production_of_monodispersed_microbubbles_using_PCB_MEMS_technology","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper describes the fabrication process of a three-dimensional flow focusing device using the PCB-MEMS technology to produce microbubbles with a controlled diameter. The proposed process involves the typical photolithographic steps used in Printed Circuit Board (PCB) fabrication and a low temperature bonding technique based on tin/lead alloy. The fabricated device can be considered as low-cost nebulizer thank to the materials and bonding technique used in the fabrication process. The experimental results provide a diameter of the produced microbubbles of 230 and 250 μm. These results fit the microbubble flow focusing theory that predicts 226.71 and 245.66 μ m. I. INTRODUCTION The fabrication of devices for applications that make use of the flow focusing technology is increasing continuously. These devices can generate microdroplets (1) and microbubbles (2), (3) with good control of the particle size. This technique","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944072-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944071"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944071/Pneumatic_impulsion_device_for_microfluidic_systems"><img alt="Research paper thumbnail of Pneumatic impulsion device for microfluidic systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pneumatic impulsion device for microfluidic systems</div><div class="wp-workCard_item"><span>Sensors and Actuators A: Physical</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Design, fabrication and characterization of a highly integrable fluid impulsion microdevice devel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944071"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944071"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944071; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944071]").text(description); $(".js-view-count[data-work-id=75944071]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944071; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944071']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944071]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944071,"title":"Pneumatic impulsion device for microfluidic systems","translated_title":"","metadata":{"abstract":"Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Sensors and Actuators A: Physical"},"translated_abstract":"Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is","internal_url":"https://www.academia.edu/75944071/Pneumatic_impulsion_device_for_microfluidic_systems","translated_internal_url":"","created_at":"2022-04-09T15:13:28.210-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pneumatic_impulsion_device_for_microfluidic_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Design, fabrication and characterization of a highly integrable fluid impulsion microdevice developed for microfluidic systems are presented in this paper. The device is composed by a chamber and a single-use microvalve that connects its output port to an external microfluidic circuit. Due to the in-plane structure, a high integration with microfluidic and electronic components can be achieved. The activation is","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":234162,"name":"Su","url":"https://www.academia.edu/Documents/in/Su"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944071-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944070"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944070/Fabrication_process_for_a_microfluidic_valve"><img alt="Research paper thumbnail of Fabrication process for a microfluidic valve" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Fabrication process for a microfluidic valve</div><div class="wp-workCard_item"><span>Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03.</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for su...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944070"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944070"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944070; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944070]").text(description); $(".js-view-count[data-work-id=75944070]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944070; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944070']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944070]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944070,"title":"Fabrication process for a microfluidic valve","translated_title":"","metadata":{"abstract":"ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.","publication_name":"Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03."},"translated_abstract":"ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.","internal_url":"https://www.academia.edu/75944070/Fabrication_process_for_a_microfluidic_valve","translated_internal_url":"","created_at":"2022-04-09T15:13:28.069-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fabrication_process_for_a_microfluidic_valve","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT In this paper, the necessity for a high pressure valve is discussed, and a design for such a valve that has been previously presented is described. This valve can be built using simple fabrication techniques available in microsystem foundries. Its fabrication process is also shown. Finally, a brief description of the expected behaviour of the valve is presented.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944070-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944069"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944069/Design_of_a_programmable_pressure_switch_suspended_gate_MOSFET"><img alt="Research paper thumbnail of Design of a programmable pressure switch suspended gate MOSFET" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Design of a programmable pressure switch suspended gate MOSFET</div><div class="wp-workCard_item"><span>Conference on Electron Devices, 2005 Spanish</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944069"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944069"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944069; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944069]").text(description); $(".js-view-count[data-work-id=75944069]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944069; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944069']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944069]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944069,"title":"Design of a programmable pressure switch suspended gate MOSFET","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IEEE","publication_name":"Conference on Electron Devices, 2005 Spanish"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/75944069/Design_of_a_programmable_pressure_switch_suspended_gate_MOSFET","translated_internal_url":"","created_at":"2022-04-09T15:13:27.916-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_of_a_programmable_pressure_switch_suspended_gate_MOSFET","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":160886,"name":"Silicon on Insulator","url":"https://www.academia.edu/Documents/in/Silicon_on_Insulator"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":315441,"name":"Etching","url":"https://www.academia.edu/Documents/in/Etching"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944069-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944068"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944068/Modeling_and_numerical_simulation_of_a_MEMS_pneumatic_valve"><img alt="Research paper thumbnail of Modeling and numerical simulation of a MEMS pneumatic valve" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Modeling and numerical simulation of a MEMS pneumatic valve</div><div class="wp-workCard_item"><span>Conference on Electron Devices, 2005 Spanish</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944068"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944068"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944068; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944068]").text(description); $(".js-view-count[data-work-id=75944068]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944068; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944068']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944068]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944068,"title":"Modeling and numerical simulation of a MEMS pneumatic valve","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IEEE","publication_name":"Conference on Electron Devices, 2005 Spanish"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/75944068/Modeling_and_numerical_simulation_of_a_MEMS_pneumatic_valve","translated_internal_url":"","created_at":"2022-04-09T15:13:27.772-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Modeling_and_numerical_simulation_of_a_MEMS_pneumatic_valve","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":49273,"name":"Finite Element Analysis","url":"https://www.academia.edu/Documents/in/Finite_Element_Analysis"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":291387,"name":"Mathematical Model","url":"https://www.academia.edu/Documents/in/Mathematical_Model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944068-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944067"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944067/Stochastic_Resonance_as_a_null_distortion_demodulation"><img alt="Research paper thumbnail of Stochastic Resonance as a null distortion demodulation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Stochastic Resonance as a null distortion demodulation</div><div class="wp-workCard_item"><span>2008 IEEE Instrumentation and Measurement Technology Conference</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944067"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944067"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944067; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944067]").text(description); $(".js-view-count[data-work-id=75944067]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944067; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944067']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944067]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944067,"title":"Stochastic Resonance as a null distortion demodulation","translated_title":"","metadata":{"abstract":"We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"2008 IEEE Instrumentation and Measurement Technology Conference"},"translated_abstract":"We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.","internal_url":"https://www.academia.edu/75944067/Stochastic_Resonance_as_a_null_distortion_demodulation","translated_internal_url":"","created_at":"2022-04-09T15:13:27.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stochastic_Resonance_as_a_null_distortion_demodulation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present an analogy between FM modulation and stochastic resonance and a stochastic resonance (SR) condition from that analysis. The SR is possible when there is no signal harmonic distortion at the FM demodulator output. The non-THD condition is experimentally demonstrated with an ad-hoc test bench and an algorithm, implemented as a virtual instrument, for SR tuning is also shown.","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":209974,"name":"Digital filtering","url":"https://www.academia.edu/Documents/in/Digital_filtering"},{"id":412076,"name":"Demodulation","url":"https://www.academia.edu/Documents/in/Demodulation"},{"id":417922,"name":"Tuning","url":"https://www.academia.edu/Documents/in/Tuning"},{"id":422164,"name":"Digital Filter Design","url":"https://www.academia.edu/Documents/in/Digital_Filter_Design"},{"id":472459,"name":"Stochastic Resonance","url":"https://www.academia.edu/Documents/in/Stochastic_Resonance"},{"id":555515,"name":"Harmonic distortion","url":"https://www.academia.edu/Documents/in/Harmonic_distortion"},{"id":780968,"name":"Noise Figure","url":"https://www.academia.edu/Documents/in/Noise_Figure"},{"id":838393,"name":"Digital Filters","url":"https://www.academia.edu/Documents/in/Digital_Filters"},{"id":991311,"name":"Signal to Noise Ratio","url":"https://www.academia.edu/Documents/in/Signal_to_Noise_Ratio"},{"id":1594011,"name":"Fm Modulation","url":"https://www.academia.edu/Documents/in/Fm_Modulation"},{"id":3007784,"name":"Digital filter","url":"https://www.academia.edu/Documents/in/Digital_filter"},{"id":3257072,"name":"Virtual Instrument","url":"https://www.academia.edu/Documents/in/Virtual_Instrument"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944067-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="75944066"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75944066/Tracking_system_for_solar_power_plants"><img alt="Research paper thumbnail of Tracking system for solar power plants" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Tracking system for solar power plants</div><div class="wp-workCard_item"><span>IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Traditionally solar trackers are open loop systems, where some algorithms are designed to imp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75944066"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75944066"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75944066; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75944066]").text(description); $(".js-view-count[data-work-id=75944066]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75944066; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75944066']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75944066]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75944066,"title":"Tracking system for solar power plants","translated_title":"","metadata":{"abstract":"... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics"},"translated_abstract":"... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...","internal_url":"https://www.academia.edu/75944066/Tracking_system_for_solar_power_plants","translated_internal_url":"","created_at":"2022-04-09T15:13:27.345-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":20044819,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tracking_system_for_solar_power_plants","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... Traditionally solar trackers are open loop systems, where some algorithms are designed to implement the sun track-ing [5]. The local position of the sun has to be determined from a set of equations [6] and accurate data of location. It leads ...","owner":{"id":20044819,"first_name":"Jose Manuel","middle_initials":null,"last_name":"Quero","page_name":"JoseManuelQuero","domain_name":"us","created_at":"2014-10-26T20:42:34.266-07:00","display_name":"Jose Manuel Quero","url":"https://us.academia.edu/JoseManuelQuero"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":35399,"name":"Control system","url":"https://www.academia.edu/Documents/in/Control_system"},{"id":106539,"name":"Photovoltaic Cell","url":"https://www.academia.edu/Documents/in/Photovoltaic_Cell"},{"id":1438204,"name":"Solar Power Plant","url":"https://www.academia.edu/Documents/in/Solar_Power_Plant"},{"id":1815859,"name":"Tracking system","url":"https://www.academia.edu/Documents/in/Tracking_system"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-75944066-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "d63faaec360c7cffefc0da9c6a2bd2617f70bc2294ac0fca3fece880d9571bcc", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="xxQNVg6RU63UjrpvCh9Tai1w6E75IlgCVOX-yHvgzpCq5lcZ6Sv0d32Bv3hvXebphqOHTOxFL1e94in83iw5zA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://us.academia.edu/JoseManuelQuero" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="ocGu4uG3rVSDiGDccnMqYJaCNnVAVZ1IHcpWtCzykErMM_StBg0KjiqHZcsXMZ_jPVFZd1Uy6h30zYGAiT5nFg" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>