CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 85 results for author: <span class="mathjax">Tiwari, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tiwari, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tiwari%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tiwari, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05266">arXiv:2408.05266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05266">pdf</a>, <a href="https://arxiv.org/format/2408.05266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Category Theory">math.CT</span> </div> </div> <p class="title is-5 mathjax"> Gapped Phases in (2+1)d with Non-Invertible Symmetries: Part I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajer%2C+D">Daniel Pajer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schafer-Nameki%2C+S">Sakura Schafer-Nameki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warman%2C+A">Alison Warman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingxiang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05266v2-abstract-short" style="display: inline;"> We use the Symmetry Topological Field Theory (SymTFT) to study and classify gapped phases in (2+1)d for a class of categorical symmetries, referred to as being of bosonic type. The SymTFTs for these symmetries are given by twisted and untwisted (3+1)d Dijkgraaf-Witten (DW) theories for finite groups G. A finite set of boundary conditions (BCs) of these DW theories is well-known: these simply invol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05266v2-abstract-full').style.display = 'inline'; document.getElementById('2408.05266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05266v2-abstract-full" style="display: none;"> We use the Symmetry Topological Field Theory (SymTFT) to study and classify gapped phases in (2+1)d for a class of categorical symmetries, referred to as being of bosonic type. The SymTFTs for these symmetries are given by twisted and untwisted (3+1)d Dijkgraaf-Witten (DW) theories for finite groups G. A finite set of boundary conditions (BCs) of these DW theories is well-known: these simply involve imposing Dirichlet and Neumann conditions on the (3+1)d gauge fields. We refer to these as minimal BCs. The key new observation here is that for each DW theory, there exists an infinite number of other BCs, that we call non-minimal BCs. These non-minimal BCs are all obtained by a &#39;theta construction&#39;, which involves stacking the Dirichlet BC with 3d TFTs having G 0-form symmetry, and gauging the diagonal G symmetry. On the one hand, using the non-minimal BCs as symmetry BCs gives rise to an infinite number of non-invertible symmetries having the same SymTFT, while on the other hand, using the non-minimal BCs as physical BCs in the sandwich construction gives rise to an infinite number of (2+1)d gapped phases for each such non-invertible symmetry. Our analysis is thoroughly exemplified for G = $\mathbb{Z_2}$ and more generally any finite abelian group, for which the resulting non-invertible symmetries and their gapped phases already reveal an immensely rich structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05266v2-abstract-full').style.display = 'none'; document.getElementById('2408.05266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">85 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11148">arXiv:2407.11148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11148">pdf</a>, <a href="https://arxiv.org/ps/2407.11148">ps</a>, <a href="https://arxiv.org/format/2407.11148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Fermi-liquid behavior of non-altermagnetic RuO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wenzel%2C+M">Maxim Wenzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uykur%2C+E">Ece Uykur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6%C3%9Fler%2C+S">Sahana R枚脽ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+M">Marcus Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Achyut Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">Martin Dressel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirlin%2C+A+A">Alexander A. Tsirlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11148v1-abstract-short" style="display: inline;"> Presence of magnetism in potentially altermagnetic RuO$_2$ has been a subject of intense debate. Using broadband infrared spectroscopy combined with density-functional band-structure calculations, we show that optical conductivity of RuO$_2$, the bulk probe of its electronic structure, is well described by the nonmagnetic model of this material. The sharp Pauli edge demonstrates the presence of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11148v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11148v1-abstract-full" style="display: none;"> Presence of magnetism in potentially altermagnetic RuO$_2$ has been a subject of intense debate. Using broadband infrared spectroscopy combined with density-functional band-structure calculations, we show that optical conductivity of RuO$_2$, the bulk probe of its electronic structure, is well described by the nonmagnetic model of this material. The sharp Pauli edge demonstrates the presence of a Dirac nodal line lying 45 meV below the Fermi level. Good match between the experimental and ab initio plasma frequencies underpins weakness of electronic correlations. The intraband part of the optical conductivity indicates Fermi-liquid behavior with two distinct scattering rates below 150 K. Fermi-liquid theory also accounts for the temperature-dependent magnetic susceptibility of RuO$_2$ and allows a consistent description of this material as paramagnetic metal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11148v1-abstract-full').style.display = 'none'; document.getElementById('2407.11148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text + Supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06088">arXiv:2406.06088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06088">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Stabilizing Solution-Substrate Interaction of Perovskite Ink on PEDOT:PSS for Scalable Blade Coated Narrow Bandgap Perovskite Solar Modules by Gas Quenching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+S">Severin Siegrist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pious%2C+J+K">Johnpaul K. Pious</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+H">Huagui Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kothandaraman%2C+R+K">Radha K. Kothandaraman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jincheng Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlnieska%2C+V">Vitor Vlnieska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A+N">Ayodhya N. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+F">Fan Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06088v1-abstract-short" style="display: inline;"> The development of scalable 1.25 eV mixed Pb-Sn perovskite solar modules by blade coating lags behind Pb-based perovskites due to limited understanding of solution-substrate interaction of the perovskite ink on PEDOT:PSS and subsequent gas quenching. To address this challenge, we systematically studied the wet film deposition and quenching process to better understand narrow bandgap perovskite fil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06088v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06088v1-abstract-full" style="display: none;"> The development of scalable 1.25 eV mixed Pb-Sn perovskite solar modules by blade coating lags behind Pb-based perovskites due to limited understanding of solution-substrate interaction of the perovskite ink on PEDOT:PSS and subsequent gas quenching. To address this challenge, we systematically studied the wet film deposition and quenching process to better understand narrow bandgap perovskite film formation on PEDOT:PSS. We found, the wetting of Pb-Sn perovskite ink on PEDOT:PSS is highly unstable over relevant coating time scales, causing the contact angles to decrease rapidly from 42掳 to 16掳 within seconds. This instability leads to localized irregularities in the wet film, resulting in uneven solvent extraction and inhomogeneous nuclei density. As a result, rough perovskite films with voids at the buried interface are obtained. To overcome this problem, we developed a quasi-static wetting process by reducing the blade coating speed, thereby stabilizing the wetting behavior of Pb-Sn perovskite precursor ink on PEDOT:PSS. This optimized process facilitates the deposition of high-quality, void-free Pb-Sn perovskite films with uniform thickness over 8 cm of coating length using moderate (1.4 bar) N2 quenching. We achieved 20 % efficient narrow bandgap perovskite solar cells and mini-modules with 15.8 % active area efficiency on 15.9 cm2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06088v1-abstract-full').style.display = 'none'; document.getElementById('2406.06088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09754">arXiv:2405.09754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09754">pdf</a>, <a href="https://arxiv.org/format/2405.09754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Fermionic Non-Invertible Symmetries in (1+1)d: Gapped and Gapless Phases, Transitions, and Symmetry TFTs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inamura%2C+K">Kansei Inamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09754v2-abstract-short" style="display: inline;"> We study fermionic non-invertible symmetries in (1+1)d, which are generalized global symmetries that mix fermion parity symmetry with other invertible and non-invertible internal symmetries. Such symmetries are described by fermionic fusion supercategories, which are fusion $蟺$-supercategories with a choice of fermion parity. The aim of this paper is to flesh out the categorical Landau paradigm fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09754v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09754v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09754v2-abstract-full" style="display: none;"> We study fermionic non-invertible symmetries in (1+1)d, which are generalized global symmetries that mix fermion parity symmetry with other invertible and non-invertible internal symmetries. Such symmetries are described by fermionic fusion supercategories, which are fusion $蟺$-supercategories with a choice of fermion parity. The aim of this paper is to flesh out the categorical Landau paradigm for fermionic symmetries. We use the formalism of Symmetry Topological Field Theory (SymTFT) to study possible gapped and gapless phases for such symmetries, along with possible deformations between these phases, which are organized into a Hasse phase diagram. The phases can be characterized in terms of sets of condensed, confined and deconfined generalized symmetry charges, reminiscent of notions familiar from superconductivity. Many of the gapless phases also serve as phase transitions between gapped phases. The associated fermionic conformal field theories (CFTs) can be obtained by performing generalized fermionic Kennedy-Tasaki (KT) transformations on bosonic CFTs describing simpler transitions. The fermionic non-invertible symmetries along with their charges and phases discussed here can be obtained from those of bosonic non-invertible symmetries via fermionization or Jordan-Wigner transformation, which is discussed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09754v2-abstract-full').style.display = 'none'; document.getElementById('2405.09754v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages; v2: references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05964">arXiv:2405.05964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05964">pdf</a>, <a href="https://arxiv.org/format/2405.05964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice Models for Phases and Transitions with Non-Invertible Symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bottini%2C+L+E">Lea E. Bottini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schafer-Nameki%2C+S">Sakura Schafer-Nameki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05964v3-abstract-short" style="display: inline;"> Non-invertible categorical symmetries have emerged as a powerful tool to uncover new beyond-Landau phases of matter, both gapped and gapless, along with second order phase transitions between them. The general theory of such phases in (1+1)d has been studied using the Symmetry Topological Field Theory (SymTFT), also known as topological holography. This has unearthed the infrared (IR) structure of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05964v3-abstract-full').style.display = 'inline'; document.getElementById('2405.05964v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05964v3-abstract-full" style="display: none;"> Non-invertible categorical symmetries have emerged as a powerful tool to uncover new beyond-Landau phases of matter, both gapped and gapless, along with second order phase transitions between them. The general theory of such phases in (1+1)d has been studied using the Symmetry Topological Field Theory (SymTFT), also known as topological holography. This has unearthed the infrared (IR) structure of these phases and transitions. In this paper, we describe how the SymTFT information can be converted into an ultraviolet (UV) anyonic chain lattice model realizing, in the IR limit, these phases and transitions. In many cases, the Hilbert space of the anyonic chain is tensor product decomposable and the model can be realized as a quantum spin-chain Hamiltonian. We also describe operators acting on the lattice models that are charged under non-invertible symmetries and act as order parameters for the phases and transitions. In order to fully describe the action of non-invertible symmetries, it is crucial to understand the symmetry twisted sectors of the lattice models, which we describe in detail. Throughout the paper, we illustrate the general concepts using the symmetry category $\mathsf{Rep}(S_3)$ formed by representations of the permutation group $S_3$, but our procedure can be applied to any fusion category symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05964v3-abstract-full').style.display = 'none'; document.getElementById('2405.05964v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">76 pages + appendices; v2: references added, v3: minor changes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05302">arXiv:2405.05302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05302">pdf</a>, <a href="https://arxiv.org/format/2405.05302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Illustrating the Categorical Landau Paradigm in Lattice Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bottini%2C+L+E">Lea E. Bottini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schafer-Nameki%2C+S">Sakura Schafer-Nameki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05302v2-abstract-short" style="display: inline;"> Recent years have seen the concept of global symmetry extended to non-invertible (or categorical) symmetries, for which composition of symmetry generators is not necessarily invertible. Such non-invertible symmetries lead to a generalization of the standard Landau paradigm. In this work we substantiate this framework by providing a (1+1)d lattice model, whose gapped phases and phase transitions ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05302v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05302v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05302v2-abstract-full" style="display: none;"> Recent years have seen the concept of global symmetry extended to non-invertible (or categorical) symmetries, for which composition of symmetry generators is not necessarily invertible. Such non-invertible symmetries lead to a generalization of the standard Landau paradigm. In this work we substantiate this framework by providing a (1+1)d lattice model, whose gapped phases and phase transitions can only be explained by symmetry breaking of non-invertible symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05302v2-abstract-full').style.display = 'none'; document.getElementById('2405.05302v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.5 pages + appendices, v2: references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02556">arXiv:2403.02556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.4c00656">10.1021/acs.chemmater.4c00656 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the EuCd_{2}As_{2} Semiconducting Band Gap via n-type La-Doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+R+A">Ryan A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+J">Jesaiah King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shuyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+A+J">Archibald J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Christopher Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasmal%2C+S">Souvik Sasmal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+I">I-Hsuan Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Aalok Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+N+R">Natalie R. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+C">Chuting Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+E">Emma Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolocan%2C+A">Andrei Dolocan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+R">Roland Kawakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heremans%2C+J+P">Joseph P. Heremans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katoch%2C+J">Jyoti Katoch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldberger%2C+J+E">Joshua E. Goldberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02556v1-abstract-short" style="display: inline;"> EuCd_{2}As_{2} has attracted considerable interest as one of the few magnetic Weyl semimetal candidate materials, although recently there have been emerging reports that claim it to have a semiconducting electronic structure. To resolve this debate, we established the growth of n-type EuCd_{2}As_{2} crystals, to directly visualize the nature of the conduction band using angle resolve photoemission&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02556v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02556v1-abstract-full" style="display: none;"> EuCd_{2}As_{2} has attracted considerable interest as one of the few magnetic Weyl semimetal candidate materials, although recently there have been emerging reports that claim it to have a semiconducting electronic structure. To resolve this debate, we established the growth of n-type EuCd_{2}As_{2} crystals, to directly visualize the nature of the conduction band using angle resolve photoemission spectroscopy (ARPES). We show that La-doping leads to n-type transport signatures in both the thermopower and Hall effect measurements, in crystals with doping levels at 2 - 6 x 10^{17} e^{-} cm^{-3}. Both p-type and n-type doped samples exhibit antiferromagnetic ordering at 9 K. ARPES experiments at 6 K clearly show the presence of the conduction band minimum at 0.8 eV above the valence band maximum, which is further corroborated by the observation of a 0.71 - 0.72 eV band gap in room temperature diffuse reflectance absorbance measurements. Together these findings unambiguously show that EuCd_{2}As_{2} is indeed a semiconductor with a substantial band gap and not a topological semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02556v1-abstract-full').style.display = 'none'; document.getElementById('2403.02556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07627">arXiv:2402.07627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07627">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the GeI2-Assisted Oriented Growth of Perovskite Crystallite for High-Performance Flexible Sn Perovskite Solar Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+H">Huagui Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olthof%2C+S">Selina Olthof</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+S">Shengqiang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kothandaraman%2C+R+K">Radha K. Kothandaraman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diethelm%2C+M">Matthias Diethelm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeangros%2C+Q">Quentin Jeangros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hany%2C+R">Roland Hany</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A+N">Ayodhya N. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+D">Dewei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+F">Fan Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07627v1-abstract-short" style="display: inline;"> Tin perovskites are emerging as promising alternatives to their lead-based counterparts for high-performance and flexible perovskite solar cells (PSCs). However, their rapid crystallization often leads to inadequate film quality and poor device performance. In this study, the role of GeI2 as an additive is investigated for controlling the nucleation and crystallization processes of formamidium tin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07627v1-abstract-full').style.display = 'inline'; document.getElementById('2402.07627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07627v1-abstract-full" style="display: none;"> Tin perovskites are emerging as promising alternatives to their lead-based counterparts for high-performance and flexible perovskite solar cells (PSCs). However, their rapid crystallization often leads to inadequate film quality and poor device performance. In this study, the role of GeI2 as an additive is investigated for controlling the nucleation and crystallization processes of formamidium tin triiodide (FASnI3). The findings reveal the preferential formation of a Ge-rich layer at the bottom of the perovskite film upon the introduction of GeI2. It is proposed that the initial formation of the Ge-complex acts as a crystallization regulator, promoting oriented growth of subsequent FASnI3 crystals and enhancing overall crystallinity. Through the incorporation of an optimal amount of GeI2, flexible Sn PSCs with an efficiency of 10.8% were achieved. Furthermore, it was observed that the GeI2 additive ensures a remarkable shelf-life for the devices, with the rigid cells retaining 91% of their initial performance after more than 13,800 hours of storage in an N2 gas environment. This study elucidates the mechanistic role of GeI2 in regulating the nucleation and crystallization process of tin perovskites, providing valuable insights into the significance of additive engineering for the development of high-performance flexible tin PSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07627v1-abstract-full').style.display = 'none'; document.getElementById('2402.07627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18115">arXiv:2310.18115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18115">pdf</a>, <a href="https://arxiv.org/ps/2310.18115">ps</a>, <a href="https://arxiv.org/format/2310.18115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0215647">10.1063/5.0215647 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-dependent generalized ellipsometry of the metal-insulator phase transition in low-symmetry charge-transfer salts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Achyut Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gompf%2C+B">Bruno Gompf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">Martin Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18115v2-abstract-short" style="display: inline;"> Determining the optical and electronic properties of strongly anisotropic materials with symmetries below orthorhombic remains challenging; generalized ellipsometry is a powerful technique in this regard. Here, we employ Mueller matrix spectroscopic and temperature-dependent ellipsometry to determine the frequency dependence of six components of the dielectric-function tensor of the two-dimensiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18115v2-abstract-full').style.display = 'inline'; document.getElementById('2310.18115v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18115v2-abstract-full" style="display: none;"> Determining the optical and electronic properties of strongly anisotropic materials with symmetries below orthorhombic remains challenging; generalized ellipsometry is a powerful technique in this regard. Here, we employ Mueller matrix spectroscopic and temperature-dependent ellipsometry to determine the frequency dependence of six components of the dielectric-function tensor of the two-dimensional charge-transfer salt $伪$-(BEDT-TTF)$_2$I$_3$ across its metal-insulator transition. Our results offer valuable insights into temperature-dependent changes of the components of the spectroscopic dielectric-function tensor across the metal-insulator transition. This advanced method allows extension to other electronic transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18115v2-abstract-full').style.display = 'none'; document.getElementById('2310.18115v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00743">arXiv:2308.00743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00743">pdf</a>, <a href="https://arxiv.org/format/2308.00743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.16.1.022">10.21468/SciPostPhys.16.1.022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lieb-Schultz-Mattis anomalies and web of dualities induced by gauging in quantum spin chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aksoy%2C+%C3%96+M">脰mer M. Aksoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mudry%2C+C">Christopher Mudry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Furusaki%2C+A">Akira Furusaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00743v2-abstract-short" style="display: inline;"> Lieb-Schultz-Mattis (LSM) theorems impose non-perturbative constraints on the zero-temperature phase diagrams of quantum lattice Hamiltonians (always assumed to be local in this paper). LSM theorems have recently been interpreted as the lattice counterparts to mixed &#39;t Hooft anomalies in quantum field theories that arise from a combination of crystalline and global internal symmetry groups. Accord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00743v2-abstract-full').style.display = 'inline'; document.getElementById('2308.00743v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00743v2-abstract-full" style="display: none;"> Lieb-Schultz-Mattis (LSM) theorems impose non-perturbative constraints on the zero-temperature phase diagrams of quantum lattice Hamiltonians (always assumed to be local in this paper). LSM theorems have recently been interpreted as the lattice counterparts to mixed &#39;t Hooft anomalies in quantum field theories that arise from a combination of crystalline and global internal symmetry groups. Accordingly, LSM theorems have been reinterpreted as LSM anomalies. In this work, we provide a systematic diagnostic for LSM anomalies in one spatial dimension. We show that gauging subgroups of the global internal symmetry group of a quantum lattice model obeying an LSM anomaly delivers a dual quantum lattice Hamiltonian such that its internal and crystalline symmetries mix non-trivially through a group extension. This mixing of crystalline and internal symmetries after gauging is a direct consequence of the LSM anomaly, i.e., it can be used as a diagnostic of an LSM anomaly. We exemplify this procedure for a quantum spin-1/2 chain obeying an LSM anomaly resulting from combining a global internal $\mathbb{Z}^{\,}_{2}\times\mathbb{Z}^{\,}_{2}$ symmetry with translation or reflection symmetry. We establish a triality of models by gauging a $\mathbb{Z}^{\,}_{2}\subset\mathbb{Z}^{\,}_{2}\times\mathbb{Z}^{\,}_{2}$ symmetry in two ways, one of which amounts to performing a Kramers-Wannier duality, while the other implements a Jordan-Wigner duality. We discuss the mapping of the phase diagram of the quantum spin-1/2 $XYZ$ chains under such a triality. We show that the deconfined quantum critical transitions between Neel and dimer orders are mapped to either topological or conventional Landau-Ginzburg transitions. Finally, we extend our results to $\mathbb{Z}^{\,}_{n}$ clock models and provide a reinterpretation of the dual internal symmetries in terms of $\mathbb{Z}^{\,}_{n}$ charge and dipole symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00743v2-abstract-full').style.display = 'none'; document.getElementById('2308.00743v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 16, 022 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01266">arXiv:2307.01266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01266">pdf</a>, <a href="https://arxiv.org/format/2307.01266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Symmetry fractionalization, mixed-anomalies and dualities in quantum spin models with generalized symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moradi%2C+H">Heidar Moradi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aksoy%2C+%C3%96+M">脰mer M. Aksoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardarson%2C+J+H">Jens H. Bardarson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01266v2-abstract-short" style="display: inline;"> We investigate the gauging of higher-form finite Abelian symmetries and their sub-groups in quantum spin models in spatial dimensions $d=2$ and 3. Doing so, we naturally uncover gauged models with dual higher-group symmetries and potential mixed &#39;t Hooft anomalies. We demonstrate that the mixed anomalies manifest as the symmetry fractionalization of higher-form symmetries participating in the mixe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01266v2-abstract-full').style.display = 'inline'; document.getElementById('2307.01266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01266v2-abstract-full" style="display: none;"> We investigate the gauging of higher-form finite Abelian symmetries and their sub-groups in quantum spin models in spatial dimensions $d=2$ and 3. Doing so, we naturally uncover gauged models with dual higher-group symmetries and potential mixed &#39;t Hooft anomalies. We demonstrate that the mixed anomalies manifest as the symmetry fractionalization of higher-form symmetries participating in the mixed anomaly. Gauging is realized as an isomorphism or duality between the bond algebras that generate the space of quantum spin models with the dual generalized symmetry structures. We explore the mapping of gapped phases under such gauging related dualities for 0-form and 1-form symmetries in spatial dimension $d=2$ and 3. In $d=2$, these include several non-trivial dualities between short-range entangled gapped phases with 0-form symmetries and 0-form symmetry enriched Higgs and (twisted) deconfined phases of the gauged theory with possible symmetry fractionalizations. Such dualities also imply strong constraints on several unconventional, i.e., deconfined or topological transitions. In $d=3$, among others, we find, dualities between topological orders via gauging of 1-form symmetries. Hamiltonians self-dual under gauging of 1-form symmetries host emergent non-invertible symmetries, realizing higher-categorical generalizations of the Tambara-Yamagami fusion category. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01266v2-abstract-full').style.display = 'none'; document.getElementById('2307.01266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">90 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16493">arXiv:2305.16493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16493">pdf</a>, <a href="https://arxiv.org/format/2305.16493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Origin of magnetic anisotropy in $La_{(1\-x)}Sr_{x}MnO_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+B">Birendra Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauhan%2C+H+C">Harish Chandr Chauhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baro%2C+A">Ajay Baro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saini%2C+J">Jyoti Saini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Ankita Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verma%2C+M">Mukesh Verma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bitla%2C+Y">Yugandhar Bitla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+S">Subhasis Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16493v1-abstract-short" style="display: inline;"> Here, we report the origin of magnetic anisotropy in Sr-doped infinite layer manganites $La_{(1\-x)}Sr_{x}MnO_{3}$ (0.125 \leq x \leq 0.400). Magnetic anisotropy is responsible for the large difference in the temperature dependence of field-cooled and zero-field-cooled magnetization. Translational symmetry breaking in the context of spins around the boundary between the ferromagnetic (FM) antiferr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16493v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16493v1-abstract-full" style="display: none;"> Here, we report the origin of magnetic anisotropy in Sr-doped infinite layer manganites $La_{(1\-x)}Sr_{x}MnO_{3}$ (0.125 \leq x \leq 0.400). Magnetic anisotropy is responsible for the large difference in the temperature dependence of field-cooled and zero-field-cooled magnetization. Translational symmetry breaking in the context of spins around the boundary between the ferromagnetic (FM) antiferromagnetic (AFM) region leads to FM-AFM interaction and results in magnetic anisotropy (exchange anisotropy). Here, we propose that FM-AFM interaction around the boundary between FM clusters or domains in the AFM background or between AFM clusters or domains in the ferromagnetic background is responsible for doping-dependent nonmonotonic behavior and the origin of magnetic anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16493v1-abstract-full').style.display = 'none'; document.getElementById('2305.16493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, and 7 supplementary pages(4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06421">arXiv:2302.06421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06421">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10853-023-08724-9">10.1007/s10853-023-08724-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium VLS-grown stable ST12-Ge thin film on Si substrate: A study on strain-induced band-engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+S">S. Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+B+N">B. Nag Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanungo%2C+S">S. Kanungo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rana%2C+N">N. Rana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chattopadhyay%2C+S">S. Chattopadhyay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06421v2-abstract-short" style="display: inline;"> The current work describes a novel method of growing thin films of stable crystalline ST12-Ge, a high pressure polymorph of Ge, on Si substrate by a non-equilibrium VLS-technique. The study explores the scheme of band engineering of ST12-Ge by inducing process-stress into it as a function of the growth temperature and film thickness. In the present work, ST12-Ge films are grown at 180 C - 250 C to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06421v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06421v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06421v2-abstract-full" style="display: none;"> The current work describes a novel method of growing thin films of stable crystalline ST12-Ge, a high pressure polymorph of Ge, on Si substrate by a non-equilibrium VLS-technique. The study explores the scheme of band engineering of ST12-Ge by inducing process-stress into it as a function of the growth temperature and film thickness. In the present work, ST12-Ge films are grown at 180 C - 250 C to obtain thicknesses of ~4.5-7.5 nm, which possess extremely good thermal stability up to a temperature of ~350 C. Micro-Raman study shows the stress induced in such ST12-Ge films to be compressive in nature and vary in the range of ~0.5-7.5 GPa. The measured direct band gap is observed to vary within 0.688 eV to 0.711 eV for such stresses, and four indirect band gaps are obtained to be 0.583 eV, 0.614-0.628 eV, 0.622-0.63 eV and 0.623-0.632 eV, accordingly. The corresponding band structures for unstrained and strained ST12-Ge are calculated by performing DFT simulation, which shows that a compressive stress transforms the fundamental band gap at M-G valley from indirect to direct one. Henceforth, the possible route of strain induced band engineering in ST12-Ge is explored by analyzing all the transitions in strained and unstrained band structures along with substantiation of the experimental results and theoretical calculations. The investigation shows that unstrained ST12-Ge is a natural n-type semiconductor which transforms into p-type upon incorporation of a compressive stress of ~5 GPa, with the in-plane electron effective mass components at M-G band edge to be ~0.09 me. Therefore, such band engineered ST12-Ge exhibits superior mobility along with its thermal stability and compatibility with Si, which can have potential applications to develop high-speed MOS devices for advanced CMOS technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06421v2-abstract-full').style.display = 'none'; document.getElementById('2302.06421v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04877">arXiv:2302.04877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04877">pdf</a>, <a href="https://arxiv.org/format/2302.04877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.205129">10.1103/PhysRevB.107.205129 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single monkey-saddle singularity of a Fermi surface and its instabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aksoy%2C+%C3%96+M">脰mer M. Aksoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandrasekaran%2C+A">Anirudh Chandrasekaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chamon%2C+C">Claudio Chamon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mudry%2C+C">Christopher Mudry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04877v2-abstract-short" style="display: inline;"> Fermi surfaces can undergo sharp transitions under smooth changes of parameters. Such transitions can have a topological character, as is the case when a higher-order singularity, one that requires cubic or higher-order terms to describe the electronic dispersion near the singularity, develops at the transition. When time-reversal and inversion symmetries are present, odd singularities can only ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04877v2-abstract-full').style.display = 'inline'; document.getElementById('2302.04877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04877v2-abstract-full" style="display: none;"> Fermi surfaces can undergo sharp transitions under smooth changes of parameters. Such transitions can have a topological character, as is the case when a higher-order singularity, one that requires cubic or higher-order terms to describe the electronic dispersion near the singularity, develops at the transition. When time-reversal and inversion symmetries are present, odd singularities can only appear in pairs within the Brillouin zone. In this case, the combination of the enhanced density of states that accompany these singularities and the nesting between the pairs of singularities leads to interaction driven instabilities. We present examples of single $n=3$ (monkey saddle) singularities when time-reversal and inversion symmetries are broken. We then turn to the question of what instabilities are possible when the singularities are isolated. For spinful electrons, we find that the inclusion of repulsive interactions destroys any isolated monkey-saddle singularity present in the noninteracting spectrum by developing Stoner or Lifshitz instabilities. In contrast, for spinless electrons and at the mean-field level, we show that an isolated monkey-saddle singularity can be stabilized in the presence of short-range repulsive interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04877v2-abstract-full').style.display = 'none'; document.getElementById('2302.04877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 205129 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01259">arXiv:2301.01259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01259">pdf</a>, <a href="https://arxiv.org/format/2301.01259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.16.4.110">10.21468/SciPostPhys.16.4.110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher categorical symmetries and gauging in two-dimensional spin systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Delcamp%2C+C">Clement Delcamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01259v2-abstract-short" style="display: inline;"> We present a framework to systematically investigate higher categorical symmetries in two-dimensional spin systems. Though exotic, such generalised symmetries have been shown to naturally arise as dual symmetries upon gauging invertible symmetries. Our framework relies on an approach to dualities whereby dual quantum lattice models only differ in a choice of module 2-category over some input fusio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01259v2-abstract-full').style.display = 'inline'; document.getElementById('2301.01259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01259v2-abstract-full" style="display: none;"> We present a framework to systematically investigate higher categorical symmetries in two-dimensional spin systems. Though exotic, such generalised symmetries have been shown to naturally arise as dual symmetries upon gauging invertible symmetries. Our framework relies on an approach to dualities whereby dual quantum lattice models only differ in a choice of module 2-category over some input fusion 2-category. Given an arbitrary two-dimensional spin system with an ordinary symmetry, we explain how to perform the (twisted) gauging of any of its sub-symmetries. We then demonstrate that the resulting model has a symmetry structure encoded into the Morita dual of the input fusion 2-category with respect to the corresponding module 2-category. We exemplify this approach by specialising to certain finite group generalisations of the transverse-field Ising model, for which we explicitly define lattice symmetry operators organised into fusion 2-categories of higher representations of higher groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01259v2-abstract-full').style.display = 'none'; document.getElementById('2301.01259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 16, 110 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06842">arXiv:2212.06842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06842">pdf</a>, <a href="https://arxiv.org/format/2212.06842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Category Theory">math.CT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.4.160">10.21468/SciPostPhys.15.4.160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Invertible Symmetry Webs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bottini%2C+L+E">Lea E. Bottini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schafer-Nameki%2C+S">Sakura Schafer-Nameki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06842v2-abstract-short" style="display: inline;"> Non-invertible symmetries have by now seen numerous constructions in higher dimensional Quantum Field Theories (QFT). In this paper we provide an in depth study of gauging 0-form symmetries in the presence of non-invertible symmetries. The starting point of our analysis is a theory with $G$ 0-form symmetry, and we propose a description of sequential partial gaugings of sub-symmetries. The gauging&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06842v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06842v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06842v2-abstract-full" style="display: none;"> Non-invertible symmetries have by now seen numerous constructions in higher dimensional Quantum Field Theories (QFT). In this paper we provide an in depth study of gauging 0-form symmetries in the presence of non-invertible symmetries. The starting point of our analysis is a theory with $G$ 0-form symmetry, and we propose a description of sequential partial gaugings of sub-symmetries. The gauging implements the theta-symmetry defects of the companion paper [1]. The resulting network of symmetry structures related by this gauging will be called a non-invertible symmetry web. Our formulation makes direct contact with fusion 2-categories, and we uncover numerous interesting structures such as symmetry fractionalization in this categorical setting. The complete symmetry web is derived for several groups $G$, and we propose extensions to higher dimensions. The highlight of this analysis is the complete categorical symmetry web, including non-invertible symmetries, for 3d pure gauge theories with orthogonal gauge groups and its extension to arbitrary dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06842v2-abstract-full').style.display = 'none'; document.getElementById('2212.06842v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 160 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06159">arXiv:2212.06159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06159">pdf</a>, <a href="https://arxiv.org/format/2212.06159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Category Theory">math.CT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.3.122">10.21468/SciPostPhys.15.3.122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unifying Constructions of Non-Invertible Symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schafer-Nameki%2C+S">Sakura Schafer-Nameki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06159v2-abstract-short" style="display: inline;"> In the past year several constructions of non-invertible symmetries in Quantum Field Theory in $d\geq 3$ have appeared. In this paper we provide a unified perspective on these constructions. Central to this framework are so-called theta defects, which generalize the notion of theta-angles, and allow the construction of universal and non-universal topological symmetry defects. We complement this ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06159v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06159v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06159v2-abstract-full" style="display: none;"> In the past year several constructions of non-invertible symmetries in Quantum Field Theory in $d\geq 3$ have appeared. In this paper we provide a unified perspective on these constructions. Central to this framework are so-called theta defects, which generalize the notion of theta-angles, and allow the construction of universal and non-universal topological symmetry defects. We complement this physical analysis by proposing a mathematical framework (based on higher-fusion categories) that converts the physical construction of non-invertible symmetries into a concrete computational scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06159v2-abstract-full').style.display = 'none'; document.getElementById('2212.06159v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 122 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13000">arXiv:2210.13000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13000">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pious%2C+J+K">Johnpaul K. Pious</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwirner%2C+Y">Yannick Zwirner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+H">Huagui Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olthof%2C+S">Selina Olthof</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeangros%2C+Q">Quentin Jeangros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilshtein%2C+E">Evgeniia Gilshtein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kothandaraman%2C+R+K">Radha K. Kothandaraman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Artuk%2C+K">Kerem Artuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wechsler%2C+P">Philipp Wechsler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolff%2C+C+M">Christian M. Wolff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+D">Dewei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A+N">Ayodhya. N. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+F">Fan Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13000v1-abstract-short" style="display: inline;"> Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of SnF2 additive and made structure-optoelectronic properties-flexi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13000v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13000v1-abstract-full" style="display: none;"> Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of SnF2 additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation. We observed the chemical transformation of SnF2 to a fluorinated oxy-phase on the Pb-Sn perovskite film surface, due to its rapid oxidation. In addition, at the buried perovskite interface, we detected and visualized the accumulation of F- ions. We found that the photoluminescence quantum yield of Pb-Sn perovskite reached the highest value with 10 mol% SnF2 in the precursor solution. When integrating the optimized absorber in flexible devices, we obtained the flexible Pb-Sn perovskite narrow bandgap (1.24 eV) solar cells with an efficiency of 18.5% and demonstrated 23.1%-efficient flexible 4-terminal all-perovskite tandem cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13000v1-abstract-full').style.display = 'none'; document.getElementById('2210.13000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10556">arXiv:2209.10556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10556">pdf</a>, <a href="https://arxiv.org/format/2209.10556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245145">10.1103/PhysRevB.107.245145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interacting topological quantum chemistry of Mott atomic limits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10556v2-abstract-short" style="display: inline;"> Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10556v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10556v2-abstract-full" style="display: none;"> Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respective crystal lattice, or it is topological. For interacting systems, there is no single-particle band structure and hence, the TQC machinery grinds to a halt. We develop a framework analogous to TQC, but employing $n$-particle Green&#39;s function to classify interacting systems. Fundamentally, we define a class of interacting reference states that generalize the notion of atomic limits, which we call Mott atomic limits, and are symmetry protected topological states. Our formalism allows to fully classify these reference states (with $n=2$), which can themselves represent symmetry protected topological states. We present a comprehensive classification of such states in one-dimension and provide numerical results on model systems. With this, we establish Mott atomic limit states as a generalization of the atomic limits to interacting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10556v2-abstract-full').style.display = 'none'; document.getElementById('2209.10556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10712">arXiv:2207.10712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10712">pdf</a>, <a href="https://arxiv.org/format/2207.10712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Topological Holography: Towards a Unification of Landau and Beyond-Landau Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moradi%2C+H">Heidar Moradi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moosavian%2C+S+F">Seyed Faroogh Moosavian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10712v2-abstract-short" style="display: inline;"> We outline a holographic framework that attempts to unify Landau and beyond-Landau paradigms of quantum phases and phase transitions. Leveraging a modern understanding of symmetries as topological defects/operators, the framework uses a topological order to organize the space of quantum systems with a global symmetry in one lower dimension. The global symmetry naturally serves as an input for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10712v2-abstract-full').style.display = 'inline'; document.getElementById('2207.10712v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10712v2-abstract-full" style="display: none;"> We outline a holographic framework that attempts to unify Landau and beyond-Landau paradigms of quantum phases and phase transitions. Leveraging a modern understanding of symmetries as topological defects/operators, the framework uses a topological order to organize the space of quantum systems with a global symmetry in one lower dimension. The global symmetry naturally serves as an input for the topological order. In particular, we holographically construct a String Operator Algebra (SOA) which is the building block of symmetric quantum systems with a given symmetry $G$ in one lower dimension. This exposes a vast web of dualities which act on the space of $G$-symmetric quantum systems. The SOA facilitates the classification of gapped phases as well as their corresponding order parameters and fundamental excitations, while dualities help to navigate and predict various corners of phase diagrams and analytically compute universality classes of phase transitions. A novelty of the approach is that it treats conventional Landau and unconventional topological phase transitions on an equal footing, thereby providing a holographic unification of these seemingly-disparate domains of understanding. We uncover a new feature of gapped phases and their multi-critical points, which we dub fusion structure, that encodes information about which phases and transitions can be dual to each other. Furthermore, we discover that self-dual systems typically posses emergent non-invertible, i.e., beyond group-like symmetries. We apply these ideas to $1+1d$ quantum spin chains with finite Abelian group symmetry, using topologically-ordered systems in $2+1d$. We predict the phase diagrams of various concrete spin models, and analytically compute the full conformal spectra of non-trivial quantum phase transitions, which we then verify numerically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10712v2-abstract-full').style.display = 'none'; document.getElementById('2207.10712v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: 95+appendices+references=149 pages; References added; Typos fixed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11287">arXiv:2206.11287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.11287">pdf</a>, <a href="https://arxiv.org/format/2206.11287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.14.5.108">10.21468/SciPostPhys.14.5.108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Marginal quenches and drives in Tomonaga-Luttinger liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Datta%2C+S">Shouvik Datta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moosavi%2C+P">Per Moosavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11287v3-abstract-short" style="display: inline;"> We study Tomonaga-Luttinger liquids thrown out of equilibrium by marginal deformations in the form of interaction modulations. This is modeled by quenching or periodically driving the Luttinger parameter or, equivalently, the compactification radius of the free boson conformal field theory between two different values. We obtain exact analytical results for the evolution of the Loschmidt echo and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11287v3-abstract-full').style.display = 'inline'; document.getElementById('2206.11287v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11287v3-abstract-full" style="display: none;"> We study Tomonaga-Luttinger liquids thrown out of equilibrium by marginal deformations in the form of interaction modulations. This is modeled by quenching or periodically driving the Luttinger parameter or, equivalently, the compactification radius of the free boson conformal field theory between two different values. We obtain exact analytical results for the evolution of the Loschmidt echo and observables such as the particle and energy densities. Starting from generic initial states, the quench dynamics are shown to exhibit revivals and temporal orthogonalities. For the periodic drive, we show stability or instability of time-evolved physical quantities dependent on the drive parameters. We also compare the corresponding marginally deformed thermal density matrices by non-perturbatively evaluating their R茅nyi divergence as a Euclidean quench. All the dynamics are shown to be crucially dependent on the ratio of the Luttinger parameters, which corresponds to the Zamolodchikov distance in the space of marginal deformations. Our setup is equivalently interpreted as the dynamics of the bosonic string upon instantaneous changes of the target-space radius. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11287v3-abstract-full').style.display = 'none'; document.getElementById('2206.11287v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, LaTeX, 12 figures; minor updates and typos corrected; final published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2022-085 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 14, 108 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02869">arXiv:2205.02869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02869">pdf</a>, <a href="https://arxiv.org/format/2205.02869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.13.5.104">10.21468/SciPostPhys.13.5.104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal and dissipative effects on the heating transition in a driven critical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choo%2C+K">Kenny Choo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhlenkamp%2C+C">Clemens Kuhlenkamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitra%2C+R">Ramasubramanian Chitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02869v2-abstract-short" style="display: inline;"> We study the dissipative dynamics of a periodically driven inhomogeneous critical lattice model in one dimension. The closed system dynamics starting from pure initial states is well-described by a driven Conformal Field Theory (CFT), which predicts the existence of both heating and non-heating phases in such systems. Heating is inhomogeneous and is manifested via the emergence of black-hole like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02869v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02869v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02869v2-abstract-full" style="display: none;"> We study the dissipative dynamics of a periodically driven inhomogeneous critical lattice model in one dimension. The closed system dynamics starting from pure initial states is well-described by a driven Conformal Field Theory (CFT), which predicts the existence of both heating and non-heating phases in such systems. Heating is inhomogeneous and is manifested via the emergence of black-hole like horizons in the system. The robustness of this CFT phenomenology when considering thermal initial states and open systems remains elusive. First, we present analytical results for the Floquet CFT time evolution for thermal initial states. Moreover, using exact calculations of the time evolution of the lattice density matrix, we demonstrate that for short and intermediate times, the closed system phase diagram comprising heating and non-heating phases, persists for thermal initial states on the lattice. Secondly, in the fully open system with boundary dissipators, we show that the nontrivial spatial structure of the heating phase survives particle-conserving and non-conserving dissipations through clear signatures in mutual information and energy density evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02869v2-abstract-full').style.display = 'none'; document.getElementById('2205.02869v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version 2: New figures, numerical computations and analytical computations from CFT</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 13, 104 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06564">arXiv:2204.06564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06564">pdf</a>, <a href="https://arxiv.org/format/2204.06564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Category Theory">math.CT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.14.1.007">10.21468/SciPostPhys.14.1.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Invertible Higher-Categorical Symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhardwaj%2C+L">Lakshya Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bottini%2C+L+E">Lea E. Bottini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schafer-Nameki%2C+S">Sakura Schafer-Nameki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06564v3-abstract-short" style="display: inline;"> We sketch a procedure to capture general non-invertible symmetries of a d-dimensional quantum field theory in the data of a higher-category, which captures the local properties of topological defects associated to the symmetries. We also discuss fusions of topological defects, which involve condensations/gaugings of higher-categorical symmetries localized on the worldvolumes of topological defects&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06564v3-abstract-full').style.display = 'inline'; document.getElementById('2204.06564v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06564v3-abstract-full" style="display: none;"> We sketch a procedure to capture general non-invertible symmetries of a d-dimensional quantum field theory in the data of a higher-category, which captures the local properties of topological defects associated to the symmetries. We also discuss fusions of topological defects, which involve condensations/gaugings of higher-categorical symmetries localized on the worldvolumes of topological defects. Recently some fusions of topological defects were discussed in the literature where the dimension of topological defects seems to jump under fusion. This is not possible in the standard description of higher-categories. We explain that the dimension-changing fusions are understood as higher-morphisms of the higher-category describing the symmetry. We also discuss how a 0-form sub-symmetry of a higher-categorical symmetry can be gauged and describe the higher-categorical symmetry of the theory obtained after gauging. This provides a procedure for constructing non-invertible higher-categorical symmetries starting from invertible higher-form or higher-group symmetries and gauging a 0-form symmetry. We illustrate this procedure by constructing non-invertible 2-categorical symmetries in 4d gauge theories and non-invertible 3-categorical symmetries in 5d and 6d theories. We check some of the results obtained using our approach against the results obtained using a recently proposed approach based on &#39;t Hooft anomalies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06564v3-abstract-full').style.display = 'none'; document.getElementById('2204.06564v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">104 pages. v2: Removed the distinction between local and global fusion to improve clarity. Added more details on the computation of fusion rules. v3: Minor improvements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 14, 007 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03361">arXiv:2203.03361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.03361">pdf</a>, <a href="https://arxiv.org/format/2203.03361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L060307">10.1103/PhysRevB.106.L060307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dephasing enhanced strong Majorana zero modes in 2D and 3D higher-order topological superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vasiloiu%2C+L+M">Loredana M. Vasiloiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardarson%2C+J+H">Jens H. Bardarson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03361v1-abstract-short" style="display: inline;"> The 1D Kitaev model in the topological phase, with open boundary conditions, hosts strong Majorana zero modes. These are fermion parity-odd operators that almost commute with the Hamiltonian and manifest in long coherence times for edge degrees of freedom. We obtain higher-dimensional counterparts of such Majorana operators by explicitly computing their closed form expressions in models describing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03361v1-abstract-full').style.display = 'inline'; document.getElementById('2203.03361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03361v1-abstract-full" style="display: none;"> The 1D Kitaev model in the topological phase, with open boundary conditions, hosts strong Majorana zero modes. These are fermion parity-odd operators that almost commute with the Hamiltonian and manifest in long coherence times for edge degrees of freedom. We obtain higher-dimensional counterparts of such Majorana operators by explicitly computing their closed form expressions in models describing 2D and 3D higher-order superconductors. Due to the existence of such strong Majorana zero modes, the coherence time of the infinite temperature autocorrelation function of the corner Majorana operators in these models diverges with the linear system size. In the presence of a certain class of orbital-selective dissipative dynamics, the coherence times of half of the corner Majorana operators is enhanced, while the time correlations corresponding to the remaining corner Majoranas decay much faster as compared with the unitary case. We numerically demonstrate robustness of the coherence times to the presence of disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03361v1-abstract-full').style.display = 'none'; document.getElementById('2203.03361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L060307 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01957">arXiv:2203.01957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01957">pdf</a>, <a href="https://arxiv.org/format/2203.01957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.125121">10.1103/PhysRevB.106.125121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous gapped boundaries between surface topological orders in higher-order topological insulators and superconductors with inversion symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming-Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parameswaran%2C+S+A">S. A. Parameswaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01957v2-abstract-short" style="display: inline;"> We show that the gapless boundary signatures - namely, chiral/helical hinge modes or localized zero modes - of three-dimensional higher-order topological insulators and superconductors with inversion symmetry can be gapped without symmetry breaking upon the introduction of non-Abelian surface topological order. In each case, the fractionalization pattern that appears on surface is `anomalous&#39; in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01957v2-abstract-full').style.display = 'inline'; document.getElementById('2203.01957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01957v2-abstract-full" style="display: none;"> We show that the gapless boundary signatures - namely, chiral/helical hinge modes or localized zero modes - of three-dimensional higher-order topological insulators and superconductors with inversion symmetry can be gapped without symmetry breaking upon the introduction of non-Abelian surface topological order. In each case, the fractionalization pattern that appears on surface is `anomalous&#39; in the sense that it can be made consistent with symmetry only on the surface of a three dimensional higher-order insulator/superconductor. Our results show that the interacting manifestation of higher-order topology is the appearance of `anomalous gapped boundaries&#39; between distinct topological orders whose quasiparticles are related by inversion, possibly in conjunction with other protecting symmetries such as TRS and charge conservation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01957v2-abstract-full').style.display = 'none'; document.getElementById('2203.01957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 125121 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05341">arXiv:2201.05341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05341">pdf</a>, <a href="https://arxiv.org/format/2201.05341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.L032026">10.1103/PhysRevResearch.4.L032026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian topology in monitored quantum circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fleckenstein%2C+C">Christoph Fleckenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zorzato%2C+A">Alberto Zorzato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varjas%2C+D">Daniel Varjas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergholtz%2C+E+J">Emil J. Bergholtz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardarson%2C+J+H">Jens H. Bardarson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05341v1-abstract-short" style="display: inline;"> We demonstrate that genuinely non-Hermitian topological phases and corresponding topological phase transitions can be naturally realized in monitored quantum circuits, exemplified by the paradigmatic non-Hermitian Su-Schrieffer-Heeger model. We emulate this model by a 1D chain of spinless electrons evolving under unitary dynamics and subject to periodic measurements that are stochastically invoked&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05341v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05341v1-abstract-full" style="display: none;"> We demonstrate that genuinely non-Hermitian topological phases and corresponding topological phase transitions can be naturally realized in monitored quantum circuits, exemplified by the paradigmatic non-Hermitian Su-Schrieffer-Heeger model. We emulate this model by a 1D chain of spinless electrons evolving under unitary dynamics and subject to periodic measurements that are stochastically invoked. The non-Hermitian topology is visible in topological invariants adapted to the context of monitored circuits. For instance, the topological phase diagram of the monitored realization of the non-Hermitian Su-Schrieffer-Heeger model is obtained from the biorthogonal polarization computed from an effective Hamiltonian of the monitored system. Importantly, our monitored circuit realization allows direct access to steady state biorthogonal expectation values of generic observables, and hence, to measure physical properties of a genuine non-Hermitian model. We expect our results to be applicable more generally to a wide range of models that host non-Hermitian topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05341v1-abstract-full').style.display = 'none'; document.getElementById('2201.05341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, L032026 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10776">arXiv:2110.10776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10776">pdf</a>, <a href="https://arxiv.org/format/2110.10776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Air, helium and water leakage in rubber O-ring seals with application to syringes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huon%2C+C">C. Huon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotella%2C+C">C. Rotella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangiagalli%2C+P">P. Mangiagalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10776v1-abstract-short" style="display: inline;"> We study the leakage of fluids (liquids or gases) in syringes with glass barrel, steel plunger and rubber O-ring stopper. The leakrate depends on the interfacial surface roughness and on the viscoelastic properties of the rubber. Random surface roughness is produced by sandblasting the rubber O-rings. We present a very simple theory for gas flow which takes into account both the diffusive and ball&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10776v1-abstract-full').style.display = 'inline'; document.getElementById('2110.10776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10776v1-abstract-full" style="display: none;"> We study the leakage of fluids (liquids or gases) in syringes with glass barrel, steel plunger and rubber O-ring stopper. The leakrate depends on the interfacial surface roughness and on the viscoelastic properties of the rubber. Random surface roughness is produced by sandblasting the rubber O-rings. We present a very simple theory for gas flow which takes into account both the diffusive and ballistic flow. The theory shows that the interfacial fluid flow (leakage) channels are so narrow that the gas flow is mainly ballistic (the so called Knudsen limit). We compare the leakrate obtained using air and helium. For barrels filled with water we observe no leakage even if leakage occurs for gases. We interpret this as resulting from capillary (Laplace pressure or surface energy) effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10776v1-abstract-full').style.display = 'none'; document.getElementById('2110.10776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13794">arXiv:2108.13794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13794">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D1TA07579A">10.1039/D1TA07579A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triple-cation perovskite solar cells fabricated by hybrid PVD/blade coating process using green solvents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+S">Severin Siegrist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shih-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilshtein%2C+E">Evgeniia Gilshtein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoxiao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A+N">Ayodhya N. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+F">Fan Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13794v1-abstract-short" style="display: inline;"> The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the remaining challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates. However, each of these methods have individual drawbacks, limiting the successful commercialization of perovskite pho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13794v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13794v1-abstract-full" style="display: none;"> The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the remaining challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates. However, each of these methods have individual drawbacks, limiting the successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates. This two-step process does not use toxic solvents, and it further allows facile implementation of passivation strategies and additives. We fabricated PSCs based on this process and used blade coating to deposit both charge transporting layers (SnO2 and Spiro-OMeTAD) without hazardous solvents in ambient air. The fabricated PSCs have yielded open-circuit voltage up to 1.16 V and power conversion efficiency of 18.7 % with good uniformity on 5 cm x 5 cm substrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13794v1-abstract-full').style.display = 'none'; document.getElementById('2108.13794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02063">arXiv:2108.02063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.02063">pdf</a>, <a href="https://arxiv.org/ps/2108.02063">ps</a>, <a href="https://arxiv.org/format/2108.02063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Air leakage in seals with application to syringes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez%2C+N">N. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02063v1-abstract-short" style="display: inline;"> We study the leakage of air in syringes with Teflon coated rubber stopper and glass barrel. The leakrate depends on the interfacial surface roughness, the viscoelastic properties of the rubber and on the elastoplastic properties of the Teflon coating. The measured leakage rates are compared to the predictions of a simple theory for gas flow, which takes into account both the diffusive and ballisti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02063v1-abstract-full').style.display = 'inline'; document.getElementById('2108.02063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02063v1-abstract-full" style="display: none;"> We study the leakage of air in syringes with Teflon coated rubber stopper and glass barrel. The leakrate depends on the interfacial surface roughness, the viscoelastic properties of the rubber and on the elastoplastic properties of the Teflon coating. The measured leakage rates are compared to the predictions of a simple theory for gas flow, which takes into account both the diffusive and ballistic air flow, and the elastoplastic multiscale contact mechanics which determines the probability distribution of interfacial separations. The theory shows that the interfacial air flow (leakage) channels are so narrow that the gas flow is mainly ballistic (the so called Knudsen limit). The implications for container closure integrity is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02063v1-abstract-full').style.display = 'none'; document.getElementById('2108.02063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09690">arXiv:2107.09690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.09690">pdf</a>, <a href="https://arxiv.org/format/2107.09690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.13.4.098">10.21468/SciPostPhys.13.4.098 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hilbert space fragmentation in a 2D quantum spin system with subsystem symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khudorozhkov%2C+A">Alexey Khudorozhkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chamon%2C+C">Claudio Chamon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09690v4-abstract-short" style="display: inline;"> We consider a 2D quantum spin model with ring-exchange interaction that has subsystem symmetries associated to conserved magnetization along rows and columns of a square lattice, which implies the conservation of the global dipole moment. In a certain regime, the model is non-integrable, but violates the eigenstate thermalization hypothesis through an extensive Hilbert space fragmentation, includi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09690v4-abstract-full').style.display = 'inline'; document.getElementById('2107.09690v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09690v4-abstract-full" style="display: none;"> We consider a 2D quantum spin model with ring-exchange interaction that has subsystem symmetries associated to conserved magnetization along rows and columns of a square lattice, which implies the conservation of the global dipole moment. In a certain regime, the model is non-integrable, but violates the eigenstate thermalization hypothesis through an extensive Hilbert space fragmentation, including an exponential number of inert subsectors with trivial dynamics, arising from kinetic constraints. While subsystem symmetries are quite restrictive for the dynamics, we show that they alone cannot account for such a number of inert states, even with infinite-range interactions. We present a procedure for constructing shielding structures that can separate and disentangle dynamically active regions from each other. Notably, subsystem symmetries allow the thickness of the shields to be dependent only on the interaction range rather than on the size of the active regions, unlike in the case of generic dipole-conserving systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09690v4-abstract-full').style.display = 'none'; document.getElementById('2107.09690v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 25 figures, Submission to SciPost</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 13, 098 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07465">arXiv:2103.07465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-22343-5">10.1038/s41467-021-22343-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant $c$-axis nonlinear anomalous Hall effect in T$_d$-MoTe$_2$ and WTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Archana Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangchu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+S">Shazhou Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drueke%2C+E">Elizabeth Drueke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koo%2C+J">Jahyun Koo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaczmarek%2C+A">Austin Kaczmarek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jingjing Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xuan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsen%2C+A+W">Adam W. Tsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07465v1-abstract-short" style="display: inline;"> While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvatu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07465v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07465v1-abstract-full" style="display: none;"> While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large $c$-axis nonlinear anomalous Hall effect in the non-centrosymmetric T$_d$ phase of MoTe$_2$ and WTe$_2$ without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of $E_\perp /E_\parallel$=2.47 and corresponding anomalous Hall conductivity of order 8x10$^7$S/m. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07465v1-abstract-full').style.display = 'none'; document.getElementById('2103.07465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 12, 2049 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05010">arXiv:2103.05010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05010">pdf</a>, <a href="https://arxiv.org/format/2103.05010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.12.2.053">10.21468/SciPostPhys.12.2.053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-order topological superconductors from Weyl semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jahin%2C+A">Ammar Jahin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05010v1-abstract-short" style="display: inline;"> We propose that doped Weyl semimetals with four Weyl points are natural candidates to realize higher-order topological superconductors, which exhibit a fully gapped bulk while the surface hosts robust gapless chiral hinge states. We show that in such a doped Weyl semimetal, a featureless finite-range attractive interaction favors a $p+ip$ pairing symmetry. By analyzing its topological properties,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05010v1-abstract-full').style.display = 'inline'; document.getElementById('2103.05010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05010v1-abstract-full" style="display: none;"> We propose that doped Weyl semimetals with four Weyl points are natural candidates to realize higher-order topological superconductors, which exhibit a fully gapped bulk while the surface hosts robust gapless chiral hinge states. We show that in such a doped Weyl semimetal, a featureless finite-range attractive interaction favors a $p+ip$ pairing symmetry. By analyzing its topological properties, we identify such a chiral pairing state as a higher-order topological superconductor, which depending on the existence of a four-fold roto-inversion symmetry $\mathsf{R}_{4z}$, is either intrinsic (meaning that the corresponding hinge states can only be removed by closing the bulk gap, rather than modifying the surface states) or extrinsic. We achieve this understanding via various methods recently developed for higher-order topology, including Wannier representability, Wannier spectrum, and defect classification approaches. For the $\mathsf{R}_{4z}$ symmetric case, we provide a complete classification of the higher-order topological superconductors. We show that such second-order topological superconductors exhibit chiral hinge modes that are robust in the absence of interaction effects but can be eliminated at the cost of introducing surface topological order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05010v1-abstract-full').style.display = 'none'; document.getElementById('2103.05010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 12, 053 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.08389">arXiv:2102.08389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.08389">pdf</a>, <a href="https://arxiv.org/format/2102.08389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.075146">10.1103/PhysRevB.104.075146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lieb-Schultz-Mattis type theorems for Majorana models with discrete symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aksoy%2C+%C3%96+M">脰mer M. Aksoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mudry%2C+C">Christopher Mudry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.08389v2-abstract-short" style="display: inline;"> We prove two Lieb-Schultz-Mattis type theorems that apply to any translationally invariant and local fermionic $d$-dimensional lattice Hamiltonian for which fermion-number conservation is broken down to the conservation of fermion parity. We show that when the internal symmetry group $G^{\,}_{f}$ is realized locally (in a repeat unit cell of the lattice) by a nontrivial projective representation,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08389v2-abstract-full').style.display = 'inline'; document.getElementById('2102.08389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.08389v2-abstract-full" style="display: none;"> We prove two Lieb-Schultz-Mattis type theorems that apply to any translationally invariant and local fermionic $d$-dimensional lattice Hamiltonian for which fermion-number conservation is broken down to the conservation of fermion parity. We show that when the internal symmetry group $G^{\,}_{f}$ is realized locally (in a repeat unit cell of the lattice) by a nontrivial projective representation, then the ground state cannot be simultaneously nondegenerate, symmetric (with respect to lattice translations and $G^{\,}_{f}$), and gapped. We also show that when the repeat unit cell hosts an odd number of Majorana degrees of freedom and the cardinality of the lattice is even, then the ground state cannot be simultaneously nondegenerate, gapped, and translation symmetric. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08389v2-abstract-full').style.display = 'none'; document.getElementById('2102.08389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">51 pages with 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 075146 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08787">arXiv:2101.08787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08787">pdf</a>, <a href="https://arxiv.org/format/2101.08787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.041021">10.1103/PhysRevX.11.041021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken-Symmetry Ground States of the Heisenberg model on the Pyrochlore Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choo%2C+K">Kenny Choo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carleo%2C+G">Giuseppe Carleo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08787v2-abstract-short" style="display: inline;"> The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-neighbor antiferromagnetic interactions are present. Here, we contest this hypothesis with an extensive numerical investigation using both exact d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08787v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08787v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08787v2-abstract-full" style="display: none;"> The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-neighbor antiferromagnetic interactions are present. Here, we contest this hypothesis with an extensive numerical investigation using both exact diagonalization and complementary variational techniques. Specifically, we employ a RVB-like many-variable Monte Carlo ansatz and convolutional neural network quantum states for (variational) calculations with up to $4\times 4^3$ and $4 \times 3^3$ spins, respectively. We demonstrate that these techniques yield consistent results, allowing for reliable extrapolations to the thermodynamic limit. Our main results are (1) the determination of the phase transition between the putative spin-liquid phase and the neighboring magnetically ordered phase and (2) a careful characterization of the ground state in terms of symmetry-breaking tendencies. We find clear indications of spontaneously broken inversion and rotational symmetry, calling the scenario of a featureless quantum spin-liquid into question. Our work showcases how many-variable variational techniques can be used to make progress in answering challenging questions about three-dimensional frustrated quantum magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08787v2-abstract-full').style.display = 'none'; document.getElementById('2101.08787v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 041021 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04135">arXiv:2101.04135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.04135">pdf</a>, <a href="https://arxiv.org/format/2101.04135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.195125">10.1103/PhysRevB.104.195125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a Topological Quantum Chemistry description of correlated systems: the case of the Hubbard diamond chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lessnich%2C+D">Dominik Lessnich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertz%2C+T">Thomas Mertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+F">Francesco Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">Stephen M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04135v1-abstract-short" style="display: inline;"> The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While this formalism filled the gap between the mathematical classification and the practical diagnosis of topological materials, an obvious limitation is t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04135v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04135v1-abstract-full" style="display: none;"> The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While this formalism filled the gap between the mathematical classification and the practical diagnosis of topological materials, an obvious limitation is that it only applies to weakly interacting systems-which can be described within band theory. It is an open question to which extent this formalism can be generalized to correlated systems that can exhibit symmetry protected topological phases which are not adiabatically connected to any band insulator. In this work we address the many facettes of this question by considering the specific example of a Hubbard diamond chain. This model features a Mott insulator, a trivial insulating phase and an obstructed atomic limit phase. Here we discuss the nature of the Mott insulator and determine the phase diagram and topology of the interacting model with infinite density matrix renormalization group calculations, variational Monte Carlo simulations and with many-body topological invariants. We then proceed by considering a generalization of the TQC formalism to Green&#39;s functions combined with the concept of topological Hamiltonian to identify the topological nature of the phases, using cluster perturbation theory to calculate the Green&#39;s functions. The results are benchmarked with the above determined phase diagram and we discuss the applicability and limitations of the approach and its possible extensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04135v1-abstract-full').style.display = 'none'; document.getElementById('2101.04135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06483">arXiv:2011.06483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06483">pdf</a>, <a href="https://arxiv.org/ps/2011.06483">ps</a>, <a href="https://arxiv.org/format/2011.06483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Rubber adhesion and friction: role of surface energy and contamination films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tolpekina%2C+T">T. Tolpekina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Benthem%2C+H">Hans van Benthem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gunnewiek%2C+M+K">M. K. Gunnewiek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06483v1-abstract-short" style="display: inline;"> We study the influence of the surface energy and contamination films on rubber adhesion and sliding friction. We find that there is a transfer of molecules from the rubber to the substrate which reduces the work of adhesion and makes the rubber friction insensitive to the substrate surface energy. We show that there is no simple relation between adhesion and friction: adhesion is due to (vertical)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06483v1-abstract-full').style.display = 'inline'; document.getElementById('2011.06483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06483v1-abstract-full" style="display: none;"> We study the influence of the surface energy and contamination films on rubber adhesion and sliding friction. We find that there is a transfer of molecules from the rubber to the substrate which reduces the work of adhesion and makes the rubber friction insensitive to the substrate surface energy. We show that there is no simple relation between adhesion and friction: adhesion is due to (vertical) detachment processes at the edge of the contact regions (opening crack propagation), while friction in many cases is determined mainly by (tangential) stick-slip instabilities of nanosized regions, within the whole sliding contact. Thus while the pull-off force in fluids may be strongly reduced (due to a reduction of the work of adhesion), the sliding friction may be only slightly affected as the area of real contact may be dry, and the frictional shear stress in the contact area nearly unaffected by the fluid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06483v1-abstract-full').style.display = 'none'; document.getElementById('2011.06483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05390">arXiv:2008.05390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05390">pdf</a>, <a href="https://arxiv.org/format/2008.05390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.076602">10.1103/PhysRevLett.126.076602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional transverse transport above and below the magnetic transition temperature in Weyl semimetal EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Y. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+L">L. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J+Z">J. Z. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C+J">C. J. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S+M">S. M. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirkin%2C+S+S">S. S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">T. Shang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05390v2-abstract-short" style="display: inline;"> As exemplified by the growing interest in the quantum anomalous Hall effect, the research on topology as an organizing principle of quantum matter is greatly enriched from the interplay with magnetism. In this vein, we present a combined electrical and thermoelectrical transport study on the magnetic Weyl semimetal EuCd$_2$As$_2$. Unconventional contribution to the anomalous Hall and anomalous Ner&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05390v2-abstract-full').style.display = 'inline'; document.getElementById('2008.05390v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05390v2-abstract-full" style="display: none;"> As exemplified by the growing interest in the quantum anomalous Hall effect, the research on topology as an organizing principle of quantum matter is greatly enriched from the interplay with magnetism. In this vein, we present a combined electrical and thermoelectrical transport study on the magnetic Weyl semimetal EuCd$_2$As$_2$. Unconventional contribution to the anomalous Hall and anomalous Nernst effects were observed both above and below the magnetic transition temperature of EuCd$_2$As$_2$, indicating the existence of significant Berry curvature. EuCd$_2$As$_2$ represents a rare case in which this unconventional transverse transport emerges both above and below the magnetic transition temperature in the same material. The transport properties evolve with temperature and field in the antiferromagnetic phase in a different manner than in the paramagnetic phase, suggesting different mechanisms to their origin. Our results indicate EuCd$_2$As$_2$ is a fertile playground for investigating the interplay between magnetism and topology, and potentially a plethora of topologically nontrivial phases rooted in this interplay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05390v2-abstract-full').style.display = 'none'; document.getElementById('2008.05390v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 076602 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14793">arXiv:2007.14793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14793">pdf</a>, <a href="https://arxiv.org/ps/2007.14793">ps</a>, <a href="https://arxiv.org/format/2007.14793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Cylinder-flat contact mechanics with surface roughness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14793v1-abstract-short" style="display: inline;"> We study the nominal (ensemble averaged) contact pressure $p(x)$ acting on a cylinder squeezed in contact with an elastic half-space with random surface roughness. The contact pressure is Hertzian-like for $伪&lt; 0.01$ and Gaussian-like for $伪&gt; 10$, where the dimensionless parameter $伪= h_{\rm rms}/未$ is the ratio between the root-mean-square roughness amplitude and the penetration for the smooth sur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14793v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14793v1-abstract-full" style="display: none;"> We study the nominal (ensemble averaged) contact pressure $p(x)$ acting on a cylinder squeezed in contact with an elastic half-space with random surface roughness. The contact pressure is Hertzian-like for $伪&lt; 0.01$ and Gaussian-like for $伪&gt; 10$, where the dimensionless parameter $伪= h_{\rm rms}/未$ is the ratio between the root-mean-square roughness amplitude and the penetration for the smooth surfaces case (Hertz contact). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14793v1-abstract-full').style.display = 'none'; document.getElementById('2007.14793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures. arXiv admin note: text overlap with arXiv:2007.13576</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13576">arXiv:2007.13576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13576">pdf</a>, <a href="https://arxiv.org/format/2007.13576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fluid leakage in metallic seals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+F+J">F. J. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitz%2C+K">K. Schmitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13576v1-abstract-short" style="display: inline;"> Metallic seals are crucial machine elements in many important applications, e.g., in ultrahigh vacuum systems. Due to the high elastic modulus of metals, and the surface roughness which exists on all solid surfaces, if no plastic deformation would occur one expects in most cases large fluid flow channels between the contacting metallic bodies, and large fluid leakage. However, in most applications&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13576v1-abstract-full').style.display = 'inline'; document.getElementById('2007.13576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13576v1-abstract-full" style="display: none;"> Metallic seals are crucial machine elements in many important applications, e.g., in ultrahigh vacuum systems. Due to the high elastic modulus of metals, and the surface roughness which exists on all solid surfaces, if no plastic deformation would occur one expects in most cases large fluid flow channels between the contacting metallic bodies, and large fluid leakage. However, in most applications plastic deformation occurs, at least at the asperity level, which allows the surfaces to approach each other to such an extent that fluid leakage often can be neglected. In this study, we present an experimental set-up for studying the fluid leakage in metallic seals. We study the water leakage between a steel sphere and a steel body (seat) with a conical surface. The experimental results are found to be in good quantitative agreement with a (fitting-parameter-free) theoretical model. The theory predicts that the plastic deformations reduce the leak-rate by a factor $\approx 8$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13576v1-abstract-full').style.display = 'none'; document.getElementById('2007.13576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03515">arXiv:2007.03515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03515">pdf</a>, <a href="https://arxiv.org/format/2007.03515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.042803">10.1103/PhysRevE.102.042803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two comments on adhesion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03515v1-abstract-short" style="display: inline;"> The adhesion paradox refers to the observation that for most solid objects no adhesion can be detected when they are separated from a state of molecular contact. The adhesion paradox results from surface roughness, and we present experimental and theoretical results which shows that adhesion in most cases is &#34;killed&#34; by the longest wavelength roughness. Adhesion experiments between a human finger&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03515v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03515v1-abstract-full" style="display: none;"> The adhesion paradox refers to the observation that for most solid objects no adhesion can be detected when they are separated from a state of molecular contact. The adhesion paradox results from surface roughness, and we present experimental and theoretical results which shows that adhesion in most cases is &#34;killed&#34; by the longest wavelength roughness. Adhesion experiments between a human finger and a clean glass plate were carried out, and for a dry finger, no macroscopic adhesion occurred. We suggest that the observed decrease in the contact area with increasing shear force results from non-adhesive finger-glass contact mechanics, involving large deformations of a complex layered material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03515v1-abstract-full').style.display = 'none'; document.getElementById('2007.03515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 9 figures. arXiv admin note: text overlap with arXiv:2002.02226</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 042803 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01125">arXiv:2007.01125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.01125">pdf</a>, <a href="https://arxiv.org/format/2007.01125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.043002">10.1103/PhysRevE.102.043002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cylinder-flat contact mechanics during sliding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sivebaek%2C+I+M">I. M. Sivebaek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01125v1-abstract-short" style="display: inline;"> Using molecular dynamics (MD) we study the dependency of the contact mechanics on the sliding speed when an elastic block (cylinder) with a ${\rm cos} (q_0 x)$ surface height profile is sliding in adhesive contact on a rigid flat substrate.The atoms on the block interact with the substrate atoms by Lennard-Jones (LJ) potentials, and we consider both commensurate and(nearly) incommensurate contacts&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01125v1-abstract-full').style.display = 'inline'; document.getElementById('2007.01125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01125v1-abstract-full" style="display: none;"> Using molecular dynamics (MD) we study the dependency of the contact mechanics on the sliding speed when an elastic block (cylinder) with a ${\rm cos} (q_0 x)$ surface height profile is sliding in adhesive contact on a rigid flat substrate.The atoms on the block interact with the substrate atoms by Lennard-Jones (LJ) potentials, and we consider both commensurate and(nearly) incommensurate contacts. For the incommensurate system the friction force fluctuates between positive and negative values, with an amplitude proportional to the sliding speed, but with the average close to zero. For the commensurate system the (time-averaged) friction force is much larger and nearly velocity independent. For both type of systems the width of the contact region is velocity independent even when, for the commensurate case, the frictional shear stress increases from zero (before sliding) to $\approx 0.1 \ {\rm MPa}$ during sliding. This frictional shear stress, and the elastic modulus used, are typical for Polydimethylsiloxan (PDMS) rubber sliding on a glass surface, and we conclude that the reduction in the contact area observed in some experiments when increasing the tangential force must be due to effects not included in our model study, such as viscoelasticity or elastic nonlinearity <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01125v1-abstract-full').style.display = 'none'; document.getElementById('2007.01125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages , 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 043002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11084">arXiv:2006.11084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11084">pdf</a>, <a href="https://arxiv.org/format/2006.11084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Plastic deformation of rough metallic surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Almqvist%2C+A">A. Almqvist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11084v1-abstract-short" style="display: inline;"> We present experimental and theoretical results for the surface topography of a plastically deformed metallic (aluminum) block. When a hard spherical body (here a steel-, silica glass- or silicon nitride ball) with a smooth surface is indented in a metal block with a nominally flat, but still rough, surface, a spherical-cup-like indentation result due to plastic flow. The surface roughness in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11084v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11084v1-abstract-full" style="display: none;"> We present experimental and theoretical results for the surface topography of a plastically deformed metallic (aluminum) block. When a hard spherical body (here a steel-, silica glass- or silicon nitride ball) with a smooth surface is indented in a metal block with a nominally flat, but still rough, surface, a spherical-cup-like indentation result due to plastic flow. The surface roughness in the indented region is, however, not entirely flattened. The long wavelength (macroasperity) content of the roughness result from the roughness on the original (aluminum) surface, but now plastically deformed. The roughness at short length scale, in the plastically deformed macroasperity contact regions, result from the roughness on the hard ball, and from inhomogeneous plastic flow. We model the contact mechanics using the boundary element method, combined with a simple numerical procedure to take into account the plastic flow. The theory can semi-quantitatively describe the modification of the roughness by the plastic flow. Since the fluid leakage of metallic seals in most cases is determined by the long wavelength roughness, we predict that the leakage can be estimated based on the elastoplastic contact mechanics model employed here. The plastic deformations of surfaces of some glassy polymers is very different from what we observed for aluminum, which we attribute to strong work-hardening and to inhomogeneous plastic flow for the polymers. Thus the numerical procedure to account for the plastic flow proposed here cannot be applied to glassy polymers in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11084v1-abstract-full').style.display = 'none'; document.getElementById('2006.11084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10054">arXiv:2006.10054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10054">pdf</a>, <a href="https://arxiv.org/format/2006.10054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033461">10.1103/PhysRevResearch.2.033461 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The fine structure of heating in a quasiperiodically driven critical quantum system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choo%2C+K">Kenny Choo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tauber%2C+C">Cl茅ment Tauber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitra%2C+R">Ramasubramanian Chitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10054v1-abstract-short" style="display: inline;"> We study the heating dynamics of a generic one dimensional critical system when driven quasiperiodically. Specifically, we consider a Fibonacci drive sequence comprising the Hamiltonian of uniform conformal field theory (CFT) describing such critical systems and its sine-square deformed counterpart. The asymptotic dynamics is dictated by the Lyapunov exponent which has a fractal structure embeddin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10054v1-abstract-full').style.display = 'inline'; document.getElementById('2006.10054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10054v1-abstract-full" style="display: none;"> We study the heating dynamics of a generic one dimensional critical system when driven quasiperiodically. Specifically, we consider a Fibonacci drive sequence comprising the Hamiltonian of uniform conformal field theory (CFT) describing such critical systems and its sine-square deformed counterpart. The asymptotic dynamics is dictated by the Lyapunov exponent which has a fractal structure embedding Cantor lines where the exponent is exactly zero. Away from these Cantor lines, the system typically heats up fast to infinite energy in a non-ergodic manner where the quasiparticle excitations congregate at a small number of select spatial locations resulting in a build up of energy at these points. Periodic dynamics with no heating for physically relevant timescales is seen in the high frequency regime. As we traverse the fractal region and approach the Cantor lines, the heating slows enormously and the quasiparticles completely delocalise at stroboscopic times. Our setup allows us to tune between fast and ultra-slow heating regimes in integrable systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10054v1-abstract-full').style.display = 'none'; document.getElementById('2006.10054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033461 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07910">arXiv:2006.07910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07910">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dependency of Sliding Friction for Two Dimensional Systems on Electronegativity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jianjun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Avinash Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07910v1-abstract-short" style="display: inline;"> We study the role of electronegativity in sliding friction for five different two dimensional (2D) monolayer systems using density functional theory (DFT) with van der Waals (vdW) corrections. We show that the friction between the commensurate 2D layered systems depends strongly on the electronegativity difference of the involved atoms. All the 2D layered structures exhibit almost the same magnitu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07910v1-abstract-full').style.display = 'inline'; document.getElementById('2006.07910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07910v1-abstract-full" style="display: none;"> We study the role of electronegativity in sliding friction for five different two dimensional (2D) monolayer systems using density functional theory (DFT) with van der Waals (vdW) corrections. We show that the friction between the commensurate 2D layered systems depends strongly on the electronegativity difference of the involved atoms. All the 2D layered structures exhibit almost the same magnitude of friction force when sliding along the nonpolar path, independent of the material and the surface structures. In contrast, for sliding friction along the polar path, the friction force obeys a universal linear scaling law as a function of the electronegativity difference of its constituent atoms. Further analyses demonstrate that atomic dipoles in the 2D monolayers induced by the electronegativity difference enhance the corrugation of charge distribution and increase the sliding barrier accordingly. Our studies reveal that electronegativity plays an important role in friction of low dimensional systems, and will provide a strategy for designing nanoscale devices further. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07910v1-abstract-full').style.display = 'none'; document.getElementById('2006.07910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">manuscript 13 pages, 5 figures. Supporting Information 1 table and 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12291">arXiv:2005.12291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.12291">pdf</a>, <a href="https://arxiv.org/format/2005.12291">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043300">10.1103/PhysRevResearch.2.043300 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Dirac Superconductors: Second-order and Boundary-obstructed Topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jahin%2C+A">Ammar Jahin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12291v1-abstract-short" style="display: inline;"> We analyze the topological properties of a chiral ${p}+i{p}$ superconductor for a two-dimensional metal/semimetal with four Dirac points. Such a system has been proposed to realize second-order topological superconductivity and host corner Majorana modes. We show that with an additional $\mathsf{C}_4$ rotational symmetry, the system is in an intrinsic higher-order topological superconductor phase,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12291v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12291v1-abstract-full" style="display: none;"> We analyze the topological properties of a chiral ${p}+i{p}$ superconductor for a two-dimensional metal/semimetal with four Dirac points. Such a system has been proposed to realize second-order topological superconductivity and host corner Majorana modes. We show that with an additional $\mathsf{C}_4$ rotational symmetry, the system is in an intrinsic higher-order topological superconductor phase, and with a lower and more natural $\mathsf{C}_2$ symmetry, is in a boundary-obstructed topological superconductor phase. The boundary topological obstruction is protected by a bulk Wannier gap. However, we show that the well-known nested-Wilson loop is in general unquantized despite the particle-hole symmetry, and thus fails as a topological invariant. Instead, we show that the higher-order topology and boundary-obstructed topology can be characterized using an alternative defect classification approach, in which the corners of a finite sample is treated as a defect of a space-filling Hamiltonian. We establish &#34;Dirac+$({p}+i{p})$&#34; as a sufficient condition for second-order topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12291v1-abstract-full').style.display = 'none'; document.getElementById('2005.12291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02406">arXiv:2005.02406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02406">pdf</a>, <a href="https://arxiv.org/format/2005.02406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033458">10.1103/PhysRevResearch.2.033458 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport across twist angle domains in moir茅 graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Padhi%2C+B">Bikash Padhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02406v1-abstract-short" style="display: inline;"> Many of the experiments in twisted bilayer graphene (TBG) differ from each other in terms of the details of their phase diagrams. Few controllable aspects aside, this discrepancy is largely believed to be arising from the presence of a varying degree of twist angle inhomogeneity across different samples. Real space maps indeed reveal TBG devices splitting into several large domains of different tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02406v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02406v1-abstract-full" style="display: none;"> Many of the experiments in twisted bilayer graphene (TBG) differ from each other in terms of the details of their phase diagrams. Few controllable aspects aside, this discrepancy is largely believed to be arising from the presence of a varying degree of twist angle inhomogeneity across different samples. Real space maps indeed reveal TBG devices splitting into several large domains of different twist angles. Motivated by these observations, we study the quantum mechanical tunneling across a domain wall (DW) that separates two such regions. We show that the tunneling of the moir茅 particles can be understood by the formation of an effective step potential at the DW. The height of this step potential is simply a measure of the difference in twist angles. These computations lead us to identify the global transport signatures for detecting and quantifying the local twist angle variations. In particular, Using Landauer-B眉ttiker formalism we compute single-channel conductance ($dI/dV$) and Fano factor for shot noise (ratio of noise power and mean current). A zero-bias, sub-meV transport gap is observed in the conductance which scales with the height of the step potential. One of the key findings of our work is that transport in presence of twist angle inhomogeneity is &#34;noisy&#34;, though sub-Poissonian. In particular, the differential Fano factor peaks near the van Hove energies corresponding to the domains in the sample. The location and the strength of the peak is simply a measure of the degree of twist angle inhomogeneity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02406v1-abstract-full').style.display = 'none'; document.getElementById('2005.02406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033458 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09300">arXiv:2002.09300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.09300">pdf</a>, <a href="https://arxiv.org/format/2002.09300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> On the origin of sliding friction: Role of lattice trapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sivebaek%2C+I+M">I. M. Sivebaek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09300v1-abstract-short" style="display: inline;"> Using molecular dynamics we study the dependence of the friction force on the sliding speed when an elastic slab (block) is sliding on a rigid substrate with a ${\rm sin} (q_0 x)$ surface height profile. The friction force is nearly velocity independent due to phonon emission at the closing and opening crack tips, where rapid atomic snap-in and -out events occur during sliding. The rapid events re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09300v1-abstract-full').style.display = 'inline'; document.getElementById('2002.09300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09300v1-abstract-full" style="display: none;"> Using molecular dynamics we study the dependence of the friction force on the sliding speed when an elastic slab (block) is sliding on a rigid substrate with a ${\rm sin} (q_0 x)$ surface height profile. The friction force is nearly velocity independent due to phonon emission at the closing and opening crack tips, where rapid atomic snap-in and -out events occur during sliding. The rapid events result from lattice trapping and are closely related to the velocity gap and hysteresis effects observed in model studies of crack propagation in solids. This indicates that the friction force is dominated by processes occurring at the edges of the contact area, which is confirmed by calculations showing that the friction force is independent of the normal force. The friction force increases drastically when the sliding velocity approaches the solid transverse sound velocity, as expected from the theory of cracks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09300v1-abstract-full').style.display = 'none'; document.getElementById('2002.09300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures. arXiv admin note: text overlap with arXiv:2002.02226</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02226">arXiv:2002.02226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.02226">pdf</a>, <a href="https://arxiv.org/format/2002.02226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmps.2020.104094">10.1016/j.jmps.2020.104094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sphere and cylinder contact mechanics during slip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sivebaek%2C+I">I. Sivebaek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+B+N+J">B. N. J. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02226v1-abstract-short" style="display: inline;"> Using molecular dynamics (MD) we study the dependency of the contact mechanics on the sliding speed when an elastically soft slab (block) is sliding on a rigid substrate with a ${\rm sin} (q_0 x)$ surface height profile. The atoms on the block interact with the substrate atoms by Lennard-Jones potentials. We consider contacts with and without adhesion. We found that the contact area and the fricti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02226v1-abstract-full').style.display = 'inline'; document.getElementById('2002.02226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02226v1-abstract-full" style="display: none;"> Using molecular dynamics (MD) we study the dependency of the contact mechanics on the sliding speed when an elastically soft slab (block) is sliding on a rigid substrate with a ${\rm sin} (q_0 x)$ surface height profile. The atoms on the block interact with the substrate atoms by Lennard-Jones potentials. We consider contacts with and without adhesion. We found that the contact area and the friction force are nearly velocity independent for small velocities ($v &lt; 0.25 \ {\rm m/s}$) in spite of the fact that the shear stress in the contact area is rather non-uniform. For the case of no adhesion the friction coefficient is very small. For the case of adhesion the friction coefficient is higher, and is mainly due to energy dissipation at the opening crack tip, where rapid atomic snap-off events occur during sliding. Adhesion experiments between a human finger and a clean glass plate were carried out, and for a dry finger no macroscopic adhesion occurred. We suggest that the observed decrease in the contact area with increasing shear force results from non-adhesive finger-glass contact mechanics, involving large deformations of a complex layered material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02226v1-abstract-full').style.display = 'none'; document.getElementById('2002.02226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 20 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08618">arXiv:1909.08618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.08618">pdf</a>, <a href="https://arxiv.org/format/1909.08618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.023085">10.1103/PhysRevResearch.2.023085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent Black Hole Dynamics in Critical Floquet Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choo%2C+K">Kenny Choo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tauber%2C+C">Cl茅ment Tauber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitra%2C+R">Ramasubramanian Chitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08618v1-abstract-short" style="display: inline;"> While driven interacting quantum matter is generically subject to heating and scrambling, certain classes of systems evade this paradigm. We study such an exceptional class in periodically driven critical (1 + 1)-dimensional systems with a spatially modulated, but disorder-free time evolution operator. Instead of complete scrambling, the excitations of the system remain well-defined. Their propaga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08618v1-abstract-full').style.display = 'inline'; document.getElementById('1909.08618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08618v1-abstract-full" style="display: none;"> While driven interacting quantum matter is generically subject to heating and scrambling, certain classes of systems evade this paradigm. We study such an exceptional class in periodically driven critical (1 + 1)-dimensional systems with a spatially modulated, but disorder-free time evolution operator. Instead of complete scrambling, the excitations of the system remain well-defined. Their propagation is analogous to the evolution along light cones in a curved space-time obtained by two Schwarzschild black holes. The Hawking temperature serves as an order parameter which distinguishes between heating and non-heating phases. Beyond a time scale determined by the inverse Hawking temperature, excitations are absorbed by the black holes resulting in a singular concentration of energy at their center. We obtain these results analytically within conformal field theory, capitalizing on a mapping to sine-square deformed field theories. Furthermore, by means of numerical calculations for an interacting XXZ spin-1/2 chain, we demonstrate that our findings survive lattice regularization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08618v1-abstract-full').style.display = 'none'; document.getElementById('1909.08618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 023085 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10330">arXiv:1907.10330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.10330">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Flexible perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+F">Fan Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishiwaki%2C+S">Shiro Nishiwaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+J">Jeremie Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feurer%2C+T">Thomas Feurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pisoni%2C+S">Stefano Pisoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeangros%2C+Q">Quentin Jeangros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buecheler%2C+S">Stephan Buecheler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballif%2C+C">Christophe Ballif</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A+N">Ayodhya N. Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10330v1-abstract-short" style="display: inline;"> We report a proof-of-concept two-terminal perovskite/Cu(In, Ga)Se2 (CIGS) monolithic thin-film tandem solar cell grown on ultra-thin (30-microns thick), light-weight, and flexible polyimide foil with a steady-state power conversion efficiency of 13.2% and a high open-circuit voltage over 1.75 V under standard test condition. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10330v1-abstract-full" style="display: none;"> We report a proof-of-concept two-terminal perovskite/Cu(In, Ga)Se2 (CIGS) monolithic thin-film tandem solar cell grown on ultra-thin (30-microns thick), light-weight, and flexible polyimide foil with a steady-state power conversion efficiency of 13.2% and a high open-circuit voltage over 1.75 V under standard test condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10330v1-abstract-full').style.display = 'none'; document.getElementById('1907.10330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tiwari%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10