CINXE.COM
Advanced Materials Research Vol. 1159 | Scientific.Net
<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This journal volume collects peer-reviewed individual papers, describing the research results and engineering solutions, which deal with actual problems in the area of materials science, especially in polymer composites and nanomaterials. The published papers can be useful for professionals in various branches of engineering, for students and academic staff concerned with the related fields." /> <link rel="canonical" href="https://www.scientific.net/AMR.1159" /> <meta property="og:title" content="Advanced Materials Research Vol. 1159 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/AMR.1159" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Advanced Materials Research Vol. 1159 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=sTzmHAq2zYw3fxGTHUWq0SNFP1rKhxuSRAanqS9YOY0" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMR.1159" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMR.1159" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/AMR.1165" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1165</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1164" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1164</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1163" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1163</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1162" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1162</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1161" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1161</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1160" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1160</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1159" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1159</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1158" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1158</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1157" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1157</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1156" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1156</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1155" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1155</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1154" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1154</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMR.1153" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Advanced Materials Research <br /> <span class="paper-volume-number">Vol. 1153</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/AMR">Advanced Materials Research</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Advanced Materials Research Vol. 1159</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Advanced Materials Research Vol. 1159</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/www.scientific.net/AMR.1159">https://doi.org/10.4028/www.scientific.net/AMR.1159</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/AMR.1159/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/AMR.1159_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.1">Investigation the Phase Separation in Metallocene Linear Low Density Polyethylene/Polypropylene Blends</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Haia Aldosari </div> </div> <div id="abstractTextBlock546092" class="volume-info volume-info-text volume-info-description"> Abstract: The present study is aimed at investigated the miscibility in binary blend the Metallocene linear low density polyethylene (PE) and the Polypropylene homo (PP). Metallocene linear low density polyethylene is one of LLDPEs but with lower density higher melt flow index (MFI) than conventional LLDPE. The polyethylene and polypropylene blends (PB) were prepare by using o-xylene as solvent and polyethylene-co-glycidyl methacrylate (PE-co-GMA) as compatibilizer promote blending of immiscible homopolymers and the stability of the blend . The composites were characterized by wide angle X-ray diffraction (WAXD). Long period spacing was obtained using small angle X-ray scattering (SAXS).Crystallinity and melting behavior were studying by use the DSC and TGA, Metallocene linear low density polyethylene provide better behavior than the conventional LLDPE. The tensile test and DMA test were applied on the blends, which displayed improvement on the blend properties by using the PE-co-GMA and confirm the incompatible nature of the blends. </div> <div> <a data-readmore="{ block: '#abstractTextBlock546092', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 1 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.19">Tungsten Inert Gas (TIG) Cladding of TiC-Fe Metal Matrix Composite Coating on AISI 1020 Steel Substrate</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Anil Kumar Das, Sujeet Kumar, Mayank Kumar Chaubey, Waquar Alam </div> </div> <div id="abstractTextBlock554518" class="volume-info volume-info-text volume-info-description"> Abstract: TiC – Fe composite coating was produced on AISI 1020 steel by the tungsten inert gas (TIG) cladding process to increase the hardness and wear resistance properties of the substrate. In this paper authors have investigated the effect of process parameters on the microstructure and hardness value of the coated layer. In this TIG cladding process the variable parameter is only current, whereas the other parameters such as scanning speed, standoff distance, and voltage and gas flow rate are fixed. Fe and TiC powders were mixed in the proper ratio of 80wt% - 20wt% and 90wt% - 10wt% respectively. The microstructure and micro-hardness value of the samples were investigated by the scanning electron microscope (SEM) and Vickers micro hardness tester. The result of SEM shows the distribution of the coating powder in the cladded zone. Micro hardness profile shows the variation of the hardness value in the cladded zone as well as in the substrate. The hardness value decreases with increase in distance from top surface of the cladded layer, which is due to difference in cooling rate. Also, the hardness value of cladded layer decreases with increase in current from 140A to 150A. The maximum hardness value of cladded layer was achieved as 262 HV<sub>0.05 </sub>with 140A current and composition of 90 wt.% - 10wt% (Fe - TiC), which was nearly two times higher than that of the as received AISI 1020 steel substrate. Keywords TIG, Microstructure, Micro hardness, Titanium Carbide (TiC), Iron (Fe) powder. </div> <div> <a data-readmore="{ block: '#abstractTextBlock554518', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 19 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.27">Temperature Effect on the Modal Frequencies of Aluminum Honeycomb Plate</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Redha Amri </div> </div> <div id="abstractTextBlock556955" class="volume-info volume-info-text volume-info-description"> Abstract: The aim of this paper is to perform a study on how the elevated temperature and gradient of temperature affect the natural frequencies of aluminum honeycomb plate. This study is carried out for temperature range between 200K and 800K, and gradient temperature (ΔT) across the thickness direction of the plate between [0-500K]. Different honeycomb plate geometries have been selected for the analysis, by changing the core thickness, skins thickness and cell size. The obtained results show that the effect of the temperature is noticeable. At temperature 800K, the natural frequencies decrease by 16.1% in comparison to their values at ambient temperature (300K). That means, high temperature makes the material suffers from weak rigidity, which furthermore contribute to high decrease of all the frequencies. In addition, investigations carried out in this work relate to the modal analysis of the honeycomb plate, under various gradients of temperature across the core of the plate. The obtained results show that the gradient of temperature has an effect on the modes of vibration of the honeycomb plate. This effect becomes significant when the gradient of temperature is very high. At ΔT equal 500K, the natural vibration modes decrease by 9.5% in comparison to the case where no gradient of temperature (ΔT = 0K) is applied between the two faces of the plate. Keywords: honeycomb panel; aluminum; natural frequency; finite element method; temperature. </div> <div> <a data-readmore="{ block: '#abstractTextBlock556955', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 27 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.42">Experimental Investigation on Microstructural and Wear Behaviour of Dual Reinforced Particles (DRP) Aluminium Alloy Composites</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Nю Nanda Kumar, Natarajan Muthukumaran </div> </div> <div id="abstractTextBlock557138" class="volume-info volume-info-text volume-info-description"> Abstract: In the present scenario, the automobile industry, and aerospace industries are considerable scuffles to strive for innovative lightweight materials among manufacturing industries. They preserve their place by reducing the cost of their products and services. For this tenacity, the demand for lightweight material, low cost, and high-performance material are needed. Aluminum matrix composite is developed to fulfill and becomes an engineer’s material. Aerospace & Automobile industries are eager to introducing compound aluminum metal matrix composites due to their excellent mechanical & tribological properties which makes a reduction in the weight of the component. In this project the LM13 as the matrix material while SiC and B<sub>4</sub>C have been considered as dual reinforcement. Stir casting is the modest and inexpensive method of fabricating an aluminum matrix composite. For the Evaluation of Mechanical &Tribological behavior of DRP composite castings (LM13/B<sub>4</sub>C/SiC) selection for experimentation tests. In this paper different specimens of the MMC with LM13 Al Alloy 2wt% SiC and 2wt% B<sub>4</sub>C, 2wt% SiC and 4% B<sub>4</sub>C, 4wt% SiC, 2wt% B<sub>4</sub>C, 4wt% SiC and 4wt% B<sub>4</sub>C are taken for carried to invention out the increase in DRP in the composites will intensification the mechanical properties of the LM13 Al Alloy SiC and B<sub>4 </sub>C composite formed. </div> <div> <a data-readmore="{ block: '#abstractTextBlock557138', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 42 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.54">Effect on Shear Strength and Hardness Properties of Tin Based Solder Alloy, Sn-50Bi, Sn-50Bi+2%TiO<sub>2</sub> Nanoparticles</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Singh Amares, Bandar Tchari </div> </div> <div id="abstractTextBlock559158" class="volume-info volume-info-text volume-info-description"> Abstract: Solder alloys are important joining medium widely used in the electronics industry to connect components to printed circuit board PCB. The Sn-Pb solder alloys have been the cornerstone medium used for a long time. Unfortunately, the use of Pb was banned by the European Union due to the harmful environmental and health issues with Pb. Therefore, in this study, the Sn-50Bi and Sn-50Bi+2%TiO2 nanoparticles lead-free solder alloy is investigated based on their shear strength, Vickers hardness, and melting temperature. The investigation shows that the hypo eutectic Sn-50Bi has a low melting temperature of approximately 145°C, and the 2%TiO<sub>2</sub> nanoparticles reinforced Sn-50Bi has a melting temperature of around 182°C, which is lower than the traditional Sn-Pb (Tm=183 °C) and Sn-Ag-Cu (Tm=227°C). Furthermore, the developed Sn-50Bi had a Vickers hardness and shear strength of 26.81 HV and 40.78 MPa respectively, higher than the other leaded and lead-free solders. However, after the reinforcement, the hardness increased by 12% (30 HV) and a slight increase of 2.5% (42.4MPa) in shear strength. Overall, the addition of the TiO<sub>2</sub> nanoparticles showed a clear influence on the Sn-Bi properties. The results obtained from this study seem satisfactory to the electronic industry and the environment. </div> <div> <a data-readmore="{ block: '#abstractTextBlock559158', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 54 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.60">Structure and Optical Properties of Quantum Confined Pure and Cu Doped SnO<sub>2</sub></a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: J.R. Sheeba, Sathasivam Radhika, C.M. Padma </div> </div> <div id="abstractTextBlock561251" class="volume-info volume-info-text volume-info-description"> Abstract: Pure and copper doped tin oxide nanoparticles were synthesized by co-precipitation method and are characterized by XRD, SEM, EDAX, UV-Visible, photoluminescence, and FT-IR analysis techniques. Tetragonal rutile structure is confirmed from XRD and the crystallite size is found to be between 3.8nm and 4.8nm. The optical band gap is observed from UV-Vis spectrum and is found to be 3.99eV and 3.93eV for tin oxide and copper doped tin oxide respectively. The optical band gap of pure and Copper doped tin oxide were blue shifted due to quantum confinement. Photoluminescence spectrum shows UV, blue and green emission peaks. </div> <div> <a data-readmore="{ block: '#abstractTextBlock561251', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 60 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.67">Synthesis of SnO<sub>2</sub> Nanoparticles Using <i>Ficus religiosa </i>Leaf Extract and their Application in Fabrication of OFETs for Glucose Monitoring</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Ashwath Narayana, Nazia Tarannum, Mahaboob Subhani Shaik, B.N. Shobha, Raj M. Sundar, S.V. Lokesh </div> </div> <div id="abstractTextBlock561370" class="volume-info volume-info-text volume-info-description"> Abstract: Organic field effect transistors (OFETs) as a sensor have gained interest of researchers due to its portable size and less expensive design in the field of medical diagnostic, food monitoring, chemical detection, wearable sensors, etc. In this present research work, we demonstrate the fabrication of OFETs from organic-inorganic SnO<sub>2 </sub>nanoparticles tailored pentacenefor glucose detection. SnO<sub>2</sub> nanoparticles were synthesized bygreen method using <i>Ficus r</i><i>eligiosa</i> leaf extract. The as-synthesized SnO<sub>2</sub> NPs with cassiterite crystal structure was analysed using X-Ray Diffraction (XRD) and the energy bandgap of ~3.8 eV was calculated using Tauc relation with absorption spectra so obtained from UV-vis spectroscopy (UV-vis). The structure and morphological analysis of SnO<sub>2</sub> NPs with size of ~15 nm was confirmed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analysis. The sensor characteristics of OFET device fabricated using pentacene layer (soluble pentacene precursor of DMP) and as-synthesized SnO<sub>2 </sub>nanoparticles confirmed the aqueous glucose (glucose in water) detection at room temperature (27 °C). The extracted electrical parameters such as mobility (μ), On-current (I<sub>on</sub>), saturation current (I<sub>Dsat</sub>) and the sensor response were discussed to support the sensor characteristics. </div> <div> <a data-readmore="{ block: '#abstractTextBlock561370', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 67 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.78">Effect of Surface Modification and Fibre Content on the Mechanical Properties of Coconut Fibre Reinforced Concrete</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Chirath Hettiarachchi, Gobithas Thamarajah </div> </div> <div id="abstractTextBlock561605" class="volume-info volume-info-text volume-info-description"> Abstract: In the past few decades, concrete has been the most widely used material for structural applications in the world and uses steel reinforcement as aide to meet the flexural, tensile and ductility demands required of concrete structures. Manufacturing of concrete and steel reinforced concrete structures is associated with millions of tons of carbon dioxide emissions and mineral waste. This activity is also responsible for the depletion of a large number of non-renewable resources. Reinforcing steel is also a high cost material, consumes a lot of energy in its production. Consequently, the use of natural fibres as an alternative for steel reinforcement is widely investigated, to promote the use of sustainable concrete structures. This study aims to investigate the effect on durability, flexural, compressive, tensile properties and workability of concrete by incorporating coir fibre at varying fibre content to find the fibre content which gives optimum results. The fibre contents used were 0%, 0.5%, 1.0%, 1.5% and 2.0% by weight of cement. Furthermore, the effect of modifying the surface of the coir fibres by alkali treatment (i.e. 5 wt.% NaOH solution) and coating the fibres with epoxy paint and polyurethane varnish on coir fibre reinforced concrete (CFRC) were also investigated. Tests conducted on the CFRC specimens included slump test and flexural, compressive and tensile strength tests. Water absorption and sorptivity tests were also conducted to investigate the durability. Slump (workability) and unit weight reduced with an increase in fibre content. The surface modification methods used, had resulted in an increased workability and a reduced unit-weight. A coconut fibre content of 1% produced the best combination of flexural, tensile and compressive properties. Water absorption and sorption rate per unit time, increased with an increase of coir fibre content. It is also found that epoxy paint and alkali treatment of the fibres has a positive effect on the mechanical strength properties and also the durability and workability of the CFRC specimens. However, polyurethane varnish coating had a detrimental effect on the mechanical strength properties of the CFRC specimens. </div> <div> <a data-readmore="{ block: '#abstractTextBlock561605', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 78 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.100">A Study on Particle Weight Fraction and Extrusion on the Mechanical Properties and Microstructural Evaluation of Al-Cu/Fly Ash Composite</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: G.N. Lokesh, G.P. Prasad, Subramanya Raghavendra, K.P. Prashanth </div> </div> <div id="abstractTextBlock562313" class="volume-info volume-info-text volume-info-description"> Abstract: Fly ash is the waste product coming out from thermal power plant is an increasingly urgent problem due to its storage and disposal. At the same time Metal Matrix composites (MMCs) reinforced with ceramic particles such as SiC, Al<sub>2</sub>O<sub>3</sub> and B<sub>4</sub>C has their partial use in engineering application due to higher cost. The study focuses on the Al-Cu alloy reinforced fly ash particles produced by stir casting followed by hot extrusion. The composites produced by incorporation of fly ash reinforcements by varying 2%, 4%, 6%, 8% and 10wt% is hot extruded with an extrusion temperature of 400°C, extrusion rate of 5mm/s and extrusion ratio of 1.77:1. The extrusion composites have been evaluated based on the investigation of mechanical properties and microstructure. The results showed that, the amount of porosity increased with increasing the percentage of fly ash reinforcements in stir cast and the extruded composites is almost gratis from porosity. Hardness and tensile strength of composites increases with increases in percentage of reinforcement by stir and extruded composites. But extruded composites show better mechanical properties than stir cast composites. Wear test under different loads and for 45 minutes duration have been conducted on both cast and extruded composites. The worn surfaces have been observed under Scanning electron microscope (SEM) to understand the mechanism of wear. Extruded composites possess lower wear rates under all studied loads with constant sliding velocities when compared with cast composites. Microstructural study using SEM shows that the fly ash particulates in the molten matrix forms strong matrix reinforcement interface and their distribution might have led to the increase in mechanical properties of the composites due to fine grain structure during extrusion and dislocation density in the matrix. </div> <div> <a data-readmore="{ block: '#abstractTextBlock562313', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 100 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMR.1159.112">Effect of Trap Energy on Series Resistance of Phenosafranine Dye Based Organic Diode in Presence of TiO<sub>2</sub> and ZnO Nanoparticles</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Pallab Kumar Das, Swapan Bhunia, Nabin Baran Manik </div> </div> <div id="abstractTextBlock563654" class="volume-info volume-info-text volume-info-description"> Abstract: The series resistance (R<sub>s</sub>) controls the device performance significantly and for organic diode, the typical value of R<sub>s</sub> is quite high. There are not many reports on the investigation of the high value of resistance in organic diodes. In this paper, we report that the trapping of charge carriers which is an important parameter to control the charge transport mechanism in organic solids is responsible for this high value of series resistance. In this paper effect of trap energy on Rs has been studied in the presence of TiO<sub>2</sub> and ZnO nanoparticles on Phenosafranine (PSF) dye-based organic diode. It is already reported that by incorporating nanoparticles, trap energy is reduced which in turn increases the conductivity and efficiency of the device. So it is expected that trap energy has a strong influence on R<sub>s</sub>. In this work we have measured R<sub>s</sub> by using the Cheung Cheung method and the trap energy is also measured by analyzing the dc current. The value of R<sub>s</sub> is related to trap energy. The extracted values of R<sub>s</sub> are about 250.8 KΩ, 108.0 KΩ, and 98.4 KΩ respectively for only PSF, PSF+ZnO, and PSF+TiO<sub>2</sub>. It is also been observed that by incorporating nanoparticles the trap energy is reduced. The estimated values of the trap energy are about 0.090eV, 0.078eV ,0.072eV respectively for only PSF, PSF+ZnO, and PSF+TiO<sub>2</sub>. It has been observed that lowering of trap energy by incorporating TiO<sub>2</sub> and ZnO reduces the value of R<sub>s</sub>. </div> <div> <a data-readmore="{ block: '#abstractTextBlock563654', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 112 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 10 Paper Titles</p> </div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=AMR&volumeBegin=1159&volumeEnd=1159', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>