CINXE.COM
Curl (mathematics) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Curl (mathematics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e760b538-e7a0-48a4-a162-c531344adaab","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Curl_(mathematics)","wgTitle":"Curl (mathematics)","wgCurRevisionId":1273268020,"wgRevisionId":1273268020,"wgArticleId":6123,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Pages using sidebar with the child parameter","Pages using multiple image with auto scaled images","All articles with unsourced statements","Articles with unsourced statements from April 2020","Differential operators","Linear operators in calculus","Vector calculus","Analytic geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Curl_(mathematics)","wgRelevantArticleId":6123,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q206310","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/1200px-Uniform_curl.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/800px-Uniform_curl.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/640px-Uniform_curl.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Curl (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Curl_(mathematics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Curl_(mathematics)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Curl_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Curl_mathematics rootpage-Curl_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Curl+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Curl+%28mathematics%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Curl+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Curl+%28mathematics%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Usage" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Usage"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Usage</span> </div> </a> <ul id="toc-Usage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Example_1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Example 1</span> </div> </a> <ul id="toc-Example_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Example 2</span> </div> </a> <ul id="toc-Example_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_3" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Example 3</span> </div> </a> <ul id="toc-Example_3-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Further examples</span> </div> </a> <ul id="toc-Further_examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Identities" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Identities</span> </div> </a> <ul id="toc-Identities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-Differential_forms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differential_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Differential forms</span> </div> </a> <ul id="toc-Differential_forms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Curl_geometrically" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Curl_geometrically"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Curl geometrically</span> </div> </a> <ul id="toc-Curl_geometrically-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Inverse" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Inverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Inverse</span> </div> </a> <ul id="toc-Inverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Curl (mathematics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 43 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-43" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">43 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D9%88%D8%B1%D8%A7%D9%86_(%D9%85%D8%AA%D8%AC%D9%87%D8%A7%D8%AA)" title="دوران (متجهات) – Arabic" lang="ar" hreflang="ar" data-title="دوران (متجهات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%B0%D1%86%D0%B8%D1%8F_(%D0%B4%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%B5%D0%BD_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80)" title="Ротация (диференциален оператор) – Bulgarian" lang="bg" hreflang="bg" data-title="Ротация (диференциален оператор)" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Rotor_(matematika)" title="Rotor (matematika) – Bosnian" lang="bs" hreflang="bs" data-title="Rotor (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Rotacional" title="Rotacional – Catalan" lang="ca" hreflang="ca" data-title="Rotacional" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%BB%D0%B0_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80)" title="Ротор (дифференциалла оператор) – Chuvash" lang="cv" hreflang="cv" data-title="Ротор (дифференциалла оператор)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Rotace_(oper%C3%A1tor)" title="Rotace (operátor) – Czech" lang="cs" hreflang="cs" data-title="Rotace (operátor)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Rotation_eines_Vektorfeldes" title="Rotation eines Vektorfeldes – German" lang="de" hreflang="de" data-title="Rotation eines Vektorfeldes" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Rotacional" title="Rotacional – Spanish" lang="es" hreflang="es" data-title="Rotacional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kirlo_(matematiko)" title="Kirlo (matematiko) – Esperanto" lang="eo" hreflang="eo" data-title="Kirlo (matematiko)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%A9%D8%B1%D9%84_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="کرل (ریاضیات) – Persian" lang="fa" hreflang="fa" data-title="کرل (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Rotationnel" title="Rotationnel – French" lang="fr" hreflang="fr" data-title="Rotationnel" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9A%8C%EC%A0%84_(%EB%B2%A1%ED%84%B0)" title="회전 (벡터) – Korean" lang="ko" hreflang="ko" data-title="회전 (벡터)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8C%D5%B8%D5%BF%D5%B8%D6%80_(%D5%A4%D5%AB%D6%86%D5%A5%D6%80%D5%A5%D5%B6%D6%81%D5%B4%D5%A1%D5%B6_%D6%85%D5%BA%D5%A5%D6%80%D5%A1%D5%BF%D5%B8%D6%80)" title="Ռոտոր (դիֆերենցման օպերատոր) – Armenian" lang="hy" hreflang="hy" data-title="Ռոտոր (դիֆերենցման օպերատոր)" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A4%B0%E0%A5%8D%E0%A4%B2_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="कर्ल (गणित) – Hindi" lang="hi" hreflang="hi" data-title="कर्ल (गणित)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Rotacija_polja" title="Rotacija polja – Croatian" lang="hr" hreflang="hr" data-title="Rotacija polja" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%B3t_(virki)" title="Rót (virki) – Icelandic" lang="is" hreflang="is" data-title="Rót (virki)" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Rotore_(matematica)" title="Rotore (matematica) – Italian" lang="it" hreflang="it" data-title="Rotore (matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A8%D7%95%D7%98%D7%95%D7%A8_(%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94)" title="רוטור (מתמטיקה) – Hebrew" lang="he" hreflang="he" data-title="רוטור (מתמטיקה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A0%E1%83%9D%E1%83%A2%E1%83%9D%E1%83%A0%E1%83%98" title="როტორი – Georgian" lang="ka" hreflang="ka" data-title="როტორი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Rot%C3%A1ci%C3%B3" title="Rotáció – Hungarian" lang="hu" hreflang="hu" data-title="Rotáció" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9C%E1%80%BE%E1%80%8A%E1%80%B7%E1%80%BA%E1%80%9D%E1%80%BE%E1%80%B1%E1%80%B7%E1%80%81%E1%80%BB%E1%80%80%E1%80%BA" title="လှည့်ဝှေ့ချက် – Burmese" lang="my" hreflang="my" data-title="လှည့်ဝှေ့ချက်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Rotatie_(vectorveld)" title="Rotatie (vectorveld) – Dutch" lang="nl" hreflang="nl" data-title="Rotatie (vectorveld)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%9B%9E%E8%BB%A2_(%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E8%A7%A3%E6%9E%90)" title="回転 (ベクトル解析) – Japanese" lang="ja" hreflang="ja" data-title="回転 (ベクトル解析)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Curl" title="Curl – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Curl" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Rotasjon_i_vektoranalyse" title="Rotasjon i vektoranalyse – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Rotasjon i vektoranalyse" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rotacja" title="Rotacja – Polish" lang="pl" hreflang="pl" data-title="Rotacja" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Rotacional" title="Rotacional – Portuguese" lang="pt" hreflang="pt" data-title="Rotacional" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Rotor" title="Rotor – Romanian" lang="ro" hreflang="ro" data-title="Rotor" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80)" title="Ротор (дифференциальный оператор) – Russian" lang="ru" hreflang="ru" data-title="Ротор (дифференциальный оператор)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Curl" title="Curl – Simple English" lang="en-simple" hreflang="en-simple" data-title="Curl" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Rot%C3%A1cia_(oper%C3%A1tor)" title="Rotácia (operátor) – Slovak" lang="sk" hreflang="sk" data-title="Rotácia (operátor)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Rotor" title="Rotor – Slovenian" lang="sl" hreflang="sl" data-title="Rotor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ротор (математика) – Serbian" lang="sr" hreflang="sr" data-title="Ротор (математика)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Rotor_(matematika)" title="Rotor (matematika) – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Rotor (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Roottori_(matematiikka)" title="Roottori (matematiikka) – Finnish" lang="fi" hreflang="fi" data-title="Roottori (matematiikka)" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Rotation_(vektoranalys)" title="Rotation (vektoranalys) – Swedish" lang="sv" hreflang="sv" data-title="Rotation (vektoranalys)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ротор (математика) – Tatar" lang="tt" hreflang="tt" data-title="Ротор (математика)" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%84%E0%B8%B4%E0%B8%A3%E0%B9%8C%E0%B8%A5" title="เคิร์ล – Thai" lang="th" hreflang="th" data-title="เคิร์ล" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Rotasyonel" title="Rotasyonel – Turkish" lang="tr" hreflang="tr" data-title="Rotasyonel" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ротор (математика) – Ukrainian" lang="uk" hreflang="uk" data-title="Ротор (математика)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Rot_(to%C3%A1n_t%E1%BB%AD)" title="Rot (toán tử) – Vietnamese" lang="vi" hreflang="vi" data-title="Rot (toán tử)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%97%8B%E5%BA%A6" title="旋度 – Cantonese" lang="yue" hreflang="yue" data-title="旋度" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://zh.wikipedia.org/wiki/%E6%97%8B%E5%BA%A6" title="旋度 – Chinese" lang="zh" hreflang="zh" data-title="旋度" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q206310#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Curl_(mathematics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Curl_(mathematics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Curl_(mathematics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Curl_(mathematics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Curl_(mathematics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Curl_(mathematics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&oldid=1273268020" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Curl_%28mathematics%29&id=1273268020&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCurl_%28mathematics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCurl_%28mathematics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Curl_%28mathematics%29&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Curl_(mathematics)&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q206310" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Circulation density in a vector field</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Rotor (operator)" redirects here. For the geometric algebra concept, see <a href="/wiki/Rotor_(mathematics)" title="Rotor (mathematics)">Rotor (mathematics)</a>. For other uses, see <a href="/wiki/Rotation_operator_(disambiguation)" class="mw-redirect mw-disambig" title="Rotation operator (disambiguation)">Rotation operator (disambiguation)</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Uniform_curl.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/220px-Uniform_curl.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/330px-Uniform_curl.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/440px-Uniform_curl.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Depiction of a two-dimensional vector field with a uniform curl.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-bottom:0.25em;"><a href="/wiki/Calculus" title="Calculus">Calculus</a></th></tr><tr><td class="sidebar-image"><big><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17d063dc86a53a2efb1fe86f4a5d47d498652766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.228ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}"></span></big></td></tr><tr><td class="sidebar-above" style="padding:0.15em 0.25em 0.3em;font-weight:normal;"> <ul><li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limits</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuity</a></li></ul> </div><div class="hlist"> <ul><li><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a></li></ul> </div></td></tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base);display:block;margin-top:0.65em;"><span style="font-size:120%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a> (<a href="/wiki/Generalizations_of_the_derivative" title="Generalizations of the derivative">generalizations</a>)</li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a> <ul><li><a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">infinitesimal</a></li> <li><a href="/wiki/Differential_of_a_function" title="Differential of a function">of a function</a></li> <li><a href="/wiki/Differential_of_a_function#Differentials_in_several_variables" title="Differential of a function">total</a></li></ul></li></ul></td> </tr><tr><th class="sidebar-heading"> Concepts</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Differentiation notation</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Implicit_function" title="Implicit function">Implicit differentiation</a></li> <li><a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">Logarithmic differentiation</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules and identities</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's rule</a></li> <li><a href="/wiki/Inverse_function_rule" title="Inverse function rule">Inverse</a></li> <li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz</a></li> <li><a href="/wiki/Fa%C3%A0_di_Bruno%27s_formula" title="Faà di Bruno's formula">Faà di Bruno's formula</a></li> <li><a href="/wiki/Reynolds_transport_theorem" title="Reynolds transport theorem">Reynolds</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Integral" title="Integral">Integral</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Leibniz integral rule</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a> (<a href="/wiki/Improper_integral" title="Improper integral">improper</a>)</li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Contour_integration" title="Contour integration">Contour integration</a></li> <li><a href="/wiki/Integral_of_inverse_functions" title="Integral of inverse functions">Integral of inverse functions</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Integration by</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Integration_by_parts" title="Integration by parts">Parts</a></li> <li><a href="/wiki/Disc_integration" title="Disc integration">Discs</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Cylindrical shells</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a> (<a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a>, <a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">tangent half-angle</a>, <a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a>)</li> <li><a href="/wiki/Integration_using_Euler%27s_formula" title="Integration using Euler's formula">Euler's formula</a></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions</a> (<a href="/wiki/Heaviside_cover-up_method" title="Heaviside cover-up method">Heaviside's method</a>)</li> <li><a href="/wiki/Order_of_integration_(calculus)" title="Order of integration (calculus)">Changing order</a></li> <li><a href="/wiki/Integration_by_reduction_formulae" title="Integration by reduction formulae">Reduction formulae</a></li> <li><a href="/wiki/Leibniz_integral_rule#Evaluating_definite_integrals" title="Leibniz integral rule">Differentiating under the integral sign</a></li> <li><a href="/wiki/Risch_algorithm" title="Risch algorithm">Risch algorithm</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a> (<a href="/wiki/Arithmetico%E2%80%93geometric_sequence" class="mw-redirect" title="Arithmetico–geometric sequence">arithmetico-geometric</a>)</li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Convergence_tests" title="Convergence tests">Convergence tests</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Summand limit (term test)</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><br /><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet</a></li> <li><a href="/wiki/Abel%27s_test" title="Abel's test">Abel</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a class="mw-selflink selflink">Curl</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Vector_calculus_identities" title="Vector calculus identities">Identities</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Theorems</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient_theorem" title="Gradient theorem">Gradient</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green's theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes' theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">generalized Stokes</a></li> <li><a href="/wiki/Helmholtz_decomposition" title="Helmholtz decomposition">Helmholtz decomposition</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Formalisms</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Advanced</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Calculus_on_Euclidean_space" title="Calculus on Euclidean space">Calculus on Euclidean space</a></li> <li><a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a></li> <li><a href="/wiki/Limit_of_distributions" title="Limit of distributions">Limit of distributions</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Specialized</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Fractional_calculus" title="Fractional calculus">Fractional</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin</a></li> <li><a href="/wiki/Stochastic_calculus" title="Stochastic calculus">Stochastic</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Variations</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Miscellanea</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">History</a></li> <li><a href="/wiki/Glossary_of_calculus" title="Glossary of calculus">Glossary</a></li> <li><a href="/wiki/List_of_calculus_topics" title="List of calculus topics">List of topics</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Mathematical analysis</a></li> <li><a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">Nonstandard analysis</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus" title="Template:Calculus"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus" title="Template talk:Calculus"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus" title="Special:EditPage/Template:Calculus"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Vector_calculus" title="Vector calculus">vector calculus</a>, the <b>curl</b>, also known as <b>rotor</b>, is a <a href="/wiki/Vector_operator" title="Vector operator">vector operator</a> that describes the <a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">infinitesimal</a> <a href="/wiki/Circulation_(physics)" title="Circulation (physics)">circulation</a> of a <a href="/wiki/Vector_field" title="Vector field">vector field</a> in three-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>. The curl at a point in the field is represented by a <a href="/wiki/Vector_(geometry)" class="mw-redirect" title="Vector (geometry)">vector</a> whose length and direction denote the <a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a> and axis of the maximum circulation.<sup id="cite_ref-Mathworld_1-0" class="reference"><a href="#cite_note-Mathworld-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The curl of a field is formally defined as the circulation density at each point of the field. </p><p>A vector field whose curl is zero is called <a href="/wiki/Irrotational" class="mw-redirect" title="Irrotational">irrotational</a>. The curl is a form of <a href="/wiki/Derivative" title="Derivative">differentiation</a> for vector fields. The corresponding form of the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a> is <a href="/wiki/Kelvin%E2%80%93Stokes_theorem" class="mw-redirect" title="Kelvin–Stokes theorem">Stokes' theorem</a>, which relates the <a href="/wiki/Surface_integral" title="Surface integral">surface integral</a> of the curl of a vector field to the <a href="/wiki/Line_integral" title="Line integral">line integral</a> of the vector field around the boundary curve. </p><p>The notation <span class="texhtml">curl <b>F</b></span> is more common in North America. In the rest of the world, particularly in 20th century scientific literature, the alternative notation <span class="texhtml">rot <b>F</b></span> is traditionally used, which comes from the "rate of rotation" that it represents. To avoid confusion, modern authors tend to use the <a href="/wiki/Cross_product" title="Cross product">cross product</a> notation with the <a href="/wiki/Del_operator" class="mw-redirect" title="Del operator">del</a> (nabla) operator, as in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e2429b7e3cb6965d1a6651703ff5ef0c88b378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.459ex; height:2.176ex;" alt="{\displaystyle \nabla \times \mathbf {F} }"></span>,</span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> which also reveals the relation between curl (rotor), <a href="/wiki/Divergence" title="Divergence">divergence</a>, and <a href="/wiki/Gradient" title="Gradient">gradient</a> operators. </p><p>Unlike the <a href="/wiki/Gradient" title="Gradient">gradient</a> and <a href="/wiki/Divergence" title="Divergence">divergence</a>, curl as formulated in vector calculus does not generalize simply to other dimensions; some <a href="#Generalizations">generalizations</a> are possible, but only in three dimensions is the geometrically defined curl of a vector field again a vector field. This deficiency is a direct consequence of the limitations of vector calculus; on the other hand, when expressed as an antisymmetric tensor field via the wedge operator of <a href="/wiki/Geometric_calculus" title="Geometric calculus">geometric calculus</a>, the curl generalizes to all dimensions. The circumstance is similar to that attending the 3-dimensional <a href="/wiki/Cross_product" title="Cross product">cross product</a>, and indeed the connection is reflected in the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8255aabfb5dba42ab97b2bf70d0dd19a9849a5eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.176ex;" alt="{\displaystyle \nabla \times }"></span> for the curl. </p><p>The name "curl" was first suggested by <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> in 1871<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> but the concept was apparently first used in the construction of an optical field theory by <a href="/wiki/James_MacCullagh" title="James MacCullagh">James MacCullagh</a> in 1839.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:312px;max-width:312px"><div class="trow"><div class="tsingle" style="width:310px;max-width:310px"><div class="thumbimage" style="height:231px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Curl.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Curl.svg/308px-Curl.svg.png" decoding="async" width="308" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Curl.svg/462px-Curl.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Curl.svg/616px-Curl.svg.png 2x" data-file-width="238" data-file-height="179" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">The components of <span class="texhtml"><b>F</b></span> at position <span class="texhtml"><b>r</b></span>, normal and tangent to a closed curve <span class="texhtml"><i>C</i></span> in a plane, enclosing a planar <a href="/wiki/Vector_area" title="Vector area">vector area</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} =A\mathbf {\hat {n}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">n</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} =A\mathbf {\hat {n}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/176a3541048716f82aa79f9bdbb137fb3c44219e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.346ex; height:2.343ex;" alt="{\displaystyle \mathbf {A} =A\mathbf {\hat {n}} }"></span>.</span></div></div></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:312px;max-width:312px"><div class="trow"><div class="theader">Right-hand rule</div></div><div class="trow"><div class="tsingle" style="width:178px;max-width:178px"><div class="thumbimage" style="height:123px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Curlorient.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Curlorient.svg/176px-Curlorient.svg.png" decoding="async" width="176" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Curlorient.svg/264px-Curlorient.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Curlorient.svg/352px-Curlorient.svg.png 2x" data-file-width="546" data-file-height="384" /></a></span></div><div class="thumbcaption">Convention for vector orientation of the line integral</div></div><div class="tsingle" style="width:130px;max-width:130px"><div class="thumbimage" style="height:123px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Right_hand_rule_simple.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Right_hand_rule_simple.png/128px-Right_hand_rule_simple.png" decoding="async" width="128" height="123" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Right_hand_rule_simple.png/192px-Right_hand_rule_simple.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/45/Right_hand_rule_simple.png/256px-Right_hand_rule_simple.png 2x" data-file-width="424" data-file-height="409" /></a></span></div><div class="thumbcaption">The thumb points in the direction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {n}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">n</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {n}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb84e133d15551d660800ec29b44783ff36e19d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {n}} }"></span> and the fingers curl along the orientation of <span class="texhtml"><i>C</i></span></div></div></div></div></div> <p>The curl of a vector field <span class="texhtml"><b>F</b></span>, denoted by <span class="texhtml">curl <b>F</b></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e2429b7e3cb6965d1a6651703ff5ef0c88b378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.459ex; height:2.176ex;" alt="{\displaystyle \nabla \times \mathbf {F} }"></span>, or <span class="texhtml">rot <b>F</b></span>, is an operator that maps <span class="texhtml"><a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function"><i>C<sup>k</sup></i></a></span> functions in <span class="texhtml"><b>R</b><sup>3</sup></span> to <span class="texhtml"><i>C</i><sup><i>k</i>−1</sup></span> functions in <span class="texhtml"><b>R</b><sup>3</sup></span>, and in particular, it maps continuously differentiable functions <span class="texhtml"><b>R</b><sup>3</sup> → <b>R</b><sup>3</sup></span> to continuous functions <span class="texhtml"><b>R</b><sup>3</sup> → <b>R</b><sup>3</sup></span>. It can be defined in several ways, to be mentioned below: </p><p>One way to define the curl of a vector field at a point is implicitly through its components along various axes passing through the point: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {u}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {u}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1adccb18b3b18c193af9f9ca2b0c0c500103e3ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {u}} }"></span> is any unit vector, the component of the curl of <span class="texhtml"><b>F</b></span> along the direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {u}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {u}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1adccb18b3b18c193af9f9ca2b0c0c500103e3ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {u}} }"></span> may be defined to be the limiting value of a closed <a href="/wiki/Line_integral" title="Line integral">line integral</a> in a plane perpendicular to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {u}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {u}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1adccb18b3b18c193af9f9ca2b0c0c500103e3ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {u}} }"></span> divided by the area enclosed, as the path of integration is contracted indefinitely around the point. </p><p>More specifically, the curl is defined at a point <span class="texhtml"><i>p</i></span> as<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nabla \times \mathbf {F} )(p)\cdot \mathbf {\hat {u}} \ {\overset {\underset {\mathrm {def} }{}}{{}={}}}\lim _{A\to 0}{\frac {1}{|A|}}\oint _{C(p)}\mathbf {F} \cdot \mathrm {d} \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> <munder> <mrow /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </munder> </mover> </mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\nabla \times \mathbf {F} )(p)\cdot \mathbf {\hat {u}} \ {\overset {\underset {\mathrm {def} }{}}{{}={}}}\lim _{A\to 0}{\frac {1}{|A|}}\oint _{C(p)}\mathbf {F} \cdot \mathrm {d} \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e2775234c9c53554f869d1a24413d64ab6207cb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.846ex; height:6.009ex;" alt="{\displaystyle (\nabla \times \mathbf {F} )(p)\cdot \mathbf {\hat {u}} \ {\overset {\underset {\mathrm {def} }{}}{{}={}}}\lim _{A\to 0}{\frac {1}{|A|}}\oint _{C(p)}\mathbf {F} \cdot \mathrm {d} \mathbf {r} }"></span> where the <a href="/wiki/Line_integral" title="Line integral">line integral</a> is calculated along the <a href="/wiki/Boundary_(topology)" title="Boundary (topology)">boundary</a> <span class="texhtml"><i>C</i></span> of the <a href="/wiki/Area" title="Area">area</a> <span class="texhtml"><i>A</i></span> containing point p, <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>A</i></span>|</span> being the magnitude of the area. This equation defines the component of the curl of <span class="texhtml"><b>F</b></span> along the direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {u}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {u}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1adccb18b3b18c193af9f9ca2b0c0c500103e3ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {u}} }"></span>. The infinitesimal surfaces bounded by <span class="texhtml"><i>C</i></span> have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {u}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {u}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1adccb18b3b18c193af9f9ca2b0c0c500103e3ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {u}} }"></span> as their <a href="/wiki/Normal_vector" class="mw-redirect" title="Normal vector">normal</a>. <span class="texhtml"><i>C</i></span> is oriented via the <a href="/wiki/Right-hand_rule" title="Right-hand rule">right-hand rule</a>. </p><p>The above formula means that the component of the curl of a vector field along a certain axis is the <i>infinitesimal <a href="/wiki/Area_density" title="Area density">area density</a></i> of the circulation of the field in a plane perpendicular to that axis. This formula does not <i>a priori</i> define a legitimate vector field, for the individual circulation densities with respect to various axes <i>a priori</i> need not relate to each other in the same way as the components of a vector do; that they <i>do</i> indeed relate to each other in this precise manner must be proven separately. </p><p>To this definition fits naturally the <a href="/wiki/Kelvin%E2%80%93Stokes_theorem" class="mw-redirect" title="Kelvin–Stokes theorem">Kelvin–Stokes theorem</a>, as a global formula corresponding to the definition. It equates the <a href="/wiki/Surface_integral" title="Surface integral">surface integral</a> of the curl of a vector field to the above line integral taken around the boundary of the surface. </p><p>Another way one can define the curl vector of a function <span class="texhtml"><b>F</b></span> at a point is explicitly as the limiting value of a vector-valued surface integral around a shell enclosing <span class="texhtml"><i>p</i></span> divided by the volume enclosed, as the shell is contracted indefinitely around <span class="texhtml"><i>p</i></span>. </p><p>More specifically, the curl may be defined by the vector formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nabla \times \mathbf {F} )(p){\overset {\underset {\mathrm {def} }{}}{{}={}}}\lim _{V\to 0}{\frac {1}{|V|}}\oint _{S}\mathbf {\hat {n}} \times \mathbf {F} \ \mathrm {d} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> <munder> <mrow /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </munder> </mover> </mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">n</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\nabla \times \mathbf {F} )(p){\overset {\underset {\mathrm {def} }{}}{{}={}}}\lim _{V\to 0}{\frac {1}{|V|}}\oint _{S}\mathbf {\hat {n}} \times \mathbf {F} \ \mathrm {d} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8622717a4dfb073341484e8433607bbcf119be8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.505ex; height:6.009ex;" alt="{\displaystyle (\nabla \times \mathbf {F} )(p){\overset {\underset {\mathrm {def} }{}}{{}={}}}\lim _{V\to 0}{\frac {1}{|V|}}\oint _{S}\mathbf {\hat {n}} \times \mathbf {F} \ \mathrm {d} S}"></span> where the surface integral is calculated along the boundary <span class="texhtml"><i>S</i></span> of the volume <span class="texhtml"><i>V</i></span>, <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>V</i></span>|</span> being the magnitude of the volume, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {n}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">n</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {n}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb84e133d15551d660800ec29b44783ff36e19d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.343ex;" alt="{\displaystyle \mathbf {\hat {n}} }"></span> pointing outward from the surface <span class="texhtml"><i>S</i></span> perpendicularly at every point in <span class="texhtml"><i>S</i></span>. </p><p>In this formula, the cross product in the integrand measures the tangential component of <span class="texhtml"><b>F</b></span> at each point on the surface <span class="texhtml"><i>S</i></span>, and points along the surface at right angles to the <i>tangential projection</i> of <span class="texhtml"><b>F</b></span>. Integrating this cross product over the whole surface results in a vector whose magnitude measures the overall circulation of <span class="texhtml"><b>F</b></span> around <span class="texhtml"><i>S</i></span>, and whose direction is at right angles to this circulation. The above formula says that the <i>curl</i> of a vector field at a point is the <i>infinitesimal volume density</i> of this "circulation vector" around the point. </p><p>To this definition fits naturally another global formula (similar to the Kelvin-Stokes theorem) which equates the <a href="/wiki/Volume_integral" title="Volume integral">volume integral</a> of the curl of a vector field to the above surface integral taken over the boundary of the volume. </p><p>Whereas the above two definitions of the curl are coordinate free, there is another "easy to memorize" definition of the curl in curvilinear <a href="/wiki/Orthogonal_coordinates" title="Orthogonal coordinates">orthogonal coordinates</a>, e.g. in <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>, <a href="/wiki/Spherical_coordinates" class="mw-redirect" title="Spherical coordinates">spherical</a>, <a href="/wiki/Cylindrical_coordinates" class="mw-redirect" title="Cylindrical coordinates">cylindrical</a>, or even <a href="/wiki/Elliptic_coordinate_system" title="Elliptic coordinate system">elliptical</a> or <a href="/wiki/Parabolic_coordinates" title="Parabolic coordinates">parabolic coordinates</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&(\operatorname {curl} \mathbf {F} )_{1}={\frac {1}{h_{2}h_{3}}}\left({\frac {\partial (h_{3}F_{3})}{\partial u_{2}}}-{\frac {\partial (h_{2}F_{2})}{\partial u_{3}}}\right),\\[5pt]&(\operatorname {curl} \mathbf {F} )_{2}={\frac {1}{h_{3}h_{1}}}\left({\frac {\partial (h_{1}F_{1})}{\partial u_{3}}}-{\frac {\partial (h_{3}F_{3})}{\partial u_{1}}}\right),\\[5pt]&(\operatorname {curl} \mathbf {F} )_{3}={\frac {1}{h_{1}h_{2}}}\left({\frac {\partial (h_{2}F_{2})}{\partial u_{1}}}-{\frac {\partial (h_{1}F_{1})}{\partial u_{2}}}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>curl</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>curl</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>curl</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&(\operatorname {curl} \mathbf {F} )_{1}={\frac {1}{h_{2}h_{3}}}\left({\frac {\partial (h_{3}F_{3})}{\partial u_{2}}}-{\frac {\partial (h_{2}F_{2})}{\partial u_{3}}}\right),\\[5pt]&(\operatorname {curl} \mathbf {F} )_{2}={\frac {1}{h_{3}h_{1}}}\left({\frac {\partial (h_{1}F_{1})}{\partial u_{3}}}-{\frac {\partial (h_{3}F_{3})}{\partial u_{1}}}\right),\\[5pt]&(\operatorname {curl} \mathbf {F} )_{3}={\frac {1}{h_{1}h_{2}}}\left({\frac {\partial (h_{2}F_{2})}{\partial u_{1}}}-{\frac {\partial (h_{1}F_{1})}{\partial u_{2}}}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72c5af513489cd914b40cf463007656bc9a9cd3c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.171ex; width:43.783ex; height:21.509ex;" alt="{\displaystyle {\begin{aligned}&(\operatorname {curl} \mathbf {F} )_{1}={\frac {1}{h_{2}h_{3}}}\left({\frac {\partial (h_{3}F_{3})}{\partial u_{2}}}-{\frac {\partial (h_{2}F_{2})}{\partial u_{3}}}\right),\\[5pt]&(\operatorname {curl} \mathbf {F} )_{2}={\frac {1}{h_{3}h_{1}}}\left({\frac {\partial (h_{1}F_{1})}{\partial u_{3}}}-{\frac {\partial (h_{3}F_{3})}{\partial u_{1}}}\right),\\[5pt]&(\operatorname {curl} \mathbf {F} )_{3}={\frac {1}{h_{1}h_{2}}}\left({\frac {\partial (h_{2}F_{2})}{\partial u_{1}}}-{\frac {\partial (h_{1}F_{1})}{\partial u_{2}}}\right).\end{aligned}}}"></span> </p><p>The equation for each component <span class="texhtml">(curl <b>F</b>)<sub><i>k</i></sub></span> can be obtained by exchanging each occurrence of a subscript 1, 2, 3 in cyclic permutation: 1 → 2, 2 → 3, and 3 → 1 (where the subscripts represent the relevant indices). </p><p>If <span class="texhtml">(<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>)</span> are the <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinates</a> and <span class="texhtml">(<i>u</i><sub>1</sub>, <i>u</i><sub>2</sub>, <i>u</i><sub>3</sub>)</span> are the orthogonal coordinates, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{i}={\sqrt {\left({\frac {\partial x_{1}}{\partial u_{i}}}\right)^{2}+\left({\frac {\partial x_{2}}{\partial u_{i}}}\right)^{2}+\left({\frac {\partial x_{3}}{\partial u_{i}}}\right)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{i}={\sqrt {\left({\frac {\partial x_{1}}{\partial u_{i}}}\right)^{2}+\left({\frac {\partial x_{2}}{\partial u_{i}}}\right)^{2}+\left({\frac {\partial x_{3}}{\partial u_{i}}}\right)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b01474046e71abce9fd77db756fda7d125c6ef94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.282ex; height:7.676ex;" alt="{\displaystyle h_{i}={\sqrt {\left({\frac {\partial x_{1}}{\partial u_{i}}}\right)^{2}+\left({\frac {\partial x_{2}}{\partial u_{i}}}\right)^{2}+\left({\frac {\partial x_{3}}{\partial u_{i}}}\right)^{2}}}}"></span> is the length of the coordinate vector corresponding to <span class="texhtml"><i>u<sub>i</sub></i></span>. The remaining two components of curl result from <a href="/wiki/Cyclic_permutation" title="Cyclic permutation">cyclic permutation</a> of <a href="/wiki/Index_notation" title="Index notation">indices</a>: 3,1,2 → 1,2,3 → 2,3,1. </p> <div class="mw-heading mw-heading2"><h2 id="Usage">Usage</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=2" title="Edit section: Usage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In practice, the two coordinate-free definitions described above are rarely used because in virtually all cases, the curl <a href="/wiki/Operator_(mathematics)" title="Operator (mathematics)">operator</a> can be applied using some set of <a href="/wiki/Curvilinear_coordinates" title="Curvilinear coordinates">curvilinear coordinates</a>, for which simpler representations have been derived. </p><p>The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e2429b7e3cb6965d1a6651703ff5ef0c88b378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.459ex; height:2.176ex;" alt="{\displaystyle \nabla \times \mathbf {F} }"></span> has its origins in the similarities to the 3-dimensional <a href="/wiki/Cross_product" title="Cross product">cross product</a>, and it is useful as a <a href="/wiki/Mnemonic" title="Mnemonic">mnemonic</a> in <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinates</a> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }"></span> is taken as a vector <a href="/wiki/Differential_operator" title="Differential operator">differential operator</a> <a href="/wiki/Del" title="Del">del</a>. Such notation involving <a href="/wiki/Operator_(physics)" title="Operator (physics)">operators</a> is common in <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Algebra" title="Algebra">algebra</a>. </p><p>Expanded in 3-dimensional <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinates</a> (see <i><a href="/wiki/Del_in_cylindrical_and_spherical_coordinates" title="Del in cylindrical and spherical coordinates">Del in cylindrical and spherical coordinates</a></i> for <a href="/wiki/Spherical_coordinate_system" title="Spherical coordinate system">spherical</a> and <a href="/wiki/Cylindrical_coordinate_system" title="Cylindrical coordinate system">cylindrical</a> coordinate representations), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e2429b7e3cb6965d1a6651703ff5ef0c88b378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.459ex; height:2.176ex;" alt="{\displaystyle \nabla \times \mathbf {F} }"></span> is, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da18bef8c979f3548bb0d8976f5844012d7b8256" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.683ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} }"></span> composed of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [F_{x},F_{y},F_{z}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [F_{x},F_{y},F_{z}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4bc1ea630c9672367135a8289315c1f1288555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.069ex; height:3.009ex;" alt="{\displaystyle [F_{x},F_{y},F_{z}]}"></span> (where the subscripts indicate the components of the vector, not partial derivatives): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} ={\begin{vmatrix}{\boldsymbol {\hat {\imath }}}&{\boldsymbol {\hat {\jmath }}}&{\boldsymbol {\hat {k}}}\\[5mu]{\dfrac {\partial }{\partial x}}&{\dfrac {\partial }{\partial y}}&{\dfrac {\partial }{\partial z}}\\[5mu]F_{x}&F_{y}&F_{z}\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="0.678em 0.678em 0.4em" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} ={\begin{vmatrix}{\boldsymbol {\hat {\imath }}}&{\boldsymbol {\hat {\jmath }}}&{\boldsymbol {\hat {k}}}\\[5mu]{\dfrac {\partial }{\partial x}}&{\dfrac {\partial }{\partial y}}&{\dfrac {\partial }{\partial z}}\\[5mu]F_{x}&F_{y}&F_{z}\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e5ef0821b7793380d87a3ddff6be1b5392e1ba2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:26.284ex; height:14.509ex;" alt="{\displaystyle \nabla \times \mathbf {F} ={\begin{vmatrix}{\boldsymbol {\hat {\imath }}}&{\boldsymbol {\hat {\jmath }}}&{\boldsymbol {\hat {k}}}\\[5mu]{\dfrac {\partial }{\partial x}}&{\dfrac {\partial }{\partial y}}&{\dfrac {\partial }{\partial z}}\\[5mu]F_{x}&F_{y}&F_{z}\end{vmatrix}}}"></span> where <span class="texhtml"><b>i</b></span>, <span class="texhtml"><b>j</b></span>, and <span class="texhtml"><b>k</b></span> are the <a href="/wiki/Unit_vector" title="Unit vector">unit vectors</a> for the <span class="texhtml"><i>x</i></span>-, <span class="texhtml"><i>y</i></span>-, and <span class="texhtml"><i>z</i></span>-axes, respectively. This expands as follows:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} =\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right){\boldsymbol {\hat {\imath }}}+\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right){\boldsymbol {\hat {\jmath }}}+\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right){\boldsymbol {\hat {k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} =\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right){\boldsymbol {\hat {\imath }}}+\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right){\boldsymbol {\hat {\jmath }}}+\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right){\boldsymbol {\hat {k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/badb0e0551157fa14607bfacab3770f51036dc6c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:67.898ex; height:6.343ex;" alt="{\displaystyle \nabla \times \mathbf {F} =\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right){\boldsymbol {\hat {\imath }}}+\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right){\boldsymbol {\hat {\jmath }}}+\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right){\boldsymbol {\hat {k}}}}"></span> </p><p>Although expressed in terms of coordinates, the result is invariant under proper rotations of the coordinate axes but the result inverts under reflection. </p><p>In a general coordinate system, the curl is given by<sup id="cite_ref-Mathworld_1-1" class="reference"><a href="#cite_note-Mathworld-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nabla \times \mathbf {F} )^{k}={\frac {1}{\sqrt {g}}}\varepsilon ^{k\ell m}\nabla _{\ell }F_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>g</mi> </msqrt> </mfrac> </mrow> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>ℓ<!-- ℓ --></mi> <mi>m</mi> </mrow> </msup> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ℓ<!-- ℓ --></mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\nabla \times \mathbf {F} )^{k}={\frac {1}{\sqrt {g}}}\varepsilon ^{k\ell m}\nabla _{\ell }F_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/842f53eeae2ec2174612d1b470e418dd1af050db" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:26.668ex; height:6.176ex;" alt="{\displaystyle (\nabla \times \mathbf {F} )^{k}={\frac {1}{\sqrt {g}}}\varepsilon ^{k\ell m}\nabla _{\ell }F_{m}}"></span> where <span class="texhtml mvar" style="font-style:italic;">ε</span> denotes the <a href="/wiki/Levi-Civita_symbol#Levi-Civita_tensors" title="Levi-Civita symbol">Levi-Civita tensor</a>, <span class="texhtml">∇</span> the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is the <a href="/wiki/Determinant" title="Determinant">determinant</a> of the <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> and the <a href="/wiki/Einstein_summation_convention" class="mw-redirect" title="Einstein summation convention">Einstein summation convention</a> implies that repeated indices are summed over. Due to the symmetry of the Christoffel symbols participating in the covariant derivative, this expression reduces to the partial derivative: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nabla \times \mathbf {F} )={\frac {1}{\sqrt {g}}}\mathbf {R} _{k}\varepsilon ^{k\ell m}\partial _{\ell }F_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>g</mi> </msqrt> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>ℓ<!-- ℓ --></mi> <mi>m</mi> </mrow> </msup> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ℓ<!-- ℓ --></mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\nabla \times \mathbf {F} )={\frac {1}{\sqrt {g}}}\mathbf {R} _{k}\varepsilon ^{k\ell m}\partial _{\ell }F_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77851bb72dcd68d0db7b32c735704213d92659bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:27.969ex; height:6.176ex;" alt="{\displaystyle (\nabla \times \mathbf {F} )={\frac {1}{\sqrt {g}}}\mathbf {R} _{k}\varepsilon ^{k\ell m}\partial _{\ell }F_{m}}"></span> where <span class="texhtml"><b>R</b><sub><i>k</i></sub></span> are the local basis vectors. Equivalently, using the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a>, the curl can be expressed as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} =\left(\star {\big (}{\mathrm {d} }\mathbf {F} ^{\flat }{\big )}\right)^{\sharp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>⋆<!-- ⋆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">♭<!-- ♭ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">♯<!-- ♯ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} =\left(\star {\big (}{\mathrm {d} }\mathbf {F} ^{\flat }{\big )}\right)^{\sharp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6072d0861db78ef87bb32a5700b5336f6820b2d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.344ex; height:5.343ex;" alt="{\displaystyle \nabla \times \mathbf {F} =\left(\star {\big (}{\mathrm {d} }\mathbf {F} ^{\flat }{\big )}\right)^{\sharp }}"></span> </p><p>Here <span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-flat">♭</span></span> and <span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-sharp">♯</span></span> are the <a href="/wiki/Musical_isomorphism" title="Musical isomorphism">musical isomorphisms</a>, and <span class="texhtml"><small>★</small></span> is the <a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a>. This formula shows how to calculate the curl of <span class="texhtml"><b>F</b></span> in any coordinate system, and how to extend the curl to any <a href="/wiki/Orientation_(space)" class="mw-redirect" title="Orientation (space)">oriented</a> three-dimensional <a href="/wiki/Riemannian_metric" class="mw-redirect" title="Riemannian metric">Riemannian</a> manifold. Since this depends on a choice of orientation, curl is a <a href="/wiki/Chirality_(mathematics)" title="Chirality (mathematics)">chiral</a> operation. In other words, if the orientation is reversed, then the direction of the curl is also reversed. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Example_1">Example 1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=4" title="Edit section: Example 1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose the vector field describes the <a href="/wiki/Velocity_field" class="mw-redirect" title="Velocity field">velocity field</a> of a <a href="/wiki/Fluid_flow" class="mw-redirect" title="Fluid flow">fluid flow</a> (such as a large tank of <a href="/wiki/Liquid" title="Liquid">liquid</a> or <a href="/wiki/Gas" title="Gas">gas</a>) and a small ball is located within the fluid or gas (the center of the ball being fixed at a certain point). If the ball has a rough surface, the fluid flowing past it will make it rotate. The rotation axis (oriented according to the right hand rule) points in the direction of the curl of the field at the center of the ball, and the angular speed of the rotation is half the magnitude of the curl at this point.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> The curl of the vector field at any point is given by the rotation of an infinitesimal area in the <i>xy</i>-plane (for <i>z</i>-axis component of the curl), <i>zx</i>-plane (for <i>y</i>-axis component of the curl) and <i>yz</i>-plane (for <i>x</i>-axis component of the curl vector). This can be seen in the examples below. </p> <div class="mw-heading mw-heading3"><h3 id="Example_2">Example 2</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=5" title="Edit section: Example 2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:200px;max-width:200px"><div class="thumbimage" style="height:197px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Uniform_curl.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/198px-Uniform_curl.svg.png" decoding="async" width="198" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/297px-Uniform_curl.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Uniform_curl.svg/396px-Uniform_curl.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div><div class="tsingle" style="width:188px;max-width:188px"><div class="thumbimage" style="height:197px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Curl_of_uniform_curl.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Curl_of_uniform_curl.png/186px-Curl_of_uniform_curl.png" decoding="async" width="186" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Curl_of_uniform_curl.png/279px-Curl_of_uniform_curl.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Curl_of_uniform_curl.png/372px-Curl_of_uniform_curl.png 2x" data-file-width="576" data-file-height="612" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Vector field <span class="texhtml"><b>F</b>(<i>x</i>,<i>y</i>)=[<i>y</i>,−<i>x</i>]</span> (left) and its curl (right).</div></div></div></div> <p>The <a href="/wiki/Vector_field" title="Vector field">vector field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (x,y,z)=y{\boldsymbol {\hat {\imath }}}-x{\boldsymbol {\hat {\jmath }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (x,y,z)=y{\boldsymbol {\hat {\imath }}}-x{\boldsymbol {\hat {\jmath }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c348bd198fa64fa96ba66ab6d112940fb60b4eff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.527ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} (x,y,z)=y{\boldsymbol {\hat {\imath }}}-x{\boldsymbol {\hat {\jmath }}}}"></span> can be decomposed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x}=y,F_{y}=-x,F_{z}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{x}=y,F_{y}=-x,F_{z}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d8499c78a72aa72468a27af0fb7d2e59531085" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.173ex; height:2.843ex;" alt="{\displaystyle F_{x}=y,F_{y}=-x,F_{z}=0.}"></span> </p><p>Upon visual inspection, the field can be described as "rotating". If the vectors of the field were to represent a linear <a href="/wiki/Force" title="Force">force</a> acting on objects present at that point, and an object were to be placed inside the field, the object would start to rotate clockwise around itself. This is true regardless of where the object is placed. </p><p>Calculating the curl: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {F} =0{\boldsymbol {\hat {\imath }}}+0{\boldsymbol {\hat {\jmath }}}+\left({\frac {\partial }{\partial x}}(-x)-{\frac {\partial }{\partial y}}y\right){\boldsymbol {\hat {k}}}=-2{\boldsymbol {\hat {k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {F} =0{\boldsymbol {\hat {\imath }}}+0{\boldsymbol {\hat {\jmath }}}+\left({\frac {\partial }{\partial x}}(-x)-{\frac {\partial }{\partial y}}y\right){\boldsymbol {\hat {k}}}=-2{\boldsymbol {\hat {k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5232fd2c839606bd0f9c3378efb7857cce0938a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.955ex; height:6.176ex;" alt="{\displaystyle \nabla \times \mathbf {F} =0{\boldsymbol {\hat {\imath }}}+0{\boldsymbol {\hat {\jmath }}}+\left({\frac {\partial }{\partial x}}(-x)-{\frac {\partial }{\partial y}}y\right){\boldsymbol {\hat {k}}}=-2{\boldsymbol {\hat {k}}}}"></span> </p><p>The resulting vector field describing the curl would at all points be pointing in the negative <span class="texhtml"><i>z</i></span> direction. The results of this equation align with what could have been predicted using the <a href="/wiki/Right-hand_rule#A_rotating_body" title="Right-hand rule">right-hand rule</a> using a <a href="/wiki/Cartesian_coordinate_system#In_three_dimensions" title="Cartesian coordinate system">right-handed coordinate system</a>. Being a uniform vector field, the object described before would have the same rotational intensity regardless of where it was placed. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Example_3">Example 3</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=6" title="Edit section: Example 3"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:200px;max-width:200px"><div class="thumbimage" style="height:197px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Nonuniform_curl.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Nonuniform_curl.svg/198px-Nonuniform_curl.svg.png" decoding="async" width="198" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Nonuniform_curl.svg/297px-Nonuniform_curl.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/25/Nonuniform_curl.svg/396px-Nonuniform_curl.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div><div class="tsingle" style="width:188px;max-width:188px"><div class="thumbimage" style="height:197px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Curl_of_nonuniform_curl.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Curl_of_nonuniform_curl.png/186px-Curl_of_nonuniform_curl.png" decoding="async" width="186" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Curl_of_nonuniform_curl.png/279px-Curl_of_nonuniform_curl.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/Curl_of_nonuniform_curl.png/372px-Curl_of_nonuniform_curl.png 2x" data-file-width="576" data-file-height="612" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Vector field <span class="texhtml"><b>F</b>(<i>x</i>, <i>y</i>) = [0, −<i>x</i><sup>2</sup>]</span> (left) and its curl (right).</div></div></div></div> <p>For the vector field <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (x,y,z)=-x^{2}{\boldsymbol {\hat {\jmath }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (x,y,z)=-x^{2}{\boldsymbol {\hat {\jmath }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f10a6c435538673d364ff769f42aa672fe13ee04" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.983ex; height:3.176ex;" alt="{\displaystyle \mathbf {F} (x,y,z)=-x^{2}{\boldsymbol {\hat {\jmath }}}}"></span> </p><p>the curl is not as obvious from the graph. However, taking the object in the previous example, and placing it anywhere on the line <span class="texhtml"><i>x</i> = 3</span>, the force exerted on the right side would be slightly greater than the force exerted on the left, causing it to rotate clockwise. Using the right-hand rule, it can be predicted that the resulting curl would be straight in the negative <span class="texhtml"><i>z</i></span> direction. Inversely, if placed on <span class="texhtml"><i>x</i> = −3</span>, the object would rotate counterclockwise and the right-hand rule would result in a positive <span class="texhtml"><i>z</i></span> direction. </p><p>Calculating the curl: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\nabla }\times \mathbf {F} =0{\boldsymbol {\hat {\imath }}}+0{\boldsymbol {\hat {\jmath }}}+{\frac {\partial }{\partial x}}\left(-x^{2}\right){\boldsymbol {\hat {k}}}=-2x{\boldsymbol {\hat {k}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\nabla }\times \mathbf {F} =0{\boldsymbol {\hat {\imath }}}+0{\boldsymbol {\hat {\jmath }}}+{\frac {\partial }{\partial x}}\left(-x^{2}\right){\boldsymbol {\hat {k}}}=-2x{\boldsymbol {\hat {k}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4816c8b8cf070fb594716a153a0bb602dcaad8fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:41.967ex; height:5.509ex;" alt="{\displaystyle {\nabla }\times \mathbf {F} =0{\boldsymbol {\hat {\imath }}}+0{\boldsymbol {\hat {\jmath }}}+{\frac {\partial }{\partial x}}\left(-x^{2}\right){\boldsymbol {\hat {k}}}=-2x{\boldsymbol {\hat {k}}}.}"></span> </p><p>The curl points in the negative <span class="texhtml"><i>z</i></span> direction when <span class="texhtml"><i>x</i></span> is positive and vice versa. In this field, the intensity of rotation would be greater as the object moves away from the plane <span class="texhtml"><i>x</i> = 0</span>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Further_examples">Further examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=7" title="Edit section: Further examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In a vector field describing the linear velocities of each part of a rotating disk in <a href="/wiki/Uniform_circular_motion" class="mw-redirect" title="Uniform circular motion">uniform circular motion</a>, the curl has the same value at all points, and this value turns out to be exactly two times the vectorial <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a> of the disk (oriented as usual by the <a href="/wiki/Right-hand_rule" title="Right-hand rule">right-hand rule</a>). More generally, for any flowing mass, the linear velocity vector field at each point of the mass flow has a curl (the <a href="/wiki/Vorticity" title="Vorticity">vorticity</a> of the flow at that point) equal to exactly two times the <i>local</i> vectorial angular velocity of the mass about the point.</li> <li>For any solid object subject to an external physical force (such as gravity or the electromagnetic force), one may consider the vector field representing the infinitesimal force-per-unit-volume contributions acting at each of the points of the object. This force field may create a net <i><a href="/wiki/Torque" title="Torque">torque</a></i> on the object about its center of mass, and this torque turns out to be directly proportional and vectorially parallel to the (vector-valued) integral of the <i>curl</i> of the force field over the whole volume.</li> <li>Of the four <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a>, two—<a href="/wiki/Faraday%27s_law_of_induction" title="Faraday's law of induction">Faraday's law</a> and <a href="/wiki/Amp%C3%A8re%27s_circuital_law" title="Ampère's circuital law">Ampère's law</a>—can be compactly expressed using curl. Faraday's law states that the curl of an electric field is equal to the opposite of the time rate of change of the magnetic field, while Ampère's law relates the curl of the magnetic field to the current and the time rate of change of the electric field.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Identities">Identities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=8" title="Edit section: Identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Vector_calculus_identities" title="Vector calculus identities">Vector calculus identities</a></div> <p>In general <a href="/wiki/Curvilinear_coordinates" title="Curvilinear coordinates">curvilinear coordinates</a> (not only in Cartesian coordinates), the curl of a cross product of vector fields <span class="texhtml"><b>v</b></span> and <span class="texhtml"><b>F</b></span> can be shown to be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \left(\mathbf {v\times F} \right)={\Big (}\left(\mathbf {\nabla \cdot F} \right)+\mathbf {F\cdot \nabla } {\Big )}\mathbf {v} -{\Big (}\left(\mathbf {\nabla \cdot v} \right)+\mathbf {v\cdot \nabla } {\Big )}\mathbf {F} \ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mo>×<!-- × --></mo> <mi mathvariant="bold">F</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="bold">F</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="bold">v</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \left(\mathbf {v\times F} \right)={\Big (}\left(\mathbf {\nabla \cdot F} \right)+\mathbf {F\cdot \nabla } {\Big )}\mathbf {v} -{\Big (}\left(\mathbf {\nabla \cdot v} \right)+\mathbf {v\cdot \nabla } {\Big )}\mathbf {F} \ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9123b6f5a01bcb5820cba3ff47c7aba2397b83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:59.052ex; height:4.843ex;" alt="{\displaystyle \nabla \times \left(\mathbf {v\times F} \right)={\Big (}\left(\mathbf {\nabla \cdot F} \right)+\mathbf {F\cdot \nabla } {\Big )}\mathbf {v} -{\Big (}\left(\mathbf {\nabla \cdot v} \right)+\mathbf {v\cdot \nabla } {\Big )}\mathbf {F} \ .}"></span> </p><p>Interchanging the vector field <span class="texhtml"><b>v</b></span> and <span class="texhtml">∇</span> operator, we arrive at the cross product of a vector field with curl of a vector field: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v\ \times } \left(\mathbf {\nabla \times F} \right)=\nabla _{\mathbf {F} }\left(\mathbf {v\cdot F} \right)-\left(\mathbf {v\cdot \nabla } \right)\mathbf {F} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mtext mathvariant="bold"> </mtext> <mo>×<!-- × --></mo> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mi mathvariant="bold">F</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="bold">F</mi> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v\ \times } \left(\mathbf {\nabla \times F} \right)=\nabla _{\mathbf {F} }\left(\mathbf {v\cdot F} \right)-\left(\mathbf {v\cdot \nabla } \right)\mathbf {F} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb6c1c59d204e2074b395e735b8ab73f279449d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.854ex; height:2.843ex;" alt="{\displaystyle \mathbf {v\ \times } \left(\mathbf {\nabla \times F} \right)=\nabla _{\mathbf {F} }\left(\mathbf {v\cdot F} \right)-\left(\mathbf {v\cdot \nabla } \right)\mathbf {F} \ ,}"></span> where <span class="texhtml">∇<sub><b>F</b></sub></span> is the Feynman subscript notation, which considers only the variation due to the vector field <span class="texhtml"><b>F</b></span> (i.e., in this case, <span class="texhtml"><b>v</b></span> is treated as being constant in space). </p><p>Another example is the curl of a curl of a vector field. It can be shown that in general coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \left(\mathbf {\nabla \times F} \right)=\mathbf {\nabla } (\mathbf {\nabla \cdot F} )-\nabla ^{2}\mathbf {F} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mi mathvariant="bold">F</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \left(\mathbf {\nabla \times F} \right)=\mathbf {\nabla } (\mathbf {\nabla \cdot F} )-\nabla ^{2}\mathbf {F} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b597d6a26186c37de8e7d02781a003bb04b6a38d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.927ex; height:3.176ex;" alt="{\displaystyle \nabla \times \left(\mathbf {\nabla \times F} \right)=\mathbf {\nabla } (\mathbf {\nabla \cdot F} )-\nabla ^{2}\mathbf {F} \ ,}"></span> and this identity defines the <a href="/wiki/Vector_Laplacian" class="mw-redirect" title="Vector Laplacian">vector Laplacian</a> of <span class="texhtml"><b>F</b></span>, symbolized as <span class="texhtml">∇<sup>2</sup><b>F</b></span>. </p><p>The curl of the <a href="/wiki/Gradient" title="Gradient">gradient</a> of <i>any</i> <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> <span class="texhtml mvar" style="font-style:italic;">φ</span> is always the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a> field <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times (\nabla \varphi )={\boldsymbol {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times (\nabla \varphi )={\boldsymbol {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e6f540bd6429f38a18cb816b4517d94184e7e8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.477ex; height:2.843ex;" alt="{\displaystyle \nabla \times (\nabla \varphi )={\boldsymbol {0}}}"></span> which follows from the <a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">antisymmetry</a> in the definition of the curl, and the <a href="/wiki/Symmetry_of_second_derivatives" title="Symmetry of second derivatives">symmetry of second derivatives</a>. </p><p>The <a href="/wiki/Divergence" title="Divergence">divergence</a> of the curl of any vector field is equal to zero: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c68d1bddef06bd6354ad727f65c3cc9cd24c921a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.791ex; height:2.843ex;" alt="{\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}"></span> </p><p>If <span class="texhtml mvar" style="font-style:italic;">φ</span> is a scalar valued function and <span class="texhtml"><b>F</b></span> is a vector field, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times (\varphi \mathbf {F} )=\nabla \varphi \times \mathbf {F} +\varphi \nabla \times \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>φ<!-- φ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>+</mo> <mi>φ<!-- φ --></mi> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times (\varphi \mathbf {F} )=\nabla \varphi \times \mathbf {F} +\varphi \nabla \times \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dc21562e2a08f9bcb4fec7fdee27c44f1ea82c4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.686ex; height:2.843ex;" alt="{\displaystyle \nabla \times (\varphi \mathbf {F} )=\nabla \varphi \times \mathbf {F} +\varphi \nabla \times \mathbf {F} }"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=9" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The vector calculus operations of <a href="/wiki/Gradient" title="Gradient">grad</a>, curl, and <a href="/wiki/Divergence" title="Divergence">div</a> are most easily generalized in the context of differential forms, which involves a number of steps. In short, they correspond to the derivatives of 0-forms, 1-forms, and 2-forms, respectively. The geometric interpretation of curl as rotation corresponds to identifying <a href="/wiki/Bivector" title="Bivector">bivectors</a> (2-vectors) in 3 dimensions with the <a href="/wiki/Special_orthogonal_Lie_algebra" class="mw-redirect" title="Special orthogonal Lie algebra">special orthogonal Lie algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> of infinitesimal rotations (in coordinates, skew-symmetric 3 × 3 matrices), while representing rotations by vectors corresponds to identifying 1-vectors (equivalently, 2-vectors) and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span>,</span> these all being 3-dimensional spaces. </p> <div class="mw-heading mw-heading3"><h3 id="Differential_forms">Differential forms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=10" title="Edit section: Differential forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Differential_form" title="Differential form">Differential form</a></div> <p>In 3 dimensions, a differential 0-form is a real-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5d48dce2c4341575269f1709237a2e18923237a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.729ex; height:2.843ex;" alt="{\displaystyle f(x,y,z)}"></span>; a differential 1-form is the following expression, where the coefficients are functions: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}\,dx+a_{2}\,dy+a_{3}\,dz;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}\,dx+a_{2}\,dy+a_{3}\,dz;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dbd113b2345d300b2598f75cd253408fb6af6a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.562ex; height:2.509ex;" alt="{\displaystyle a_{1}\,dx+a_{2}\,dy+a_{3}\,dz;}"></span> a differential 2-form is the formal sum, again with function coefficients: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{12}\,dx\wedge dy+a_{13}\,dx\wedge dz+a_{23}\,dy\wedge dz;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <mi>y</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{12}\,dx\wedge dy+a_{13}\,dx\wedge dz+a_{23}\,dy\wedge dz;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e9460286377d56bfe66d85d93140e20c89d8fda" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:38.997ex; height:2.509ex;" alt="{\displaystyle a_{12}\,dx\wedge dy+a_{13}\,dx\wedge dz+a_{23}\,dy\wedge dz;}"></span> and a differential 3-form is defined by a single term with one function as coefficient: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{123}\,dx\wedge dy\wedge dz.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>123</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{123}\,dx\wedge dy\wedge dz.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bde9c350758b3de6922eb755758b4cd9d2102d94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.348ex; height:2.509ex;" alt="{\displaystyle a_{123}\,dx\wedge dy\wedge dz.}"></span> (Here the <span class="texhtml mvar" style="font-style:italic;">a</span>-coefficients are real functions of three variables; the "wedge products", e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{d}}x\wedge {\text{d}}y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{d}}x\wedge {\text{d}}y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/885fc2cd7b2f882c838615f6192fbe05a48f71f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.653ex; height:2.509ex;" alt="{\displaystyle {\text{d}}x\wedge {\text{d}}y}"></span>, can be interpreted as some kind of oriented area elements, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{d}}x\wedge {\text{d}}y=-{\text{d}}y\wedge {\text{d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>y</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{d}}x\wedge {\text{d}}y=-{\text{d}}y\wedge {\text{d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a54fbe3271a511f069256ca81edefb6aae7736f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.212ex; height:2.509ex;" alt="{\displaystyle {\text{d}}x\wedge {\text{d}}y=-{\text{d}}y\wedge {\text{d}}x}"></span>, etc.) </p><p>The <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> of a <span class="texhtml"><i>k</i></span>-form in <span class="texhtml"><b>R</b><sup>3</sup></span> is defined as the <span class="texhtml">(<i>k</i> + 1)</span>-form from above—and in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> if, e.g., <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ^{(k)}=\sum _{1\leq i_{1}<i_{2}<\cdots <i_{k}\leq n}a_{i_{1},\ldots ,i_{k}}\,dx_{i_{1}}\wedge \cdots \wedge dx_{i_{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo><</mo> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ^{(k)}=\sum _{1\leq i_{1}<i_{2}<\cdots <i_{k}\leq n}a_{i_{1},\ldots ,i_{k}}\,dx_{i_{1}}\wedge \cdots \wedge dx_{i_{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efe27b41cf3d774b124122a984d98643e7760f90" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:46.083ex; height:5.843ex;" alt="{\displaystyle \omega ^{(k)}=\sum _{1\leq i_{1}<i_{2}<\cdots <i_{k}\leq n}a_{i_{1},\ldots ,i_{k}}\,dx_{i_{1}}\wedge \cdots \wedge dx_{i_{k}},}"></span> then the exterior derivative <span class="texhtml"><i>d</i></span> leads to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\omega ^{(k)}=\sum _{\scriptstyle {j=1} \atop \scriptstyle {i_{1}<\cdots <i_{k}}}^{n}{\frac {\partial a_{i_{1},\ldots ,i_{k}}}{\partial x_{j}}}\,dx_{j}\wedge dx_{i_{1}}\wedge \cdots \wedge dx_{i_{k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mstyle> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\omega ^{(k)}=\sum _{\scriptstyle {j=1} \atop \scriptstyle {i_{1}<\cdots <i_{k}}}^{n}{\frac {\partial a_{i_{1},\ldots ,i_{k}}}{\partial x_{j}}}\,dx_{j}\wedge dx_{i_{1}}\wedge \cdots \wedge dx_{i_{k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bc068743ecfe7cb9d1a102736c6c13bfe3c1d8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:49.006ex; height:9.009ex;" alt="{\displaystyle d\omega ^{(k)}=\sum _{\scriptstyle {j=1} \atop \scriptstyle {i_{1}<\cdots <i_{k}}}^{n}{\frac {\partial a_{i_{1},\ldots ,i_{k}}}{\partial x_{j}}}\,dx_{j}\wedge dx_{i_{1}}\wedge \cdots \wedge dx_{i_{k}}.}"></span> </p><p>The exterior derivative of a 1-form is therefore a 2-form, and that of a 2-form is a 3-form. On the other hand, because of the interchangeability of mixed derivatives, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}}{\partial x_{i}\,\partial x_{j}}}={\frac {\partial ^{2}}{\partial x_{j}\,\partial x_{i}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}}{\partial x_{i}\,\partial x_{j}}}={\frac {\partial ^{2}}{\partial x_{j}\,\partial x_{i}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd39b2f86926c22d4aefc74846c0aa31b09c60ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.202ex; height:6.509ex;" alt="{\displaystyle {\frac {\partial ^{2}}{\partial x_{i}\,\partial x_{j}}}={\frac {\partial ^{2}}{\partial x_{j}\,\partial x_{i}}},}"></span> and antisymmetry, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx_{i}\wedge dx_{j}=-dx_{j}\wedge dx_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx_{i}\wedge dx_{j}=-dx_{j}\wedge dx_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a823338715a2f8af08db3701ad20e957bced33cb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.673ex; height:2.843ex;" alt="{\displaystyle dx_{i}\wedge dx_{j}=-dx_{j}\wedge dx_{i}}"></span> </p><p>the twofold application of the exterior derivative yields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> (the zero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k+2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k+2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141170bc6765f9f664fe148de50dec24f03e69f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.214ex; height:2.343ex;" alt="{\displaystyle k+2}"></span>-form). </p><p>Thus, denoting the space of <span class="texhtml"><i>k</i></span>-forms by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ^{k}(\mathbb {R} ^{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ^{k}(\mathbb {R} ^{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70fd3ac0eb889dc34b7cd41e8ac987f7a680ec3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.308ex; height:3.176ex;" alt="{\displaystyle \Omega ^{k}(\mathbb {R} ^{3})}"></span> and the exterior derivative by <span class="texhtml"><i>d</i></span> one gets a sequence: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\,{\overset {d}{\longrightarrow }}\;\Omega ^{0}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{1}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{2}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{3}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\,0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>d</mi> </mover> </mrow> <mspace width="thickmathspace" /> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>d</mi> </mover> </mrow> <mspace width="thickmathspace" /> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>d</mi> </mover> </mrow> <mspace width="thickmathspace" /> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>d</mi> </mover> </mrow> <mspace width="thickmathspace" /> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>d</mi> </mover> </mrow> <mspace width="thinmathspace" /> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\,{\overset {d}{\longrightarrow }}\;\Omega ^{0}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{1}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{2}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{3}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\,0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c320088c091e541fbbd58668a6c2cb7b7305eb6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:60.377ex; height:4.343ex;" alt="{\displaystyle 0\,{\overset {d}{\longrightarrow }}\;\Omega ^{0}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{1}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{2}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\;\Omega ^{3}\left(\mathbb {R} ^{3}\right)\,{\overset {d}{\longrightarrow }}\,0.}"></span> </p><p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ^{k}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ^{k}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c74b5baebc27b523068f729d15727cb1e055f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.473ex; height:3.176ex;" alt="{\displaystyle \Omega ^{k}(\mathbb {R} ^{n})}"></span> is the space of sections of the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda ^{k}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda ^{k}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca594d9124e4f9066cbed4ea52c11a421cee210e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.408ex; height:3.176ex;" alt="{\displaystyle \Lambda ^{k}(\mathbb {R} ^{n})}"></span> <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundle</a> over <b>R</b><sup><i>n</i></sup>, whose dimension is the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {n}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {n}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/963a810ba39e3e0725c523d0c98b18f39786ebb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:4.816ex; height:6.176ex;" alt="{\displaystyle {\binom {n}{k}}}"></span>; note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ^{k}(\mathbb {R} ^{3})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ^{k}(\mathbb {R} ^{3})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/909abd93ece372afef9516c158390bde4fe20e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.569ex; height:3.176ex;" alt="{\displaystyle \Omega ^{k}(\mathbb {R} ^{3})=0}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k>3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k>3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45c55b4ff0d61c81d264463917a795a521e8e5c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k>3}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d59e54fad8568e90715f2b10521d3e39bc45fca9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k<0}"></span>. Writing only dimensions, one obtains a row of <a href="/wiki/Pascal%27s_triangle" title="Pascal's triangle">Pascal's triangle</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\rightarrow 1\rightarrow 3\rightarrow 3\rightarrow 1\rightarrow 0;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> <mo stretchy="false">→<!-- → --></mo> <mn>3</mn> <mo stretchy="false">→<!-- → --></mo> <mn>3</mn> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\rightarrow 1\rightarrow 3\rightarrow 3\rightarrow 1\rightarrow 0;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b853e28f3f08da4fa9485678fe866a459495c41d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.692ex; height:2.509ex;" alt="{\displaystyle 0\rightarrow 1\rightarrow 3\rightarrow 3\rightarrow 1\rightarrow 0;}"></span> </p><p>the 1-dimensional fibers correspond to scalar fields, and the 3-dimensional fibers to vector fields, as described below. Modulo suitable identifications, the three nontrivial occurrences of the exterior derivative correspond to grad, curl, and div. </p><p>Differential forms and the differential can be defined on any Euclidean space, or indeed any manifold, without any notion of a Riemannian metric. On a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, or more generally <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a>, <span class="texhtml"><i>k</i></span>-forms can be identified with <a href="/wiki/P-vector" class="mw-redirect" title="P-vector"><span class="texhtml"><i>k</i></span>-vector</a> fields (<span class="texhtml"><i>k</i></span>-forms are <span class="texhtml"><i>k</i></span>-covector fields, and a pseudo-Riemannian metric gives an isomorphism between vectors and covectors), and on an <i>oriented</i> vector space with a <a href="/wiki/Nondegenerate_form" class="mw-redirect" title="Nondegenerate form">nondegenerate form</a> (an isomorphism between vectors and covectors), there is an isomorphism between <span class="texhtml"><i>k</i></span>-vectors and <span class="texhtml">(<i>n</i> − <i>k</i>)</span>-vectors; in particular on (the tangent space of) an oriented pseudo-Riemannian manifold. Thus on an oriented pseudo-Riemannian manifold, one can interchange <span class="texhtml"><i>k</i></span>-forms, <span class="texhtml"><i>k</i></span>-vector fields, <span class="texhtml">(<i>n</i> − <i>k</i>)</span>-forms, and <span class="texhtml">(<i>n</i> − <i>k</i>)</span>-vector fields; this is known as <a href="/wiki/Hodge_duality" class="mw-redirect" title="Hodge duality">Hodge duality</a>. Concretely, on <span class="texhtml"><b>R</b><sup>3</sup></span> this is given by: </p> <ul><li>1-forms and 1-vector fields: the 1-form <span class="texhtml"><i>a<sub>x</sub> dx</i> + <i>a<sub>y</sub> dy</i> + <i>a<sub>z</sub> dz</i></span> corresponds to the vector field <span class="texhtml">(<i>a<sub>x</sub></i>, <i>a<sub>y</sub></i>, <i>a<sub>z</sub></i>)</span>.</li> <li>1-forms and 2-forms: one replaces <span class="texhtml"><i>dx</i></span> by the dual quantity <span class="texhtml"><i>dy</i> ∧ <i>dz</i></span> (i.e., omit <span class="texhtml"><i>dx</i></span>), and likewise, taking care of orientation: <span class="texhtml"><i>dy</i></span> corresponds to <span class="texhtml"><i>dz</i> ∧ <i>dx</i> = −<i>dx</i> ∧ <i>dz</i></span>, and <span class="texhtml"><i>dz</i></span> corresponds to <span class="texhtml"><i>dx</i> ∧ <i>dy</i></span>. Thus the form <span class="texhtml"><i>a<sub>x</sub> dx</i> + <i>a<sub>y</sub> dy</i> + <i>a<sub>z</sub> dz</i></span> corresponds to the "dual form" <span class="texhtml"><i>a<sub>z</sub> dx</i> ∧ <i>dy</i> + <i>a<sub>y</sub> dz</i> ∧ <i>dx</i> + <i>a<sub>x</sub> dy</i> ∧ <i>dz</i></span>.</li></ul> <p>Thus, identifying 0-forms and 3-forms with scalar fields, and 1-forms and 2-forms with vector fields: </p> <ul><li>grad takes a scalar field (0-form) to a vector field (1-form);</li> <li>curl takes a vector field (1-form) to a pseudovector field (2-form);</li> <li>div takes a pseudovector field (2-form) to a pseudoscalar field (3-form)</li></ul> <p>On the other hand, the fact that <span class="texhtml"><i>d</i><span style="padding-left:0.12em;"><sup>2</sup></span> = 0</span> corresponds to the identities <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times (\nabla f)=\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times (\nabla f)=\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/920b02b8188ca74a106d7201fd52b7b7297c90ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.235ex; height:2.843ex;" alt="{\displaystyle \nabla \times (\nabla f)=\mathbf {0} }"></span> for any scalar field <span class="texhtml mvar" style="font-style:italic;">f</span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot (\nabla \times \mathbf {v} )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot (\nabla \times \mathbf {v} )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5c4f9da2b6ecac88812b7dbda95ecace8c7aada" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.872ex; height:2.843ex;" alt="{\displaystyle \nabla \cdot (\nabla \times \mathbf {v} )=0}"></span> for any vector field <span class="texhtml"><b>v</b></span>. </p><p>Grad and div generalize to all oriented pseudo-Riemannian manifolds, with the same geometric interpretation, because the spaces of 0-forms and <span class="texhtml"><i>n</i></span>-forms at each point are always 1-dimensional and can be identified with scalar fields, while the spaces of 1-forms and <span class="texhtml">(<i>n</i> − 1)</span>-forms are always fiberwise <span class="texhtml"><i>n</i></span>-dimensional and can be identified with vector fields. </p><p>Curl does not generalize in this way to 4 or more dimensions (or down to 2 or fewer dimensions); in 4 dimensions the dimensions are </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent">0 → 1 → 4 → 6 → 4 → 1 → 0;</div> <p>so the curl of a 1-vector field (fiberwise 4-dimensional) is a <i>2-vector field</i>, which at each point belongs to 6-dimensional vector space, and so one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ^{(2)}=\sum _{i<k=1,2,3,4}a_{i,k}\,dx_{i}\wedge dx_{k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo><</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ^{(2)}=\sum _{i<k=1,2,3,4}a_{i,k}\,dx_{i}\wedge dx_{k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb63e39ae1c4ddd96d79337457ffb6db728baa2a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:29.845ex; height:5.843ex;" alt="{\displaystyle \omega ^{(2)}=\sum _{i<k=1,2,3,4}a_{i,k}\,dx_{i}\wedge dx_{k},}"></span> which yields a sum of six independent terms, and cannot be identified with a 1-vector field. Nor can one meaningfully go from a 1-vector field to a 2-vector field to a 3-vector field (4 → 6 → 4), as taking the differential twice yields zero (<span class="texhtml"><i>d</i><span style="padding-left:0.12em;"><sup>2</sup></span> = 0</span>). Thus there is no curl function from vector fields to vector fields in other dimensions arising in this way. </p><p>However, one can define a curl of a vector field as a <i>2-vector field</i> in general, as described below. </p> <div class="mw-heading mw-heading3"><h3 id="Curl_geometrically">Curl geometrically</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=11" title="Edit section: Curl geometrically"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>2-vectors correspond to the exterior power <span class="texhtml">Λ<sup>2</sup><i>V</i></span>; in the presence of an inner product, in coordinates these are the skew-symmetric matrices, which are geometrically considered as the <a href="/wiki/Special_orthogonal_Lie_algebra" class="mw-redirect" title="Special orthogonal Lie algebra">special orthogonal Lie algebra</a> <span class="texhtml"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d751e9193970241df0a4a3cb78cbbb63c85514f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.041ex; width:2.208ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {so}}}"></span>(<i>V</i>)</span> of infinitesimal rotations. This has <span class="texhtml"><big><big>(</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span><big><big>)</big></big> = <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span><i>n</i>(<i>n</i> − 1)</span> dimensions, and allows one to interpret the differential of a 1-vector field as its infinitesimal rotations. Only in 3 dimensions (or trivially in 0 dimensions) we have <span class="texhtml"><i>n</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span><i>n</i>(<i>n</i> − 1)</span>, which is the most elegant and common case. In 2 dimensions the curl of a vector field is not a vector field but a function, as 2-dimensional rotations are given by an angle (a scalar – an orientation is required to choose whether one counts clockwise or counterclockwise rotations as positive); this is not the div, but is rather perpendicular to it. In 3 dimensions the curl of a vector field is a vector field as is familiar (in 1 and 0 dimensions the curl of a vector field is 0, because there are no non-trivial 2-vectors), while in 4 dimensions the curl of a vector field is, geometrically, at each point an element of the 6-dimensional Lie algebra <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc551dec4339f755ad51933dab462f5ccfa0c27a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(4)}"></span>.</span> </p><p>The curl of a 3-dimensional vector field which only depends on 2 coordinates (say <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span>) is simply a vertical vector field (in the <span class="texhtml"><i>z</i></span> direction) whose magnitude is the curl of the 2-dimensional vector field, as in the examples on this page. </p><p>Considering curl as a 2-vector field (an antisymmetric 2-tensor) has been used to generalize vector calculus and associated physics to higher dimensions.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Inverse">Inverse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=12" title="Edit section: Inverse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Helmholtz_decomposition" title="Helmholtz decomposition">Helmholtz decomposition</a></div> <p>In the case where the divergence of a vector field <span class="texhtml"><b>V</b></span> is zero, a vector field <span class="texhtml"><b>W</b></span> exists such that <span class="texhtml"><b>V</b> = curl(<b>W</b>)</span>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2020)">citation needed</span></a></i>]</sup> This is why the <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>, characterized by zero divergence, can be expressed as the curl of a <a href="/wiki/Magnetic_vector_potential" title="Magnetic vector potential">magnetic vector potential</a>. </p><p>If <span class="texhtml"><b>W</b></span> is a vector field with <span class="texhtml">curl(<b>W</b>) = <b>V</b></span>, then adding any gradient vector field <span class="texhtml">grad(<i>f</i>)</span> to <span class="texhtml"><b>W</b></span> will result in another vector field <span class="texhtml"><b>W</b> + grad(<i>f</i>)</span> such that <span class="texhtml">curl(<b>W</b> + grad(<i>f</i>)) = <b>V</b></span> as well. This can be summarized by saying that the inverse curl of a three-dimensional vector field can be obtained up to an unknown <a href="/wiki/Irrotational_field" class="mw-redirect" title="Irrotational field">irrotational field</a> with the <a href="/wiki/Biot%E2%80%93Savart_law" title="Biot–Savart law">Biot–Savart law</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=13" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Helmholtz_decomposition" title="Helmholtz decomposition">Helmholtz decomposition</a></li> <li><a href="/wiki/Hiptmair%E2%80%93Xu_preconditioner" title="Hiptmair–Xu preconditioner">Hiptmair–Xu preconditioner</a></li> <li><a href="/wiki/Del_in_cylindrical_and_spherical_coordinates" title="Del in cylindrical and spherical coordinates">Del in cylindrical and spherical coordinates</a></li> <li><a href="/wiki/Vorticity" title="Vorticity">Vorticity</a></li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Mathworld-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mathworld_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mathworld_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Curl"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Curl.html">"Curl"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Curl&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FCurl.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="/wiki/ISO/IEC_80000" title="ISO/IEC 80000">ISO/IEC 80000-2 standard</a> Norm ISO/IEC 80000-2, item 2-17.16</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.clerkmaxwellfoundation.org/MathematicalClassificationofPhysicalQuantities_Maxwell.pdf">Proceedings of the London Mathematical Society, March 9th, 1871</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://archive.org/details/collectedworks00maccuoft"><i>Collected works of James MacCullagh</i></a>. Dublin: Hodges. 1880.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Collected+works+of+James+MacCullagh&rft.place=Dublin&rft.pub=Hodges&rft.date=1880&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcollectedworks00maccuoft&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://jeff560.tripod.com/c.html">Earliest Known Uses of Some of the Words of Mathematics</a> <a href="/wiki/Tripod.com" class="mw-redirect" title="Tripod.com">tripod.com</a></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-86153-3" title="Special:BookSources/978-0-521-86153-3">978-0-521-86153-3</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Vector Analysis (2nd Edition), M.R. Spiegel, S. Lipschutz, D. Spellman, Schaum's Outlines, McGraw Hill (USA), 2009, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-161545-7" title="Special:BookSources/978-0-07-161545-7">978-0-07-161545-7</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArfken2005" class="citation book cs1">Arfken, George Brown (2005). <i>Mathematical methods for physicists</i>. Weber, Hans-Jurgen (6th ed.). Boston: Elsevier. p. 43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-047069-6" title="Special:BookSources/978-0-08-047069-6"><bdi>978-0-08-047069-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/127114279">127114279</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+methods+for+physicists&rft.place=Boston&rft.pages=43&rft.edition=6th&rft.pub=Elsevier&rft.date=2005&rft_id=info%3Aoclcnum%2F127114279&rft.isbn=978-0-08-047069-6&rft.aulast=Arfken&rft.aufirst=George+Brown&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibbsWilson1901" class="citation cs2"><a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Gibbs, Josiah Willard</a>; <a href="/wiki/Edwin_Bidwell_Wilson" title="Edwin Bidwell Wilson">Wilson, Edwin Bidwell</a> (1901), <a rel="nofollow" class="external text" href="http://hdl.handle.net/2027/mdp.39015000962285?urlappend=%3Bseq=179"><i>Vector analysis</i></a>, Yale bicentennial publications, C. Scribner's Sons, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fmdp.39015000962285?urlappend=%3Bseq=179">2027/mdp.39015000962285</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vector+analysis&rft.series=Yale+bicentennial+publications&rft.pub=C.+Scribner%27s+Sons&rft.date=1901&rft_id=info%3Ahdl%2F2027%2Fmdp.39015000962285%3Furlappend%3D%253Bseq%3D179&rft.aulast=Gibbs&rft.aufirst=Josiah+Willard&rft.au=Wilson%2C+Edwin+Bidwell&rft_id=http%3A%2F%2Fhdl.handle.net%2F2027%2Fmdp.39015000962285%3Furlappend%3D%253Bseq%3D179&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcDavidMcMullen2006" class="citation arxiv cs1">McDavid, A. W.; McMullen, C. D. (2006-10-30). "Generalizing Cross Products and Maxwell's Equations to Universal Extra Dimensions". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/0609260">hep-ph/0609260</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Generalizing+Cross+Products+and+Maxwell%27s+Equations+to+Universal+Extra+Dimensions&rft.date=2006-10-30&rft_id=info%3Aarxiv%2Fhep-ph%2F0609260&rft.aulast=McDavid&rft.aufirst=A.+W.&rft.au=McMullen%2C+C.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=15" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorn,_Granino_Arthur_and_Theresa_M._Korn2000" class="citation book cs1">Korn, Granino Arthur and <a href="/wiki/Theresa_M._Korn" title="Theresa M. Korn">Theresa M. Korn</a> (January 2000). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalhand00korn_849/page/n173/mode/2up"><i>Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review</i></a></span>. New York: Dover Publications. pp. <span class="nowrap">157–</span>160. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-41147-8" title="Special:BookSources/0-486-41147-8"><bdi>0-486-41147-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Handbook+for+Scientists+and+Engineers%3A+Definitions%2C+Theorems%2C+and+Formulas+for+Reference+and+Review&rft.place=New+York&rft.pages=%3Cspan+class%3D%22nowrap%22%3E157-%3C%2Fspan%3E160&rft.pub=Dover+Publications&rft.date=2000-01&rft.isbn=0-486-41147-8&rft.au=Korn%2C+Granino+Arthur+and+Theresa+M.+Korn&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalhand00korn_849%2Fpage%2Fn173%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchey1997" class="citation book cs1">Schey, H. M. (1997). <i>Div, Grad, Curl, and All That: An Informal Text on Vector Calculus</i>. New York: Norton. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-393-96997-5" title="Special:BookSources/0-393-96997-5"><bdi>0-393-96997-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Div%2C+Grad%2C+Curl%2C+and+All+That%3A+An+Informal+Text+on+Vector+Calculus&rft.place=New+York&rft.pub=Norton&rft.date=1997&rft.isbn=0-393-96997-5&rft.aulast=Schey&rft.aufirst=H.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Curl_(mathematics)&action=edit&section=16" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Curl">"Curl"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Curl&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DCurl&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathinsight.org/thread/multivar">"Multivariable calculus"</a>. <i>mathinsight.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 12,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathinsight.org&rft.atitle=Multivariable+calculus&rft_id=https%3A%2F%2Fmathinsight.org%2Fthread%2Fmultivar&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=rB83DpBJQsE">"Divergence and Curl: The Language of Maxwell's Equations, Fluid Flow, and More"</a>. June 21, 2018. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211124/rB83DpBJQsE">Archived</a> from the original on 2021-11-24 – via <a href="/wiki/YouTube" title="YouTube">YouTube</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Divergence+and+Curl%3A+The+Language+of+Maxwell%27s+Equations%2C+Fluid+Flow%2C+and+More&rft.date=2018-06-21&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrB83DpBJQsE&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACurl+%28mathematics%29" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Calculus249" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus_topics" title="Template:Calculus topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus_topics" title="Template talk:Calculus topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus_topics" title="Special:EditPage/Template:Calculus topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Calculus249" style="font-size:114%;margin:0 4em"><a href="/wiki/Calculus" title="Calculus">Calculus</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_theorem" title="Binomial theorem">Binomial theorem</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave function</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Finite difference</a></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free variables and bound variables</a></li> <li><a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></li> <li><a href="/wiki/Linear_function" title="Linear function">Linear function</a></li> <li><a href="/wiki/Radian" title="Radian">Radian</a></li> <li><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></li> <li><a href="/wiki/Secant_line" title="Secant line">Secant</a></li> <li><a href="/wiki/Slope" title="Slope">Slope</a></li> <li><a href="/wiki/Tangent" title="Tangent">Tangent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limits</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indeterminate_form" title="Indeterminate form">Indeterminate form</a></li> <li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limit of a function</a> <ul><li><a href="/wiki/One-sided_limit" title="One-sided limit">One-sided limit</a></li></ul></li> <li><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Limit of a sequence</a></li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/(%CE%B5,_%CE%B4)-definition_of_limit" class="mw-redirect" title="(ε, δ)-definition of limit">(ε, δ)-definition of limit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a> <ul><li><a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a></li> <li><a href="/wiki/Newton%27s_notation_for_differentiation" class="mw-redirect" title="Newton's notation for differentiation">Newton's notation</a></li></ul></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules of differentiation</a> <ul><li><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">linearity</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a> <ul><li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz's rule</a></li></ul></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li></ul></li> <li>Other techniques <ul><li><a href="/wiki/Implicit_differentiation" class="mw-redirect" title="Implicit differentiation">Implicit differentiation</a></li> <li><a href="/wiki/Inverse_functions_and_differentiation" class="mw-redirect" title="Inverse functions and differentiation">Inverse functions and differentiation</a></li> <li><a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">Logarithmic derivative</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li></ul></li> <li><a href="/wiki/Stationary_point" title="Stationary point">Stationary points</a> <ul><li><a href="/wiki/First_derivative_test" class="mw-redirect" title="First derivative test">First derivative test</a></li> <li><a href="/wiki/Second_derivative_test" class="mw-redirect" title="Second derivative test">Second derivative test</a></li> <li><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">Extreme value theorem</a></li> <li><a href="/wiki/Maximum_and_minimum" title="Maximum and minimum">Maximum and minimum</a></li></ul></li> <li>Further applications <ul><li><a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">Integral calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Arc_length" title="Arc length">Arc length</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Integral#Properties" title="Integral">Basic properties</a></li> <li><a href="/wiki/Constant_of_integration" title="Constant of integration">Constant of integration</a></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a> <ul><li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Differentiating under the integral sign</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">Integration by parts</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Integration by substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">Tangent half-angle substitution</a></li></ul></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions in integration</a> <ul><li><a href="/wiki/Quadratic_integral" title="Quadratic integral">Quadratic integral</a></li></ul></li> <li><a href="/wiki/Trapezoidal_rule" title="Trapezoidal rule">Trapezoidal rule</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washer method</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shell method</a></li></ul></li> <li><a href="/wiki/Integral_equation" title="Integral equation">Integral equation</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Derivatives <ul><li><a class="mw-selflink selflink">Curl</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li></ul></li> <li>Basic theorems <ul><li><a href="/wiki/Fundamental_Theorem_of_Line_Integrals" class="mw-redirect" title="Fundamental Theorem of Line Integrals">Line integrals</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green's theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes' theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Gauss'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence theorem</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix and determinant</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li>Advanced topics <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Generalized_Stokes%27_theorem" class="mw-redirect" title="Generalized Stokes' theorem">Generalized Stokes' theorem</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sequences and series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetico-geometric_sequence" title="Arithmetico-geometric sequence">Arithmetico-geometric sequence</a></li> <li>Types of series <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier</a></li> <li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">Infinite</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a> <ul><li><a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul></li> <li>Tests of convergence <ul><li><a href="/wiki/Abel%27s_test" title="Abel's test">Abel's</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet's</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Term</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special functions<br />and numbers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a></li> <li><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Stirling%27s_approximation" title="Stirling's approximation">Stirling's approximation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_calculus" title="History of calculus">History of calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a></li> <li><a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a></li> <li><a href="/wiki/Generality_of_algebra" title="Generality of algebra">Generality of algebra</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimal</a></li> <li><a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">Infinitesimal calculus</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Fluxion" title="Fluxion">Fluxion</a></li> <li><a href="/wiki/Law_of_Continuity" class="mw-redirect" title="Law of Continuity">Law of Continuity</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Method of Fluxions</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Integrals32" scope="row" class="navbox-group" style="width:1%;text-align:left"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_integrals_of_rational_functions" title="List of integrals of rational functions">rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">hyperbolic functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">inverse</a></li></ul></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">trigonometric functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">inverse</a></li> <li><a href="/wiki/Integral_of_the_secant_function" title="Integral of the secant function">Secant</a></li> <li><a href="/wiki/Integral_of_secant_cubed" title="Integral of secant cubed">Secant cubed</a></li></ul></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_limits" title="List of limits">List of limits</a></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">List of derivatives</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Complex calculus <ul><li><a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">Contour integral</a></li></ul></li> <li>Differential geometry <ul><li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">of curves</a></li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">of surfaces</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li></ul></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel's horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li><a href="/wiki/Regiomontanus%27_angle_maximization_problem" title="Regiomontanus' angle maximization problem">Regiomontanus' angle maximization problem</a></li> <li><a href="/wiki/Steinmetz_solid" title="Steinmetz solid">Steinmetz solid</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.canary‐57d45ffcb8‐tljt5 Cached time: 20250204082959 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.843 seconds Real time usage: 1.193 seconds Preprocessor visited node count: 8339/1000000 Post‐expand include size: 114081/2097152 bytes Template argument size: 12104/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 139519/5000000 bytes Lua time usage: 0.397/10.000 seconds Lua memory usage: 6420787/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 831.911 1 -total 23.85% 198.427 1 Template:Reflist 19.64% 163.369 121 Template:Math 15.66% 130.238 1 Template:MathWorld 15.43% 128.325 1 Template:Short_description 13.66% 113.614 1 Template:Calculus 8.51% 70.788 2 Template:Pagetype 7.92% 65.923 128 Template:Main_other 5.41% 45.047 1 Template:Calculus_topics 5.40% 44.963 2 Template:Navbox --> <!-- Saved in parser cache with key enwiki:pcache:6123:|#|:idhash:canonical and timestamp 20250204082959 and revision id 1273268020. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Curl_(mathematics)&oldid=1273268020">https://en.wikipedia.org/w/index.php?title=Curl_(mathematics)&oldid=1273268020</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Differential_operators" title="Category:Differential operators">Differential operators</a></li><li><a href="/wiki/Category:Linear_operators_in_calculus" title="Category:Linear operators in calculus">Linear operators in calculus</a></li><li><a href="/wiki/Category:Vector_calculus" title="Category:Vector calculus">Vector calculus</a></li><li><a href="/wiki/Category:Analytic_geometry" title="Category:Analytic geometry">Analytic geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_sidebar_with_the_child_parameter" title="Category:Pages using sidebar with the child parameter">Pages using sidebar with the child parameter</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2020" title="Category:Articles with unsourced statements from April 2020">Articles with unsourced statements from April 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 1 February 2025, at 15:04<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Curl_(mathematics)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Curl (mathematics)</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>43 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b9576b97f-ltj24","wgBackendResponseTime":144,"wgPageParseReport":{"limitreport":{"cputime":"0.843","walltime":"1.193","ppvisitednodes":{"value":8339,"limit":1000000},"postexpandincludesize":{"value":114081,"limit":2097152},"templateargumentsize":{"value":12104,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":139519,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 831.911 1 -total"," 23.85% 198.427 1 Template:Reflist"," 19.64% 163.369 121 Template:Math"," 15.66% 130.238 1 Template:MathWorld"," 15.43% 128.325 1 Template:Short_description"," 13.66% 113.614 1 Template:Calculus"," 8.51% 70.788 2 Template:Pagetype"," 7.92% 65.923 128 Template:Main_other"," 5.41% 45.047 1 Template:Calculus_topics"," 5.40% 44.963 2 Template:Navbox"]},"scribunto":{"limitreport-timeusage":{"value":"0.397","limit":"10.000"},"limitreport-memusage":{"value":6420787,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.canary-57d45ffcb8-tljt5","timestamp":"20250204082959","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Curl (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Curl_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q206310","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q206310","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-16T17:50:54Z","dateModified":"2025-02-01T15:04:46Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/80\/Uniform_curl.svg"}</script> </body> </html>