CINXE.COM

Cross product - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Cross product - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"935adff0-bb46-4ee0-b75c-648eef2900ac","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cross_product","wgTitle":"Cross product","wgCurRevisionId":1258796597,"wgRevisionId":1258796597,"wgArticleId":157092,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia articles needing page number citations from September 2019","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from November 2009","Articles that may contain original research from September 2021","All articles that may contain original research","Articles with unsourced statements from April 2008","Articles with unsourced statements from July 2024", "CS1 Italian-language sources (it)","Bilinear maps","Operations on vectors","Analytic geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Cross_product","wgRelevantArticleId":157092,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false, "wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q178192","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/1200px-Cross_product_vector.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1669"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/800px-Cross_product_vector.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1112"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/640px-Cross_product_vector.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="890"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Cross product - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Cross_product"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Cross_product&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Cross_product"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cross_product rootpage-Cross_product skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Cross+product" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Cross+product" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Cross+product" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Cross+product" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Direction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Direction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Direction</span> </div> </a> <ul id="toc-Direction-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Names_and_origin" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Names_and_origin"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Names and origin</span> </div> </a> <ul id="toc-Names_and_origin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computing" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Computing</span> </div> </a> <button aria-controls="toc-Computing-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computing subsection</span> </button> <ul id="toc-Computing-sublist" class="vector-toc-list"> <li id="toc-Coordinate_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordinate_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Coordinate notation</span> </div> </a> <ul id="toc-Coordinate_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrix_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrix_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Matrix notation</span> </div> </a> <ul id="toc-Matrix_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Using_Levi-Civita_tensors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Using_Levi-Civita_tensors"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Using Levi-Civita tensors</span> </div> </a> <ul id="toc-Using_Levi-Civita_tensors-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Geometric_meaning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometric_meaning"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Geometric meaning</span> </div> </a> <ul id="toc-Geometric_meaning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Algebraic properties</span> </div> </a> <ul id="toc-Algebraic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differentiation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differentiation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Differentiation</span> </div> </a> <ul id="toc-Differentiation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Triple_product_expansion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Triple_product_expansion"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Triple product expansion</span> </div> </a> <ul id="toc-Triple_product_expansion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Alternative_formulation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Alternative_formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Alternative formulation</span> </div> </a> <ul id="toc-Alternative_formulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cross_product_inverse" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cross_product_inverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Cross product inverse</span> </div> </a> <ul id="toc-Cross_product_inverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lagrange&#039;s_identity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lagrange&#039;s_identity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Lagrange's identity</span> </div> </a> <ul id="toc-Lagrange&#039;s_identity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinitesimal_generators_of_rotations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinitesimal_generators_of_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Infinitesimal generators of rotations</span> </div> </a> <ul id="toc-Infinitesimal_generators_of_rotations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Alternative_ways_to_compute" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Alternative_ways_to_compute"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Alternative ways to compute</span> </div> </a> <button aria-controls="toc-Alternative_ways_to_compute-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Alternative ways to compute subsection</span> </button> <ul id="toc-Alternative_ways_to_compute-sublist" class="vector-toc-list"> <li id="toc-Conversion_to_matrix_multiplication" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conversion_to_matrix_multiplication"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Conversion to matrix multiplication</span> </div> </a> <ul id="toc-Conversion_to_matrix_multiplication-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Index_notation_for_tensors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Index_notation_for_tensors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Index notation for tensors</span> </div> </a> <ul id="toc-Index_notation_for_tensors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mnemonic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mnemonic"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Mnemonic</span> </div> </a> <ul id="toc-Mnemonic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cross_visualization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cross_visualization"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Cross visualization</span> </div> </a> <ul id="toc-Cross_visualization-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Computational_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computational_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Computational geometry</span> </div> </a> <ul id="toc-Computational_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Angular_momentum_and_torque" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Angular_momentum_and_torque"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Angular momentum and torque</span> </div> </a> <ul id="toc-Angular_momentum_and_torque-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rigid_body" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rigid_body"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Rigid body</span> </div> </a> <ul id="toc-Rigid_body-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_force" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lorentz_force"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Lorentz force</span> </div> </a> <ul id="toc-Lorentz_force-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Other</span> </div> </a> <ul id="toc-Other-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-As_an_external_product" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#As_an_external_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>As an external product</span> </div> </a> <ul id="toc-As_an_external_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Handedness" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Handedness"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Handedness</span> </div> </a> <button aria-controls="toc-Handedness-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Handedness subsection</span> </button> <ul id="toc-Handedness-sublist" class="vector-toc-list"> <li id="toc-Consistency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Consistency"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Consistency</span> </div> </a> <ul id="toc-Consistency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_paradox_of_the_orthonormal_basis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_paradox_of_the_orthonormal_basis"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>The paradox of the orthonormal basis</span> </div> </a> <ul id="toc-The_paradox_of_the_orthonormal_basis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-Lie_algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lie_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Lie algebra</span> </div> </a> <ul id="toc-Lie_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quaternions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quaternions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Quaternions</span> </div> </a> <ul id="toc-Quaternions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Octonions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Octonions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Octonions</span> </div> </a> <ul id="toc-Octonions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exterior_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exterior_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.4</span> <span>Exterior product</span> </div> </a> <ul id="toc-Exterior_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#External_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.5</span> <span>External product</span> </div> </a> <ul id="toc-External_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Commutator_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commutator_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.6</span> <span>Commutator product</span> </div> </a> <ul id="toc-Commutator_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multilinear_algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multilinear_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.7</span> <span>Multilinear algebra</span> </div> </a> <ul id="toc-Multilinear_algebra-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Cross product</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 64 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-64" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">64 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Kreuzprodukt" title="Kreuzprodukt – Alemannic" lang="gsw" hreflang="gsw" data-title="Kreuzprodukt" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%B5%E1%8D%8B%E1%89%B5_%E1%89%A5%E1%8B%9C%E1%89%B5" title="ስፋት ብዜት – Amharic" lang="am" hreflang="am" data-title="ስፋት ብዜት" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B6%D8%B1%D8%A8_%D8%A7%D8%AA%D8%AC%D8%A7%D9%87%D9%8A" title="ضرب اتجاهي – Arabic" lang="ar" hreflang="ar" data-title="ضرب اتجاهي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Productu_vectorial" title="Productu vectorial – Asturian" lang="ast" hreflang="ast" data-title="Productu vectorial" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BB%D1%8B_%D2%A1%D0%B0%D0%B1%D0%B0%D1%82%D0%BB%D0%B0%D0%BD%D0%B4%D1%8B%D2%A1" title="Векторлы ҡабатландыҡ – Bashkir" lang="ba" hreflang="ba" data-title="Векторлы ҡабатландыҡ" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Векторно произведение – Bulgarian" lang="bg" hreflang="bg" data-title="Векторно произведение" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Vektorski_proizvod" title="Vektorski proizvod – Bosnian" lang="bs" hreflang="bs" data-title="Vektorski proizvod" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Producte_vectorial" title="Producte vectorial – Catalan" lang="ca" hreflang="ca" data-title="Producte vectorial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BB%D0%B0_%D1%85%D1%83%D1%82%D0%BB%D0%B0%D0%B2" title="Векторла хутлав – Chuvash" lang="cv" hreflang="cv" data-title="Векторла хутлав" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vektorov%C3%BD_sou%C4%8Din" title="Vektorový součin – Czech" lang="cs" hreflang="cs" data-title="Vektorový součin" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Krydsprodukt" title="Krydsprodukt – Danish" lang="da" hreflang="da" data-title="Krydsprodukt" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Kreuzprodukt" title="Kreuzprodukt – German" lang="de" hreflang="de" data-title="Kreuzprodukt" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Vektorkorrutis" title="Vektorkorrutis – Estonian" lang="et" hreflang="et" data-title="Vektorkorrutis" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B1%CE%BD%CF%85%CF%83%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C_%CE%B3%CE%B9%CE%BD%CF%8C%CE%BC%CE%B5%CE%BD%CE%BF" title="Διανυσματικό γινόμενο – Greek" lang="el" hreflang="el" data-title="Διανυσματικό γινόμενο" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Producto_vectorial" title="Producto vectorial – Spanish" lang="es" hreflang="es" data-title="Producto vectorial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Vektora_produto" title="Vektora produto – Esperanto" lang="eo" hreflang="eo" data-title="Vektora produto" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Biderketa_bektorial" title="Biderketa bektorial – Basque" lang="eu" hreflang="eu" data-title="Biderketa bektorial" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B6%D8%B1%D8%A8_%D8%AE%D8%A7%D8%B1%D8%AC%DB%8C" title="ضرب خارجی – Persian" lang="fa" hreflang="fa" data-title="ضرب خارجی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Produit_vectoriel" title="Produit vectoriel – French" lang="fr" hreflang="fr" data-title="Produit vectoriel" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Produto_vectorial" title="Produto vectorial – Galician" lang="gl" hreflang="gl" data-title="Produto vectorial" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B2%A1%ED%84%B0%EA%B3%B1" title="벡터곱 – Korean" lang="ko" hreflang="ko" data-title="벡터곱" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8E%D5%A5%D5%AF%D5%BF%D5%B8%D6%80%D5%A1%D5%AF%D5%A1%D5%B6_%D5%A1%D6%80%D5%BF%D5%A1%D5%A4%D6%80%D5%B5%D5%A1%D5%AC" title="Վեկտորական արտադրյալ – Armenian" lang="hy" hreflang="hy" data-title="Վեկտորական արտադրյալ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%A6%E0%A4%BF%E0%A4%B6_%E0%A4%97%E0%A5%81%E0%A4%A3%E0%A4%A8%E0%A4%AB%E0%A4%B2" title="सदिश गुणनफल – Hindi" lang="hi" hreflang="hi" data-title="सदिश गुणनफल" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Vektorski_produkt" title="Vektorski produkt – Croatian" lang="hr" hreflang="hr" data-title="Vektorski produkt" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Perkalian_silang" title="Perkalian silang – Indonesian" lang="id" hreflang="id" data-title="Perkalian silang" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Krossfeldi" title="Krossfeldi – Icelandic" lang="is" hreflang="is" data-title="Krossfeldi" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Prodotto_vettoriale" title="Prodotto vettoriale – Italian" lang="it" hreflang="it" data-title="Prodotto vettoriale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%9B%D7%A4%D7%9C%D7%94_%D7%95%D7%A7%D7%98%D7%95%D7%A8%D7%99%D7%AA" title="מכפלה וקטורית – Hebrew" lang="he" hreflang="he" data-title="מכפלה וקטורית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%95%E1%83%94%E1%83%A5%E1%83%A2%E1%83%9D%E1%83%A0%E1%83%A3%E1%83%9A%E1%83%98_%E1%83%9C%E1%83%90%E1%83%9B%E1%83%A0%E1%83%90%E1%83%95%E1%83%9A%E1%83%98" title="ვექტორული ნამრავლი – Georgian" lang="ka" hreflang="ka" data-title="ვექტორული ნამრავლი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BB%D1%8B%D2%9B_%D0%BA%D3%A9%D0%B1%D0%B5%D0%B9%D1%82%D1%96%D0%BD%D0%B4%D1%96" title="Векторлық көбейтінді – Kazakh" lang="kk" hreflang="kk" data-title="Векторлық көбейтінді" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Vektori%C4%81lais_reizin%C4%81jums" title="Vektoriālais reizinājums – Latvian" lang="lv" hreflang="lv" data-title="Vektoriālais reizinājums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Vektorin%C4%97_sandauga" title="Vektorinė sandauga – Lithuanian" lang="lt" hreflang="lt" data-title="Vektorinė sandauga" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Vektori%C3%A1lis_szorzat" title="Vektoriális szorzat – Hungarian" lang="hu" hreflang="hu" data-title="Vektoriális szorzat" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B4%A6%E0%B4%BF%E0%B4%B6_%E0%B4%97%E0%B5%81%E0%B4%A3%E0%B4%95%E0%B4%BE%E0%B4%99%E0%B5%8D%E0%B4%95%E0%B4%82" title="സദിശ ഗുണകാങ്കം – Malayalam" lang="ml" hreflang="ml" data-title="സദിശ ഗുണകാങ്കം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AB%E0%A5%81%E0%A4%B2%E0%A5%80_%E0%A4%97%E0%A5%81%E0%A4%A3%E0%A4%BE%E0%A4%95%E0%A4%BE%E0%A4%B0" title="फुली गुणाकार – Marathi" lang="mr" hreflang="mr" data-title="फुली गुणाकार" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Kruisproduct" title="Kruisproduct – Dutch" lang="nl" hreflang="nl" data-title="Kruisproduct" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E7%A9%8D" title="クロス積 – Japanese" lang="ja" hreflang="ja" data-title="クロス積" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Vektorprodukt" title="Vektorprodukt – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Vektorprodukt" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Kryssprodukt" title="Kryssprodukt – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Kryssprodukt" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Vektor_ko%CA%BBpaytma" title="Vektor koʻpaytma – Uzbek" lang="uz" hreflang="uz" data-title="Vektor koʻpaytma" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A8%B0%E0%A9%8C%E0%A8%B8_%E0%A8%AA%E0%A9%8D%E0%A8%B0%E0%A9%8B%E0%A8%A1%E0%A8%95%E0%A8%9F" title="ਕਰੌਸ ਪ੍ਰੋਡਕਟ – Punjabi" lang="pa" hreflang="pa" data-title="ਕਰੌਸ ਪ੍ਰੋਡਕਟ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Prodot_vetorial" title="Prodot vetorial – Piedmontese" lang="pms" hreflang="pms" data-title="Prodot vetorial" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Iloczyn_wektorowy" title="Iloczyn wektorowy – Polish" lang="pl" hreflang="pl" data-title="Iloczyn wektorowy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Produto_vetorial" title="Produto vetorial – Portuguese" lang="pt" hreflang="pt" data-title="Produto vetorial" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Produs_vectorial" title="Produs vectorial – Romanian" lang="ro" hreflang="ro" data-title="Produs vectorial" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Векторное произведение – Russian" lang="ru" hreflang="ru" data-title="Векторное произведение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Cross_product" title="Cross product – Scots" lang="sco" hreflang="sco" data-title="Cross product" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Prodhimi_vektorial" title="Prodhimi vektorial – Albanian" lang="sq" hreflang="sq" data-title="Prodhimi vektorial" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Cross_product" title="Cross product – Simple English" lang="en-simple" hreflang="en-simple" data-title="Cross product" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Vektorov%C3%BD_s%C3%BA%C4%8Din" title="Vektorový súčin – Slovak" lang="sk" hreflang="sk" data-title="Vektorový súčin" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Vektorski_produkt" title="Vektorski produkt – Slovenian" lang="sl" hreflang="sl" data-title="Vektorski produkt" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%84%DB%8E%DA%A9%D8%AF%D8%A7%D9%86%DB%8C_%D8%AF%DB%95%D8%B1%DB%95%DA%A9%DB%8C" title="لێکدانی دەرەکی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="لێکدانی دەرەکی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Vektorski_proizvod" title="Vektorski proizvod – Serbian" lang="sr" hreflang="sr" data-title="Vektorski proizvod" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ristitulo" title="Ristitulo – Finnish" lang="fi" hreflang="fi" data-title="Ristitulo" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kryssprodukt" title="Kryssprodukt – Swedish" lang="sv" hreflang="sv" data-title="Kryssprodukt" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Produktong_krus" title="Produktong krus – Tagalog" lang="tl" hreflang="tl" data-title="Produktong krus" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%81%E0%AE%B1%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%81%E0%AE%AA%E0%AF%8D_%E0%AE%AA%E0%AF%86%E0%AE%B0%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%81_(%E0%AE%A4%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%AF%E0%AE%A9%E0%AF%8D)" title="குறுக்குப் பெருக்கு (திசையன்) – Tamil" lang="ta" hreflang="ta" data-title="குறுக்குப் பெருக்கு (திசையன்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9C%E0%B8%A5%E0%B8%84%E0%B8%B9%E0%B8%93%E0%B9%84%E0%B8%82%E0%B8%A7%E0%B9%89" title="ผลคูณไขว้ – Thai" lang="th" hreflang="th" data-title="ผลคูณไขว้" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%87apraz_%C3%A7arp%C4%B1m" title="Çapraz çarpım – Turkish" lang="tr" hreflang="tr" data-title="Çapraz çarpım" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%B4%D0%BE%D0%B1%D1%83%D1%82%D0%BE%D0%BA" title="Векторний добуток – Ukrainian" lang="uk" hreflang="uk" data-title="Векторний добуток" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%C3%ADch_vect%C6%A1" title="Tích vectơ – Vietnamese" lang="vi" hreflang="vi" data-title="Tích vectơ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8F%89%E7%A7%AF" title="叉积 – Wu" lang="wuu" hreflang="wuu" data-title="叉积" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%A4%96%E7%A9%8D" title="外積 – Cantonese" lang="yue" hreflang="yue" data-title="外積" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8F%89%E7%A7%AF" title="叉积 – Chinese" lang="zh" hreflang="zh" data-title="叉积" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q178192#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cross_product" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Cross_product" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cross_product"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cross_product&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cross_product&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Cross_product"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cross_product&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cross_product&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Cross_product" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Cross_product" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Cross_product&amp;oldid=1258796597" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Cross_product&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Cross_product&amp;id=1258796597&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCross_product"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCross_product"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Cross_product&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Cross_product&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Cross_product" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Cross_product" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q178192" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical operation on vectors in 3D space</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the cross product of two vectors in three-dimensional Euclidean space. For other uses, see <a href="/wiki/Cross_product_(disambiguation)" class="mw-disambig" title="Cross product (disambiguation)">Cross product (disambiguation)</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/220px-Cross_product_vector.svg.png" decoding="async" width="220" height="306" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/330px-Cross_product_vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/440px-Cross_product_vector.svg.png 2x" data-file-width="484" data-file-height="673" /></a><figcaption>The cross product with respect to a right-handed coordinate system</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>cross product</b> or <b>vector product</b> (occasionally <b>directed area product</b>, to emphasize its geometric significance) is a <a href="/wiki/Binary_operation" title="Binary operation">binary operation</a> on two <a href="/wiki/Euclidean_vector" title="Euclidean vector">vectors</a> in a three-dimensional <a href="/wiki/Orientation_(vector_space)" title="Orientation (vector space)">oriented</a> <a href="/wiki/Euclidean_vector_space" class="mw-redirect" title="Euclidean vector space">Euclidean vector space</a> (named here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>), and is denoted by the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00D7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></span>. Given two <a href="/wiki/Linearly_independent_vectors" class="mw-redirect" title="Linearly independent vectors">linearly independent vectors</a> <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>b</b></span>, the cross product, <span class="texhtml"><b>a</b> × <b>b</b></span> (read "a cross b"), is a vector that is <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to both <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>b</b></span>,<sup id="cite_ref-:1_1-0" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and thus <a href="/wiki/Normal_(geometry)" title="Normal (geometry)">normal</a> to the plane containing them. It has many applications in mathematics, <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Engineering" title="Engineering">engineering</a>, and <a href="/wiki/Computer_programming" title="Computer programming">computer programming</a>. It should not be confused with the <a href="/wiki/Dot_product" title="Dot product">dot product</a> (projection product). </p><p>The magnitude of the cross product equals the area of a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths. The <a href="/wiki/Unit_of_measurement" title="Unit of measurement">units</a> of the cross-product are the product of the units of each vector. If two vectors are <a href="/wiki/Parallel_vectors" class="mw-redirect" title="Parallel vectors">parallel</a> or are <a href="/wiki/Antiparallel_vectors" class="mw-redirect" title="Antiparallel vectors">anti-parallel</a> (that is, they are linearly dependent), or if either one has zero length, then their cross product is zero.<sup id="cite_ref-:2_2-0" class="reference"><a href="#cite_note-:2-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>The cross product is <a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">anticommutative</a> (that is, <span class="texhtml"><b>a</b> × <b>b</b> = − <b>b</b> × <b>a</b></span>) and is <a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributive</a> over addition, that is, <span class="texhtml"><b>a</b> × (<b>b</b> + <b>c</b>) = <b>a</b> × <b>b</b> + <b>a</b> × <b>c</b></span>.<sup id="cite_ref-:1_1-1" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> together with the cross product is an <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebra over the real numbers</a>, which is neither <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a> nor <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a>, but is a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> with the cross product being the <a href="/wiki/Lie_bracket" class="mw-redirect" title="Lie bracket">Lie bracket</a>. </p><p>Like the dot product, it depends on the <a href="/wiki/Metric_space" title="Metric space">metric</a> of <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, but unlike the dot product, it also depends on a choice of <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a> (or "<a href="/wiki/Right-hand_rule" title="Right-hand rule">handedness</a>") of the space (it is why an oriented space is needed). The resultant vector is invariant of rotation of basis. Due to the dependence on <a href="/wiki/Right-hand_rule" title="Right-hand rule">handedness</a>, the cross product is said to be a <a href="/wiki/Pseudovector" title="Pseudovector">pseudovector</a>. </p><p>In connection with the cross product, the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior product</a> of vectors can be used in arbitrary dimensions (with a <a href="/wiki/Bivector" title="Bivector">bivector</a> or <a href="/wiki/2-form" class="mw-redirect" title="2-form">2-form</a> result) and is independent of the orientation of the space. </p><p>The product can be generalized in various ways, using the orientation and metric structure just as for the traditional 3-dimensional cross product; one can, in <span class="texhtml mvar" style="font-style:italic;">n</span> dimensions, take the product of <span class="texhtml"><i>n</i> − 1</span> vectors to produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions.<sup id="cite_ref-Massey2_3-0" class="reference"><a href="#cite_note-Massey2-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">cross-product in seven dimensions</a> has undesirable properties (e.g. it <a href="/wiki/Seven-dimensional_cross_product#Relation_to_the_octonions" title="Seven-dimensional cross product">fails</a> to satisfy the <a href="/wiki/Jacobi_identity" title="Jacobi identity">Jacobi identity</a>), so it is not used in mathematical physics to represent quantities such as multi-dimensional <a href="/wiki/Space-time" class="mw-redirect" title="Space-time">space-time</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> (See <a href="#Generalizations">§&#160;Generalizations</a> below for other dimensions.) </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Right_hand_rule_cross_product.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Right_hand_rule_cross_product.svg/220px-Right_hand_rule_cross_product.svg.png" decoding="async" width="220" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Right_hand_rule_cross_product.svg/330px-Right_hand_rule_cross_product.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Right_hand_rule_cross_product.svg/440px-Right_hand_rule_cross_product.svg.png 2x" data-file-width="507" data-file-height="459" /></a><figcaption>Finding the direction of the cross product by the <a href="/wiki/Right-hand_rule" title="Right-hand rule">right-hand rule</a> </figcaption></figure> <p>The cross product of two vectors <b>a</b> and <b>b</b> is defined only in three-dimensional space and is denoted by <span class="nowrap"><b>a</b> × <b>b</b></span>. In <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>, the wedge notation <span class="nowrap"><b>a</b> ∧ <b>b</b></span> is often used (in conjunction with the name <i>vector product</i>),<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> although in pure mathematics such notation is usually reserved for just the exterior product, an abstraction of the vector product to <span class="texhtml mvar" style="font-style:italic;">n</span> dimensions. </p><p>The cross product <span class="nowrap"><b>a</b> × <b>b</b></span> is defined as a vector <b>c</b> that is <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> (orthogonal) to both <b>a</b> and <b>b</b>, with a direction given by the <a href="/wiki/Right-hand_rule" title="Right-hand rule">right-hand rule</a><sup id="cite_ref-:1_1-2" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and a magnitude equal to the area of the <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> that the vectors span.<sup id="cite_ref-:2_2-1" class="reference"><a href="#cite_note-:2-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>The cross product is defined by the formula<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cullen_9-0" class="reference"><a href="#cite_note-Cullen-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} =\|\mathbf {a} \|\|\mathbf {b} \|\sin(\theta )\,\mathbf {n} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} =\|\mathbf {a} \|\|\mathbf {b} \|\sin(\theta )\,\mathbf {n} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed83632b34b99ffc6a4df41549013ab3835b8b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.82ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} =\|\mathbf {a} \|\|\mathbf {b} \|\sin(\theta )\,\mathbf {n} ,}"></span></dd></dl> <p>where </p> <dl><dd><i>θ</i> is the <a href="/wiki/Angle" title="Angle">angle</a> between <b>a</b> and <b>b</b> in the plane containing them (hence, it is between 0° and 180°),</dd> <dd>‖<b>a</b>‖ and ‖<b>b</b>‖ are the <a href="/wiki/Magnitude_(vector)" class="mw-redirect" title="Magnitude (vector)">magnitudes</a> of vectors <b>a</b> and <b>b</b>,</dd> <dd><b>n</b> is a <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a> <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to the plane containing <b>a</b> and <b>b</b>, with direction such that the ordered set (<b>a</b>, <b>b</b>, <b>n</b>) is <a href="/wiki/Orientation_(vector_space)" title="Orientation (vector space)">positively oriented</a>.</dd></dl> <p>If the vectors <b>a</b> and <b>b</b> are parallel (that is, the angle <i>θ</i> between them is either 0° or 180°), by the above formula, the cross product of <b>a</b> and <b>b</b> is the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a> <b>0</b>. </p> <div class="mw-heading mw-heading3"><h3 id="Direction">Direction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=2" title="Edit section: Direction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Cross_product.gif/220px-Cross_product.gif" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Cross_product.gif/330px-Cross_product.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/6/6e/Cross_product.gif 2x" data-file-width="400" data-file-height="400" /></a><figcaption>The cross product <span class="nowrap"><b>a</b> × <b>b</b></span> (vertical, in purple) changes as the angle between the vectors <b>a</b> (blue) and <b>b</b> (red) changes. The cross product is always orthogonal to both vectors, and has magnitude zero when the vectors are parallel and maximum magnitude ‖<b>a</b>‖‖<b>b</b>‖ when they are orthogonal.</figcaption></figure> <p>The direction of the vector <b>n</b> depends on the chosen orientation of the space. Conventionally, it is given by the right-hand rule, where one simply points the forefinger of the right hand in the direction of <b>a</b> and the middle finger in the direction of <b>b</b>. Then, the vector <b>n</b> is coming out of the thumb (see the adjacent picture). Using this rule implies that the cross product is <a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">anti-commutative</a>; that is, <span class="nowrap"><b>b</b> × <b>a</b> = −(<b>a</b> × <b>b</b>)</span>. By pointing the forefinger toward <b>b</b> first, and then pointing the middle finger toward <b>a</b>, the thumb will be forced in the opposite direction, reversing the sign of the product vector. </p><p>As the cross product operator depends on the orientation of the space, in general the cross product of two vectors is not a "true" vector, but a <i>pseudovector</i>. See <a href="#Handedness">§&#160;Handedness</a> for more detail. </p> <div class="mw-heading mw-heading2"><h2 id="Names_and_origin">Names and origin</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=3" title="Edit section: Names and origin"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Sarrus_rule.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Sarrus_rule.svg/280px-Sarrus_rule.svg.png" decoding="async" width="280" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Sarrus_rule.svg/420px-Sarrus_rule.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/66/Sarrus_rule.svg/560px-Sarrus_rule.svg.png 2x" data-file-width="544" data-file-height="295" /></a><figcaption>According to <a href="/wiki/Sarrus%27s_rule" class="mw-redirect" title="Sarrus&#39;s rule">Sarrus's rule</a>, the <a href="/wiki/Determinant" title="Determinant">determinant</a> of a 3×3 matrix involves multiplications between matrix elements identified by crossed diagonals</figcaption></figure> <p>In 1842, <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a> first described the algebra of <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> and the non-commutative Hamilton product. In particular, when the Hamilton product of two vectors (that is, pure quaternions with zero scalar part) is performed, it results in a quaternion with a scalar and vector part. The scalar and vector part of this Hamilton product corresponds to the negative of dot product and cross product of the two vectors. </p><p>In 1881, <a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Josiah Willard Gibbs</a>,<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> and independently <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a>, introduced the notation for both the dot product and the cross product using a period (<span class="nowrap"><b>a</b> ⋅ <b>b</b></span>) and an "×" (<span class="nowrap"><b>a</b> × <b>b</b></span>), respectively, to denote them.<sup id="cite_ref-ucd_11-0" class="reference"><a href="#cite_note-ucd-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1877, to emphasize the fact that the result of a dot product is a <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a> while the result of a cross product is a <a href="/wiki/Euclidean_vector" title="Euclidean vector">vector</a>, <a href="/wiki/William_Kingdon_Clifford" title="William Kingdon Clifford">William Kingdon Clifford</a> coined the alternative names <b>scalar product</b> and <b>vector product</b> for the two operations.<sup id="cite_ref-ucd_11-1" class="reference"><a href="#cite_note-ucd-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> These alternative names are still widely used in the literature. </p><p>Both the cross notation (<span class="nowrap"><b>a</b> × <b>b</b></span>) and the name <b>cross product</b> were possibly inspired by the fact that each <a href="/wiki/Scalar_component" class="mw-redirect" title="Scalar component">scalar component</a> of <span class="nowrap"><b>a</b> × <b>b</b></span> is computed by multiplying non-corresponding components of <b>a</b> and <b>b</b>. Conversely, a dot product <span class="nowrap"><b>a</b> ⋅ <b>b</b></span> involves multiplications between corresponding components of <b>a</b> and <b>b</b>. As explained <a href="#Matrix_notation">below</a>, the cross product can be expressed in the form of a determinant of a special <span class="nowrap">3 × 3</span> matrix. According to <a href="/wiki/Sarrus%27s_rule" class="mw-redirect" title="Sarrus&#39;s rule">Sarrus's rule</a>, this involves multiplications between matrix elements identified by crossed diagonals. </p> <div class="mw-heading mw-heading2"><h2 id="Computing">Computing</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=4" title="Edit section: Computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Coordinate_notation">Coordinate notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=5" title="Edit section: Coordinate notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:3D_Vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/300px-3D_Vector.svg.png" decoding="async" width="300" height="284" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/450px-3D_Vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/600px-3D_Vector.svg.png 2x" data-file-width="555" data-file-height="525" /></a><figcaption><a href="/wiki/Standard_basis" title="Standard basis">Standard basis</a> vectors (<b>i</b>, <b>j</b>, <b>k</b>, also denoted <b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub>) and <a href="/wiki/Vector_component" class="mw-redirect" title="Vector component">vector components</a> of <b>a</b> (<b>a</b><sub>x</sub>, <b>a</b><sub>y</sub>, <b>a</b><sub>z</sub>, also denoted <b>a</b><sub>1</sub>, <b>a</b><sub>2</sub>, <b>a</b><sub>3</sub>)</figcaption></figure> <p>If (<b>i</b>, <b>j</b>, <b>k</b>) is a positively oriented orthonormal basis, the basis vectors satisfy the following equalities<sup id="cite_ref-:1_1-3" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}\mathbf {\color {blue}{i}} &amp;\times \mathbf {\color {red}{j}} &amp;&amp;=\mathbf {\color {green}{k}} \\\mathbf {\color {red}{j}} &amp;\times \mathbf {\color {green}{k}} &amp;&amp;=\mathbf {\color {blue}{i}} \\\mathbf {\color {green}{k}} &amp;\times \mathbf {\color {blue}{i}} &amp;&amp;=\mathbf {\color {red}{j}} \end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}\mathbf {\color {blue}{i}} &amp;\times \mathbf {\color {red}{j}} &amp;&amp;=\mathbf {\color {green}{k}} \\\mathbf {\color {red}{j}} &amp;\times \mathbf {\color {green}{k}} &amp;&amp;=\mathbf {\color {blue}{i}} \\\mathbf {\color {green}{k}} &amp;\times \mathbf {\color {blue}{i}} &amp;&amp;=\mathbf {\color {red}{j}} \end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97a658397967a471d40a353a51fc7c32bb55fc13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:10.923ex; height:8.843ex;" alt="{\displaystyle {\begin{alignedat}{2}\mathbf {\color {blue}{i}} &amp;\times \mathbf {\color {red}{j}} &amp;&amp;=\mathbf {\color {green}{k}} \\\mathbf {\color {red}{j}} &amp;\times \mathbf {\color {green}{k}} &amp;&amp;=\mathbf {\color {blue}{i}} \\\mathbf {\color {green}{k}} &amp;\times \mathbf {\color {blue}{i}} &amp;&amp;=\mathbf {\color {red}{j}} \end{alignedat}}}"></span></dd></dl> <p>which imply, by the <a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">anticommutativity</a> of the cross product, that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}\mathbf {\color {red}{j}} &amp;\times \mathbf {\color {blue}{i}} &amp;&amp;=-\mathbf {\color {green}{k}} \\\mathbf {\color {green}{k}} &amp;\times \mathbf {\color {red}{j}} &amp;&amp;=-\mathbf {\color {blue}{i}} \\\mathbf {\color {blue}{i}} &amp;\times \mathbf {\color {green}{k}} &amp;&amp;=-\mathbf {\color {red}{j}} \end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}\mathbf {\color {red}{j}} &amp;\times \mathbf {\color {blue}{i}} &amp;&amp;=-\mathbf {\color {green}{k}} \\\mathbf {\color {green}{k}} &amp;\times \mathbf {\color {red}{j}} &amp;&amp;=-\mathbf {\color {blue}{i}} \\\mathbf {\color {blue}{i}} &amp;\times \mathbf {\color {green}{k}} &amp;&amp;=-\mathbf {\color {red}{j}} \end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f6cdfa705589ca294760011e35274e2946d2d57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:12.731ex; height:8.843ex;" alt="{\displaystyle {\begin{alignedat}{2}\mathbf {\color {red}{j}} &amp;\times \mathbf {\color {blue}{i}} &amp;&amp;=-\mathbf {\color {green}{k}} \\\mathbf {\color {green}{k}} &amp;\times \mathbf {\color {red}{j}} &amp;&amp;=-\mathbf {\color {blue}{i}} \\\mathbf {\color {blue}{i}} &amp;\times \mathbf {\color {green}{k}} &amp;&amp;=-\mathbf {\color {red}{j}} \end{alignedat}}}"></span></dd></dl> <p>The anticommutativity of the cross product (and the obvious lack of linear independence) also implies that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\color {blue}{i}} \times \mathbf {\color {blue}{i}} =\mathbf {\color {red}{j}} \times \mathbf {\color {red}{j}} =\mathbf {\color {green}{k}} \times \mathbf {\color {green}{k}} =\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#0000ff"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#0000ff"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#008000"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#008000"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\color {blue}{i}} \times \mathbf {\color {blue}{i}} =\mathbf {\color {red}{j}} \times \mathbf {\color {red}{j}} =\mathbf {\color {green}{k}} \times \mathbf {\color {green}{k}} =\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75ffbabbe88a3ae857d341fd2514b1474e165cd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.092ex; height:2.509ex;" alt="{\displaystyle \mathbf {\color {blue}{i}} \times \mathbf {\color {blue}{i}} =\mathbf {\color {red}{j}} \times \mathbf {\color {red}{j}} =\mathbf {\color {green}{k}} \times \mathbf {\color {green}{k}} =\mathbf {0} }"></span> (the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a>).</dd></dl> <p>These equalities, together with the <a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributivity</a> and <a href="/wiki/Linearity" title="Linearity">linearity</a> of the cross product (though neither follows easily from the definition given above), are sufficient to determine the cross product of any two vectors <b>a</b> and <b>b</b>. Each vector can be defined as the sum of three orthogonal components parallel to the standard basis vectors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{3}\mathbf {a} &amp;=a_{1}\mathbf {\color {blue}{i}} &amp;&amp;+a_{2}\mathbf {\color {red}{j}} &amp;&amp;+a_{3}\mathbf {\color {green}{k}} \\\mathbf {b} &amp;=b_{1}\mathbf {\color {blue}{i}} &amp;&amp;+b_{2}\mathbf {\color {red}{j}} &amp;&amp;+b_{3}\mathbf {\color {green}{k}} \end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{3}\mathbf {a} &amp;=a_{1}\mathbf {\color {blue}{i}} &amp;&amp;+a_{2}\mathbf {\color {red}{j}} &amp;&amp;+a_{3}\mathbf {\color {green}{k}} \\\mathbf {b} &amp;=b_{1}\mathbf {\color {blue}{i}} &amp;&amp;+b_{2}\mathbf {\color {red}{j}} &amp;&amp;+b_{3}\mathbf {\color {green}{k}} \end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5ad29d4adafcc47113976d135d78caa2d357996" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.838ex; height:5.843ex;" alt="{\displaystyle {\begin{alignedat}{3}\mathbf {a} &amp;=a_{1}\mathbf {\color {blue}{i}} &amp;&amp;+a_{2}\mathbf {\color {red}{j}} &amp;&amp;+a_{3}\mathbf {\color {green}{k}} \\\mathbf {b} &amp;=b_{1}\mathbf {\color {blue}{i}} &amp;&amp;+b_{2}\mathbf {\color {red}{j}} &amp;&amp;+b_{3}\mathbf {\color {green}{k}} \end{alignedat}}}"></span></dd></dl> <p>Their cross product <span class="nowrap"><b>a</b> × <b>b</b></span> can be expanded using distributivity: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} ={}&amp;(a_{1}\mathbf {\color {blue}{i}} +a_{2}\mathbf {\color {red}{j}} +a_{3}\mathbf {\color {green}{k}} )\times (b_{1}\mathbf {\color {blue}{i}} +b_{2}\mathbf {\color {red}{j}} +b_{3}\mathbf {\color {green}{k}} )\\={}&amp;a_{1}b_{1}(\mathbf {\color {blue}{i}} \times \mathbf {\color {blue}{i}} )+a_{1}b_{2}(\mathbf {\color {blue}{i}} \times \mathbf {\color {red}{j}} )+a_{1}b_{3}(\mathbf {\color {blue}{i}} \times \mathbf {\color {green}{k}} )+{}\\&amp;a_{2}b_{1}(\mathbf {\color {red}{j}} \times \mathbf {\color {blue}{i}} )+a_{2}b_{2}(\mathbf {\color {red}{j}} \times \mathbf {\color {red}{j}} )+a_{2}b_{3}(\mathbf {\color {red}{j}} \times \mathbf {\color {green}{k}} )+{}\\&amp;a_{3}b_{1}(\mathbf {\color {green}{k}} \times \mathbf {\color {blue}{i}} )+a_{3}b_{2}(\mathbf {\color {green}{k}} \times \mathbf {\color {red}{j}} )+a_{3}b_{3}(\mathbf {\color {green}{k}} \times \mathbf {\color {green}{k}} )\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} ={}&amp;(a_{1}\mathbf {\color {blue}{i}} +a_{2}\mathbf {\color {red}{j}} +a_{3}\mathbf {\color {green}{k}} )\times (b_{1}\mathbf {\color {blue}{i}} +b_{2}\mathbf {\color {red}{j}} +b_{3}\mathbf {\color {green}{k}} )\\={}&amp;a_{1}b_{1}(\mathbf {\color {blue}{i}} \times \mathbf {\color {blue}{i}} )+a_{1}b_{2}(\mathbf {\color {blue}{i}} \times \mathbf {\color {red}{j}} )+a_{1}b_{3}(\mathbf {\color {blue}{i}} \times \mathbf {\color {green}{k}} )+{}\\&amp;a_{2}b_{1}(\mathbf {\color {red}{j}} \times \mathbf {\color {blue}{i}} )+a_{2}b_{2}(\mathbf {\color {red}{j}} \times \mathbf {\color {red}{j}} )+a_{2}b_{3}(\mathbf {\color {red}{j}} \times \mathbf {\color {green}{k}} )+{}\\&amp;a_{3}b_{1}(\mathbf {\color {green}{k}} \times \mathbf {\color {blue}{i}} )+a_{3}b_{2}(\mathbf {\color {green}{k}} \times \mathbf {\color {red}{j}} )+a_{3}b_{3}(\mathbf {\color {green}{k}} \times \mathbf {\color {green}{k}} )\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e96bc1bc2ebdadc78ee00268c8ed58efb95b5b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:50.372ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} ={}&amp;(a_{1}\mathbf {\color {blue}{i}} +a_{2}\mathbf {\color {red}{j}} +a_{3}\mathbf {\color {green}{k}} )\times (b_{1}\mathbf {\color {blue}{i}} +b_{2}\mathbf {\color {red}{j}} +b_{3}\mathbf {\color {green}{k}} )\\={}&amp;a_{1}b_{1}(\mathbf {\color {blue}{i}} \times \mathbf {\color {blue}{i}} )+a_{1}b_{2}(\mathbf {\color {blue}{i}} \times \mathbf {\color {red}{j}} )+a_{1}b_{3}(\mathbf {\color {blue}{i}} \times \mathbf {\color {green}{k}} )+{}\\&amp;a_{2}b_{1}(\mathbf {\color {red}{j}} \times \mathbf {\color {blue}{i}} )+a_{2}b_{2}(\mathbf {\color {red}{j}} \times \mathbf {\color {red}{j}} )+a_{2}b_{3}(\mathbf {\color {red}{j}} \times \mathbf {\color {green}{k}} )+{}\\&amp;a_{3}b_{1}(\mathbf {\color {green}{k}} \times \mathbf {\color {blue}{i}} )+a_{3}b_{2}(\mathbf {\color {green}{k}} \times \mathbf {\color {red}{j}} )+a_{3}b_{3}(\mathbf {\color {green}{k}} \times \mathbf {\color {green}{k}} )\\\end{aligned}}}"></span></dd></dl> <p>This can be interpreted as the decomposition of <span class="nowrap"><b>a</b> × <b>b</b></span> into the sum of nine simpler cross products involving vectors aligned with <b>i</b>, <b>j</b>, or <b>k</b>. Each one of these nine cross products operates on two vectors that are easy to handle as they are either parallel or orthogonal to each other. From this decomposition, by using the above-mentioned <a href="#Coordinate_notation">equalities</a> and collecting similar terms, we obtain: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} ={}&amp;\quad \ a_{1}b_{1}\mathbf {0} +a_{1}b_{2}\mathbf {\color {green}{k}} -a_{1}b_{3}\mathbf {\color {red}{j}} \\&amp;-a_{2}b_{1}\mathbf {\color {green}{k}} +a_{2}b_{2}\mathbf {0} +a_{2}b_{3}\mathbf {\color {blue}{i}} \\&amp;+a_{3}b_{1}\mathbf {\color {red}{j}} \ -a_{3}b_{2}\mathbf {\color {blue}{i}} \ +a_{3}b_{3}\mathbf {0} \\={}&amp;(a_{2}b_{3}-a_{3}b_{2})\mathbf {\color {blue}{i}} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {\color {red}{j}} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {\color {green}{k}} \\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mspace width="1em" /> <mtext>&#xA0;</mtext> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="green"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} ={}&amp;\quad \ a_{1}b_{1}\mathbf {0} +a_{1}b_{2}\mathbf {\color {green}{k}} -a_{1}b_{3}\mathbf {\color {red}{j}} \\&amp;-a_{2}b_{1}\mathbf {\color {green}{k}} +a_{2}b_{2}\mathbf {0} +a_{2}b_{3}\mathbf {\color {blue}{i}} \\&amp;+a_{3}b_{1}\mathbf {\color {red}{j}} \ -a_{3}b_{2}\mathbf {\color {blue}{i}} \ +a_{3}b_{3}\mathbf {0} \\={}&amp;(a_{2}b_{3}-a_{3}b_{2})\mathbf {\color {blue}{i}} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {\color {red}{j}} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {\color {green}{k}} \\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee7a1558028deadcbc00486a924aeec5c173ea34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:58.089ex; height:12.009ex;" alt="{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} ={}&amp;\quad \ a_{1}b_{1}\mathbf {0} +a_{1}b_{2}\mathbf {\color {green}{k}} -a_{1}b_{3}\mathbf {\color {red}{j}} \\&amp;-a_{2}b_{1}\mathbf {\color {green}{k}} +a_{2}b_{2}\mathbf {0} +a_{2}b_{3}\mathbf {\color {blue}{i}} \\&amp;+a_{3}b_{1}\mathbf {\color {red}{j}} \ -a_{3}b_{2}\mathbf {\color {blue}{i}} \ +a_{3}b_{3}\mathbf {0} \\={}&amp;(a_{2}b_{3}-a_{3}b_{2})\mathbf {\color {blue}{i}} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {\color {red}{j}} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {\color {green}{k}} \\\end{aligned}}}"></span></dd></dl> <p>meaning that the three <a href="/wiki/Scalar_component" class="mw-redirect" title="Scalar component">scalar components</a> of the resulting vector <b>s</b> = <i>s</i><sub>1</sub><b>i</b> + <i>s</i><sub>2</sub><b>j</b> + <i>s</i><sub>3</sub><b>k</b> = <span class="nowrap"><b>a</b> × <b>b</b></span> are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}s_{1}&amp;=a_{2}b_{3}-a_{3}b_{2}\\s_{2}&amp;=a_{3}b_{1}-a_{1}b_{3}\\s_{3}&amp;=a_{1}b_{2}-a_{2}b_{1}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}s_{1}&amp;=a_{2}b_{3}-a_{3}b_{2}\\s_{2}&amp;=a_{3}b_{1}-a_{1}b_{3}\\s_{3}&amp;=a_{1}b_{2}-a_{2}b_{1}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c79cd59b6ab27335f59769cf3f388b471199de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:17.507ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}s_{1}&amp;=a_{2}b_{3}-a_{3}b_{2}\\s_{2}&amp;=a_{3}b_{1}-a_{1}b_{3}\\s_{3}&amp;=a_{1}b_{2}-a_{2}b_{1}\end{aligned}}}"></span></dd></dl> <p>Using <a href="/wiki/Column_vector" class="mw-redirect" title="Column vector">column vectors</a>, we can represent the same result as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}s_{1}\\s_{2}\\s_{3}\end{bmatrix}}={\begin{bmatrix}a_{2}b_{3}-a_{3}b_{2}\\a_{3}b_{1}-a_{1}b_{3}\\a_{1}b_{2}-a_{2}b_{1}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}s_{1}\\s_{2}\\s_{3}\end{bmatrix}}={\begin{bmatrix}a_{2}b_{3}-a_{3}b_{2}\\a_{3}b_{1}-a_{1}b_{3}\\a_{1}b_{2}-a_{2}b_{1}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3242bd71d63c393d02302c7dbe517cd0ec352d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:24.459ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}s_{1}\\s_{2}\\s_{3}\end{bmatrix}}={\begin{bmatrix}a_{2}b_{3}-a_{3}b_{2}\\a_{3}b_{1}-a_{1}b_{3}\\a_{1}b_{2}-a_{2}b_{1}\end{bmatrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Matrix_notation">Matrix notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=6" title="Edit section: Matrix notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sarrus_rule_cross_product_ab.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Sarrus_rule_cross_product_ab.svg/220px-Sarrus_rule_cross_product_ab.svg.png" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Sarrus_rule_cross_product_ab.svg/330px-Sarrus_rule_cross_product_ab.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/Sarrus_rule_cross_product_ab.svg/440px-Sarrus_rule_cross_product_ab.svg.png 2x" data-file-width="512" data-file-height="410" /></a><figcaption>Use of Sarrus's rule to find the cross product of <b>a</b> and <b>b</b></figcaption></figure> <p>The cross product can also be expressed as the <a href="/wiki/Formal_calculation" title="Formal calculation">formal</a> determinant:<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_1-4" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a\times b} ={\begin{vmatrix}\mathbf {i} &amp;\mathbf {j} &amp;\mathbf {k} \\a_{1}&amp;a_{2}&amp;a_{3}\\b_{1}&amp;b_{2}&amp;b_{3}\\\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x00D7;<!-- × --></mo> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a\times b} ={\begin{vmatrix}\mathbf {i} &amp;\mathbf {j} &amp;\mathbf {k} \\a_{1}&amp;a_{2}&amp;a_{3}\\b_{1}&amp;b_{2}&amp;b_{3}\\\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56d3b53ee625b0cb9f9d9773a196d681796d9ba3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:22.266ex; height:9.343ex;" alt="{\displaystyle \mathbf {a\times b} ={\begin{vmatrix}\mathbf {i} &amp;\mathbf {j} &amp;\mathbf {k} \\a_{1}&amp;a_{2}&amp;a_{3}\\b_{1}&amp;b_{2}&amp;b_{3}\\\end{vmatrix}}}"></span></dd></dl> <p>This determinant can be computed using <a href="/wiki/Rule_of_Sarrus" title="Rule of Sarrus">Sarrus's rule</a> or <a href="/wiki/Cofactor_expansion" class="mw-redirect" title="Cofactor expansion">cofactor expansion</a>. Using Sarrus's rule, it expands to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {a\times b} &amp;=(a_{2}b_{3}\mathbf {i} +a_{3}b_{1}\mathbf {j} +a_{1}b_{2}\mathbf {k} )-(a_{3}b_{2}\mathbf {i} +a_{1}b_{3}\mathbf {j} +a_{2}b_{1}\mathbf {k} )\\&amp;=(a_{2}b_{3}-a_{3}b_{2})\mathbf {i} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {j} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {k} .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x00D7;<!-- × --></mo> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {a\times b} &amp;=(a_{2}b_{3}\mathbf {i} +a_{3}b_{1}\mathbf {j} +a_{1}b_{2}\mathbf {k} )-(a_{3}b_{2}\mathbf {i} +a_{1}b_{3}\mathbf {j} +a_{2}b_{1}\mathbf {k} )\\&amp;=(a_{2}b_{3}-a_{3}b_{2})\mathbf {i} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {j} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {k} .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52bd054ea48dc9faea97a88ef130d41e4dc2bc7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:59.25ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {a\times b} &amp;=(a_{2}b_{3}\mathbf {i} +a_{3}b_{1}\mathbf {j} +a_{1}b_{2}\mathbf {k} )-(a_{3}b_{2}\mathbf {i} +a_{1}b_{3}\mathbf {j} +a_{2}b_{1}\mathbf {k} )\\&amp;=(a_{2}b_{3}-a_{3}b_{2})\mathbf {i} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {j} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {k} .\end{aligned}}}"></span></dd></dl> <p>which gives the components of the resulting vector directly. </p> <div class="mw-heading mw-heading3"><h3 id="Using_Levi-Civita_tensors">Using Levi-Civita tensors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=7" title="Edit section: Using Levi-Civita tensors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In any basis, the cross-product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65b420244850c1a22be4c326f91e146db8b037f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.068ex; height:2.176ex;" alt="{\displaystyle a\times b}"></span> is given by the tensorial formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{ijk}a^{i}b^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{ijk}a^{i}b^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd4cafe9f5adc4fa2ee462ab87d3e95a301c598" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.986ex; height:3.343ex;" alt="{\displaystyle E_{ijk}a^{i}b^{j}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{ijk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{ijk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35e0959bcd48e6b202038de6bc46412cbfd5f866" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.049ex; height:2.843ex;" alt="{\displaystyle E_{ijk}}"></span> is the covariant <a href="/wiki/Levi-Civita_symbol#Levi-Civita_tensors" title="Levi-Civita symbol">Levi-Civita</a> tensor (we note the position of the indices). That corresponds to the intrinsic formula given <a href="#As_an_external_product">here</a>.</li> <li>In an orthonormal basis <b>having the same orientation as the space</b>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65b420244850c1a22be4c326f91e146db8b037f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.068ex; height:2.176ex;" alt="{\displaystyle a\times b}"></span> is given by the pseudo-tensorial formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{ijk}a^{i}b^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{ijk}a^{i}b^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/442c79ee6ddc12ecf302cbb5ae50739d76828aa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.354ex; height:3.343ex;" alt="{\displaystyle \varepsilon _{ijk}a^{i}b^{j}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{ijk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{ijk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21525193117bdfc0f3ac71b8ec46e3b6d0637daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.417ex; height:2.343ex;" alt="{\displaystyle \varepsilon _{ijk}}"></span> is the Levi-Civita symbol (which is a pseudo-tensor). That is the formula used for everyday physics but it works only for this special choice of basis.</li> <li>In any orthonormal basis, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65b420244850c1a22be4c326f91e146db8b037f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.068ex; height:2.176ex;" alt="{\displaystyle a\times b}"></span> is given by the pseudo-tensorial formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{B}\varepsilon _{ijk}a^{i}b^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msup> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{B}\varepsilon _{ijk}a^{i}b^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/902c889e87c3df2cb9bf959d1b981af52bb122c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.613ex; height:3.343ex;" alt="{\displaystyle (-1)^{B}\varepsilon _{ijk}a^{i}b^{j}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{B}=\pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msup> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{B}=\pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9354aa144ddb4459ea6de14b2da48d682a61619" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.329ex; height:3.176ex;" alt="{\displaystyle (-1)^{B}=\pm 1}"></span> indicates whether the basis has the same orientation as the space or not.</li></ul> <p>The latter formula avoids having to change the orientation of the space when we inverse an orthonormal basis. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=8" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Geometric_meaning">Geometric meaning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=9" title="Edit section: Geometric meaning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Triple_product" title="Triple product">Triple product</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_parallelogram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Cross_product_parallelogram.svg/220px-Cross_product_parallelogram.svg.png" decoding="async" width="220" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Cross_product_parallelogram.svg/330px-Cross_product_parallelogram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Cross_product_parallelogram.svg/440px-Cross_product_parallelogram.svg.png 2x" data-file-width="794" data-file-height="593" /></a><figcaption>Figure 1. The area of a parallelogram as the magnitude of a cross product</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Parallelepiped_volume.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Parallelepiped_volume.svg/240px-Parallelepiped_volume.svg.png" decoding="async" width="240" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Parallelepiped_volume.svg/360px-Parallelepiped_volume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Parallelepiped_volume.svg/480px-Parallelepiped_volume.svg.png 2x" data-file-width="1002" data-file-height="770" /></a><figcaption>Figure 2. Three vectors defining a parallelepiped</figcaption></figure> <p>The <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">magnitude</a> of the cross product can be interpreted as the positive <a href="/wiki/Area" title="Area">area</a> of the <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> having <b>a</b> and <b>b</b> as sides (see Figure 1):<sup id="cite_ref-:1_1-5" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\left|\sin \theta \right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\left|\sin \theta \right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da181ad0318bfdaf4e1ece58b4716249052a1cfd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.918ex; height:2.843ex;" alt="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\left|\sin \theta \right|.}"></span> </p><p>Indeed, one can also compute the volume <i>V</i> of a <a href="/wiki/Parallelepiped" title="Parallelepiped">parallelepiped</a> having <b>a</b>, <b>b</b> and <b>c</b> as edges by using a combination of a cross product and a dot product, called <a href="/wiki/Scalar_triple_product" class="mw-redirect" title="Scalar triple product">scalar triple product</a> (see Figure 2): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bb8e0667620c09d9e39fbec1dab2002734af461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.749ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ).}"></span></dd></dl> <p>Since the result of the scalar triple product may be negative, the volume of the parallelepiped is given by its absolute value: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=|\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=|\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f804e5b3ba3ed4b930443b736ba00eeb7f324e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.128ex; height:2.843ex;" alt="{\displaystyle V=|\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )|.}"></span></dd></dl> <p>Because the magnitude of the cross product goes by the sine of the angle between its arguments, the cross product can be thought of as a measure of <i>perpendicularity</i> in the same way that the dot product is a measure of <i>parallelism</i>. Given two <a href="/wiki/Unit_vectors" class="mw-redirect" title="Unit vectors">unit vectors</a>, their cross product has a magnitude of 1 if the two are perpendicular and a magnitude of zero if the two are parallel. The dot product of two unit vectors behaves just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel. </p><p>Unit vectors enable two convenient identities: the dot product of two unit vectors yields the cosine (which may be positive or negative) of the angle between the two unit vectors. The magnitude of the cross product of the two unit vectors yields the sine (which will always be positive). </p> <div class="mw-heading mw-heading3"><h3 id="Algebraic_properties">Algebraic properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=10" title="Edit section: Algebraic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_scalar_multiplication.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cross_product_scalar_multiplication.svg/350px-Cross_product_scalar_multiplication.svg.png" decoding="async" width="350" height="148" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cross_product_scalar_multiplication.svg/525px-Cross_product_scalar_multiplication.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cross_product_scalar_multiplication.svg/700px-Cross_product_scalar_multiplication.svg.png 2x" data-file-width="536" data-file-height="227" /></a><figcaption>Cross product <a href="/wiki/Scalar_multiplication" title="Scalar multiplication">scalar multiplication</a>. <b>Left:</b> Decomposition of <b>b</b> into components parallel and perpendicular to <b>a</b>. Right: Scaling of the perpendicular components by a positive real number <i>r</i> (if negative, <b>b</b> and the cross product are reversed).</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_distributivity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Cross_product_distributivity.svg/350px-Cross_product_distributivity.svg.png" decoding="async" width="350" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Cross_product_distributivity.svg/525px-Cross_product_distributivity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Cross_product_distributivity.svg/700px-Cross_product_distributivity.svg.png 2x" data-file-width="618" data-file-height="349" /></a><figcaption>Cross product distributivity over vector addition. <b>Left:</b> The vectors <b>b</b> and <b>c</b> are resolved into parallel and perpendicular components to <b>a</b>. <b>Right:</b> The parallel components vanish in the cross product, only the perpendicular components shown in the plane perpendicular to <b>a</b> remain.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_triple.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Cross_product_triple.svg/350px-Cross_product_triple.svg.png" decoding="async" width="350" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Cross_product_triple.svg/525px-Cross_product_triple.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Cross_product_triple.svg/700px-Cross_product_triple.svg.png 2x" data-file-width="505" data-file-height="335" /></a><figcaption>The two nonequivalent triple cross products of three vectors <b>a</b>, <b>b</b>, <b>c</b>. In each case, two vectors define a plane, the other is out of the plane and can be split into parallel and perpendicular components to the cross product of the vectors defining the plane. These components can be found by <a href="/wiki/Vector_projection" title="Vector projection">vector projection</a> and <a href="/wiki/Vector_rejection" class="mw-redirect" title="Vector rejection">rejection</a>. The triple product is in the plane and is rotated as shown.</figcaption></figure> <p>If the cross product of two vectors is the zero vector (that is, <span class="nowrap"><b>a</b> × <b>b</b> = <b>0</b></span>), then either one or both of the inputs is the zero vector, (<span class="nowrap"><b>a</b> = <b>0</b></span> or <span class="nowrap"><b>b</b> = <b>0</b></span>) or else they are parallel or antiparallel (<span class="nowrap"><b>a</b> ∥ <b>b</b></span>) so that the sine of the angle between them is zero (<span class="nowrap"><i>θ</i> = 0°</span> or <span class="nowrap"><i>θ</i> = 180°</span> and <span class="nowrap">sin&#160;<i>θ</i> = 0</span>). </p><p>The self cross product of a vector is the zero vector: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {a} =\mathbf {0} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {a} =\mathbf {0} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a30e3a67ced08f37b9b60b35acba30a88884879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.521ex; height:2.176ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {a} =\mathbf {0} .}"></span></dd></dl> <p>The cross product is <a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">anticommutative</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} =-(\mathbf {b} \times \mathbf {a} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} =-(\mathbf {b} \times \mathbf {a} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d68d15a33fab12aa37a1edbf8d9415fe490d7c8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.613ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} =-(\mathbf {b} \times \mathbf {a} ),}"></span></dd></dl> <p><a href="/wiki/Distributive_property" title="Distributive property">distributive</a> over addition, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times (\mathbf {b} +\mathbf {c} )=(\mathbf {a} \times \mathbf {b} )+(\mathbf {a} \times \mathbf {c} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times (\mathbf {b} +\mathbf {c} )=(\mathbf {a} \times \mathbf {b} )+(\mathbf {a} \times \mathbf {c} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4866b6c70d88a7298e16c6d03f2a1111cc713ac0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.62ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \times (\mathbf {b} +\mathbf {c} )=(\mathbf {a} \times \mathbf {b} )+(\mathbf {a} \times \mathbf {c} ),}"></span></dd></dl> <p>and compatible with scalar multiplication so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r\,\mathbf {a} )\times \mathbf {b} =\mathbf {a} \times (r\,\mathbf {b} )=r\,(\mathbf {a} \times \mathbf {b} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r\,\mathbf {a} )\times \mathbf {b} =\mathbf {a} \times (r\,\mathbf {b} )=r\,(\mathbf {a} \times \mathbf {b} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e857af91981df6a612dfcba261b568fa238b0d18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.454ex; height:2.843ex;" alt="{\displaystyle (r\,\mathbf {a} )\times \mathbf {b} =\mathbf {a} \times (r\,\mathbf {b} )=r\,(\mathbf {a} \times \mathbf {b} ).}"></span></dd></dl> <p>It is not <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a>, but satisfies the <a href="/wiki/Jacobi_identity" title="Jacobi identity">Jacobi identity</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )+\mathbf {b} \times (\mathbf {c} \times \mathbf {a} )+\mathbf {c} \times (\mathbf {a} \times \mathbf {b} )=\mathbf {0} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )+\mathbf {b} \times (\mathbf {c} \times \mathbf {a} )+\mathbf {c} \times (\mathbf {a} \times \mathbf {b} )=\mathbf {0} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ed5e398f1b3a67085cf13b5e371f680cafd5184" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.151ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )+\mathbf {b} \times (\mathbf {c} \times \mathbf {a} )+\mathbf {c} \times (\mathbf {a} \times \mathbf {b} )=\mathbf {0} .}"></span></dd></dl> <p>Distributivity, linearity and Jacobi identity show that the <b>R</b><sup>3</sup> <a href="/wiki/Real_coordinate_space" title="Real coordinate space">vector space</a> together with vector addition and the cross product forms a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>, the Lie algebra of the real <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> in 3 dimensions, <a href="/wiki/SO(3)" class="mw-redirect" title="SO(3)">SO(3)</a>. The cross product does not obey the <a href="/wiki/Cancellation_law" class="mw-redirect" title="Cancellation law">cancellation law</a>; that is, <span class="nowrap"><b>a</b> × <b>b</b> = <b>a</b> × <b>c</b></span> with <span class="nowrap"><b>a</b> ≠ <b>0</b></span> does not imply <span class="nowrap"><b>b</b> = <b>c</b></span>, but only that: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {0} &amp;=(\mathbf {a} \times \mathbf {b} )-(\mathbf {a} \times \mathbf {c} )\\&amp;=\mathbf {a} \times (\mathbf {b} -\mathbf {c} ).\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {0} &amp;=(\mathbf {a} \times \mathbf {b} )-(\mathbf {a} \times \mathbf {c} )\\&amp;=\mathbf {a} \times (\mathbf {b} -\mathbf {c} ).\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d665ffc5a1eedd9785990194a6a3cbafad4c97c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.599ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {0} &amp;=(\mathbf {a} \times \mathbf {b} )-(\mathbf {a} \times \mathbf {c} )\\&amp;=\mathbf {a} \times (\mathbf {b} -\mathbf {c} ).\\\end{aligned}}}"></span></dd></dl> <p>This can be the case where <b>b</b> and <b>c</b> cancel, but additionally where <b>a</b> and <span class="nowrap"><b>b</b> − <b>c</b></span> are parallel; that is, they are related by a scale factor <i>t</i>, leading to: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} =\mathbf {b} +t\,\mathbf {a} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mi>t</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} =\mathbf {b} +t\,\mathbf {a} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ab5e68ed7f6b180c4ef7a96a2b8040e3845d2db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.785ex; height:2.509ex;" alt="{\displaystyle \mathbf {c} =\mathbf {b} +t\,\mathbf {a} ,}"></span></dd></dl> <p>for some scalar <i>t</i>. </p><p>If, in addition to <span class="nowrap"><b>a</b> × <b>b</b> = <b>a</b> × <b>c</b></span> and <span class="nowrap"><b>a</b> ≠ <b>0</b></span> as above, it is the case that <span class="nowrap"><b>a</b> ⋅ <b>b</b> = <b>a</b> ⋅ <b>c</b></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {a} \times (\mathbf {b} -\mathbf {c} )&amp;=\mathbf {0} \\\mathbf {a} \cdot (\mathbf {b} -\mathbf {c} )&amp;=0,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {a} \times (\mathbf {b} -\mathbf {c} )&amp;=\mathbf {0} \\\mathbf {a} \cdot (\mathbf {b} -\mathbf {c} )&amp;=0,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3344e5eec330f3eac3a768868ff7a4c324eacf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.122ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {a} \times (\mathbf {b} -\mathbf {c} )&amp;=\mathbf {0} \\\mathbf {a} \cdot (\mathbf {b} -\mathbf {c} )&amp;=0,\end{aligned}}}"></span></dd></dl> <p>As <span class="nowrap"><b>b</b> − <b>c</b></span> cannot be simultaneously parallel (for the cross product to be <b>0</b>) and perpendicular (for the dot product to be 0) to <b>a</b>, it must be the case that <b>b</b> and <b>c</b> cancel: <span class="nowrap"><b>b</b> = <b>c</b></span>. </p><p>From the geometrical definition, the cross product is invariant under proper <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> about the axis defined by <span class="nowrap"><b>a</b> × <b>b</b></span>. In formulae: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R\mathbf {a} )\times (R\mathbf {b} )=R(\mathbf {a} \times \mathbf {b} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R\mathbf {a} )\times (R\mathbf {b} )=R(\mathbf {a} \times \mathbf {b} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/506480ff74ac8093f4e4a1c9faccdbe3b8b5eb1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.069ex; height:2.843ex;" alt="{\displaystyle (R\mathbf {a} )\times (R\mathbf {b} )=R(\mathbf {a} \times \mathbf {b} )}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a <a href="/wiki/Rotation_matrix" title="Rotation matrix">rotation matrix</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(R)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(R)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef4e4006d672c548a3bd9975f097cb817e5a87c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.064ex; height:2.843ex;" alt="{\displaystyle \det(R)=1}"></span>.</dd></dl> <p>More generally, the cross product obeys the following identity under <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> transformations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M\mathbf {a} )\times (M\mathbf {b} )=(\det M)\left(M^{-1}\right)^{\mathrm {T} }(\mathbf {a} \times \mathbf {b} )=\operatorname {cof} M(\mathbf {a} \times \mathbf {b} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo movablelimits="true" form="prefix">det</mo> <mi>M</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cof</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M\mathbf {a} )\times (M\mathbf {b} )=(\det M)\left(M^{-1}\right)^{\mathrm {T} }(\mathbf {a} \times \mathbf {b} )=\operatorname {cof} M(\mathbf {a} \times \mathbf {b} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9446bfb084f66f153e944d16d8c4bbdb5a55deee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:57.178ex; height:3.843ex;" alt="{\displaystyle (M\mathbf {a} )\times (M\mathbf {b} )=(\det M)\left(M^{-1}\right)^{\mathrm {T} }(\mathbf {a} \times \mathbf {b} )=\operatorname {cof} M(\mathbf {a} \times \mathbf {b} )}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a 3-by-3 <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(M^{-1}\right)^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(M^{-1}\right)^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7847abafafce67e3b5ea0f6099a6fbd0799b61d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.38ex; height:3.843ex;" alt="{\displaystyle \left(M^{-1}\right)^{\mathrm {T} }}"></span> is the <a href="/wiki/Transpose" title="Transpose">transpose</a> of the <a href="/wiki/Inverse_matrix" class="mw-redirect" title="Inverse matrix">inverse</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cof} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cof</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cof} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b51a0802a73401b300e807bf5ea0edc4d50e71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.153ex; width:3.06ex; height:2.176ex;" alt="{\displaystyle \operatorname {cof} }"></span> is the cofactor matrix. It can be readily seen how this formula reduces to the former one if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a rotation matrix. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a 3-by-3 symmetric matrix applied to a generic cross product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf612179bab874c94c2ea2b4a541479534c3dacc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.625ex; height:2.176ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} }"></span>, the following relation holds true: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(\mathbf {a} \times \mathbf {b} )=\operatorname {Tr} (M)(\mathbf {a} \times \mathbf {b} )-\mathbf {a} \times M\mathbf {b} +\mathbf {b} \times M\mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(\mathbf {a} \times \mathbf {b} )=\operatorname {Tr} (M)(\mathbf {a} \times \mathbf {b} )-\mathbf {a} \times M\mathbf {b} +\mathbf {b} \times M\mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567f71dac4e6244449c139965e6cd68817f5bbe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.066ex; height:2.843ex;" alt="{\displaystyle M(\mathbf {a} \times \mathbf {b} )=\operatorname {Tr} (M)(\mathbf {a} \times \mathbf {b} )-\mathbf {a} \times M\mathbf {b} +\mathbf {b} \times M\mathbf {a} }"></span></dd></dl> <p>The cross product of two vectors lies in the <a href="/wiki/Null_space" class="mw-redirect" title="Null space">null space</a> of the <span class="nowrap">2 × 3</span> matrix with the vectors as rows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} \in NS\left({\begin{bmatrix}\mathbf {a} \\\mathbf {b} \end{bmatrix}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>N</mi> <mi>S</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} \in NS\left({\begin{bmatrix}\mathbf {a} \\\mathbf {b} \end{bmatrix}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86d907b7b79a65e2bb7e0f1fc0723714052555d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.563ex; height:6.176ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} \in NS\left({\begin{bmatrix}\mathbf {a} \\\mathbf {b} \end{bmatrix}}\right).}"></span></dd></dl> <p>For the sum of two cross products, the following identity holds: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} +\mathbf {c} \times \mathbf {d} =(\mathbf {a} -\mathbf {c} )\times (\mathbf {b} -\mathbf {d} )+\mathbf {a} \times \mathbf {d} +\mathbf {c} \times \mathbf {b} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} +\mathbf {c} \times \mathbf {d} =(\mathbf {a} -\mathbf {c} )\times (\mathbf {b} -\mathbf {d} )+\mathbf {a} \times \mathbf {d} +\mathbf {c} \times \mathbf {b} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e2922975ff5e79c32d5eaf59faba3fd4a4cacf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.142ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} +\mathbf {c} \times \mathbf {d} =(\mathbf {a} -\mathbf {c} )\times (\mathbf {b} -\mathbf {d} )+\mathbf {a} \times \mathbf {d} +\mathbf {c} \times \mathbf {b} .}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Differentiation">Differentiation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=11" title="Edit section: Differentiation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Vector-valued_function#Derivative_and_vector_multiplication" title="Vector-valued function">Vector-valued function § Derivative and vector multiplication</a></div> <p>The <a href="/wiki/Product_rule" title="Product rule">product rule</a> of differential calculus applies to any bilinear operation, and therefore also to the cross product: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}(\mathbf {a} \times \mathbf {b} )={\frac {d\mathbf {a} }{dt}}\times \mathbf {b} +\mathbf {a} \times {\frac {d\mathbf {b} }{dt}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}(\mathbf {a} \times \mathbf {b} )={\frac {d\mathbf {a} }{dt}}\times \mathbf {b} +\mathbf {a} \times {\frac {d\mathbf {b} }{dt}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97062e22177e79a60cab30370d02ffef91584a65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.266ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dt}}(\mathbf {a} \times \mathbf {b} )={\frac {d\mathbf {a} }{dt}}\times \mathbf {b} +\mathbf {a} \times {\frac {d\mathbf {b} }{dt}},}"></span></dd></dl> <p>where <b>a</b> and <b>b</b> are vectors that depend on the real variable <i>t</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Triple_product_expansion">Triple product expansion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=12" title="Edit section: Triple product expansion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Triple_product" title="Triple product">Triple product</a></div> <p>The cross product is used in both forms of the triple product. The <a href="/wiki/Scalar_triple_product" class="mw-redirect" title="Scalar triple product">scalar triple product</a> of three vectors is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af496fb6a4b0389bbc9a1005d6835f4b2399148f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.948ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ),}"></span></dd></dl> <p>It is the signed volume of the <a href="/wiki/Parallelepiped" title="Parallelepiped">parallelepiped</a> with edges <b>a</b>, <b>b</b> and <b>c</b> and as such the vectors can be used in any order that's an <a href="/wiki/Even_permutation" class="mw-redirect" title="Even permutation">even permutation</a> of the above ordering. The following therefore are equal: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02e3d5e52a0f7d9a6682856f0a643b2896477a4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.749ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ),}"></span></dd></dl> <p>The <a href="/wiki/Vector_triple_product" class="mw-redirect" title="Vector triple product">vector triple product</a> is the cross product of a vector with the result of another cross product, and is related to the dot product by the following formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=\mathbf {b} (\mathbf {a} \cdot \mathbf {c} )-\mathbf {c} (\mathbf {a} \cdot \mathbf {b} )\\(\mathbf {a} \times \mathbf {b} )\times \mathbf {c} =\mathbf {b} (\mathbf {c} \cdot \mathbf {a} )-\mathbf {a} (\mathbf {b} \cdot \mathbf {c} )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=\mathbf {b} (\mathbf {a} \cdot \mathbf {c} )-\mathbf {c} (\mathbf {a} \cdot \mathbf {b} )\\(\mathbf {a} \times \mathbf {b} )\times \mathbf {c} =\mathbf {b} (\mathbf {c} \cdot \mathbf {a} )-\mathbf {a} (\mathbf {b} \cdot \mathbf {c} )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e6fb95a2cfba6fe84a9b9ac182ff5c31bb691ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.076ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=\mathbf {b} (\mathbf {a} \cdot \mathbf {c} )-\mathbf {c} (\mathbf {a} \cdot \mathbf {b} )\\(\mathbf {a} \times \mathbf {b} )\times \mathbf {c} =\mathbf {b} (\mathbf {c} \cdot \mathbf {a} )-\mathbf {a} (\mathbf {b} \cdot \mathbf {c} )\end{aligned}}}"></span></dd></dl> <p>The <a href="/wiki/Mnemonic" title="Mnemonic">mnemonic</a> "BAC minus CAB" is used to remember the order of the vectors in the right hand member. This formula is used in <a href="/wiki/Physics" title="Physics">physics</a> to simplify vector calculations. A special case, regarding <a href="/wiki/Gradient" title="Gradient">gradients</a> and useful in <a href="/wiki/Vector_calculus" title="Vector calculus">vector calculus</a>, is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\nabla \times (\nabla \times \mathbf {f} )&amp;=\nabla (\nabla \cdot \mathbf {f} )-(\nabla \cdot \nabla )\mathbf {f} \\&amp;=\nabla (\nabla \cdot \mathbf {f} )-\nabla ^{2}\mathbf {f} ,\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\nabla \times (\nabla \times \mathbf {f} )&amp;=\nabla (\nabla \cdot \mathbf {f} )-(\nabla \cdot \nabla )\mathbf {f} \\&amp;=\nabla (\nabla \cdot \mathbf {f} )-\nabla ^{2}\mathbf {f} ,\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a2678cadeebc8c95a1ef96cf104fd535855375c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.932ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\nabla \times (\nabla \times \mathbf {f} )&amp;=\nabla (\nabla \cdot \mathbf {f} )-(\nabla \cdot \nabla )\mathbf {f} \\&amp;=\nabla (\nabla \cdot \mathbf {f} )-\nabla ^{2}\mathbf {f} ,\\\end{aligned}}}"></span></dd></dl> <p>where ∇<sup>2</sup> is the <a href="/wiki/Vector_Laplacian" class="mw-redirect" title="Vector Laplacian">vector Laplacian</a> operator. </p><p>Other identities relate the cross product to the scalar triple product: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(\mathbf {a} \times \mathbf {b} )\times (\mathbf {a} \times \mathbf {c} )&amp;=(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))\mathbf {a} \\(\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )&amp;=\mathbf {b} ^{\mathrm {T} }\left(\left(\mathbf {c} ^{\mathrm {T} }\mathbf {a} \right)I-\mathbf {c} \mathbf {a} ^{\mathrm {T} }\right)\mathbf {d} \\&amp;=(\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(\mathbf {a} \times \mathbf {b} )\times (\mathbf {a} \times \mathbf {c} )&amp;=(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))\mathbf {a} \\(\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )&amp;=\mathbf {b} ^{\mathrm {T} }\left(\left(\mathbf {c} ^{\mathrm {T} }\mathbf {a} \right)I-\mathbf {c} \mathbf {a} ^{\mathrm {T} }\right)\mathbf {d} \\&amp;=(\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2847712b1d11ddec574c512e632f71326987e69a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.011ex; margin-bottom: -0.327ex; width:48.972ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}(\mathbf {a} \times \mathbf {b} )\times (\mathbf {a} \times \mathbf {c} )&amp;=(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))\mathbf {a} \\(\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )&amp;=\mathbf {b} ^{\mathrm {T} }\left(\left(\mathbf {c} ^{\mathrm {T} }\mathbf {a} \right)I-\mathbf {c} \mathbf {a} ^{\mathrm {T} }\right)\mathbf {d} \\&amp;=(\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} )\end{aligned}}}"></span></dd></dl> <p>where <i>I</i> is the identity matrix. </p> <div class="mw-heading mw-heading3"><h3 id="Alternative_formulation">Alternative formulation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=13" title="Edit section: Alternative formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cross product and the dot product are related by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|^{2}=\left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|^{2}=\left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c74fbafd9fdaa1114e30e1e58299d726471af73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.461ex; height:3.343ex;" alt="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|^{2}=\left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}.}"></span></dd></dl> <p>The right-hand side is the <a href="/wiki/Gramian_matrix" class="mw-redirect" title="Gramian matrix">Gram determinant</a> of <b>a</b> and <b>b</b>, the square of the area of the parallelogram defined by the vectors. This condition determines the magnitude of the cross product. Namely, since the dot product is defined, in terms of the angle <i>θ</i> between the two vectors, as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a\cdot b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\cos \theta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a\cdot b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\cos \theta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5a7fe2718d1555a8b6d6f6a645875238b6ef1c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.007ex; height:2.843ex;" alt="{\displaystyle \mathbf {a\cdot b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\cos \theta ,}"></span></dd></dl> <p>the above given relationship can be rewritten as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a\times b} \right\|^{2}=\left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}\left(1-\cos ^{2}\theta \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x00D7;<!-- × --></mo> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a\times b} \right\|^{2}=\left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}\left(1-\cos ^{2}\theta \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1768e311ea3902ad24d072c9dc52383d4ce55e06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.842ex; height:3.509ex;" alt="{\displaystyle \left\|\mathbf {a\times b} \right\|^{2}=\left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}\left(1-\cos ^{2}\theta \right).}"></span></dd></dl> <p>Invoking the <a href="/wiki/Pythagorean_trigonometric_identity" title="Pythagorean trigonometric identity">Pythagorean trigonometric identity</a> one obtains: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\left|\sin \theta \right|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\left|\sin \theta \right|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bc236a94f6aa47d38d8ec0692f3d024fbb3c800" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.918ex; height:2.843ex;" alt="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\left|\sin \theta \right|,}"></span></dd></dl> <p>which is the magnitude of the cross product expressed in terms of <i>θ</i>, equal to the area of the parallelogram defined by <b>a</b> and <b>b</b> (see <a href="#Definition">definition</a> above). </p><p>The combination of this requirement and the property that the cross product be orthogonal to its constituents <b>a</b> and <b>b</b> provides an alternative definition of the cross product.<sup id="cite_ref-Massey_14-0" class="reference"><a href="#cite_note-Massey-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cross_product_inverse">Cross product inverse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=14" title="Edit section: Cross product inverse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the cross product <span class="nowrap"><b>a</b> × <b>b</b> = <b>c</b></span>, there are multiple <span class="texhtml"><b>b</b></span> vectors that give the same value of <span class="texhtml"><b>c</b></span>. As a result, it is not possible to rearrange this equation to yield a unique solution for <span class="texhtml"><b>b</b></span> in terms of <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>c</b></span>. Nevertheless, it is possible to find a family of solutions for <span class="texhtml"><b>b</b></span>, which are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} ={\frac {\mathbf {c} \times \mathbf {a} }{\left\|\mathbf {a} \right\|^{2}}}+t\mathbf {a} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} ={\frac {\mathbf {c} \times \mathbf {a} }{\left\|\mathbf {a} \right\|^{2}}}+t\mathbf {a} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7edadfa855daa077baeaf31e33727c5bb86f442e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.374ex; height:6.176ex;" alt="{\displaystyle \mathbf {b} ={\frac {\mathbf {c} \times \mathbf {a} }{\left\|\mathbf {a} \right\|^{2}}}+t\mathbf {a} ,}"></span></dd></dl> <p>where <span class="nowrap"><i>t</i></span> is an arbitrary constant. </p><p>This can be derived using the triple product expansion: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} \times \mathbf {a} =(\mathbf {a} \times \mathbf {b} )\times \mathbf {a} =\left\|\mathbf {a} \right\|^{2}\mathbf {b} -(\mathbf {a} \cdot \mathbf {b} )\mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} \times \mathbf {a} =(\mathbf {a} \times \mathbf {b} )\times \mathbf {a} =\left\|\mathbf {a} \right\|^{2}\mathbf {b} -(\mathbf {a} \cdot \mathbf {b} )\mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/250e9fc21875646e7e181ccb85529234b33ae603" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.676ex; height:3.343ex;" alt="{\displaystyle \mathbf {c} \times \mathbf {a} =(\mathbf {a} \times \mathbf {b} )\times \mathbf {a} =\left\|\mathbf {a} \right\|^{2}\mathbf {b} -(\mathbf {a} \cdot \mathbf {b} )\mathbf {a} }"></span></dd></dl> <p>Rearrange to solve for <span class="nowrap"><b>b</b></span> to give </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} ={\frac {\mathbf {c} \times \mathbf {a} }{\left\|\mathbf {a} \right\|^{2}}}+{\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {a} \right\|^{2}}}\mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} ={\frac {\mathbf {c} \times \mathbf {a} }{\left\|\mathbf {a} \right\|^{2}}}+{\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {a} \right\|^{2}}}\mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92450575391e972ac806397b175149dc87792b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.402ex; height:6.676ex;" alt="{\displaystyle \mathbf {b} ={\frac {\mathbf {c} \times \mathbf {a} }{\left\|\mathbf {a} \right\|^{2}}}+{\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {a} \right\|^{2}}}\mathbf {a} }"></span></dd></dl> <p>The coefficient of the last term can be simplified to just the arbitrary constant <span class="nowrap"><i>t</i></span> to yield the result shown above. </p> <div class="mw-heading mw-heading3"><h3 id="Lagrange's_identity"><span id="Lagrange.27s_identity"></span>Lagrange's identity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=15" title="Edit section: Lagrange&#039;s identity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The relation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|^{2}\equiv \det {\begin{bmatrix}\mathbf {a} \cdot \mathbf {a} &amp;\mathbf {a} \cdot \mathbf {b} \\\mathbf {a} \cdot \mathbf {b} &amp;\mathbf {b} \cdot \mathbf {b} \\\end{bmatrix}}\equiv \left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|^{2}\equiv \det {\begin{bmatrix}\mathbf {a} \cdot \mathbf {a} &amp;\mathbf {a} \cdot \mathbf {b} \\\mathbf {a} \cdot \mathbf {b} &amp;\mathbf {b} \cdot \mathbf {b} \\\end{bmatrix}}\equiv \left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59a25568aeaf60fa45307cb9e09b8816f0ef9f88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:53.171ex; height:6.176ex;" alt="{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|^{2}\equiv \det {\begin{bmatrix}\mathbf {a} \cdot \mathbf {a} &amp;\mathbf {a} \cdot \mathbf {b} \\\mathbf {a} \cdot \mathbf {b} &amp;\mathbf {b} \cdot \mathbf {b} \\\end{bmatrix}}\equiv \left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}}"></span></dd></dl> <p>can be compared with another relation involving the right-hand side, namely <a href="/wiki/Lagrange%27s_identity" title="Lagrange&#39;s identity">Lagrange's identity</a> expressed as<sup id="cite_ref-Boichenko_15-0" class="reference"><a href="#cite_note-Boichenko-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{1\leq i&lt;j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)^{2}\equiv \left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a\cdot b} )^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">b</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{1\leq i&lt;j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)^{2}\equiv \left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a\cdot b} )^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b63da796f271026d4d88b8c54a037d2b2d1bee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:44.309ex; height:5.843ex;" alt="{\displaystyle \sum _{1\leq i&lt;j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)^{2}\equiv \left\|\mathbf {a} \right\|^{2}\left\|\mathbf {b} \right\|^{2}-(\mathbf {a\cdot b} )^{2},}"></span></dd></dl> <p>where <b>a</b> and <b>b</b> may be <i>n</i>-dimensional vectors. This also shows that the <a href="/wiki/Riemannian_volume_form" class="mw-redirect" title="Riemannian volume form">Riemannian volume form</a> for surfaces is exactly the <a href="/wiki/Volume_form" title="Volume form">surface element</a> from vector calculus. In the case where <span class="nowrap"><i>n</i> = 3</span>, combining these two equations results in the expression for the magnitude of the cross product in terms of its components:<sup id="cite_ref-Lounesto1_16-0" class="reference"><a href="#cite_note-Lounesto1-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\|\mathbf {a} \times \mathbf {b} \|^{2}&amp;\equiv \sum _{1\leq i&lt;j\leq 3}(a_{i}b_{j}-a_{j}b_{i})^{2}\\&amp;\equiv (a_{1}b_{2}-b_{1}a_{2})^{2}+(a_{2}b_{3}-a_{3}b_{2})^{2}+(a_{3}b_{1}-a_{1}b_{3})^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>3</mn> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\|\mathbf {a} \times \mathbf {b} \|^{2}&amp;\equiv \sum _{1\leq i&lt;j\leq 3}(a_{i}b_{j}-a_{j}b_{i})^{2}\\&amp;\equiv (a_{1}b_{2}-b_{1}a_{2})^{2}+(a_{2}b_{3}-a_{3}b_{2})^{2}+(a_{3}b_{1}-a_{1}b_{3})^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28750cad991d5798fc93c3b50b826f16aa2787d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:62.309ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}\|\mathbf {a} \times \mathbf {b} \|^{2}&amp;\equiv \sum _{1\leq i&lt;j\leq 3}(a_{i}b_{j}-a_{j}b_{i})^{2}\\&amp;\equiv (a_{1}b_{2}-b_{1}a_{2})^{2}+(a_{2}b_{3}-a_{3}b_{2})^{2}+(a_{3}b_{1}-a_{1}b_{3})^{2}.\end{aligned}}}"></span></dd></dl> <p>The same result is found directly using the components of the cross product found from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} \equiv \det {\begin{bmatrix}{\hat {\mathbf {i} }}&amp;{\hat {\mathbf {j} }}&amp;{\hat {\mathbf {k} }}\\a_{1}&amp;a_{2}&amp;a_{3}\\b_{1}&amp;b_{2}&amp;b_{3}\\\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} \equiv \det {\begin{bmatrix}{\hat {\mathbf {i} }}&amp;{\hat {\mathbf {j} }}&amp;{\hat {\mathbf {k} }}\\a_{1}&amp;a_{2}&amp;a_{3}\\b_{1}&amp;b_{2}&amp;b_{3}\\\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/000971cad6116b209f59a4bd26b005fad02bf701" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:28.337ex; height:9.843ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} \equiv \det {\begin{bmatrix}{\hat {\mathbf {i} }}&amp;{\hat {\mathbf {j} }}&amp;{\hat {\mathbf {k} }}\\a_{1}&amp;a_{2}&amp;a_{3}\\b_{1}&amp;b_{2}&amp;b_{3}\\\end{bmatrix}}.}"></span></dd></dl> <p>In <b>R</b><sup>3</sup>, Lagrange's equation is a special case of the multiplicativity <span class="nowrap">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>vw</b></span>&#124; = &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>v</b></span>&#124;&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>w</b></span>&#124;</span> of the norm in the <a href="/wiki/Quaternion#Algebraic_properties" title="Quaternion">quaternion algebra</a>. </p><p>It is a special case of another formula, also sometimes called Lagrange's identity, which is the three dimensional case of the <a href="/wiki/Binet%E2%80%93Cauchy_identity" title="Binet–Cauchy identity">Binet–Cauchy identity</a>:<sup id="cite_ref-Liu_17-0" class="reference"><a href="#cite_note-Liu-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Weisstein_18-0" class="reference"><a href="#cite_note-Weisstein-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )\equiv (\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )\equiv (\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a221b772f040b8a79524612cbe046a6e79818286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.892ex; height:2.843ex;" alt="{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )\equiv (\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} ).}"></span></dd></dl> <p>If <span class="nowrap"><b>a</b> = <b>c</b></span> and <span class="nowrap"><b>b</b> = <b>d</b></span>, this simplifies to the formula above. </p> <div class="mw-heading mw-heading3"><h3 id="Infinitesimal_generators_of_rotations">Infinitesimal generators of rotations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=16" title="Edit section: Infinitesimal generators of rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Infinitesimal_rotation_matrix#Generators_of_rotations" title="Infinitesimal rotation matrix">Infinitesimal rotation matrix §&#160;Generators of rotations</a></div> <p>The cross product conveniently describes the infinitesimal generators of <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> in <b>R</b><sup>3</sup>. Specifically, if <b>n</b> is a unit vector in <b>R</b><sup>3</sup> and <i>R</i>(<i>φ</i>, <b>n</b>) denotes a rotation about the axis through the origin specified by <b>n</b>, with angle φ (measured in radians, counterclockwise when viewed from the tip of <b>n</b>), then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{d \over d\phi }\right|_{\phi =0}R(\phi ,{\boldsymbol {n}}){\boldsymbol {x}}={\boldsymbol {n}}\times {\boldsymbol {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mi>R</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">n</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">n</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{d \over d\phi }\right|_{\phi =0}R(\phi ,{\boldsymbol {n}}){\boldsymbol {x}}={\boldsymbol {n}}\times {\boldsymbol {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5c8854e35f51abe2f22cd4f46aee63a169894e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:25.706ex; height:6.343ex;" alt="{\displaystyle \left.{d \over d\phi }\right|_{\phi =0}R(\phi ,{\boldsymbol {n}}){\boldsymbol {x}}={\boldsymbol {n}}\times {\boldsymbol {x}}}"></span></dd></dl> <p>for every vector <b>x</b> in <b>R</b><sup>3</sup>. The cross product with <b>n</b> therefore describes the infinitesimal generator of the rotations about <b>n</b>. These infinitesimal generators form the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> <b>so</b>(3) of the <a href="/wiki/Rotation_group_SO(3)" class="mw-redirect" title="Rotation group SO(3)">rotation group SO(3)</a>, and we obtain the result that the Lie algebra <b>R</b><sup>3</sup> with cross product is isomorphic to the Lie algebra <b>so</b>(3). </p> <div class="mw-heading mw-heading2"><h2 id="Alternative_ways_to_compute">Alternative ways to compute</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=17" title="Edit section: Alternative ways to compute"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Conversion_to_matrix_multiplication">Conversion to matrix multiplication</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=18" title="Edit section: Conversion to matrix multiplication"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The vector cross product also can be expressed as the product of a <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric matrix</a> and a vector:<sup id="cite_ref-Liu_17-1" class="reference"><a href="#cite_note-Liu-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} =[\mathbf {a} ]_{\times }\mathbf {b} &amp;={\begin{bmatrix}\,0&amp;\!-a_{3}&amp;\,\,a_{2}\\\,\,a_{3}&amp;0&amp;\!-a_{1}\\-a_{2}&amp;\,\,a_{1}&amp;\,0\end{bmatrix}}{\begin{bmatrix}b_{1}\\b_{2}\\b_{3}\end{bmatrix}}\\\mathbf {a} \times \mathbf {b} ={[\mathbf {b} ]_{\times }}^{\mathrm {\!\!T} }\mathbf {a} &amp;={\begin{bmatrix}\,0&amp;\,\,b_{3}&amp;\!-b_{2}\\-b_{3}&amp;0&amp;\,\,b_{1}\\\,\,b_{2}&amp;\!-b_{1}&amp;\,0\end{bmatrix}}{\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\end{bmatrix}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} =[\mathbf {a} ]_{\times }\mathbf {b} &amp;={\begin{bmatrix}\,0&amp;\!-a_{3}&amp;\,\,a_{2}\\\,\,a_{3}&amp;0&amp;\!-a_{1}\\-a_{2}&amp;\,\,a_{1}&amp;\,0\end{bmatrix}}{\begin{bmatrix}b_{1}\\b_{2}\\b_{3}\end{bmatrix}}\\\mathbf {a} \times \mathbf {b} ={[\mathbf {b} ]_{\times }}^{\mathrm {\!\!T} }\mathbf {a} &amp;={\begin{bmatrix}\,0&amp;\,\,b_{3}&amp;\!-b_{2}\\-b_{3}&amp;0&amp;\,\,b_{1}\\\,\,b_{2}&amp;\!-b_{1}&amp;\,0\end{bmatrix}}{\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\end{bmatrix}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77eaf3e139944a22bc3543de85a65d2d280547c6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:44.893ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {a} \times \mathbf {b} =[\mathbf {a} ]_{\times }\mathbf {b} &amp;={\begin{bmatrix}\,0&amp;\!-a_{3}&amp;\,\,a_{2}\\\,\,a_{3}&amp;0&amp;\!-a_{1}\\-a_{2}&amp;\,\,a_{1}&amp;\,0\end{bmatrix}}{\begin{bmatrix}b_{1}\\b_{2}\\b_{3}\end{bmatrix}}\\\mathbf {a} \times \mathbf {b} ={[\mathbf {b} ]_{\times }}^{\mathrm {\!\!T} }\mathbf {a} &amp;={\begin{bmatrix}\,0&amp;\,\,b_{3}&amp;\!-b_{2}\\-b_{3}&amp;0&amp;\,\,b_{1}\\\,\,b_{2}&amp;\!-b_{1}&amp;\,0\end{bmatrix}}{\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\end{bmatrix}},\end{aligned}}}"></span> where superscript <span class="texhtml"><sup>T</sup></span> refers to the <a href="/wiki/Transpose" title="Transpose">transpose</a> operation, and [<b>a</b>]<sub>×</sub> is defined by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {a} ]_{\times }{\stackrel {\rm {def}}{=}}{\begin{bmatrix}\,\,0&amp;\!-a_{3}&amp;\,\,\,a_{2}\\\,\,\,a_{3}&amp;0&amp;\!-a_{1}\\\!-a_{2}&amp;\,\,a_{1}&amp;\,\,0\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {a} ]_{\times }{\stackrel {\rm {def}}{=}}{\begin{bmatrix}\,\,0&amp;\!-a_{3}&amp;\,\,\,a_{2}\\\,\,\,a_{3}&amp;0&amp;\!-a_{1}\\\!-a_{2}&amp;\,\,a_{1}&amp;\,\,0\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/614cc7fd18f2f2e212803822f31acb2505c98c89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:26.619ex; height:9.176ex;" alt="{\displaystyle [\mathbf {a} ]_{\times }{\stackrel {\rm {def}}{=}}{\begin{bmatrix}\,\,0&amp;\!-a_{3}&amp;\,\,\,a_{2}\\\,\,\,a_{3}&amp;0&amp;\!-a_{1}\\\!-a_{2}&amp;\,\,a_{1}&amp;\,\,0\end{bmatrix}}.}"></span> </p><p>The columns [<b>a</b>]<sub>×,i</sub> of the skew-symmetric matrix for a vector <b>a</b> can be also obtained by calculating the cross product with <a href="/wiki/Unit_vectors" class="mw-redirect" title="Unit vectors">unit vectors</a>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {a} ]_{\times ,i}=\mathbf {a} \times \mathbf {{\hat {e}}_{i}} ,\;i\in \{1,2,3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">e</mi> <mo mathvariant="bold" stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </msub> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {a} ]_{\times ,i}=\mathbf {a} \times \mathbf {{\hat {e}}_{i}} ,\;i\in \{1,2,3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74baaa1f6814e02fb133911b2bbab966485a3806" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.663ex; height:3.009ex;" alt="{\displaystyle [\mathbf {a} ]_{\times ,i}=\mathbf {a} \times \mathbf {{\hat {e}}_{i}} ,\;i\in \{1,2,3\}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {a} ]_{\times }=\sum _{i=1}^{3}\left(\mathbf {a} \times \mathbf {{\hat {e}}_{i}} \right)\otimes \mathbf {{\hat {e}}_{i}} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">e</mi> <mo mathvariant="bold" stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">e</mi> <mo mathvariant="bold" stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </msub> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {a} ]_{\times }=\sum _{i=1}^{3}\left(\mathbf {a} \times \mathbf {{\hat {e}}_{i}} \right)\otimes \mathbf {{\hat {e}}_{i}} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0381c1581881a166e2f4e9cefe0b236265eefd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.568ex; height:7.176ex;" alt="{\displaystyle [\mathbf {a} ]_{\times }=\sum _{i=1}^{3}\left(\mathbf {a} \times \mathbf {{\hat {e}}_{i}} \right)\otimes \mathbf {{\hat {e}}_{i}} ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2297;<!-- ⊗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }"></span> is the <a href="/wiki/Outer_product" title="Outer product">outer product</a> operator. </p><p>Also, if <b>a</b> is itself expressed as a cross product: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {c} \times \mathbf {d} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {c} \times \mathbf {d} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc201a9efafe594ecba74e68840b8c3af2bb880f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.912ex; height:2.176ex;" alt="{\displaystyle \mathbf {a} =\mathbf {c} \times \mathbf {d} }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {a} ]_{\times }=\mathbf {d} \mathbf {c} ^{\mathrm {T} }-\mathbf {c} \mathbf {d} ^{\mathrm {T} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {a} ]_{\times }=\mathbf {d} \mathbf {c} ^{\mathrm {T} }-\mathbf {c} \mathbf {d} ^{\mathrm {T} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7bebe8181aeb49a3e8987339594fd7de7c454a9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.874ex; height:3.176ex;" alt="{\displaystyle [\mathbf {a} ]_{\times }=\mathbf {d} \mathbf {c} ^{\mathrm {T} }-\mathbf {c} \mathbf {d} ^{\mathrm {T} }.}"></span> </p> <style data-mw-deduplicate="TemplateStyles:r1174254338">.mw-parser-output .math_proof{border:thin solid #aaa;margin:1em 2em;padding:0.5em 1em 0.4em}@media(max-width:500px){.mw-parser-output .math_proof{margin:1em 0;padding:0.5em 0.5em 0.4em}}</style><div class="math_proof" style=""><strong>Proof by substitution</strong> <p>Evaluation of the cross product gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {c} \times \mathbf {d} ={\begin{pmatrix}c_{2}d_{3}-c_{3}d_{2}\\c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {c} \times \mathbf {d} ={\begin{pmatrix}c_{2}d_{3}-c_{3}d_{2}\\c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0cba91cf83686cc4315960695ddf6e49f41ab46" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.317ex; height:9.176ex;" alt="{\displaystyle \mathbf {a} =\mathbf {c} \times \mathbf {d} ={\begin{pmatrix}c_{2}d_{3}-c_{3}d_{2}\\c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}\end{pmatrix}}}"></span> Hence, the left hand side equals <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {a} ]_{\times }={\begin{bmatrix}0&amp;c_{2}d_{1}-c_{1}d_{2}&amp;c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}&amp;0&amp;c_{3}d_{2}-c_{2}d_{3}\\c_{1}d_{3}-c_{3}d_{1}&amp;c_{2}d_{3}-c_{3}d_{2}&amp;0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {a} ]_{\times }={\begin{bmatrix}0&amp;c_{2}d_{1}-c_{1}d_{2}&amp;c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}&amp;0&amp;c_{3}d_{2}-c_{2}d_{3}\\c_{1}d_{3}-c_{3}d_{1}&amp;c_{2}d_{3}-c_{3}d_{2}&amp;0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ff95aa2908dc95252f1a28c8a9167458c98c993" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:50.166ex; height:9.176ex;" alt="{\displaystyle [\mathbf {a} ]_{\times }={\begin{bmatrix}0&amp;c_{2}d_{1}-c_{1}d_{2}&amp;c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}&amp;0&amp;c_{3}d_{2}-c_{2}d_{3}\\c_{1}d_{3}-c_{3}d_{1}&amp;c_{2}d_{3}-c_{3}d_{2}&amp;0\end{bmatrix}}}"></span> Now, for the right hand side, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} \mathbf {d} ^{\mathrm {T} }={\begin{bmatrix}c_{1}d_{1}&amp;c_{1}d_{2}&amp;c_{1}d_{3}\\c_{2}d_{1}&amp;c_{2}d_{2}&amp;c_{2}d_{3}\\c_{3}d_{1}&amp;c_{3}d_{2}&amp;c_{3}d_{3}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} \mathbf {d} ^{\mathrm {T} }={\begin{bmatrix}c_{1}d_{1}&amp;c_{1}d_{2}&amp;c_{1}d_{3}\\c_{2}d_{1}&amp;c_{2}d_{2}&amp;c_{2}d_{3}\\c_{3}d_{1}&amp;c_{3}d_{2}&amp;c_{3}d_{3}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cae7a243d4e638c8ec8cd7f40e40d06ff3c87a3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:28.661ex; height:9.176ex;" alt="{\displaystyle \mathbf {c} \mathbf {d} ^{\mathrm {T} }={\begin{bmatrix}c_{1}d_{1}&amp;c_{1}d_{2}&amp;c_{1}d_{3}\\c_{2}d_{1}&amp;c_{2}d_{2}&amp;c_{2}d_{3}\\c_{3}d_{1}&amp;c_{3}d_{2}&amp;c_{3}d_{3}\end{bmatrix}}}"></span> And its transpose is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} \mathbf {c} ^{\mathrm {T} }={\begin{bmatrix}c_{1}d_{1}&amp;c_{2}d_{1}&amp;c_{3}d_{1}\\c_{1}d_{2}&amp;c_{2}d_{2}&amp;c_{3}d_{2}\\c_{1}d_{3}&amp;c_{2}d_{3}&amp;c_{3}d_{3}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {d} \mathbf {c} ^{\mathrm {T} }={\begin{bmatrix}c_{1}d_{1}&amp;c_{2}d_{1}&amp;c_{3}d_{1}\\c_{1}d_{2}&amp;c_{2}d_{2}&amp;c_{3}d_{2}\\c_{1}d_{3}&amp;c_{2}d_{3}&amp;c_{3}d_{3}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/885b707928e13b57f622ad4446f4a74ac6c4cde9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:28.661ex; height:9.176ex;" alt="{\displaystyle \mathbf {d} \mathbf {c} ^{\mathrm {T} }={\begin{bmatrix}c_{1}d_{1}&amp;c_{2}d_{1}&amp;c_{3}d_{1}\\c_{1}d_{2}&amp;c_{2}d_{2}&amp;c_{3}d_{2}\\c_{1}d_{3}&amp;c_{2}d_{3}&amp;c_{3}d_{3}\end{bmatrix}}}"></span> Evaluation of the right hand side gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} \mathbf {c} ^{\mathrm {T} }-\mathbf {c} \mathbf {d} ^{\mathrm {T} }={\begin{bmatrix}0&amp;c_{2}d_{1}-c_{1}d_{2}&amp;c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}&amp;0&amp;c_{3}d_{2}-c_{2}d_{3}\\c_{1}d_{3}-c_{3}d_{1}&amp;c_{2}d_{3}-c_{3}d_{2}&amp;0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {d} \mathbf {c} ^{\mathrm {T} }-\mathbf {c} \mathbf {d} ^{\mathrm {T} }={\begin{bmatrix}0&amp;c_{2}d_{1}-c_{1}d_{2}&amp;c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}&amp;0&amp;c_{3}d_{2}-c_{2}d_{3}\\c_{1}d_{3}-c_{3}d_{1}&amp;c_{2}d_{3}-c_{3}d_{2}&amp;0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c17156aae658311e30f6c440f207f27b4be09997" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:57.087ex; height:9.176ex;" alt="{\displaystyle \mathbf {d} \mathbf {c} ^{\mathrm {T} }-\mathbf {c} \mathbf {d} ^{\mathrm {T} }={\begin{bmatrix}0&amp;c_{2}d_{1}-c_{1}d_{2}&amp;c_{3}d_{1}-c_{1}d_{3}\\c_{1}d_{2}-c_{2}d_{1}&amp;0&amp;c_{3}d_{2}-c_{2}d_{3}\\c_{1}d_{3}-c_{3}d_{1}&amp;c_{2}d_{3}-c_{3}d_{2}&amp;0\end{bmatrix}}}"></span> Comparison shows that the left hand side equals the right hand side. </p> </div> <p>This result can be generalized to higher dimensions using <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebra</a>. In particular in any dimension bivectors can be identified with skew-symmetric matrices, so the product between a skew-symmetric matrix and vector is equivalent to the grade-1 part of the product of a bivector and vector.<sup id="cite_ref-lounesto2001_19-0" class="reference"><a href="#cite_note-lounesto2001-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> In three dimensions bivectors are <a href="/wiki/Hodge_dual" class="mw-redirect" title="Hodge dual">dual</a> to vectors so the product is equivalent to the cross product, with the bivector instead of its vector dual. In higher dimensions the product can still be calculated but bivectors have more degrees of freedom and are not equivalent to vectors.<sup id="cite_ref-lounesto2001_19-1" class="reference"><a href="#cite_note-lounesto2001-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>This notation is also often much easier to work with, for example, in <a href="/wiki/Epipolar_geometry" title="Epipolar geometry">epipolar geometry</a>. </p><p>From the general properties of the cross product follows immediately that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {a} ]_{\times }\,\mathbf {a} =\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {a} ]_{\times }\,\mathbf {a} =\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e918b623a3b34134199284e350a5a06f8fe0305" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.226ex; height:2.843ex;" alt="{\displaystyle [\mathbf {a} ]_{\times }\,\mathbf {a} =\mathbf {0} }"></span> &#160; and &#160; <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ^{\mathrm {T} }\,[\mathbf {a} ]_{\times }=\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ^{\mathrm {T} }\,[\mathbf {a} ]_{\times }=\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd1a98ffd5ab228553c458345bb26af8422bb43" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.645ex; height:3.176ex;" alt="{\displaystyle \mathbf {a} ^{\mathrm {T} }\,[\mathbf {a} ]_{\times }=\mathbf {0} }"></span> and from fact that [<b>a</b>]<sub>×</sub> is skew-symmetric it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} ^{\mathrm {T} }\,[\mathbf {a} ]_{\times }\,\mathbf {b} =0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} ^{\mathrm {T} }\,[\mathbf {a} ]_{\times }\,\mathbf {b} =0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c23cfb35b83ca69742e7da1381a7477a18d04e4d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.175ex; height:3.176ex;" alt="{\displaystyle \mathbf {b} ^{\mathrm {T} }\,[\mathbf {a} ]_{\times }\,\mathbf {b} =0.}"></span> </p><p>The above-mentioned triple product expansion (bac–cab rule) can be easily proven using this notation. </p><p>As mentioned above, the Lie algebra <b>R</b><sup>3</sup> with cross product is isomorphic to the Lie algebra <b>so(3)</b>, whose elements can be identified with the 3×3 skew-symmetric matrices. The map <b>a</b> → [<b>a</b>]<sub>×</sub> provides an isomorphism between <b>R</b><sup>3</sup> and <b>so(3)</b>. Under this map, the cross product of 3-vectors corresponds to the <a href="/wiki/Commutator" title="Commutator">commutator</a> of 3x3 skew-symmetric matrices. </p> <dl><dd><table class="toccolours collapsible collapsed" width="70%" style="text-align:left"> <tbody><tr> <th>Matrix conversion for cross product with canonical base vectors </th></tr> <tr> <td>Denoting with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}\in \mathbf {R} ^{3\times 1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>&#x00D7;<!-- × --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}\in \mathbf {R} ^{3\times 1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/641d0d7eabfbf3250296512e27054f94971ef552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.023ex; height:3.009ex;" alt="{\displaystyle \mathbf {e} _{i}\in \mathbf {R} ^{3\times 1}}"></span> the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th canonical base vector, the cross product of a generic vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \in \mathbf {R} ^{3\times 1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>&#x00D7;<!-- × --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \in \mathbf {R} ^{3\times 1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f819eb8daad594cad14774825e3ca3a2649fa5a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.41ex; height:2.676ex;" alt="{\displaystyle \mathbf {v} \in \mathbf {R} ^{3\times 1}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba77c5a75ef9e230d1a36183785477a2eb3c5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.025ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{i}}"></span> is given by: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \times \mathbf {e} _{i}=\mathbf {C} _{i}\mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \times \mathbf {e} _{i}=\mathbf {C} _{i}\mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44c785b010200c44000ae5f084f2129047cbbc23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.517ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} \times \mathbf {e} _{i}=\mathbf {C} _{i}\mathbf {v} }"></span>, where <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} _{1}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;0&amp;1\\0&amp;-1&amp;0\end{bmatrix}},\quad \mathbf {C} _{2}={\begin{bmatrix}0&amp;0&amp;-1\\0&amp;0&amp;0\\1&amp;0&amp;0\end{bmatrix}},\quad \mathbf {C} _{3}={\begin{bmatrix}0&amp;1&amp;0\\-1&amp;0&amp;0\\0&amp;0&amp;0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} _{1}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;0&amp;1\\0&amp;-1&amp;0\end{bmatrix}},\quad \mathbf {C} _{2}={\begin{bmatrix}0&amp;0&amp;-1\\0&amp;0&amp;0\\1&amp;0&amp;0\end{bmatrix}},\quad \mathbf {C} _{3}={\begin{bmatrix}0&amp;1&amp;0\\-1&amp;0&amp;0\\0&amp;0&amp;0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3642cf4763d37e7efff322643e14598f238b087d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:66.343ex; height:9.176ex;" alt="{\displaystyle \mathbf {C} _{1}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;0&amp;1\\0&amp;-1&amp;0\end{bmatrix}},\quad \mathbf {C} _{2}={\begin{bmatrix}0&amp;0&amp;-1\\0&amp;0&amp;0\\1&amp;0&amp;0\end{bmatrix}},\quad \mathbf {C} _{3}={\begin{bmatrix}0&amp;1&amp;0\\-1&amp;0&amp;0\\0&amp;0&amp;0\end{bmatrix}}}"></span> </p><p>These matrices share the following properties: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} _{i}^{\textrm {T}}=-\mathbf {C} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </mrow> </msubsup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} _{i}^{\textrm {T}}=-\mathbf {C} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03dd2f46c36ed9bee508f98fd14394766796fb7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.988ex; height:3.176ex;" alt="{\displaystyle \mathbf {C} _{i}^{\textrm {T}}=-\mathbf {C} _{i}}"></span> (skew-symmetric);</li> <li>Both trace and determinant are zero;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{rank}}(\mathbf {C} _{i})=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>rank</mtext> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{rank}}(\mathbf {C} _{i})=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/184e1dc0e0570fe0416028516bd022ad5be92568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.395ex; height:2.843ex;" alt="{\displaystyle {\text{rank}}(\mathbf {C} _{i})=2}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} _{i}\mathbf {C} _{i}^{\textrm {T}}=\mathbf {P} _{\mathbf {e} _{i}}^{^{\perp }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </mrow> </msubsup> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} _{i}\mathbf {C} _{i}^{\textrm {T}}=\mathbf {P} _{\mathbf {e} _{i}}^{^{\perp }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/002cb6689a9ff7fef59eb9acd5be28a2bb50856f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.73ex; height:3.843ex;" alt="{\displaystyle \mathbf {C} _{i}\mathbf {C} _{i}^{\textrm {T}}=\mathbf {P} _{\mathbf {e} _{i}}^{^{\perp }}}"></span> (see below);</li></ul> <p>The <a href="/wiki/Projection_(linear_algebra)#Orthogonal_projection" title="Projection (linear algebra)">orthogonal projection matrix</a> of a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \neq \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \neq \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40238344277143a7a63347acc67082c90af22075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.846ex; height:2.676ex;" alt="{\displaystyle \mathbf {v} \neq \mathbf {0} }"></span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {P} _{\mathbf {v} }=\mathbf {v} \left(\mathbf {v} ^{\textrm {T}}\mathbf {v} \right)^{-1}\mathbf {v} ^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {P} _{\mathbf {v} }=\mathbf {v} \left(\mathbf {v} ^{\textrm {T}}\mathbf {v} \right)^{-1}\mathbf {v} ^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b6ede0963223917d780ad84eef18742944eb3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.07ex; height:3.843ex;" alt="{\displaystyle \mathbf {P} _{\mathbf {v} }=\mathbf {v} \left(\mathbf {v} ^{\textrm {T}}\mathbf {v} \right)^{-1}\mathbf {v} ^{T}}"></span>. The projection matrix onto the <a href="/wiki/Orthogonal_complement" title="Orthogonal complement">orthogonal complement</a> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {P} _{\mathbf {v} }^{^{\perp }}=\mathbf {I} -\mathbf {P} _{\mathbf {v} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {P} _{\mathbf {v} }^{^{\perp }}=\mathbf {I} -\mathbf {P} _{\mathbf {v} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d41d4697acab2da80dc0653b90353995f36de8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.271ex; height:3.509ex;" alt="{\displaystyle \mathbf {P} _{\mathbf {v} }^{^{\perp }}=\mathbf {I} -\mathbf {P} _{\mathbf {v} }}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a458c8aeb096ce732abf346ae8edf3e4f53a126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.014ex; height:2.176ex;" alt="{\displaystyle \mathbf {I} }"></span> is the identity matrix. For the special case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =\mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =\mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9e086aa7c2d9fa9fba34cc69319b31012ecf93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.534ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} =\mathbf {e} _{i}}"></span>, it can be verified that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {P} _{\mathbf {e} _{1}}^{^{\perp }}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\end{bmatrix}},\quad \mathbf {P} _{\mathbf {e} _{2}}^{^{\perp }}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;0&amp;0\\0&amp;0&amp;1\end{bmatrix}},\quad \mathbf {P} _{\mathbf {e} _{3}}^{^{\perp }}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {P} _{\mathbf {e} _{1}}^{^{\perp }}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\end{bmatrix}},\quad \mathbf {P} _{\mathbf {e} _{2}}^{^{\perp }}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;0&amp;0\\0&amp;0&amp;1\end{bmatrix}},\quad \mathbf {P} _{\mathbf {e} _{3}}^{^{\perp }}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff2d70c21b6197a61b10c85a2cdc09f79d805ad7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:63.233ex; height:9.176ex;" alt="{\displaystyle \mathbf {P} _{\mathbf {e} _{1}}^{^{\perp }}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\end{bmatrix}},\quad \mathbf {P} _{\mathbf {e} _{2}}^{^{\perp }}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;0&amp;0\\0&amp;0&amp;1\end{bmatrix}},\quad \mathbf {P} _{\mathbf {e} _{3}}^{^{\perp }}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;0\end{bmatrix}}}"></span> </p><p>For other properties of orthogonal projection matrices, see <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">projection (linear algebra)</a>. </p> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Index_notation_for_tensors">Index notation for tensors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=19" title="Edit section: Index notation for tensors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cross product can alternatively be defined in terms of the <a href="/wiki/Levi-Civita_symbol#Levi-Civita_tensors" title="Levi-Civita symbol">Levi-Civita tensor</a> <i>E<sub>ijk</sub></i> and a dot product <i>η<sup>mi</sup></i>, which are useful in converting vector notation for tensor applications: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} =\mathbf {a\times b} \Leftrightarrow \ c^{m}=\sum _{i=1}^{3}\sum _{j=1}^{3}\sum _{k=1}^{3}\eta ^{mi}E_{ijk}a^{j}b^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x00D7;<!-- × --></mo> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mtext>&#xA0;</mtext> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>i</mi> </mrow> </msup> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} =\mathbf {a\times b} \Leftrightarrow \ c^{m}=\sum _{i=1}^{3}\sum _{j=1}^{3}\sum _{k=1}^{3}\eta ^{mi}E_{ijk}a^{j}b^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45c39186d71340f05e95e3321e358c6070ed6ea2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:42.804ex; height:7.509ex;" alt="{\displaystyle \mathbf {c} =\mathbf {a\times b} \Leftrightarrow \ c^{m}=\sum _{i=1}^{3}\sum _{j=1}^{3}\sum _{k=1}^{3}\eta ^{mi}E_{ijk}a^{j}b^{k}}"></span></dd></dl> <p>where the <a href="/wiki/Indexed_family" title="Indexed family">indices</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,j,k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i,j,k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9550e66fe7e601c4f58bbc9c19ba226301149cde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.04ex; height:2.509ex;" alt="{\displaystyle i,j,k}"></span> correspond to vector components. This characterization of the cross product is often expressed more compactly using the <a href="/wiki/Einstein_summation_convention" class="mw-redirect" title="Einstein summation convention">Einstein summation convention</a> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} =\mathbf {a\times b} \Leftrightarrow \ c^{m}=\eta ^{mi}E_{ijk}a^{j}b^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo>&#x00D7;<!-- × --></mo> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mtext>&#xA0;</mtext> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>i</mi> </mrow> </msup> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} =\mathbf {a\times b} \Leftrightarrow \ c^{m}=\eta ^{mi}E_{ijk}a^{j}b^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8f4e1f828553a2a20d5f898f84cbf253ed9b656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.578ex; height:3.343ex;" alt="{\displaystyle \mathbf {c} =\mathbf {a\times b} \Leftrightarrow \ c^{m}=\eta ^{mi}E_{ijk}a^{j}b^{k}}"></span></dd></dl> <p>in which repeated indices are summed over the values 1 to 3. </p><p>In a positively-oriented orthonormal basis <i>η<sup>mi</sup></i> = δ<sup><i>mi</i></sup> (the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{ijk}=\varepsilon _{ijk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{ijk}=\varepsilon _{ijk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d9d932e4b8d60ae8f008b05f0cc44e707513ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.564ex; height:2.843ex;" alt="{\displaystyle E_{ijk}=\varepsilon _{ijk}}"></span> (the <a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a>). In that case, this representation is another form of the skew-symmetric representation of the cross product: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\varepsilon _{ijk}a^{j}]=[\mathbf {a} ]_{\times }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\varepsilon _{ijk}a^{j}]=[\mathbf {a} ]_{\times }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/063b837f18afcf9a012a49f73f4b4c2e350e99e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.7ex; height:3.343ex;" alt="{\displaystyle [\varepsilon _{ijk}a^{j}]=[\mathbf {a} ]_{\times }.}"></span></dd></dl> <p>In <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>: representing the cross product by using the Levi-Civita symbol can cause mechanical symmetries to be obvious when physical systems are <a href="/wiki/Isotropic" class="mw-redirect" title="Isotropic">isotropic</a>. (An example: consider a particle in a Hooke's Law potential in three-space, free to oscillate in three dimensions; none of these dimensions are "special" in any sense, so symmetries lie in the cross-product-represented angular momentum, which are made clear by the abovementioned Levi-Civita representation).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2009)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mnemonic">Mnemonic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=20" title="Edit section: Mnemonic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_mnemonic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Cross_product_mnemonic.svg/220px-Cross_product_mnemonic.svg.png" decoding="async" width="220" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Cross_product_mnemonic.svg/330px-Cross_product_mnemonic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Cross_product_mnemonic.svg/440px-Cross_product_mnemonic.svg.png 2x" data-file-width="512" data-file-height="205" /></a><figcaption>Mnemonic to calculate a cross product in vector form</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Xyzzy (mnemonic)" redirects here. For other uses, see <a href="/wiki/Xyzzy_(disambiguation)" class="mw-redirect mw-disambig" title="Xyzzy (disambiguation)">Xyzzy</a>.</div> <p>The word "xyzzy" can be used to remember the definition of the cross product. </p><p>If </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {b} \times \mathbf {c} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {b} \times \mathbf {c} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e4d134fa6d725f5648e6dd39fb112a22a09d11f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.912ex; height:2.176ex;" alt="{\displaystyle \mathbf {a} =\mathbf {b} \times \mathbf {c} }"></span></dd></dl> <p>where: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\begin{bmatrix}a_{x}\\a_{y}\\a_{z}\end{bmatrix}},\ \mathbf {b} ={\begin{bmatrix}b_{x}\\b_{y}\\b_{z}\end{bmatrix}},\ \mathbf {c} ={\begin{bmatrix}c_{x}\\c_{y}\\c_{z}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={\begin{bmatrix}a_{x}\\a_{y}\\a_{z}\end{bmatrix}},\ \mathbf {b} ={\begin{bmatrix}b_{x}\\b_{y}\\b_{z}\end{bmatrix}},\ \mathbf {c} ={\begin{bmatrix}c_{x}\\c_{y}\\c_{z}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d41a7bf21aff94bee70e4eb269dc8e716e6c4bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:34.805ex; height:9.509ex;" alt="{\displaystyle \mathbf {a} ={\begin{bmatrix}a_{x}\\a_{y}\\a_{z}\end{bmatrix}},\ \mathbf {b} ={\begin{bmatrix}b_{x}\\b_{y}\\b_{z}\end{bmatrix}},\ \mathbf {c} ={\begin{bmatrix}c_{x}\\c_{y}\\c_{z}\end{bmatrix}}}"></span></dd></dl> <p>then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}=b_{y}c_{z}-b_{z}c_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}=b_{y}c_{z}-b_{z}c_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d37e6a72deeb92305976e28978611cc764efd2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.452ex; height:2.843ex;" alt="{\displaystyle a_{x}=b_{y}c_{z}-b_{z}c_{y}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{y}=b_{z}c_{x}-b_{x}c_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{y}=b_{z}c_{x}-b_{x}c_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c71d9a7826acac7affc19e813f6a8744a7d227b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.575ex; height:2.843ex;" alt="{\displaystyle a_{y}=b_{z}c_{x}-b_{x}c_{z}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{z}=b_{x}c_{y}-b_{y}c_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{z}=b_{x}c_{y}-b_{y}c_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df01e0774c7c3da6b1421f2d05d9041f7bd9e547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.27ex; height:2.843ex;" alt="{\displaystyle a_{z}=b_{x}c_{y}-b_{y}c_{x}.}"></span></dd></dl> <p>The second and third equations can be obtained from the first by simply vertically rotating the subscripts, <span class="nowrap"><i>x</i> → <i>y</i> → <i>z</i> → <i>x</i></span>. The problem, of course, is how to remember the first equation, and two options are available for this purpose: either to remember the relevant two diagonals of Sarrus's scheme (those containing <i><b>i</b></i>), or to remember the xyzzy sequence. </p><p>Since the first diagonal in Sarrus's scheme is just the <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a> of the <a href="#Matrix_notation">above</a>-mentioned 3×3 matrix, the first three letters of the word xyzzy can be very easily remembered. </p> <div class="mw-heading mw-heading3"><h3 id="Cross_visualization">Cross visualization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=21" title="Edit section: Cross visualization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Similarly to the mnemonic device above, a "cross" or X can be visualized between the two vectors in the equation. This may be helpful for remembering the correct cross product formula. </p><p>If </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {b} \times \mathbf {c} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {b} \times \mathbf {c} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e4d134fa6d725f5648e6dd39fb112a22a09d11f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.912ex; height:2.176ex;" alt="{\displaystyle \mathbf {a} =\mathbf {b} \times \mathbf {c} }"></span></dd></dl> <p>then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\begin{bmatrix}b_{x}\\b_{y}\\b_{z}\end{bmatrix}}\times {\begin{bmatrix}c_{x}\\c_{y}\\c_{z}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={\begin{bmatrix}b_{x}\\b_{y}\\b_{z}\end{bmatrix}}\times {\begin{bmatrix}c_{x}\\c_{y}\\c_{z}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/542d9f675a022492ecc144e2c7c22c96c35f166e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:19.939ex; height:9.509ex;" alt="{\displaystyle \mathbf {a} ={\begin{bmatrix}b_{x}\\b_{y}\\b_{z}\end{bmatrix}}\times {\begin{bmatrix}c_{x}\\c_{y}\\c_{z}\end{bmatrix}}.}"></span></dd></dl> <p>If we want to obtain the formula for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339ff13ca52000e5467b829dfd008f6846820b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.402ex; height:2.009ex;" alt="{\displaystyle a_{x}}"></span> we simply drop the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c18f5bec576cc285434ce8439080b6ec5b0acd47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.17ex; height:2.509ex;" alt="{\displaystyle b_{x}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6e0397e797e2cde37718a8e2b2e0fad6252c8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.179ex; height:2.009ex;" alt="{\displaystyle c_{x}}"></span> from the formula, and take the next two components down: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}={\begin{bmatrix}b_{y}\\b_{z}\end{bmatrix}}\times {\begin{bmatrix}c_{y}\\c_{z}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}={\begin{bmatrix}b_{y}\\b_{z}\end{bmatrix}}\times {\begin{bmatrix}c_{y}\\c_{z}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d27d183776ad72f859224dfed728eb30dce5ff9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.504ex; height:6.176ex;" alt="{\displaystyle a_{x}={\begin{bmatrix}b_{y}\\b_{z}\end{bmatrix}}\times {\begin{bmatrix}c_{y}\\c_{z}\end{bmatrix}}.}"></span></dd></dl> <p>When doing this for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4332752b07ec00b533637753ef567a2730cf335f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:2.343ex;" alt="{\displaystyle a_{y}}"></span> the next two elements down should "wrap around" the matrix so that after the z component comes the x component. For clarity, when performing this operation for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4332752b07ec00b533637753ef567a2730cf335f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:2.343ex;" alt="{\displaystyle a_{y}}"></span>, the next two components should be z and x (in that order). While for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/491e51e74fbe03e2af58caa2275d8e5763f58215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.231ex; height:2.009ex;" alt="{\displaystyle a_{z}}"></span> the next two components should be taken as x and y. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{y}={\begin{bmatrix}b_{z}\\b_{x}\end{bmatrix}}\times {\begin{bmatrix}c_{z}\\c_{x}\end{bmatrix}},\ a_{z}={\begin{bmatrix}b_{x}\\b_{y}\end{bmatrix}}\times {\begin{bmatrix}c_{x}\\c_{y}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{y}={\begin{bmatrix}b_{z}\\b_{x}\end{bmatrix}}\times {\begin{bmatrix}c_{z}\\c_{x}\end{bmatrix}},\ a_{z}={\begin{bmatrix}b_{x}\\b_{y}\end{bmatrix}}\times {\begin{bmatrix}c_{x}\\c_{y}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/389e7225cc9ae6bf38edebfae230026f19e63bcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.527ex; height:6.176ex;" alt="{\displaystyle a_{y}={\begin{bmatrix}b_{z}\\b_{x}\end{bmatrix}}\times {\begin{bmatrix}c_{z}\\c_{x}\end{bmatrix}},\ a_{z}={\begin{bmatrix}b_{x}\\b_{y}\end{bmatrix}}\times {\begin{bmatrix}c_{x}\\c_{y}\end{bmatrix}}}"></span></dd></dl> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339ff13ca52000e5467b829dfd008f6846820b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.402ex; height:2.009ex;" alt="{\displaystyle a_{x}}"></span> then, if we visualize the cross operator as pointing from an element on the left to an element on the right, we can take the first element on the left and simply multiply by the element that the cross points to in the right-hand matrix. We then subtract the next element down on the left, multiplied by the element that the cross points to here as well. This results in our <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339ff13ca52000e5467b829dfd008f6846820b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.402ex; height:2.009ex;" alt="{\displaystyle a_{x}}"></span> formula – </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}=b_{y}c_{z}-b_{z}c_{y}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}=b_{y}c_{z}-b_{z}c_{y}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a6365cbec22fd34d17a3b7652cef7d8bab45e3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.099ex; height:2.843ex;" alt="{\displaystyle a_{x}=b_{y}c_{z}-b_{z}c_{y}.}"></span></dd></dl> <p>We can do this in the same way for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4332752b07ec00b533637753ef567a2730cf335f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:2.343ex;" alt="{\displaystyle a_{y}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/491e51e74fbe03e2af58caa2275d8e5763f58215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.231ex; height:2.009ex;" alt="{\displaystyle a_{z}}"></span> to construct their associated formulas. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=22" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cross product has applications in various contexts. For example, it is used in computational geometry, physics and engineering. A non-exhaustive list of examples follows. </p> <div class="mw-heading mw-heading3"><h3 id="Computational_geometry">Computational geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=23" title="Edit section: Computational geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cross product appears in the calculation of the distance of two <a href="/wiki/Skew_lines#Distance" title="Skew lines">skew lines</a> (lines not in the same plane) from each other in three-dimensional space. </p><p>The cross product can be used to calculate the normal for a triangle or polygon, an operation frequently performed in <a href="/wiki/Computer_graphics" title="Computer graphics">computer graphics</a>. For example, the winding of a polygon (clockwise or anticlockwise) about a point within the polygon can be calculated by triangulating the polygon (like spoking a wheel) and summing the angles (between the spokes) using the cross product to keep track of the sign of each angle. </p><p>In <a href="/wiki/Computational_geometry" title="Computational geometry">computational geometry</a> of <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">the plane</a>, the cross product is used to determine the sign of the <a href="/wiki/Acute_angle" class="mw-redirect" title="Acute angle">acute angle</a> defined by three points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}=(x_{1},y_{1}),p_{2}=(x_{2},y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}=(x_{1},y_{1}),p_{2}=(x_{2},y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc24706313458008bbc514288a5d11cf6691475f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:26.609ex; height:2.843ex;" alt="{\displaystyle p_{1}=(x_{1},y_{1}),p_{2}=(x_{2},y_{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{3}=(x_{3},y_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{3}=(x_{3},y_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4192c622d48ec1f28d8947f3cda3a67aadab2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:12.832ex; height:2.843ex;" alt="{\displaystyle p_{3}=(x_{3},y_{3})}"></span>. It corresponds to the direction (upward or downward) of the cross product of the two coplanar <a href="/wiki/Vector_(geometry)" class="mw-redirect" title="Vector (geometry)">vectors</a> defined by the two pairs of points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p_{1},p_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p_{1},p_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa988e111a7acf37bf178e4a067e7db92a7a9fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.291ex; height:2.843ex;" alt="{\displaystyle (p_{1},p_{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p_{1},p_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p_{1},p_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73535c3ec930bf7a5d166793c43ac5f2096d2c65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.291ex; height:2.843ex;" alt="{\displaystyle (p_{1},p_{3})}"></span>. The sign of the acute angle is the sign of the expression </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=(x_{2}-x_{1})(y_{3}-y_{1})-(y_{2}-y_{1})(x_{3}-x_{1}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=(x_{2}-x_{1})(y_{3}-y_{1})-(y_{2}-y_{1})(x_{3}-x_{1}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/210dc8f99c4badca5678b33d515bb4135ed4e34e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.239ex; height:2.843ex;" alt="{\displaystyle P=(x_{2}-x_{1})(y_{3}-y_{1})-(y_{2}-y_{1})(x_{3}-x_{1}),}"></span></dd></dl> <p>which is the signed length of the cross product of the two vectors. </p><p>In the "right-handed" coordinate system, if the result is 0, the points are <a href="/wiki/Collinear" class="mw-redirect" title="Collinear">collinear</a>; if it is positive, the three points constitute a positive angle of rotation around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b58f22283ca46dd5da309cc34303b06a797783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{1}}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f1b08d7d69712872e051c2b33fdfa9f5d42319" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{2}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a79626b787857474daa665c953bbc6725e7c345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{3}}"></span>, otherwise a negative angle. From another point of view, the sign of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> tells whether <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a79626b787857474daa665c953bbc6725e7c345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{3}}"></span> lies to the left or to the right of line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},p_{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},p_{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c123768aa69c852d0177697ff2dae4d78d72b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.218ex; height:2.009ex;" alt="{\displaystyle p_{1},p_{2}.}"></span> </p><p>The cross product is used in calculating the volume of a <a href="/wiki/Polyhedron" title="Polyhedron">polyhedron</a> such as a <a href="/wiki/Tetrahedron#Volume" title="Tetrahedron">tetrahedron</a> or <a href="/wiki/Parallelepiped#Volume" title="Parallelepiped">parallelepiped</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Angular_momentum_and_torque">Angular momentum and torque</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=24" title="Edit section: Angular momentum and torque"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> <span class="texhtml"><b>L</b></span> of a particle about a given origin is defined as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6f9c1f2e0915e90da8390594af31f2904fd553b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.781ex; height:2.509ex;" alt="{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} ,}"></span></dd></dl> <p>where <span class="texhtml"><b>r</b></span> is the position vector of the particle relative to the origin, <span class="texhtml"><b>p</b></span> is the linear momentum of the particle. </p><p>In the same way, the <a href="/wiki/Moment_(physics)" title="Moment (physics)">moment</a> <span class="texhtml"><b>M</b></span> of a force <span class="texhtml"><b>F</b><sub>B</sub></span> applied at point B around point A is given as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} _{\mathrm {A} }=\mathbf {r} _{\mathrm {AB} }\times \mathbf {F} _{\mathrm {B} }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} _{\mathrm {A} }=\mathbf {r} _{\mathrm {AB} }\times \mathbf {F} _{\mathrm {B} }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1f9cd728aa36c77caccf3a5f20de29eb4d5652d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.137ex; height:2.509ex;" alt="{\displaystyle \mathbf {M} _{\mathrm {A} }=\mathbf {r} _{\mathrm {AB} }\times \mathbf {F} _{\mathrm {B} }\,}"></span></dd></dl> <p>In mechanics the <i>moment of a force</i> is also called <i><a href="/wiki/Torque" title="Torque">torque</a></i> and written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\tau } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C4;<!-- τ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\tau } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcc46f8785eec5db11fc73af8c5f02473cd0fd71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \mathbf {\tau } }"></span> </p><p>Since position <span class="nowrap"><span class="texhtml"><b>r</b></span>,</span> linear momentum <span class="texhtml"><b>p</b></span> and force <span class="texhtml"><b>F</b></span> are all <i>true</i> vectors, both the angular momentum <span class="texhtml"><b>L</b></span> and the moment of a force <span class="texhtml"><b>M</b></span> are <i>pseudovectors</i> or <i>axial vectors</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Rigid_body">Rigid body</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=25" title="Edit section: Rigid body"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cross product frequently appears in the description of rigid motions. Two points <i>P</i> and <i>Q</i> on a <a href="/wiki/Rigid_body" title="Rigid body">rigid body</a> can be related by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{P}-\mathbf {v} _{Q}={\boldsymbol {\omega }}\times \left(\mathbf {r} _{P}-\mathbf {r} _{Q}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{P}-\mathbf {v} _{Q}={\boldsymbol {\omega }}\times \left(\mathbf {r} _{P}-\mathbf {r} _{Q}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b34474b510afd445f4606874dea1ab7dbc9141" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.508ex; height:3.009ex;" alt="{\displaystyle \mathbf {v} _{P}-\mathbf {v} _{Q}={\boldsymbol {\omega }}\times \left(\mathbf {r} _{P}-\mathbf {r} _{Q}\right)\,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> is the point's position, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> is its velocity and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"></span> is the body's <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a>. </p><p>Since position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> and velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> are <i>true</i> vectors, the angular velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"></span> is a <i>pseudovector</i> or <i>axial vector</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Lorentz_force">Lorentz force</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=26" title="Edit section: Lorentz force"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Lorentz_force" title="Lorentz force">Lorentz force</a></div> <p>The cross product is used to describe the <a href="/wiki/Lorentz_force" title="Lorentz force">Lorentz force</a> experienced by a moving electric charge <span class="nowrap"><span class="texhtml"><i>q<sub>e</sub></i></span>:</span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =q_{e}\left(\mathbf {E} +\mathbf {v} \times \mathbf {B} \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =q_{e}\left(\mathbf {E} +\mathbf {v} \times \mathbf {B} \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/799b9238a8f2183426d69bcff68f643a5039af90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.763ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} =q_{e}\left(\mathbf {E} +\mathbf {v} \times \mathbf {B} \right)}"></span></dd></dl> <p>Since velocity <span class="nowrap"><span class="texhtml"><b>v</b></span>,</span> force <span class="texhtml"><b>F</b></span> and electric field <span class="texhtml"><b>E</b></span> are all <i>true</i> vectors, the magnetic field <span class="texhtml"><b>B</b></span> is a <i>pseudovector</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Other">Other</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=27" title="Edit section: Other"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Vector_calculus" title="Vector calculus">vector calculus</a>, the cross product is used to define the formula for the <a href="/wiki/Vector_operator" title="Vector operator">vector operator</a> <a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">curl</a>. </p><p>The trick of rewriting a cross product in terms of a matrix multiplication appears frequently in <a href="/wiki/Epipolar_geometry" title="Epipolar geometry">epipolar</a> and multi-view geometry, in particular when deriving matching constraints. </p> <div class="mw-heading mw-heading2"><h2 id="As_an_external_product">As an external product</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=28" title="Edit section: As an external product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Exterior_calc_cross_product.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Exterior_calc_cross_product.svg/220px-Exterior_calc_cross_product.svg.png" decoding="async" width="220" height="203" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Exterior_calc_cross_product.svg/330px-Exterior_calc_cross_product.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Exterior_calc_cross_product.svg/440px-Exterior_calc_cross_product.svg.png 2x" data-file-width="231" data-file-height="213" /></a><figcaption>The cross product in relation to the exterior product. In red are the orthogonal <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a>, and the "parallel" unit bivector.</figcaption></figure> <p>The cross product can be defined in terms of the exterior product. It can be generalized to an <a href="#External_product">external product</a> in other than three dimensions.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> This generalization allows a natural geometric interpretation of the cross product. In <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> the exterior product of two vectors is a bivector. A bivector is an oriented plane element, in much the same way that a vector is an oriented line element. Given two vectors <i>a</i> and <i>b</i>, one can view the bivector <span class="nowrap"><i>a</i> ∧ <i>b</i></span> as the oriented parallelogram spanned by <i>a</i> and <i>b</i>. The cross product is then obtained by taking the <a href="/wiki/Hodge_star" class="mw-redirect" title="Hodge star">Hodge star</a> of the bivector <span class="nowrap"><i>a</i> ∧ <i>b</i></span>, mapping <a href="/wiki/P-vector" class="mw-redirect" title="P-vector">2-vectors</a> to vectors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b=\star (a\wedge b).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo>=</mo> <mo>&#x22C6;<!-- ⋆ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b=\star (a\wedge b).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1d5ac0b57cac1a3209637a9195e25a5119a7b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.595ex; height:2.843ex;" alt="{\displaystyle a\times b=\star (a\wedge b).}"></span></dd></dl> <p>This can be thought of as the oriented multi-dimensional element "perpendicular" to the bivector. In a <i>d-</i>dimensional space, Hodge star takes a <i>k</i>-vector to a (<i>d–k</i>)-vector; thus only in <i>d =</i> 3 dimensions is the result an element of dimension one (3–2 = 1), i.e. a vector. For example, in <i>d =</i> 4 dimensions, the cross product of two vectors has dimension 4–2 = 2, giving a bivector. Thus, only in three dimensions does cross product define an algebra structure to multiply vectors. </p> <div class="mw-heading mw-heading2"><h2 id="Handedness">Handedness</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=29" title="Edit section: Handedness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Original_research plainlinks metadata ambox ambox-content ambox-Original_research" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>possibly contains <a href="/wiki/Wikipedia:No_original_research" title="Wikipedia:No original research">original research</a></b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Cross_product&amp;action=edit">improve it</a> by <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifying</a> the claims made and adding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a>. Statements consisting only of original research should be removed.</span> <span class="date-container"><i>(<span class="date">September 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Consistency">Consistency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=30" title="Edit section: Consistency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When physics laws are written as equations, it is possible to make an arbitrary choice of the coordinate system, including handedness. One should be careful to never write down an equation where the two sides do not behave equally under all transformations that need to be considered. For example, if one side of the equation is a cross product of two <a href="/wiki/Polar_vector" class="mw-redirect" title="Polar vector">polar vectors</a>, one must take into account that the result is an <a href="/wiki/Pseudovector" title="Pseudovector">axial vector</a>. Therefore, for consistency, the other side must also be an axial vector.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2008)">citation needed</span></a></i>&#93;</sup> More generally, the result of a cross product may be either a polar vector or an axial vector, depending on the type of its operands (polar vectors or axial vectors). Namely, polar vectors and axial vectors are interrelated in the following ways under application of the cross product: </p> <ul><li>polar vector &#215; polar vector = axial vector</li> <li>axial vector &#215; axial vector = axial vector</li> <li>polar vector &#215; axial vector = polar vector</li> <li>axial vector &#215; polar vector = polar vector</li></ul> <p>or symbolically </p> <ul><li>polar &#215; polar = axial</li> <li>axial &#215; axial = axial</li> <li>polar &#215; axial = polar</li> <li>axial &#215; polar = polar</li></ul> <p>Because the cross product may also be a polar vector, it may not change direction with a mirror image transformation. This happens, according to the above relationships, if one of the operands is a polar vector and the other one is an axial vector (e.g., the cross product of two polar vectors). For instance, a <a href="/wiki/Vector_triple_product" class="mw-redirect" title="Vector triple product">vector triple product</a> involving three polar vectors is a polar vector. </p><p>A handedness-free approach is possible using exterior algebra. </p> <div class="mw-heading mw-heading3"><h3 id="The_paradox_of_the_orthonormal_basis">The paradox of the orthonormal basis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=31" title="Edit section: The paradox of the orthonormal basis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let (<b>i</b>, <b>j</b>, <b>k</b>) be an orthonormal basis. The vectors <b>i</b>, <b>j</b> and <b>k</b> do not depend on the orientation of the space. They can even be defined in the absence of any orientation. They can not therefore be axial vectors. But if <b>i</b> and <b>j</b> are polar vectors, then <b>k</b> is an axial vector for <b>i</b> × <b>j</b> = <b>k</b> or <b>j</b> × <b>i</b> = <b>k</b>. This is a paradox. </p><p>"Axial" and "polar" are <i>physical</i> qualifiers for <i>physical</i> vectors; that is, vectors which represent <i>physical</i> quantities such as the velocity or the magnetic field. The vectors <b>i</b>, <b>j</b> and <b>k</b> are mathematical vectors, neither axial nor polar. In mathematics, the cross-product of two vectors is a vector. There is no contradiction. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=32" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are several ways to generalize the cross product to higher dimensions. </p> <div class="mw-heading mw-heading3"><h3 id="Lie_algebra">Lie algebra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=33" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a></div> <p>The cross product can be seen as one of the simplest Lie products, and is thus generalized by <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a>, which are axiomatized as binary products satisfying the axioms of multilinearity, skew-symmetry, and the Jacobi identity. Many Lie algebras exist, and their study is a major field of mathematics, called <a href="/wiki/Lie_theory" title="Lie theory">Lie theory</a>. </p><p>For example, the <a href="/wiki/Heisenberg_algebra" class="mw-redirect" title="Heisenberg algebra">Heisenberg algebra</a> gives another Lie algebra structure on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/621a5f78791e33a0d47e7e344046f77523425d9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.704ex; height:2.676ex;" alt="{\displaystyle \mathbf {R} ^{3}.}"></span> In the basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x,y,z\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x,y,z\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5738613a098266a2028c572b89d028f5f40a9736" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.613ex; height:2.843ex;" alt="{\displaystyle \{x,y,z\},}"></span> the product is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x,y]=z,[x,z]=[y,z]=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>z</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x,y]=z,[x,z]=[y,z]=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf27588f0b4586bd6a22e7e3d7c9d8513219e3ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.356ex; height:2.843ex;" alt="{\displaystyle [x,y]=z,[x,z]=[y,z]=0.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Quaternions">Quaternions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=34" title="Edit section: Quaternions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">quaternions and spatial rotation</a></div> <p>The cross product can also be described in terms of <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>. In general, if a vector <span class="nowrap">[<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>]</span> is represented as the quaternion <span class="nowrap"><i>a</i><sub>1</sub><i>i</i> + <i>a</i><sub>2</sub><i>j</i> + <i>a</i><sub>3</sub><i>k</i></span>, the cross product of two vectors can be obtained by taking their product as quaternions and deleting the real part of the result. The real part will be the negative of the dot product of the two vectors. </p> <div class="mw-heading mw-heading3"><h3 id="Octonions">Octonions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=35" title="Edit section: Octonions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">Seven-dimensional cross product</a> and <a href="/wiki/Octonion" title="Octonion">Octonion</a></div> <p>A cross product for 7-dimensional vectors can be obtained in the same way by using the <a href="/wiki/Octonion" title="Octonion">octonions</a> instead of the quaternions. The nonexistence of nontrivial vector-valued cross products of two vectors in other dimensions is related to the result from <a href="/wiki/Hurwitz%27s_theorem_(normed_division_algebras)" class="mw-redirect" title="Hurwitz&#39;s theorem (normed division algebras)">Hurwitz's theorem</a> that the only <a href="/wiki/Normed_division_algebra" class="mw-redirect" title="Normed division algebra">normed division algebras</a> are the ones with dimension 1, 2, 4, and 8. </p> <div class="mw-heading mw-heading3"><h3 id="Exterior_product">Exterior product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=36" title="Edit section: Exterior product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a> and <a href="/wiki/Comparison_of_vector_algebra_and_geometric_algebra#Cross_and_exterior_products" title="Comparison of vector algebra and geometric algebra">Comparison of vector algebra and geometric algebra §&#160;Cross and exterior products</a></div> <p>In general dimension, there is no direct analogue of the binary cross product that yields specifically a vector. There is however the exterior product, which has similar properties, except that the exterior product of two vectors is now a <a href="/wiki/P-vector" class="mw-redirect" title="P-vector">2-vector</a> instead of an ordinary vector. As mentioned above, the cross product can be interpreted as the exterior product in three dimensions by using the <a href="/wiki/Hodge_star" class="mw-redirect" title="Hodge star">Hodge star</a> operator to map 2-vectors to vectors. The Hodge dual of the exterior product yields an <span class="nowrap">(<i>n</i> − 2)</span>-vector, which is a natural generalization of the cross product in any number of dimensions. </p><p>The exterior product and dot product can be combined (through summation) to form the <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric product</a> in geometric algebra. </p> <div class="mw-heading mw-heading3"><h3 id="External_product">External product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=37" title="Edit section: External product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As mentioned above, the cross product can be interpreted in three dimensions as the Hodge dual of the exterior product. In any finite <i>n</i> dimensions, the Hodge dual of the exterior product of <span class="nowrap"><i>n</i> − 1</span> vectors is a vector. So, instead of a binary operation, in arbitrary finite dimensions, the cross product is generalized as the Hodge dual of the exterior product of some given <span class="nowrap"><i>n</i> − 1</span> vectors. This generalization is called <b>external product</b>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Commutator_product">Commutator product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=38" title="Edit section: Commutator product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Geometric_algebra#Extensions_of_the_inner_and_exterior_products" title="Geometric algebra">Geometric algebra §&#160;Extensions of the inner and exterior products</a>, <a class="mw-selflink-fragment" href="#Cross_product_and_handedness">Cross product §&#160;Cross product and handedness</a>, and <a class="mw-selflink-fragment" href="#Lie_algebra">Cross product §&#160;Lie algebra</a></div> <p>Interpreting the three-dimensional <a href="/wiki/Vector_space" title="Vector space">vector space</a> of the algebra as the <a href="/wiki/Bivector" title="Bivector">2-vector</a> (not the 1-vector) <a href="/wiki/Graded_vector_space" title="Graded vector space">subalgebra</a> of the three-dimensional geometric algebra, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {i} =\mathbf {e_{2}} \mathbf {e_{3}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {i} =\mathbf {e_{2}} \mathbf {e_{3}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bc41789935f9bb10217849a63ae7603efd51548" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.646ex; height:2.509ex;" alt="{\displaystyle \mathbf {i} =\mathbf {e_{2}} \mathbf {e_{3}} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {j} =\mathbf {e_{1}} \mathbf {e_{3}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {j} =\mathbf {e_{1}} \mathbf {e_{3}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9d434d81dc1ab28da683fc7be160935b613a18d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.164ex; width:8.884ex; height:2.509ex;" alt="{\displaystyle \mathbf {j} =\mathbf {e_{1}} \mathbf {e_{3}} }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} =\mathbf {e_{1}} \mathbf {e_{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} =\mathbf {e_{1}} \mathbf {e_{2}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d956a585cd57b1f6f3765580f78d2abf3833eb1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.315ex; height:2.509ex;" alt="{\displaystyle \mathbf {k} =\mathbf {e_{1}} \mathbf {e_{2}} }"></span>, the cross product corresponds exactly to the <a href="/wiki/Geometric_algebra#Extensions_of_the_inner_and_exterior_products" title="Geometric algebra">commutator product</a> in geometric algebra and both use the same symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00D7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></span>. The commutator product is defined for 2-vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> in geometric algebra as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B={\tfrac {1}{2}}(AB-BA),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mi>A</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B={\tfrac {1}{2}}(AB-BA),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e58d1da5ae34764872368ce27065b8e3e346fd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.415ex; height:3.509ex;" alt="{\displaystyle A\times B={\tfrac {1}{2}}(AB-BA),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span> is the geometric product.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>The commutator product could be generalised to arbitrary <a href="/wiki/Multivector#Geometric_algebra" title="Multivector">multivectors</a> in three dimensions, which results in a multivector consisting of only elements of <a href="/wiki/Graded_vector_space" title="Graded vector space">grades</a> 1 (1-vectors/<a href="#Handedness">true vectors</a>) and 2 (2-vectors/pseudovectors). While the commutator product of two 1-vectors is indeed the same as the exterior product and yields a 2-vector, the commutator of a 1-vector and a 2-vector yields a true vector, corresponding instead to the <a href="/wiki/Geometric_algebra#Extensions_of_the_inner_and_exterior_products" title="Geometric algebra">left and right contractions</a> in geometric algebra. The commutator product of two 2-vectors has no corresponding equivalent product, which is why the commutator product is defined in the first place for 2-vectors. Furthermore, the commutator triple product of three 2-vectors is the same as the <a href="/wiki/Vector_triple_product" class="mw-redirect" title="Vector triple product">vector triple product</a> of the same three pseudovectors in vector algebra. However, the commutator triple product of three 1-vectors in geometric algebra is instead the <a href="/wiki/Sign_(mathematics)#Sign_of_a_direction" title="Sign (mathematics)">negative</a> of the <a href="/wiki/Vector_triple_product" class="mw-redirect" title="Vector triple product">vector triple product</a> of the same three true vectors in vector algebra. </p><p>Generalizations to higher dimensions is provided by the same commutator product of 2-vectors in higher-dimensional geometric algebras, but the 2-vectors are no longer pseudovectors. Just as the commutator product/cross product of 2-vectors in three dimensions <a href="#Lie_algebra">correspond to the simplest Lie algebra</a>, the 2-vector subalgebras of higher dimensional geometric algebra equipped with the commutator product also correspond to the Lie algebras.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Also as in three dimensions, the commutator product could be further generalised to arbitrary multivectors. </p> <div class="mw-heading mw-heading3"><h3 id="Multilinear_algebra">Multilinear algebra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=39" title="Edit section: Multilinear algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the context of <a href="/wiki/Multilinear_algebra" title="Multilinear algebra">multilinear algebra</a>, the cross product can be seen as the (1,2)-tensor (a <a href="/wiki/Mixed_tensor" title="Mixed tensor">mixed tensor</a>, specifically a <a href="/wiki/Bilinear_map" title="Bilinear map">bilinear map</a>) obtained from the 3-dimensional <a href="/wiki/Volume_form" title="Volume form">volume form</a>,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> a (0,3)-tensor, by <a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">raising an index</a>. </p><p>In detail, the 3-dimensional volume form defines a product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times V\times V\to \mathbf {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times V\times V\to \mathbf {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1d8d4b9e1dd451129b07c62494a9fb9188dca78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.307ex; height:2.509ex;" alt="{\displaystyle V\times V\times V\to \mathbf {R} ,}"></span> by taking the determinant of the matrix given by these 3 vectors. By <a href="/wiki/Dual_space" title="Dual space">duality</a>, this is equivalent to a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times V\to V^{*},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times V\to V^{*},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65c478b9b5d0e101dd541954435d6a49ffd4493e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.647ex; height:2.676ex;" alt="{\displaystyle V\times V\to V^{*},}"></span> (fixing any two inputs gives a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\to \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\to \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30534e02fed26a26f80c4b15146efd1d141038a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.405ex; height:2.176ex;" alt="{\displaystyle V\to \mathbf {R} }"></span> by evaluating on the third input) and in the presence of an <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> (such as the dot product; more generally, a non-degenerate bilinear form), we have an isomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\to V^{*},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\to V^{*},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db276e2672d2bd1926cdae1ce5368a8ca01fd685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.019ex; height:2.676ex;" alt="{\displaystyle V\to V^{*},}"></span> and thus this yields a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times V\to V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times V\to V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f1f6ccf08a4e3c583e80259351b6188ab96e3b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.463ex; height:2.509ex;" alt="{\displaystyle V\times V\to V,}"></span> which is the cross product: a (0,3)-tensor (3 vector inputs, scalar output) has been transformed into a (1,2)-tensor (2 vector inputs, 1 vector output) by "raising an index". </p><p>Translating the above algebra into geometry, the function "volume of the parallelepiped defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b,-)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b,-)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc21a1d4c65d0fc51564a9640351d92c5048f973" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.913ex; height:2.843ex;" alt="{\displaystyle (a,b,-)}"></span>" (where the first two vectors are fixed and the last is an input), which defines a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\to \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\to \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30534e02fed26a26f80c4b15146efd1d141038a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.405ex; height:2.176ex;" alt="{\displaystyle V\to \mathbf {R} }"></span>, can be <i>represented</i> uniquely as the dot product with a vector: this vector is the cross product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/951b3d74659ad389120ff04c748c1dd8de0f8530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.715ex; height:2.176ex;" alt="{\displaystyle a\times b.}"></span> From this perspective, the cross product is <i>defined</i> by the <a href="/wiki/Scalar_triple_product" class="mw-redirect" title="Scalar triple product">scalar triple product</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Vol} (a,b,c)=(a\times b)\cdot c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">l</mi> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Vol} (a,b,c)=(a\times b)\cdot c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc8bf49b45055c8c8c4b1dc6ec01d16e0b7837bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.972ex; height:2.843ex;" alt="{\displaystyle \mathrm {Vol} (a,b,c)=(a\times b)\cdot c.}"></span> </p><p>In the same way, in higher dimensions one may define generalized cross products by raising indices of the <i>n</i>-dimensional volume form, which is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9516a58dc3bd99e060e9ec8565620a57a3a9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.4ex; height:2.843ex;" alt="{\displaystyle (0,n)}"></span>-tensor. The most direct generalizations of the cross product are to define either: </p> <ul><li>a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37b918ffa2f6f3cfb3e70903fe95c43be39995b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.403ex; height:2.843ex;" alt="{\displaystyle (1,n-1)}"></span>-tensor, which takes as input <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> vectors, and gives as output 1 vector – an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df88c6333caaf6471cf277f24b802ff9931b133e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.207ex; height:2.843ex;" alt="{\displaystyle (n-1)}"></span>-ary vector-valued product, or</li> <li>a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-2,2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-2,2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1daab7d25c2303a2484a6cd6a6657af13ecfe7d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.403ex; height:2.843ex;" alt="{\displaystyle (n-2,2)}"></span>-tensor, which takes as input 2 vectors and gives as output <a href="/wiki/Skew-symmetric_tensor" class="mw-redirect" title="Skew-symmetric tensor">skew-symmetric tensor</a> of rank <span class="nowrap"><i>n</i> − 2</span> – a binary product with rank <span class="nowrap"><i>n</i> − 2</span> tensor values. One can also define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k,n-k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k,n-k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ffc83943cba6e01a096c690f9d676fad4043f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.501ex; height:2.843ex;" alt="{\displaystyle (k,n-k)}"></span>-tensors for other <i>k</i>.</li></ul> <p>These products are all multilinear and skew-symmetric, and can be defined in terms of the determinant and <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a>. </p><p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df88c6333caaf6471cf277f24b802ff9931b133e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.207ex; height:2.843ex;" alt="{\displaystyle (n-1)}"></span>-ary product can be described as follows: given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1},\dots ,v_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1},\dots ,v_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54225fde330ada8d13b260a3b0986c85a7670a68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.807ex; height:2.009ex;" alt="{\displaystyle v_{1},\dots ,v_{n-1}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab2b659e3536671c46ccafcb75d6be9dec6899ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.869ex; height:2.676ex;" alt="{\displaystyle \mathbf {R} ^{n},}"></span> define their generalized cross product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{n}=v_{1}\times \cdots \times v_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{n}=v_{1}\times \cdots \times v_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa0b48b050e8309c47868f5940176c7568cc089" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.477ex; height:2.009ex;" alt="{\displaystyle v_{n}=v_{1}\times \cdots \times v_{n-1}}"></span> as: </p> <ul><li>perpendicular to the hyperplane defined by the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d5847b6df44ed76a720638d68ff19788bedfde1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.009ex;" alt="{\displaystyle v_{i},}"></span></li> <li>magnitude is the volume of the parallelotope defined by the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d5847b6df44ed76a720638d68ff19788bedfde1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.009ex;" alt="{\displaystyle v_{i},}"></span> which can be computed as the Gram determinant of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d5847b6df44ed76a720638d68ff19788bedfde1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.009ex;" alt="{\displaystyle v_{i},}"></span></li> <li>oriented so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1},\dots ,v_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1},\dots ,v_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e6ddc943290a5e10aa10a064fb4d6a745f0fde7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.706ex; height:2.009ex;" alt="{\displaystyle v_{1},\dots ,v_{n}}"></span> is positively oriented.</li></ul> <p>This is the unique multilinear, alternating product which evaluates to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{1}\times \cdots \times e_{n-1}=e_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{1}\times \cdots \times e_{n-1}=e_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e047ff00009e196bcdb21a66a6730c2407448bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.345ex; height:2.009ex;" alt="{\displaystyle e_{1}\times \cdots \times e_{n-1}=e_{n}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{2}\times \cdots \times e_{n}=e_{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{2}\times \cdots \times e_{n}=e_{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a7b8c1fb738081be9f6cf9dee31cb65376b4d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.727ex; height:2.009ex;" alt="{\displaystyle e_{2}\times \cdots \times e_{n}=e_{1},}"></span> and so forth for cyclic permutations of indices. </p><p>In coordinates, one can give a formula for this <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df88c6333caaf6471cf277f24b802ff9931b133e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.207ex; height:2.843ex;" alt="{\displaystyle (n-1)}"></span>-ary analogue of the cross product in <b>R</b><sup><i>n</i></sup> by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigwedge _{i=0}^{n-1}\mathbf {v} _{i}={\begin{vmatrix}v_{1}{}^{1}&amp;\cdots &amp;v_{1}{}^{n}\\\vdots &amp;\ddots &amp;\vdots \\v_{n-1}{}^{1}&amp;\cdots &amp;v_{n-1}{}^{n}\\\mathbf {e} _{1}&amp;\cdots &amp;\mathbf {e} _{n}\end{vmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x22C0;<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22F1;<!-- ⋱ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigwedge _{i=0}^{n-1}\mathbf {v} _{i}={\begin{vmatrix}v_{1}{}^{1}&amp;\cdots &amp;v_{1}{}^{n}\\\vdots &amp;\ddots &amp;\vdots \\v_{n-1}{}^{1}&amp;\cdots &amp;v_{n-1}{}^{n}\\\mathbf {e} _{1}&amp;\cdots &amp;\mathbf {e} _{n}\end{vmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89600db4dc2ccb82251fd16b69eed7ac79b1a1e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; margin-top: -0.291ex; width:30.265ex; height:14.509ex;" alt="{\displaystyle \bigwedge _{i=0}^{n-1}\mathbf {v} _{i}={\begin{vmatrix}v_{1}{}^{1}&amp;\cdots &amp;v_{1}{}^{n}\\\vdots &amp;\ddots &amp;\vdots \\v_{n-1}{}^{1}&amp;\cdots &amp;v_{n-1}{}^{n}\\\mathbf {e} _{1}&amp;\cdots &amp;\mathbf {e} _{n}\end{vmatrix}}.}"></span></dd></dl> <p>This formula is identical in structure to the determinant formula for the normal cross product in <b>R</b><sup>3</sup> except that the row of basis vectors is the last row in the determinant rather than the first. The reason for this is to ensure that the ordered vectors (<b>v</b><sub>1</sub>, ..., <b>v</b><sub><i>n</i>−1</sub>, Λ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i>–1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">i=0</sub></span></span><b>v</b><sub><i>i</i></sub>) have a positive <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a> with respect to (<b>e</b><sub>1</sub>, ..., <b>e</b><sub><i>n</i></sub>). If <i>n</i> is odd, this modification leaves the value unchanged, so this convention agrees with the normal definition of the binary product. In the case that <i>n</i> is even, however, the distinction must be kept. This <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df88c6333caaf6471cf277f24b802ff9931b133e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.207ex; height:2.843ex;" alt="{\displaystyle (n-1)}"></span>-ary form enjoys many of the same properties as the vector cross product: it is <a href="/wiki/Alternating_form" class="mw-redirect" title="Alternating form">alternating</a> and linear in its arguments, it is perpendicular to each argument, and its magnitude gives the hypervolume of the region bounded by the arguments. And just like the vector cross product, it can be defined in a coordinate independent way as the Hodge dual of the wedge product of the arguments. Moreover, the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [v_{1},\ldots ,v_{n}]:=\bigwedge _{i=0}^{n}v_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>:=</mo> <munderover> <mo>&#x22C0;<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [v_{1},\ldots ,v_{n}]:=\bigwedge _{i=0}^{n}v_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3ded7786514805c536cc7c4063b827b634303f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.727ex; height:6.843ex;" alt="{\displaystyle [v_{1},\ldots ,v_{n}]:=\bigwedge _{i=0}^{n}v_{i}}"></span> satisfies the Filippov identity, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [[x_{1},\ldots ,x_{n}],y_{2},\ldots ,y_{n}]]=\sum _{i=1}^{n}[x_{1},\ldots ,x_{i-1},[x_{i},y_{2},\ldots ,y_{n}],x_{i+1},\ldots ,x_{n}],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [[x_{1},\ldots ,x_{n}],y_{2},\ldots ,y_{n}]]=\sum _{i=1}^{n}[x_{1},\ldots ,x_{i-1},[x_{i},y_{2},\ldots ,y_{n}],x_{i+1},\ldots ,x_{n}],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cec8eccbfa6d7d839058f46452d3339623469e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:72.504ex; height:6.843ex;" alt="{\displaystyle [[x_{1},\ldots ,x_{n}],y_{2},\ldots ,y_{n}]]=\sum _{i=1}^{n}[x_{1},\ldots ,x_{i-1},[x_{i},y_{2},\ldots ,y_{n}],x_{i+1},\ldots ,x_{n}],}"></span></dd></dl> <p>and so it endows <b>R</b><sup>n+1</sup> with a structure of n-Lie algebra (see Proposition 1 of <sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup>). </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=40" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1773, <a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a> used the component form of both the dot and cross products in order to study the <a href="/wiki/Tetrahedron" title="Tetrahedron">tetrahedron</a> in three dimensions.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>note 3<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1843, <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a> introduced the <a href="/wiki/Quaternion" title="Quaternion">quaternion</a> product, and with it the terms <i>vector</i> and <i>scalar</i>. Given two quaternions <span class="nowrap">[0, <b>u</b>]</span> and <span class="nowrap">[0, <b>v</b>]</span>, where <b>u</b> and <b>v</b> are vectors in <b>R</b><sup>3</sup>, their quaternion product can be summarized as <span class="nowrap">[−<b>u</b> ⋅ <b>v</b>, <b>u</b> × <b>v</b>]</span>. <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> used Hamilton's quaternion tools to develop his famous <a href="/wiki/Maxwell%27s_equations" title="Maxwell&#39;s equations">electromagnetism equations</a>, and for this and other reasons quaternions for a time were an essential part of physics education. </p><p>In 1844, <a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a> published a geometric algebra not tied to dimension two or three. Grassmann developed several products, including a cross product represented then by <span class="texhtml">[uv]</span>.<sup id="cite_ref-FOOTNOTECajori1929&#91;httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134&#93;_28-0" class="reference"><a href="#cite_note-FOOTNOTECajori1929[httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134]-28"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> (<i>See also: <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a>.</i>) </p><p>In 1853, <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a>, a contemporary of Grassmann, published a paper on algebraic keys which were used to solve equations and had the same multiplication properties as the cross product.<sup id="cite_ref-FOOTNOTECrowe1994&#91;httpsarchiveorgdetailshistoryofvectora0000crowpage83_83&#93;_29-0" class="reference"><a href="#cite_note-FOOTNOTECrowe1994[httpsarchiveorgdetailshistoryofvectora0000crowpage83_83]-29"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1878, <a href="/wiki/William_Kingdon_Clifford" title="William Kingdon Clifford">William Kingdon Clifford</a>, known for a <a href="/wiki/Geometric_algebra" title="Geometric algebra">precursor</a> to the <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a> named in his honor, published <i><a href="/wiki/Elements_of_Dynamic" title="Elements of Dynamic">Elements of Dynamic</a></i>, in which the term <i>vector product</i> is attested. In the book, this product of two vectors is defined to have magnitude equal to the <a href="/wiki/Area" title="Area">area</a> of the <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> of which they are two sides, and direction perpendicular to their plane.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>In lecture notes from 1881, <a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Gibbs</a> represented the cross product by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u\times v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>&#x00D7;<!-- × --></mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u\times v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dedbd3ae14284142498f3ff0777c08d2501df031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.298ex; height:1.676ex;" alt="{\displaystyle u\times v}"></span> and called it the <i>skew product</i>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTECrowe1994&#91;httpsarchiveorgdetailshistoryofvectora0000crowpage154_154&#93;_33-0" class="reference"><a href="#cite_note-FOOTNOTECrowe1994[httpsarchiveorgdetailshistoryofvectora0000crowpage154_154]-33"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> In 1901, Gibb's student <a href="/wiki/Edwin_Bidwell_Wilson" title="Edwin Bidwell Wilson">Edwin Bidwell Wilson</a> edited and extended these lecture notes into the <a href="/wiki/Textbook" title="Textbook">textbook</a> <i><a href="/wiki/Vector_Analysis" title="Vector Analysis">Vector Analysis</a></i>. Wilson kept the term <i>skew product</i>, but observed that the alternative terms <i>cross product</i><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>note 4<span class="cite-bracket">&#93;</span></a></sup> and <i>vector product</i> were more frequent.<sup id="cite_ref-FOOTNOTEWilson1901&#91;httpsarchiveorgdetails117714283page61_61&#93;_35-0" class="reference"><a href="#cite_note-FOOTNOTEWilson1901[httpsarchiveorgdetails117714283page61_61]-35"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1908, <a href="/wiki/Cesare_Burali-Forti" title="Cesare Burali-Forti">Cesare Burali-Forti</a> and <a href="/wiki/Roberto_Marcolongo" title="Roberto Marcolongo">Roberto Marcolongo</a> introduced the vector product notation <span class="texhtml">u ∧ v</span>.<sup id="cite_ref-FOOTNOTECajori1929&#91;httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134&#93;_28-1" class="reference"><a href="#cite_note-FOOTNOTECajori1929[httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134]-28"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> This is used in <a href="/wiki/France" title="France">France</a> and other areas until this day, as the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00D7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></span> is already used to denote <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> and the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=41" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> – a product of two sets</li> <li><a href="/wiki/Geometric_algebra#Rotating_systems" title="Geometric algebra">Geometric algebra: Rotating systems</a></li> <li><a href="/wiki/Multiple_cross_products" class="mw-redirect" title="Multiple cross products">Multiple cross products</a> – products involving more than three vectors</li> <li><a href="/wiki/Multiplication_of_vectors" class="mw-redirect" title="Multiplication of vectors">Multiplication of vectors</a></li> <li><a href="/wiki/Quadruple_product" class="mw-redirect" title="Quadruple product">Quadruple product</a></li> <li><a href="/wiki/%C3%97" class="mw-redirect" title="×">×</a> (the symbol)</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=42" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Here, "formal" means that this notation has the form of a determinant, but does not strictly adhere to the definition; it is a mnemonic used to remember the expansion of the cross product.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">By a volume form one means a function that takes in <i>n</i> vectors and gives out a scalar, the volume of the <a href="/wiki/Parallelepiped#Parallelotope" title="Parallelepiped">parallelotope</a> defined by the vectors: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times \cdots \times V\to \mathbf {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times \cdots \times V\to \mathbf {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eae9b5cc99f9f9a1d5b19be63d5e29b1017aa570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:18.243ex; height:2.176ex;" alt="{\displaystyle V\times \cdots \times V\to \mathbf {R} .}"></span> This is an <i>n</i>-ary multilinear skew-symmetric form. In the presence of a basis, such as on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab2b659e3536671c46ccafcb75d6be9dec6899ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.869ex; height:2.676ex;" alt="{\displaystyle \mathbf {R} ^{n},}"></span> this is given by the determinant, but in an abstract vector space, this is added structure. In terms of <a href="/wiki/G-structure" class="mw-redirect" title="G-structure"><i>G</i>-structures</a>, a volume form is an <a href="/wiki/Special_linear_group" title="Special linear group"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61c38625f8201fc63c5b85fe08aee863ba84b509" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.082ex; height:2.176ex;" alt="{\displaystyle SL}"></span></a>-structure.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">In modern notation, Lagrange defines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\xi } =\mathbf {y} \times \mathbf {z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\xi } =\mathbf {y} \times \mathbf {z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9cb1af100b44e2fea483c930da2833d10c867d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.568ex; height:2.509ex;" alt="{\displaystyle \mathbf {\xi } =\mathbf {y} \times \mathbf {z} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\eta }}=\mathbf {z} \times \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B7;<!-- η --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\eta }}=\mathbf {z} \times \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/499128d381ede615e0b3b7917741b4e50ea2cff9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.933ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\eta }}=\mathbf {z} \times \mathbf {x} }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\zeta }}=\mathbf {x} \times {\boldsymbol {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B6;<!-- ζ --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\zeta }}=\mathbf {x} \times {\boldsymbol {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b0286092be3398b5098f1f041055181f0a9a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.933ex; height:2.509ex;" alt="{\displaystyle {\boldsymbol {\zeta }}=\mathbf {x} \times {\boldsymbol {y}}}"></span>. Thereby, the modern <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> corresponds to the three variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,x',x'')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,x',x'')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8261457d91534189aa15cb51cb7f5eba370c8e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.688ex; height:3.009ex;" alt="{\displaystyle (x,x&#039;,x&#039;&#039;)}"></span> in Lagrange's notation.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">since <span class="texhtml">A × B</span> is read as "<span class="texhtml">A</span> cross <span class="texhtml">B</span>"</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=43" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-:1-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:1_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:1_1-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/CrossProduct.html">"Cross Product"</a>. <i>Wolfram MathWorld</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+MathWorld&amp;rft.atitle=Cross+Product&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FCrossProduct.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-:2-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/algebra/vectors-cross-product.html">"Cross Product"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathsisfun.com&amp;rft.atitle=Cross+Product&amp;rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Falgebra%2Fvectors-cross-product.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-Massey2-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Massey2_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMassey1983" class="citation journal cs1"><a href="/wiki/William_S._Massey" title="William S. Massey">Massey, William S.</a> (December 1983). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210226011747/https://pdfs.semanticscholar.org/1f6b/ff1e992f60eb87b35c3ceed04272fb5cc298.pdf">"Cross products of vectors in higher dimensional Euclidean spaces"</a> <span class="cs1-format">(PDF)</span>. <i>The American Mathematical Monthly</i>. <b>90</b> (10): 697–701. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2323537">10.2307/2323537</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2323537">2323537</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43318100">43318100</a>. Archived from <a rel="nofollow" class="external text" href="https://pdfs.semanticscholar.org/1f6b/ff1e992f60eb87b35c3ceed04272fb5cc298.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2021-02-26. <q>If one requires only three basic properties of the cross product ... it turns out that a cross product of vectors exists only in 3-dimensional and 7-dimensional Euclidean space.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Cross+products+of+vectors+in+higher+dimensional+Euclidean+spaces&amp;rft.volume=90&amp;rft.issue=10&amp;rft.pages=697-701&amp;rft.date=1983-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43318100%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2323537%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2323537&amp;rft.aulast=Massey&amp;rft.aufirst=William+S.&amp;rft_id=https%3A%2F%2Fpdfs.semanticscholar.org%2F1f6b%2Fff1e992f60eb87b35c3ceed04272fb5cc298.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArfken" class="citation book cs1">Arfken, George B. <i>Mathematical Methods for Physicists</i> (4th&#160;ed.). Elsevier.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+for+Physicists&amp;rft.edition=4th&amp;rft.pub=Elsevier&amp;rft.aulast=Arfken&amp;rft.aufirst=George+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeffreys,_H.Jeffreys,_B._S.1999" class="citation book cs1">Jeffreys, H.; Jeffreys, B. S. (1999). <i>Methods of mathematical physics</i>. Cambridge University Press. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/41158050">41158050</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Methods+of+mathematical+physics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1999&amp;rft_id=info%3Aoclcnum%2F41158050&amp;rft.au=Jeffreys%2C+H.&amp;rft.au=Jeffreys%2C+B.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAcheson,_D._J.1990" class="citation book cs1"><a href="/wiki/David_Acheson_(mathematician)" title="David Acheson (mathematician)">Acheson, D. J.</a> (1990). <i>Elementary Fluid Dynamics</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0198596790" title="Special:BookSources/0198596790"><bdi>0198596790</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Fluid+Dynamics&amp;rft.pub=Oxford+University+Press&amp;rft.date=1990&amp;rft.isbn=0198596790&amp;rft.au=Acheson%2C+D.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowison,_Sam2005" class="citation book cs1">Howison, Sam (2005). <i>Practical Applied Mathematics</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0521842743" title="Special:BookSources/0521842743"><bdi>0521842743</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Practical+Applied+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2005&amp;rft.isbn=0521842743&amp;rft.au=Howison%2C+Sam&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilson1901">Wilson 1901</a>, p.&#160;60–61.</span> </li> <li id="cite_note-Cullen-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cullen_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDennis_G._ZillMichael_R._Cullen2006" class="citation book cs1">Dennis G. Zill; Michael R. Cullen (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=x7uWk8lxVNYC&amp;pg=PA324">"Definition 7.4: Cross product of two vectors"</a>. <i>Advanced engineering mathematics</i> (3rd&#160;ed.). Jones &amp; Bartlett Learning. p.&#160;324. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7637-4591-X" title="Special:BookSources/0-7637-4591-X"><bdi>0-7637-4591-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Definition+7.4%3A+Cross+product+of+two+vectors&amp;rft.btitle=Advanced+engineering+mathematics&amp;rft.pages=324&amp;rft.edition=3rd&amp;rft.pub=Jones+%26+Bartlett+Learning&amp;rft.date=2006&amp;rft.isbn=0-7637-4591-X&amp;rft.au=Dennis+G.+Zill&amp;rft.au=Michael+R.+Cullen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dx7uWk8lxVNYC%26pg%3DPA324&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwin_Bidwell_Wilson1913" class="citation book cs1">Edwin Bidwell Wilson (1913). "Chapter II. Direct and Skew Products of Vectors". <i><a href="/wiki/Vector_Analysis" title="Vector Analysis">Vector Analysis</a></i>. Founded upon the lectures of J. William Gibbs. New Haven: Yale University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+II.+Direct+and+Skew+Products+of+Vectors&amp;rft.btitle=Vector+Analysis&amp;rft.place=New+Haven&amp;rft.pub=Yale+University+Press&amp;rft.date=1913&amp;rft.au=Edwin+Bidwell+Wilson&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span> The dot product is called "direct product", and cross product is called "skew product".</span> </li> <li id="cite_note-ucd-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-ucd_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ucd_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.math.ucdavis.edu/~temple/MAT21D/SUPPLEMENTARY-ARTICLES/Crowe_History-of-Vectors.pdf"><i>A History of Vector Analysis</i></a> by Michael J. Crowe, Math. UC Davis.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._R._SpiegelS._LipschutzD._Spellman2009" class="citation book cs1">M. R. Spiegel; S. Lipschutz; D. Spellman (2009). <i>Vector Analysis</i>. Schaum's outlines. McGraw Hill. p.&#160;29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-161545-7" title="Special:BookSources/978-0-07-161545-7"><bdi>978-0-07-161545-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector+Analysis&amp;rft.series=Schaum%27s+outlines&amp;rft.pages=29&amp;rft.pub=McGraw+Hill&amp;rft.date=2009&amp;rft.isbn=978-0-07-161545-7&amp;rft.au=M.+R.+Spiegel&amp;rft.au=S.+Lipschutz&amp;rft.au=D.+Spellman&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-Massey-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Massey_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWS_Massey1983" class="citation journal cs1">WS Massey (Dec 1983). "Cross products of vectors in higher dimensional Euclidean spaces". <i>The American Mathematical Monthly</i>. <b>90</b> (10). The American Mathematical Monthly, Vol. 90, No. 10: 697–701. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2323537">10.2307/2323537</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2323537">2323537</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Cross+products+of+vectors+in+higher+dimensional+Euclidean+spaces&amp;rft.volume=90&amp;rft.issue=10&amp;rft.pages=697-701&amp;rft.date=1983-12&amp;rft_id=info%3Adoi%2F10.2307%2F2323537&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2323537%23id-name%3DJSTOR&amp;rft.au=WS+Massey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-Boichenko-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boichenko_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimir_A._BoichenkoGennadiĭ_Alekseevich_LeonovVolker_Reitmann2005" class="citation book cs1">Vladimir A. Boichenko; Gennadiĭ Alekseevich Leonov; Volker Reitmann (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9bN1-b_dSYsC&amp;pg=PA26"><i>Dimension theory for ordinary differential equations</i></a>. Vieweg+Teubner Verlag. p.&#160;26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-519-00437-2" title="Special:BookSources/3-519-00437-2"><bdi>3-519-00437-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension+theory+for+ordinary+differential+equations&amp;rft.pages=26&amp;rft.pub=Vieweg%2BTeubner+Verlag&amp;rft.date=2005&amp;rft.isbn=3-519-00437-2&amp;rft.au=Vladimir+A.+Boichenko&amp;rft.au=Gennadi%C4%AD+Alekseevich+Leonov&amp;rft.au=Volker+Reitmann&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9bN1-b_dSYsC%26pg%3DPA26&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-Lounesto1-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lounesto1_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPertti_Lounesto2001" class="citation book cs1">Pertti Lounesto (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kOsybQWDK4oC&amp;q=%22which+in+coordinate+form+means+Lagrange%27s+identity%22&amp;pg=PA94"><i>Clifford algebras and spinors</i></a> (2nd&#160;ed.). Cambridge University Press. p.&#160;94. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-00551-5" title="Special:BookSources/0-521-00551-5"><bdi>0-521-00551-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Clifford+algebras+and+spinors&amp;rft.pages=94&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2001&amp;rft.isbn=0-521-00551-5&amp;rft.au=Pertti+Lounesto&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkOsybQWDK4oC%26q%3D%2522which%2Bin%2Bcoordinate%2Bform%2Bmeans%2BLagrange%2527s%2Bidentity%2522%26pg%3DPA94&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-Liu-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Liu_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Liu_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShuangzhe_LiuGõtz_Trenkler2008" class="citation journal cs1">Shuangzhe Liu; Gõtz Trenkler (2008). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/251677036">"Hadamard, Khatri-Rao, Kronecker and other matrix products"</a>. <i>Int J Information and Systems Sciences</i>. <b>4</b> (1). Institute for scientific computing and education: 160–177.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Int+J+Information+and+Systems+Sciences&amp;rft.atitle=Hadamard%2C+Khatri-Rao%2C+Kronecker+and+other+matrix+products&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=160-177&amp;rft.date=2008&amp;rft.au=Shuangzhe+Liu&amp;rft.au=G%C3%B5tz+Trenkler&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F251677036&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-Weisstein-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weisstein_18-0">^</a></b></span> <span class="reference-text">by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEric_W._Weisstein2003" class="citation book cs1">Eric W. Weisstein (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8LmCzWQYh_UC&amp;pg=PA228">"Binet-Cauchy identity"</a>. <i>CRC concise encyclopedia of mathematics</i> (2nd&#160;ed.). CRC Press. p.&#160;228. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-58488-347-2" title="Special:BookSources/1-58488-347-2"><bdi>1-58488-347-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Binet-Cauchy+identity&amp;rft.btitle=CRC+concise+encyclopedia+of+mathematics&amp;rft.pages=228&amp;rft.edition=2nd&amp;rft.pub=CRC+Press&amp;rft.date=2003&amp;rft.isbn=1-58488-347-2&amp;rft.au=Eric+W.+Weisstein&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8LmCzWQYh_UC%26pg%3DPA228&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-lounesto2001-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-lounesto2001_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lounesto2001_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLounesto,_Pertti2001" class="citation book cs1">Lounesto, Pertti (2001). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/cliffordalgebras00loun"><i>Clifford algebras and spinors</i></a></span>. Cambridge: Cambridge University Press. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/cliffordalgebras00loun/page/n200">193</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-00551-7" title="Special:BookSources/978-0-521-00551-7"><bdi>978-0-521-00551-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Clifford+algebras+and+spinors&amp;rft.pages=193&amp;rft.pub=Cambridge%3A+Cambridge+University+Press&amp;rft.date=2001&amp;rft.isbn=978-0-521-00551-7&amp;rft.au=Lounesto%2C+Pertti&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcliffordalgebras00loun&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreub,_W.1978" class="citation book cs1">Greub, W. (1978). <i>Multilinear Algebra</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Multilinear+Algebra&amp;rft.date=1978&amp;rft.au=Greub%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHogben,_L2007" class="citation book cs1"><a href="/wiki/Leslie_Hogben" title="Leslie Hogben">Hogben, L</a>, ed. (2007). <i>Handbook of Linear Algebra</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Linear+Algebra&amp;rft.date=2007&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (September 2019)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArthur2011" class="citation book cs1">Arthur, John W. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rxGCaDvBCoAC"><i>Understanding Geometric Algebra for Electromagnetic Theory</i></a>. <a href="/wiki/IEEE_Press" class="mw-redirect" title="IEEE Press">IEEE Press</a>. p.&#160;49. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0470941638" title="Special:BookSources/978-0470941638"><bdi>978-0470941638</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Understanding+Geometric+Algebra+for+Electromagnetic+Theory&amp;rft.pages=49&amp;rft.pub=IEEE+Press&amp;rft.date=2011&amp;rft.isbn=978-0470941638&amp;rft.aulast=Arthur&amp;rft.aufirst=John+W.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrxGCaDvBCoAC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoranLasenby2003" class="citation book cs1">Doran, Chris; Lasenby, Anthony (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VW4yt0WHdjoC"><i>Geometric Algebra for Physicists</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp.&#160;401–408. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521715959" title="Special:BookSources/978-0521715959"><bdi>978-0521715959</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometric+Algebra+for+Physicists&amp;rft.pages=401-408&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0521715959&amp;rft.aulast=Doran&amp;rft.aufirst=Chris&amp;rft.au=Lasenby%2C+Anthony&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVW4yt0WHdjoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFilippov1985" class="citation journal cs1">Filippov, V.T. (1985). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/BF00969110">"n-Lie algebras"</a>. <i>Sibirsk. Mat. Zh</i>. <b>26</b> (6): 879–891. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00969110">10.1007/BF00969110</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125051596">125051596</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sibirsk.+Mat.+Zh.&amp;rft.atitle=n-Lie+algebras&amp;rft.volume=26&amp;rft.issue=6&amp;rft.pages=879-891&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1007%2FBF00969110&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125051596%23id-name%3DS2CID&amp;rft.aulast=Filippov&amp;rft.aufirst=V.T.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2FBF00969110&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagrange,_Joseph-Louis1773" class="citation book cs1">Lagrange, Joseph-Louis (1773). "Solutions analytiques de quelques problèmes sur les pyramides triangulaires". <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f662.item.zoom"><i>Oeuvres</i></a>. Vol.&#160;3. p.&#160;661.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Solutions+analytiques+de+quelques+probl%C3%A8mes+sur+les+pyramides+triangulaires&amp;rft.btitle=Oeuvres&amp;rft.pages=661&amp;rft.date=1773&amp;rft.au=Lagrange%2C+Joseph-Louis&amp;rft_id=https%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k229222d%2Ff662.item.zoom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTECajori1929&#91;httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134&#93;-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTECajori1929[httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134]_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTECajori1929[httpsarchiveorgdetailshistoryofmathema00cajo_0pages134_134]_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFCajori1929">Cajori (1929)</a>, p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00cajo_0/pages/134">134</a>.</span> </li> <li id="cite_note-FOOTNOTECrowe1994&#91;httpsarchiveorgdetailshistoryofvectora0000crowpage83_83&#93;-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECrowe1994[httpsarchiveorgdetailshistoryofvectora0000crowpage83_83]_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCrowe1994">Crowe (1994)</a>, p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyofvectora0000crow/page/83">83</a>.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCauchy1900" class="citation book cs1">Cauchy, Augustin-Louis (1900). <i>Ouvres</i>. Vol.&#160;12. p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=0k9eAAAAcAAJ&amp;pg=PA16">16</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ouvres&amp;rft.pages=16&amp;rft.date=1900&amp;rft.aulast=Cauchy&amp;rft.aufirst=Augustin-Louis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClifford1878" class="citation web cs1"><a href="/wiki/William_Kingdon_Clifford" title="William Kingdon Clifford">Clifford, William Kingdon</a> (1878). <a rel="nofollow" class="external text" href="https://archive.org/details/elementsofdynami01clifiala/page/94">"Elements of Dynamic, Part I"</a>. London: MacMillan &amp; Co. p.&#160;95.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Elements+of+Dynamic%2C+Part+I&amp;rft.place=London&amp;rft.pages=95&amp;rft.pub=MacMillan+%26+Co&amp;rft.date=1878&amp;rft.aulast=Clifford&amp;rft.aufirst=William+Kingdon&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felementsofdynami01clifiala%2Fpage%2F94&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibbs1884" class="citation book cs1">Gibbs, Josiah Willard (1884). <a rel="nofollow" class="external text" href="https://archive.org/details/elementsvectora00gibb/page/4"><i>Elements of vector analysis&#160;: arranged for the use of students in physics</i></a>. New Haven&#160;: Printed by Tuttle, Morehouse &amp; Taylor.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+vector+analysis+%3A+arranged+for+the+use+of+students+in+physics&amp;rft.pub=New+Haven+%3A+Printed+by+Tuttle%2C+Morehouse+%26+Taylor&amp;rft.date=1884&amp;rft.aulast=Gibbs&amp;rft.aufirst=Josiah+Willard&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felementsvectora00gibb%2Fpage%2F4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTECrowe1994&#91;httpsarchiveorgdetailshistoryofvectora0000crowpage154_154&#93;-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECrowe1994[httpsarchiveorgdetailshistoryofvectora0000crowpage154_154]_33-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCrowe1994">Crowe (1994)</a>, p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyofvectora0000crow/page/154">154</a>.</span> </li> <li id="cite_note-FOOTNOTEWilson1901&#91;httpsarchiveorgdetails117714283page61_61&#93;-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWilson1901[httpsarchiveorgdetails117714283page61_61]_35-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilson1901">Wilson (1901)</a>, p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/117714283/page/61">61</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=44" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1929" class="citation book cs1"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1929). <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00cajo_0"><i>A History Of Mathematical Notations Volume II</i></a>. <a href="/wiki/Open_Court_Publishing_Company" title="Open Court Publishing Company">Open Court Publishing</a>. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00cajo_0/pages/134">134</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-67766-8" title="Special:BookSources/978-0-486-67766-8"><bdi>978-0-486-67766-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+Of+Mathematical+Notations+Volume+II&amp;rft.pages=134&amp;rft.pub=Open+Court+Publishing&amp;rft.date=1929&amp;rft.isbn=978-0-486-67766-8&amp;rft.aulast=Cajori&amp;rft.aufirst=Florian&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00cajo_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrowe1994" class="citation book cs1">Crowe, Michael J. (1994). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyvectorana00crow"><i>A History of Vector Analysis</i></a></span>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-67910-1" title="Special:BookSources/0-486-67910-1"><bdi>0-486-67910-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Vector+Analysis&amp;rft.pub=Dover&amp;rft.date=1994&amp;rft.isbn=0-486-67910-1&amp;rft.aulast=Crowe&amp;rft.aufirst=Michael+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryvectorana00crow&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></li> <li><a href="/wiki/E._A._Milne" class="mw-redirect" title="E. A. Milne">E. A. Milne</a> (1948) <a href="/wiki/Vectorial_Mechanics" title="Vectorial Mechanics">Vectorial Mechanics</a>, Chapter 2: Vector Product, pp 11 –31, London: <a href="/wiki/Methuen_Publishing" title="Methuen Publishing">Methuen Publishing</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson1901" class="citation book cs1">Wilson, Edwin Bidwell (1901). <a rel="nofollow" class="external text" href="https://archive.org/details/117714283"><i>Vector Analysis: A text-book for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs</i></a>. <a href="/wiki/Yale_University_Press" title="Yale University Press">Yale University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector+Analysis%3A+A+text-book+for+the+use+of+students+of+mathematics+and+physics%2C+founded+upon+the+lectures+of+J.+Willard+Gibbs&amp;rft.pub=Yale+University+Press&amp;rft.date=1901&amp;rft.aulast=Wilson&amp;rft.aufirst=Edwin+Bidwell&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2F117714283&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFT._Levi-CivitaU._Amaldi1949" class="citation book cs1 cs1-prop-foreign-lang-source">T. Levi-Civita; U. Amaldi (1949). <i>Lezioni di meccanica razionale</i> (in Italian). Bologna: Zanichelli editore.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lezioni+di+meccanica+razionale&amp;rft.place=Bologna&amp;rft.pub=Zanichelli+editore&amp;rft.date=1949&amp;rft.au=T.+Levi-Civita&amp;rft.au=U.+Amaldi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cross_product&amp;action=edit&amp;section=45" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Cross_product">"Cross product"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Cross+product&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DCross_product&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACross+product" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://behindtheguesses.blogspot.com/2009/04/dot-and-cross-products.html">A quick geometrical derivation and interpretation of cross products</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060424151900/http://physics.syr.edu/courses/java-suite/crosspro.html">An interactive tutorial</a> created at <a href="/wiki/Syracuse_University" title="Syracuse University">Syracuse University</a> – (requires <a href="/wiki/Java_(programming_language)" title="Java (programming language)">java</a>)</li> <li><a rel="nofollow" class="external text" href="http://www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf">W. Kahan (2007). Cross-Products and Rotations in Euclidean 2- and 3-Space. University of California, Berkeley (PDF).</a></li> <li><a rel="nofollow" class="external text" href="https://www.mathcentre.ac.uk/resources/uploaded/mc-ty-vectorprod-2009-1.pdf">The vector product</a>, Mathcentre (UK), 2009</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Linear_algebra" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Linear_algebra" title="Template:Linear algebra"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Linear_algebra" title="Template talk:Linear algebra"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Linear_algebra" title="Special:EditPage/Template:Linear algebra"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Linear_algebra" style="font-size:114%;margin:0 4em"><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Outline_of_linear_algebra" title="Outline of linear algebra">Outline</a></li> <li><a href="/wiki/Glossary_of_linear_algebra" title="Glossary of linear algebra">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">Scalar</a></li> <li><a href="/wiki/Euclidean_vector" title="Euclidean vector">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li> <li><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></li> <li><a href="/wiki/Vector_projection" title="Vector projection">Vector projection</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Linear projection</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Linear_combination" title="Linear combination">Linear combination</a></li> <li><a href="/wiki/Multilinear_map" title="Multilinear map">Multilinear map</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Change_of_basis" title="Change of basis">Change of basis</a></li> <li><a href="/wiki/Row_and_column_vectors" title="Row and column vectors">Row and column vectors</a></li> <li><a href="/wiki/Row_and_column_spaces" title="Row and column spaces">Row and column spaces</a></li> <li><a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">Kernel</a></li> <li><a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a></li> <li><a href="/wiki/System_of_linear_equations" title="System of linear equations">Linear equations</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Euclidean_space" title="Euclidean space"><img alt="Three dimensional Euclidean space" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrices</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Decomposition</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">Minor</a></li> <li><a href="/wiki/Matrix_multiplication" title="Matrix multiplication">Multiplication</a></li> <li><a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">Rank</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li> <li><a href="/wiki/Cramer%27s_rule" title="Cramer&#39;s rule">Cramer's rule</a></li> <li><a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a></li> <li><a href="/wiki/Productive_matrix" title="Productive matrix">Productive matrix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bilinear_map" title="Bilinear map">Bilinear</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Orthogonality" title="Orthogonality">Orthogonality</a></li> <li><a href="/wiki/Dot_product" title="Dot product">Dot product</a></li> <li><a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></li> <li><a href="/wiki/Outer_product" title="Outer product">Outer product</a></li> <li><a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a></li> <li><a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Determinant" title="Determinant">Determinant</a></li> <li><a class="mw-selflink selflink">Cross product</a></li> <li><a href="/wiki/Triple_product" title="Triple product">Triple product</a></li> <li><a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">Seven-dimensional cross product</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Bivector" title="Bivector">Bivector</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a href="/wiki/Outermorphism" title="Outermorphism">Outermorphism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_space" title="Vector space">Vector space</a> constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_space" title="Dual space">Dual</a></li> <li><a href="/wiki/Direct_sum_of_modules#Construction_for_two_vector_spaces" title="Direct sum of modules">Direct sum</a></li> <li><a href="/wiki/Function_space#In_linear_algebra" title="Function space">Function space</a></li> <li><a href="/wiki/Quotient_space_(linear_algebra)" title="Quotient space (linear algebra)">Quotient</a></li> <li><a href="/wiki/Linear_subspace" title="Linear subspace">Subspace</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">Numerical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">Floating-point</a></li> <li><a href="/wiki/Numerical_stability" title="Numerical stability">Numerical stability</a></li> <li><a href="/wiki/Basic_Linear_Algebra_Subprograms" title="Basic Linear Algebra Subprograms">Basic Linear Algebra Subprograms</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse matrix</a></li> <li><a href="/wiki/Comparison_of_linear_algebra_libraries" title="Comparison of linear algebra libraries">Comparison of linear algebra libraries</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐cnfgh Cached time: 20241122140513 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.115 seconds Real time usage: 1.472 seconds Preprocessor visited node count: 6592/1000000 Post‐expand include size: 96398/2097152 bytes Template argument size: 8309/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 20/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 128693/5000000 bytes Lua time usage: 0.554/10.000 seconds Lua memory usage: 8326084/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 954.423 1 -total 29.93% 285.628 2 Template:Reflist 14.45% 137.867 1 Template:Short_description 12.92% 123.317 3 Template:Cite_web 11.12% 106.171 2 Template:Pagetype 10.14% 96.806 22 Template:Cite_book 9.46% 90.307 1 Template:Linear_algebra 9.26% 88.378 1 Template:Navbox 7.01% 66.943 4 Template:Fix 5.95% 56.778 5 Template:Sfnp --> <!-- Saved in parser cache with key enwiki:pcache:idhash:157092-0!canonical and timestamp 20241122140513 and revision id 1258796597. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Cross_product&amp;oldid=1258796597">https://en.wikipedia.org/w/index.php?title=Cross_product&amp;oldid=1258796597</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Bilinear_maps" title="Category:Bilinear maps">Bilinear maps</a></li><li><a href="/wiki/Category:Operations_on_vectors" title="Category:Operations on vectors">Operations on vectors</a></li><li><a href="/wiki/Category:Analytic_geometry" title="Category:Analytic geometry">Analytic geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_September_2019" title="Category:Wikipedia articles needing page number citations from September 2019">Wikipedia articles needing page number citations from September 2019</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2009" title="Category:Articles with unsourced statements from November 2009">Articles with unsourced statements from November 2009</a></li><li><a href="/wiki/Category:Articles_that_may_contain_original_research_from_September_2021" title="Category:Articles that may contain original research from September 2021">Articles that may contain original research from September 2021</a></li><li><a href="/wiki/Category:All_articles_that_may_contain_original_research" title="Category:All articles that may contain original research">All articles that may contain original research</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2008" title="Category:Articles with unsourced statements from April 2008">Articles with unsourced statements from April 2008</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2024" title="Category:Articles with unsourced statements from July 2024">Articles with unsourced statements from July 2024</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 18:03<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Cross_product&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-t7vv5","wgBackendResponseTime":182,"wgPageParseReport":{"limitreport":{"cputime":"1.115","walltime":"1.472","ppvisitednodes":{"value":6592,"limit":1000000},"postexpandincludesize":{"value":96398,"limit":2097152},"templateargumentsize":{"value":8309,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":20,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":128693,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 954.423 1 -total"," 29.93% 285.628 2 Template:Reflist"," 14.45% 137.867 1 Template:Short_description"," 12.92% 123.317 3 Template:Cite_web"," 11.12% 106.171 2 Template:Pagetype"," 10.14% 96.806 22 Template:Cite_book"," 9.46% 90.307 1 Template:Linear_algebra"," 9.26% 88.378 1 Template:Navbox"," 7.01% 66.943 4 Template:Fix"," 5.95% 56.778 5 Template:Sfnp"]},"scribunto":{"limitreport-timeusage":{"value":"0.554","limit":"10.000"},"limitreport-memusage":{"value":8326084,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAcheson,_D._J.1990\"] = 1,\n [\"CITEREFArfken\"] = 1,\n [\"CITEREFArthur2011\"] = 1,\n [\"CITEREFCajori1929\"] = 1,\n [\"CITEREFCauchy1900\"] = 1,\n [\"CITEREFClifford1878\"] = 1,\n [\"CITEREFCrowe1994\"] = 1,\n [\"CITEREFDennis_G._ZillMichael_R._Cullen2006\"] = 1,\n [\"CITEREFDoranLasenby2003\"] = 1,\n [\"CITEREFEdwin_Bidwell_Wilson1913\"] = 1,\n [\"CITEREFEric_W._Weisstein2003\"] = 1,\n [\"CITEREFFilippov1985\"] = 1,\n [\"CITEREFGibbs1884\"] = 1,\n [\"CITEREFGreub,_W.1978\"] = 1,\n [\"CITEREFHogben,_L2007\"] = 1,\n [\"CITEREFHowison,_Sam2005\"] = 1,\n [\"CITEREFJeffreys,_H.Jeffreys,_B._S.1999\"] = 1,\n [\"CITEREFLagrange,_Joseph-Louis1773\"] = 1,\n [\"CITEREFLounesto,_Pertti2001\"] = 1,\n [\"CITEREFM._R._SpiegelS._LipschutzD._Spellman2009\"] = 1,\n [\"CITEREFMassey1983\"] = 1,\n [\"CITEREFPertti_Lounesto2001\"] = 1,\n [\"CITEREFShuangzhe_LiuGõtz_Trenkler2008\"] = 1,\n [\"CITEREFT._Levi-CivitaU._Amaldi1949\"] = 1,\n [\"CITEREFVladimir_A._BoichenkoGennadiĭ_Alekseevich_LeonovVolker_Reitmann2005\"] = 1,\n [\"CITEREFWS_Massey1983\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n [\"CITEREFWilson1901\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"=\"] = 2,\n [\"About\"] = 1,\n [\"Abs\"] = 3,\n [\"Citation needed\"] = 2,\n [\"Cite book\"] = 22,\n [\"Cite journal\"] = 4,\n [\"Cite web\"] = 3,\n [\"DEFAULTSORT:Cross Product\"] = 1,\n [\"Fact\"] = 1,\n [\"Further\"] = 2,\n [\"Harvnb\"] = 1,\n [\"Linear algebra\"] = 1,\n [\"Main\"] = 5,\n [\"Math\"] = 35,\n [\"Math proof\"] = 1,\n [\"Mvar\"] = 2,\n [\"Nowrap\"] = 56,\n [\"Original research section\"] = 1,\n [\"Page needed\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 2,\n [\"Section link\"] = 1,\n [\"See also\"] = 3,\n [\"Sfnp\"] = 5,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Springer\"] = 1,\n [\"Su\"] = 1,\n [\"Sup\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-cnfgh","timestamp":"20241122140513","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Cross product","url":"https:\/\/en.wikipedia.org\/wiki\/Cross_product","sameAs":"http:\/\/www.wikidata.org\/entity\/Q178192","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q178192","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-12-12T01:11:51Z","dateModified":"2024-11-21T18:03:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b0\/Cross_product_vector.svg","headline":"mathematical operation on two vectors"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10