CINXE.COM

Search results for: selected reaction monitoring (SRM)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: selected reaction monitoring (SRM)</title> <meta name="description" content="Search results for: selected reaction monitoring (SRM)"> <meta name="keywords" content="selected reaction monitoring (SRM)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="selected reaction monitoring (SRM)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="selected reaction monitoring (SRM)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11631</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: selected reaction monitoring (SRM)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11631</span> Gas Chromatography Coupled to Tandem Mass Spectrometry and Liquid Chromatography Coupled to Tandem Mass Spectrometry Qualitative Determination of Pesticides Found in Tea Infusions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihai-Alexandru%20Florea">Mihai-Alexandru Florea</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronica%20Drumea"> Veronica Drumea</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Nita"> Roxana Nita</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerasela%20Gird"> Cerasela Gird</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Olariu"> Laura Olariu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the residues of pesticide found in tea water infusions. A multi-residues method to determine 147 pesticides has been developed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) procedure and dispersive solid phase extraction (d-SPE) for the cleanup the pesticides from complex matrices such as plants and tea. Sample preparation was carefully optimized for the efficient removal of coextracted matrix components by testing more solvent systems. Determination of pesticides was performed using GC-MS/MS (100 of pesticides) and LC-MS/MS (47 of pesticides). The selected reaction monitoring (SRM) mode was chosen to achieve low detection limits and high compounds selectivity and sensitivity. Overall performance was evaluated and validated according to DG-SANTE Guidelines. To assess the pesticide residue transfer rate (qualitative) from dried tea in infusions the samples (tea) were spiked with a mixture of pesticides at the maximum residues level accepted for teas and herbal infusions. In order to investigate the release of the pesticides in tea preparations, the medicinal plants were prepared in four ways by variation of water temperature and the infusion time. The pesticides from infusions were extracted using two methods: QuEChERS versus solid-phase extraction (SPE). More that 90 % of the pesticides studied was identified in infusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tea" title="tea">tea</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20extraction%20%28SPE%29" title=" solid-phase extraction (SPE)"> solid-phase extraction (SPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29" title=" selected reaction monitoring (SRM)"> selected reaction monitoring (SRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=QuEChERS" title=" QuEChERS"> QuEChERS</a> </p> <a href="https://publications.waset.org/abstracts/70223/gas-chromatography-coupled-to-tandem-mass-spectrometry-and-liquid-chromatography-coupled-to-tandem-mass-spectrometry-qualitative-determination-of-pesticides-found-in-tea-infusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11630</span> Computation of Natural Logarithm Using Abstract Chemical Reaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iuliia%20Zarubiieva">Iuliia Zarubiieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Joyun%20Tseng"> Joyun Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishwesh%20Kulkarni"> Vishwesh Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20networks" title="chemical reaction networks">chemical reaction networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20computation" title=" ratio computation"> ratio computation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a> </p> <a href="https://publications.waset.org/abstracts/93960/computation-of-natural-logarithm-using-abstract-chemical-reaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11629</span> Monitoring Synthesis of Biodiesel through Online Density Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnaldo%20G.%20de%20Oliveira">Arnaldo G. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr"> Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Tubino"> Matthieu Tubino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20measurements" title=" density measurements"> density measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20continuous%20monitoring" title=" online continuous monitoring"> online continuous monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/34647/monitoring-synthesis-of-biodiesel-through-online-density-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11628</span> Vegetable Oil-Based Anticorrosive Coatings for Metals Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brindusa%20Balanuca">Brindusa Balanuca</a>, <a href="https://publications.waset.org/abstracts/search?q=Raluca%20Stan"> Raluca Stan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Ott"> Cristina Ott</a>, <a href="https://publications.waset.org/abstracts/search?q=Matei%20Raicopol"> Matei Raicopol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticorrosion%20protection" title="anticorrosion protection">anticorrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobe%20layers" title=" hydrophobe layers"> hydrophobe layers</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=methacrylates" title=" methacrylates"> methacrylates</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/78930/vegetable-oil-based-anticorrosive-coatings-for-metals-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11627</span> In vitro Biological Activity of Some Synthesized Monoazo Heterocycles Based On Thiophene and Thiazolyl-Thiophene Analogue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Khalifa">Mohamed E. Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20A.%20Gobouri"> Adil A. Gobouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potential synthesis of a series of 3-amino-4-arylazothiophene derivatives from reaction of 2-cyano-2-phenylthiocarbamoyl acetamide and the appropriate α-halogenated reagents, followed by coupling with different aryl diazonium salts (Japp-Klingemann reaction), and another series of 5-arylazo-thiazol-2-ylcarbamoyl-thiophene derivatives from base-catalyzed intramolecular condensation of 5-arylazo-2-(N-chloroacetyl)amino-thiazole with selected B-keto compounds (Thorpe-Ziegler reaction) was performed. The biological activity of the two series was studied in vitro. Their versatility for pharmaceutical purposes was reported, where they displayed remarkable activities against selected pathogenic microorganisms; Bacillus subtilize, Staphylococcus aureus (Gram positive bacteria), Escherichia coli, Pseudomonas aeruginosa (Gram negative bacteria) and Aspergillus flavus, Candida albicans (fungi) with various degrees related to their chemical structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thiophene" title="thiophene">thiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=2-aminothiazole" title=" 2-aminothiazole"> 2-aminothiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=compounds" title=" compounds"> compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=antitumor" title=" antitumor"> antitumor</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/4343/in-vitro-biological-activity-of-some-synthesized-monoazo-heterocycles-based-on-thiophene-and-thiazolyl-thiophene-analogue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11626</span> Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Farahmand">Ebrahim Farahmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mahani"> Ali Mahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads&rsquo; (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WSN" title="WSN">WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20monitoring" title=" healthcare monitoring"> healthcare monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20based%20clustering" title=" weighted based clustering"> weighted based clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a> </p> <a href="https://publications.waset.org/abstracts/62444/energy-efficient-clustering-protocol-in-wireless-sensor-networks-for-healthcare-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11625</span> Lipase-Catalyzed Synthesis of Novel Nutraceutical Structured Lipids in Non-Conventional Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selim%20Kermasha">Selim Kermasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A process for the synthesis of structured lipids (SLs) by the lipase-catalyzed interesterification of selected endogenous edible oils such as flaxseed oil (FO) and medium-chain triacylglyceols such as tricaprylin (TC) in non-conventional media (NCM), including organic solvent media (OSM) and solvent-free medium (SFM), was developed. The bioconversion yield of the medium-long-medium-type SLs (MLM-SLs were monitored as the responses with use of selected commercial lipases. In order to optimize the interesterification reaction and to establish a model system, a wide range of reaction parameters, including TC to FO molar ratio, reaction temperature, enzyme concentration, reaction time, agitation speed and initial water activity, were investigated to establish the a model system. The model system was monitored with the use of multiple response surface methodology (RSM) was used to obtain significant models for the responses and to optimize the interesterification reaction, on the basis of selected levels and variable fractional factorial design (FFD) with centre points. Based on the objective of each response, the appropriate level combination of the process parameters and the solutions that met the defined criteria were also provided by means of desirability function. The synthesized novel molecules were structurally characterized, using silver-ion reversed-phase high-performance liquid chromatography (RP-HPLC) atmospheric pressure chemical ionization-mass spectrophotometry (APCI-MS) analyses. The overall experimental findings confirmed the formation of dicaprylyl-linolenyl glycerol, dicaprylyl-oleyl glycerol and dicaprylyl-linoleyl glycerol resulted from the lipase-catalyzed interesterification of FO and TC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20interesterification" title="enzymatic interesterification">enzymatic interesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventinal%20media" title=" non-conventinal media"> non-conventinal media</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceuticals" title=" nutraceuticals"> nutraceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20lipids" title=" structured lipids"> structured lipids</a> </p> <a href="https://publications.waset.org/abstracts/35834/lipase-catalyzed-synthesis-of-novel-nutraceutical-structured-lipids-in-non-conventional-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11624</span> Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirada%20Sripinun">Sirada Sripinun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature, and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2-butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at a lower reaction temperature. In the range of operating conditions, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46% respectively. Finally, the kinetic parameters of the reaction were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrotalcite" title="hydrotalcite">hydrotalcite</a>, <a href="https://publications.waset.org/abstracts/search?q=isomerization" title=" isomerization"> isomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=1-butene" title=" 1-butene"> 1-butene</a> </p> <a href="https://publications.waset.org/abstracts/25496/kinetic-study-of-1-butene-isomerization-over-hydrotalcite-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11623</span> Bright Light Effects on the Concentration and Diffuse Attention Reaction Time, Tension, Angry, Fatigue and Alertness among Shift Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Imani">Mohammad Imani</a>, <a href="https://publications.waset.org/abstracts/search?q=JabraeilNasl%20Seraji"> JabraeilNasl Seraji</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Zakerian"> Abolfazl Zakerian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Reaction time is the amount of time it takes to respond to a stimulus. In fact The time that passes between the introduction of a stimulus and the reaction by the subject to that stimulus. The aim of this interventional study is evaluation of bright light effects on concentration and diffuse attention reaction time, tension, angry, fatigue and alertness among shift workers. There are several incentives that can reduce the reaction time or added. Bright light as one of the environmental factors can reduce reaction time. Material &Method: This cross-sectional descriptive study was conducted in 1391, in 88 subjects (44 Fixed morning worker and 44 shift worker ) In a 24 h time (13-16-19-22-1-4-7-10) in an ordinary light situation after a randomly selected sample size calculation, concentration and diffuse attention test (reaction time) has been done. After intervention and using of bright light (4500lux), again reaction time test was done. After analyzing by ElISA method obtained data were analyzed by statistical software SPSS 19 and using T-test and ANOVA statistical analysis. Results: Between average of reaction time tests in ordinary light exposed to fixed morning workers and bright light exposed to shift worker, with 95% CI, (P>%5) there was no significant relationship. After the intervention and the use of bright light (4500 lux),between average of concentration and diffused attention reaction time tests in ordinary light exposure on the fixed morning workers and bright light exposure shift workers with 95% CI, (P<5%) there was significant relationship. Conclusion: In sometimes of 24 h during ordinary light exposure concentration and diffused attention reaction time has changed in shift workers. After intervention, during bright light (4500lux) exposure as a light shower, focused and diffuse attention reaction time, tension ,angry and fatigue decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bright%20light" title="bright light">bright light</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a>, <a href="https://publications.waset.org/abstracts/search?q=angry" title=" angry"> angry</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=alertness" title=" alertness"> alertness</a> </p> <a href="https://publications.waset.org/abstracts/34961/bright-light-effects-on-the-concentration-and-diffuse-attention-reaction-time-tension-angry-fatigue-and-alertness-among-shift-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11622</span> Global Indicators of Successful Remote Monitoring Adoption Applying Diffusion of Innovation Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danika%20Tynes">Danika Tynes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovations in technology have implications for sustainable development in health and wellness. Remote monitoring is one innovation for which the evidence-base has grown to support its viability as a quality healthcare delivery adjunct. This research reviews global data on telehealth adoption, in particular, remote monitoring, and the conditions under which its success becomes more likely. System-level indicators were selected to represent four constructs of DoI theory (relative advantage, compatibility, complexity, and observability) and assessed against 5 types of Telehealth (Teleradiology, Teledermatology, Telepathology, Telepsychology, and Remote Monitoring) using ordinal logistic regression. Analyses include data from 84 countries, as extracted from the World Health Organization, World Bank, ICT (Information Communications Technology) Index, and HDI (Human Development Index) datasets. Analyses supported relative advantage and compatibility as the strongest influencers of remote monitoring adoption. Findings from this research may help focus on the allocation of resources, as a sustainability concern, through consideration of systems-level factors that may influence the success of remote monitoring adoption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title="remote monitoring">remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20of%20innovation" title=" diffusion of innovation"> diffusion of innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=telehealth" title=" telehealth"> telehealth</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20health" title=" digital health"> digital health</a> </p> <a href="https://publications.waset.org/abstracts/130410/global-indicators-of-successful-remote-monitoring-adoption-applying-diffusion-of-innovation-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11621</span> Event Monitoring Based On Web Services for Heterogeneous Event Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arne%20Koschel">Arne Koschel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20monitoring" title="event monitoring">event monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ECA" title=" ECA"> ECA</a>, <a href="https://publications.waset.org/abstracts/search?q=CEP" title=" CEP"> CEP</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20services" title=" web services"> web services</a> </p> <a href="https://publications.waset.org/abstracts/28805/event-monitoring-based-on-web-services-for-heterogeneous-event-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">743</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11620</span> Formation Mechanism of Macroporous Cu/CuSe and Its Application as Electrocatalyst for Methanol Oxidation Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabi%20Ullah">Nabi Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The single-step solvothermal method is used to prepare Cu/CuSe as an electrocatalyst for methanol electro-oxidation reaction (MOR). 1,3-butane-diol is selected as a reaction medium, whose viscosity and complex formation with Cu(II) ions dictate the catalyst morphology. The catalyst has a macroporous structure, which is composed of nanoballs with a high purity, crystallinity, and uniform morphology. The electrocatalyst is excellent for MOR, as it delivers a current density of 37.28 mA/mg at a potential of 0.6 V (vs Ag/AgCl) in the electrolyte of 1 M KOH and 0.75 M methanol at a 50 mV/s scan rate under conditions of cyclic voltammetry. The catalyst also shows good stability for 3600 s with negligible charge transfer resistance and a high electrochemical active surface area (ECSA) value of 0.100 mF/cm². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOR" title="MOR">MOR</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20selenide" title=" copper selenide"> copper selenide</a>, <a href="https://publications.waset.org/abstracts/search?q=electocatalyst" title=" electocatalyst"> electocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20application" title=" energy application"> energy application</a> </p> <a href="https://publications.waset.org/abstracts/178089/formation-mechanism-of-macroporous-cucuse-and-its-application-as-electrocatalyst-for-methanol-oxidation-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11619</span> A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Zar%C4%99ba">Maciej Zaręba</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Lasota"> Sławomir Lasota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20operation%20management" title="manufacturing operation management">manufacturing operation management</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20relationship" title=" signal relationship"> signal relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20monitoring" title=" continuous monitoring"> continuous monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a> </p> <a href="https://publications.waset.org/abstracts/155375/a-method-for-quantitative-assessment-of-the-dependencies-between-input-signals-and-output-indicators-in-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11618</span> Field Evaluation of Concrete Using Hawaiian Aggregates for Alkali Silica Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20N.%20Robertson">Ian N. Robertson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali Silica Reaction (ASR) occurs in concrete when the alkali hydroxides (Na, K and OH) from the cement react with unstable silica, SiO2, in some types of aggregate. The gel that forms during this reaction will expand when it absorbs water, potentially leading to cracking and overall expansion of the concrete. ASR has resulted in accelerated deterioration of concrete highways, dams and other structures that are exposed to moisture during their service life. Concrete aggregates available in Hawaii have not demonstrated a history of ASR, however, accelerated laboratory tests using ASTM 1260 indicated a potential for ASR with some aggregates. Certain clients are now requiring import of aggregates from the US mainland at great expense. In order to assess the accuracy of the laboratory test results, a long-term field study of the potential for ASR in concretes made with Hawaiian aggregates was initiated in 2011 with funding from the US Federal Highway Administration and Hawaii Department of Transportation. Thirty concrete specimens were constructed of various concrete mixtures using aggregates from all Hawaiian aggregate sources, and some US mainland aggregates known to exhibit ASR expansion. The specimens are located in an open field site in Manoa valley on the Hawaiian Island of Oahu, exposed to relatively high humidity and frequent rainfall. A weather station at the site records the ambient conditions on a continual basis. After two years of monitoring, only one of the Hawaiian aggregates showed any sign of expansion. Ten additional specimens were fabricated with this aggregate to confirm the earlier observations. Admixtures known to mitigate ASR, such as fly ash and lithium, were included in some specimens to evaluate their effect on the concrete expansion. This paper describes the field evaluation program and presents the results for all forty specimens after four years of monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20silica%20reaction" title=" alkali silica reaction"> alkali silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20durability" title=" concrete durability"> concrete durability</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20exposure" title=" field exposure"> field exposure</a> </p> <a href="https://publications.waset.org/abstracts/31369/field-evaluation-of-concrete-using-hawaiian-aggregates-for-alkali-silica-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11617</span> Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Ki%20Lee">Doo Ki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar"> Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20combustion" title="catalytic combustion">catalytic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20reaction" title=" heterogeneous reaction"> heterogeneous reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow%20reactor" title=" plug flow reactor"> plug flow reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate" title=" surface reaction rate"> surface reaction rate</a> </p> <a href="https://publications.waset.org/abstracts/77722/reaction-rate-behavior-of-a-methane-air-mixture-over-a-platinum-catalyst-in-a-single-channel-catalytic-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11616</span> Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ait%20Hou">Ahmed Ait Hou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermochchemicals%20calculations" title="thermochchemicals calculations">thermochchemicals calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=HSC%20software" title=" HSC software"> HSC software</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20and%20chloridation" title=" oxidation and chloridation"> oxidation and chloridation</a>, <a href="https://publications.waset.org/abstracts/search?q=wings%20in%20space" title=" wings in space"> wings in space</a> </p> <a href="https://publications.waset.org/abstracts/128088/thermochemical-study-of-the-degradation-of-the-panels-of-wings-in-a-space-shuttle-by-utilization-of-hsc-chemistry-software-and-its-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11615</span> The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun">E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80°C reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title="hydrothermal synthesis">hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20borates" title=" copper borates"> copper borates</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20sulfate" title=" copper sulfate"> copper sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=tincalconite" title=" tincalconite"> tincalconite</a> </p> <a href="https://publications.waset.org/abstracts/16418/the-optimization-of-copper-sulfate-and-tincalconite-molar-ratios-on-the-hydrothermal-synthesis-of-copper-borates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11614</span> Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng%20Fu">Sheng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinbo%20Gao"> Yinbo Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Lin"> Hao Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20compressor" title=" air compressor"> air compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=zigbee" title=" zigbee"> zigbee</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20collecting" title=" data collecting"> data collecting</a> </p> <a href="https://publications.waset.org/abstracts/41776/condition-monitoring-system-of-mine-air-compressors-based-on-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11613</span> Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bai%20Zhiwei">Bai Zhiwei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Shuxia"> Zhang Shuxia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20halogen%20compound" title="fluoride halogen compound">fluoride halogen compound</a>, <a href="https://publications.waset.org/abstracts/search?q=remove" title=" remove"> remove</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20uranium%20compound" title=" solid uranium compound"> solid uranium compound</a> </p> <a href="https://publications.waset.org/abstracts/49109/preliminary-study-on-the-removal-of-solid-uranium-compound-in-nuclear-fuel-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11612</span> In silico Model of Transamination Reaction Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Woo%20Han">Sang-Woo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Shik%20Shin"> Jong-Shik Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> w-Transaminase (w-TA) is broadly used for synthesizing chiral amines with a high enantiopurity. However, the reaction mechanism of w-TA has been not well studied, contrary to a-transaminase (a-TA) such as AspTA. Here, we propose in silico model on the reaction mechanism of w-TA. Based on the modeling results which showed large free energy gaps between external aldimine and quinonoid on deamination (or ketimine and quinonoid on amination), withdrawal of Ca-H seemed as a critical step which determines the reaction rate on both amination and deamination reactions, which is consistent with previous researches. Hyperconjugation was also observed in both external aldimine and ketimine which weakens Ca-H bond to elevate Ca-H abstraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20intermediates" title=" reaction intermediates"> reaction intermediates</a>, <a href="https://publications.waset.org/abstracts/search?q=w-transaminase" title=" w-transaminase"> w-transaminase</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20model" title=" in silico model"> in silico model</a> </p> <a href="https://publications.waset.org/abstracts/23667/in-silico-model-of-transamination-reaction-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11611</span> Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20%C3%96zgen%C3%A7">Betül Özgenç</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabri%20%C3%87olak"> Sabri Çolak</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ulexite" title="ulexite">ulexite</a>, <a href="https://publications.waset.org/abstracts/search?q=disodium%20hydrogen%20phosphate" title=" disodium hydrogen phosphate"> disodium hydrogen phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20kinetics" title=" leaching kinetics"> leaching kinetics</a> </p> <a href="https://publications.waset.org/abstracts/27457/dissolution-leaching-kinetics-of-ulexite-in-disodium-hydrogen-phosphate-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11610</span> A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifa%20Benahmed">Khelifa Benahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Benahmed"> Tarek Benahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure%20monitoring" title="critical infrastructure monitoring">critical infrastructure monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20monitoring" title=" environment monitoring"> environment monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20region%20detection" title=" event region detection"> event region detection</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/75352/a-survey-on-a-critical-infrastructure-monitoring-using-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11609</span> Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ude%20N.%20Callistus">Ude N. Callistus</a>, <a href="https://publications.waset.org/abstracts/search?q=Amulu%20F.%20Ndidi"> Amulu F. Ndidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Onukwuli%20D.%20Okechukwu"> Onukwuli D. Okechukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amulu%20E.%20Patrick"> Amulu E. Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 <sup>o</sup>C. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr<sup>-1</sup>g<sup>-1</sup>cat, obtained at the temperature of 65 <sup>o</sup>C best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refined%20cottonseed%20oil" title="refined cottonseed oil">refined cottonseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=CaO" title=" CaO"> CaO</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysts" title=" heterogeneous catalysts"> heterogeneous catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20model" title=" kinetic model"> kinetic model</a> </p> <a href="https://publications.waset.org/abstracts/36873/reaction-kinetics-of-biodiesel-production-from-refined-cottonseed-oil-using-calcium-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11608</span> Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvana%20Caglieri">Silvana Caglieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=amines" title=" amines"> amines</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MP2" title=" MP2"> MP2</a> </p> <a href="https://publications.waset.org/abstracts/56510/theoretical-study-of-acetylation-of-p-methylaniline-catalyzed-by-cu2-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11607</span> Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojgan%20Zendehdel">Mojgan Zendehdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Safura%20Molla%20Mohammad%20Zamani"> Safura Molla Mohammad Zamani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zeolite" title="zeolite">zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocompsite" title=" nanocompsite"> nanocompsite</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a> </p> <a href="https://publications.waset.org/abstracts/10139/synthesis-and-characterization-of-zeolitefe3o4-nanocomposite-material-and-investigation-of-its-catalytic-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11606</span> An Efficient and Green Procedure for the Synthesis of Highly Substituted Polyhydronaphthalene Derivatives via a One-Pot, Multi-Component Reaction in Aqueous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeleh%20Moshtaghi%20Zonouz">Adeleh Moshtaghi Zonouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20Eskandari"> Issa Eskandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, efficient, and green one-pot, four-component synthesis of highly substituted polyhydronaphthalenes in aqueous media is described. The method has such advantages as short reaction times, high yields, mild reaction conditions, operational simplicity and environmentally benign. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyhydronaphthalene" title="polyhydronaphthalene">polyhydronaphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title=" 2"> 2</a>, <a href="https://publications.waset.org/abstracts/search?q=6-dicyanoanilines" title="6-dicyanoanilines">6-dicyanoanilines</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-component%20reaction" title=" multi-component reaction"> multi-component reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20media" title=" aqueous media "> aqueous media </a> </p> <a href="https://publications.waset.org/abstracts/2213/an-efficient-and-green-procedure-for-the-synthesis-of-highly-substituted-polyhydronaphthalene-derivatives-via-a-one-pot-multi-component-reaction-in-aqueous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11605</span> Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sert%C3%A7elik">Mustafa Sertçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacali%20Necefo%C4%9Flu"> Hacali Necefoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Chevreul&rsquo;s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 2<sup>4</sup> factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul&rsquo;s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 <sup>o</sup>C, and the solid-to-liquid ratio 9/80 g.mL<sup>-1</sup>. The best dissolution yield in these conditions was 96.20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevreul%27s%20salt" title="Chevreul&#039;s salt">Chevreul&#039;s salt</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design%20method" title=" factorial experimental design method"> factorial experimental design method</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title=" ammonium chloride"> ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/51927/optimization-of-dissolution-of-chevreuls-salt-in-ammonium-chloride-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11604</span> Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabriye%20Piskin">Sabriye Piskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Kasap"> Sibel Kasap</a>, <a href="https://publications.waset.org/abstracts/search?q=Muge%20Sari%20Yilmaz"> Muge Sari Yilmaz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocrystalline TiO<sub>2</sub> particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO<sub>2</sub> particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO<sub>2</sub> particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystalline%20TiO2" title="crystalline TiO2">crystalline TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=sonochemical%20mechanism" title=" sonochemical mechanism"> sonochemical mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20reaction" title=" sol-gel reaction"> sol-gel reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/36874/synthesis-of-tio2-nanoparticles-by-sol-gel-and-sonochemical-combination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11603</span> Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hmaimou">Samir Hmaimou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Ait%20Lahcen"> Marouane Ait Lahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adardour"> Mohamed Adardour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Maatallah"> Mohamed Maatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesselam%20Baouid"> Abdesselam Baouid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycloaddition%20reaction" title="cycloaddition reaction">cycloaddition reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20reaction" title=" mechanism reaction"> mechanism reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20analysis" title=" NMR analysis"> NMR analysis</a> </p> <a href="https://publications.waset.org/abstracts/192375/synthesis-characterization-and-quantum-investigations-on-32-cycloaddition-reaction-of-nitrile-oxide-with-15-benzodiazepine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11602</span> Reflections of AB English Students on Their English Language Experiences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20G.%20Pagente%20Jr.">Roger G. Pagente Jr.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to investigate the language learning experiences of the thirty-nine AB-English majors who were selected through fish-bowl technique from the 157 students enrolled in the AB-English program. Findings taken from the diary, questionnaire and unstructured interview revealed that motivation, learners’ belief, self-monitoring, language anxiety, activities and strategies were the prevailing factors that influenced the learning of English of the participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diary" title="diary">diary</a>, <a href="https://publications.waset.org/abstracts/search?q=English%20language%20learning%20experiences" title=" English language learning experiences"> English language learning experiences</a>, <a href="https://publications.waset.org/abstracts/search?q=self-monitoring" title=" self-monitoring"> self-monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20anxiety" title=" language anxiety"> language anxiety</a> </p> <a href="https://publications.waset.org/abstracts/29231/reflections-of-ab-english-students-on-their-english-language-experiences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=387">387</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=388">388</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10