CINXE.COM
Timeline of quantum computing and communication - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Timeline of quantum computing and communication - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"21b9e341-4478-4466-8eeb-96b4ca6a0c4d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Timeline_of_quantum_computing_and_communication","wgTitle":"Timeline of quantum computing and communication","wgCurRevisionId":1258802618,"wgRevisionId":1258802618,"wgArticleId":191911,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 Russian-language sources (ru)","All articles with dead external links","Articles with dead external links from June 2016","CS1 maint: numeric names: authors list","CS1 maint: multiple names: authors list","CS1 maint: bot: original URL status unknown","CS1 Italian-language sources (it)","Articles with short description","Short description with empty Wikidata description","Incomplete lists from July 2021", "Use mdy dates from April 2020","All articles with unsourced statements","Articles with unsourced statements from May 2022","Quantum computing","Computing timelines","Physics timelines","Quantum information science"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Timeline_of_quantum_computing_and_communication","wgRelevantArticleId":191911,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000, "wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q4302108","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg/1200px-Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="917"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg/800px-Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="611"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg/640px-Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="489"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Timeline of quantum computing and communication - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Timeline_of_quantum_computing_and_communication rootpage-Timeline_of_quantum_computing_and_communication skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Timeline+of+quantum+computing+and+communication" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Timeline+of+quantum+computing+and+communication" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Timeline+of+quantum+computing+and+communication" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Timeline+of+quantum+computing+and+communication" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-1960s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#1960s"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>1960s</span> </div> </a> <button aria-controls="toc-1960s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 1960s subsection</span> </button> <ul id="toc-1960s-sublist" class="vector-toc-list"> <li id="toc-1968" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1968"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>1968</span> </div> </a> <ul id="toc-1968-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-1970s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#1970s"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>1970s</span> </div> </a> <button aria-controls="toc-1970s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 1970s subsection</span> </button> <ul id="toc-1970s-sublist" class="vector-toc-list"> <li id="toc-1970" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1970"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>1970</span> </div> </a> <ul id="toc-1970-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1973" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1973"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>1973</span> </div> </a> <ul id="toc-1973-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1975" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1975"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>1975</span> </div> </a> <ul id="toc-1975-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1976" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1976"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>1976</span> </div> </a> <ul id="toc-1976-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-1980s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#1980s"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>1980s</span> </div> </a> <button aria-controls="toc-1980s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 1980s subsection</span> </button> <ul id="toc-1980s-sublist" class="vector-toc-list"> <li id="toc-1980" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1980"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>1980</span> </div> </a> <ul id="toc-1980-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1981" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1981"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>1981</span> </div> </a> <ul id="toc-1981-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1982" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1982"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>1982</span> </div> </a> <ul id="toc-1982-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1984" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1984"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>1984</span> </div> </a> <ul id="toc-1984-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1985" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1985"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>1985</span> </div> </a> <ul id="toc-1985-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1988" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1988"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>1988</span> </div> </a> <ul id="toc-1988-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1989" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1989"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>1989</span> </div> </a> <ul id="toc-1989-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-1990s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#1990s"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>1990s</span> </div> </a> <button aria-controls="toc-1990s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 1990s subsection</span> </button> <ul id="toc-1990s-sublist" class="vector-toc-list"> <li id="toc-1991" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1991"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>1991</span> </div> </a> <ul id="toc-1991-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1992" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1992"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>1992</span> </div> </a> <ul id="toc-1992-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1993" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1993"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>1993</span> </div> </a> <ul id="toc-1993-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1994" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1994"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>1994</span> </div> </a> <ul id="toc-1994-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1995" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1995"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>1995</span> </div> </a> <ul id="toc-1995-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1996" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1996"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>1996</span> </div> </a> <ul id="toc-1996-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1997" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1997"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>1997</span> </div> </a> <ul id="toc-1997-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1998" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1998"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>1998</span> </div> </a> <ul id="toc-1998-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1999" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1999"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>1999</span> </div> </a> <ul id="toc-1999-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-2000s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#2000s"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>2000s</span> </div> </a> <button aria-controls="toc-2000s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 2000s subsection</span> </button> <ul id="toc-2000s-sublist" class="vector-toc-list"> <li id="toc-2000" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2000"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>2000</span> </div> </a> <ul id="toc-2000-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2001" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2001"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>2001</span> </div> </a> <ul id="toc-2001-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2002" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2002"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>2002</span> </div> </a> <ul id="toc-2002-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2003" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2003"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>2003</span> </div> </a> <ul id="toc-2003-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2004" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2004"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>2004</span> </div> </a> <ul id="toc-2004-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2005" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2005"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>2005</span> </div> </a> <ul id="toc-2005-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2006" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2006"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>2006</span> </div> </a> <ul id="toc-2006-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2007" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2007"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>2007</span> </div> </a> <ul id="toc-2007-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2008" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2008"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.9</span> <span>2008</span> </div> </a> <ul id="toc-2008-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2009" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2009"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.10</span> <span>2009</span> </div> </a> <ul id="toc-2009-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-2010s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#2010s"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>2010s</span> </div> </a> <button aria-controls="toc-2010s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 2010s subsection</span> </button> <ul id="toc-2010s-sublist" class="vector-toc-list"> <li id="toc-2010" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2010"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>2010</span> </div> </a> <ul id="toc-2010-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2011" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2011"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>2011</span> </div> </a> <ul id="toc-2011-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2012" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2012"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>2012</span> </div> </a> <ul id="toc-2012-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2013" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2013"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>2013</span> </div> </a> <ul id="toc-2013-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2014" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2014"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>2014</span> </div> </a> <ul id="toc-2014-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2015" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2015"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>2015</span> </div> </a> <ul id="toc-2015-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2016" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2016"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.7</span> <span>2016</span> </div> </a> <ul id="toc-2016-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2017" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2017"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.8</span> <span>2017</span> </div> </a> <ul id="toc-2017-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2018" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2018"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.9</span> <span>2018</span> </div> </a> <ul id="toc-2018-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2019" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2019"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.10</span> <span>2019</span> </div> </a> <ul id="toc-2019-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-2020s" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#2020s"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>2020s</span> </div> </a> <button aria-controls="toc-2020s-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 2020s subsection</span> </button> <ul id="toc-2020s-sublist" class="vector-toc-list"> <li id="toc-2020" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2020"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>2020</span> </div> </a> <ul id="toc-2020-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2021" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2021"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>2021</span> </div> </a> <ul id="toc-2021-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2022" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2022"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>2022</span> </div> </a> <ul id="toc-2022-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2023" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2023"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>2023</span> </div> </a> <ul id="toc-2023-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2024" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2024"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>2024</span> </div> </a> <ul id="toc-2024-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Timeline of quantum computing and communication</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%AE%D8%B7_%D8%A7%D9%84%D8%B2%D9%85%D9%86%D9%8A_%D9%84%D9%84%D8%AD%D9%88%D8%B3%D8%A8%D8%A9_%D8%A7%D9%84%D9%83%D9%85%D9%88%D9%85%D9%8A%D8%A9_%D9%88%D8%A7%D9%84%D8%A7%D8%AA%D8%B5%D8%A7%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D9%83%D9%85%D9%88%D9%85%D9%8A%D8%A9" title="الخط الزمني للحوسبة الكمومية والاتصالات الكمومية – Arabic" lang="ar" hreflang="ar" data-title="الخط الزمني للحوسبة الكمومية والاتصالات الكمومية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kvant_hesablamalar%C4%B1n%C4%B1n_xronologiyas%C4%B1" title="Kvant hesablamalarının xronologiyası – Azerbaijani" lang="az" hreflang="az" data-title="Kvant hesablamalarının xronologiyası" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A5%D1%80%D0%BE%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F_%D0%BA%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D1%8B%D1%85_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B9" title="Хронология квантовых вычислений – Russian" lang="ru" hreflang="ru" data-title="Хронология квантовых вычислений" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kvanttietokoneiden_aikajana" title="Kvanttietokoneiden aikajana – Finnish" lang="fi" hreflang="fi" data-title="Kvanttietokoneiden aikajana" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A5%D1%80%D0%BE%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%8F_%D0%BA%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B8%D1%85_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D1%8C" title="Хронологія квантових обчислень – Ukrainian" lang="uk" hreflang="uk" data-title="Хронологія квантових обчислень" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4302108#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Timeline_of_quantum_computing_and_communication" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Timeline_of_quantum_computing_and_communication"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Timeline_of_quantum_computing_and_communication"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Timeline_of_quantum_computing_and_communication" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Timeline_of_quantum_computing_and_communication" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&oldid=1258802618" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Timeline_of_quantum_computing_and_communication&id=1258802618&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTimeline_of_quantum_computing_and_communication"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTimeline_of_quantum_computing_and_communication"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Timeline_of_quantum_computing_and_communication&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4302108" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This <a href="/wiki/Wikipedia:WikiProject_Lists#Incomplete_lists" title="Wikipedia:WikiProject Lists">incomplete</a> list is frequently updated to include new information.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><th class="sidebar-title" style="background:#ccccff"><a href="/wiki/History_of_computing" title="History of computing">History of computing</a></th></tr><tr><td class="sidebar-image"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg/250px-Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg" decoding="async" width="250" height="191" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg/375px-Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg/500px-Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg 2x" data-file-width="1340" data-file-height="1024" /></a><figcaption></figcaption></figure></td></tr><tr><th class="sidebar-heading" style="background:#ddddff;"> <a href="/wiki/Computer_hardware" title="Computer hardware">Hardware</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.2em;padding-bottom:0.4em;"> <ul><li><a href="/wiki/Timeline_of_computing_hardware_before_1950" title="Timeline of computing hardware before 1950"> Hardware before 1960</a></li> <li><a href="/wiki/History_of_computing_hardware_(1960s%E2%80%93present)" title="History of computing hardware (1960s–present)">Hardware 1960s to present</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;"> <a href="/wiki/Software" title="Software">Software</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.2em;padding-bottom:0.4em;"> <ul><li><a href="/wiki/History_of_software" title="History of software">Software</a></li> <li><a href="/wiki/History_of_software_configuration_management" title="History of software configuration management">Software configuration management</a></li> <li><a href="/wiki/History_of_Unix" title="History of Unix">Unix</a></li> <li><a href="/wiki/History_of_free_and_open-source_software" title="History of free and open-source software">Free software and open-source software</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;"> <a href="/wiki/Computer_science" title="Computer science">Computer science</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.2em;padding-bottom:0.4em;"> <ul><li><a href="/wiki/History_of_artificial_intelligence" title="History of artificial intelligence">Artificial intelligence</a></li> <li><a href="/wiki/History_of_compiler_construction" title="History of compiler construction">Compiler construction</a></li> <li><a href="/wiki/History_of_computer_science" title="History of computer science">Early computer science</a></li> <li><a href="/wiki/History_of_operating_systems" title="History of operating systems">Operating systems</a></li> <li><a href="/wiki/History_of_programming_languages" title="History of programming languages">Programming languages</a></li> <li><a href="/wiki/List_of_pioneers_in_computer_science" title="List of pioneers in computer science">Prominent pioneers</a></li> <li><a href="/wiki/History_of_software_engineering" title="History of software engineering">Software engineering</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;"> Modern concepts</th></tr><tr><td class="sidebar-content" style="padding-top:0.2em;padding-bottom:0.4em;"> <ul><li><a href="/wiki/History_of_general-purpose_CPUs" title="History of general-purpose CPUs">General-purpose CPUs</a></li> <li><a href="/wiki/History_of_the_graphical_user_interface" title="History of the graphical user interface">Graphical user interface</a></li> <li><a href="/wiki/History_of_the_Internet" title="History of the Internet">Internet</a></li> <li><a href="/wiki/History_of_laptops" title="History of laptops">Laptops</a></li> <li><a href="/wiki/History_of_personal_computers" title="History of personal computers">Personal computers</a></li> <li><a href="/wiki/History_of_video_games" title="History of video games">Video games</a></li> <li><a href="/wiki/History_of_the_World_Wide_Web" title="History of the World Wide Web">World Wide Web</a></li> <li><a href="/wiki/History_of_cloud_computing" title="History of cloud computing">Cloud</a></li> <li><a class="mw-selflink selflink">Quantum</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;"> By country</th></tr><tr><td class="sidebar-content" style="padding-top:0.2em;padding-bottom:0.4em;"> <ul><li><a href="/wiki/History_of_computer_hardware_in_Bulgaria" title="History of computer hardware in Bulgaria">Bulgaria</a></li> <li><a href="/wiki/History_of_computer_hardware_in_Eastern_Bloc_countries" title="History of computer hardware in Eastern Bloc countries">Eastern Bloc</a></li> <li><a href="/wiki/History_of_computing_in_Poland" title="History of computing in Poland">Poland</a></li> <li><a href="/wiki/History_of_computing_in_Romania" title="History of computing in Romania">Romania</a></li> <li><a href="/wiki/History_of_computing_in_South_America" title="History of computing in South America">South America</a></li> <li><a href="/wiki/History_of_computing_in_the_Soviet_Union" title="History of computing in the Soviet Union">Soviet Union</a></li> <li><a href="/wiki/History_of_computer_hardware_in_Yugoslavia" title="History of computer hardware in Yugoslavia">Yugoslavia</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;"> <a href="/wiki/Timeline_of_computing" title="Timeline of computing">Timeline of computing</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.2em;padding-bottom:0.4em;"> <ul><li><a href="/wiki/Timeline_of_computing_hardware_before_1950" title="Timeline of computing hardware before 1950">before 1950</a></li> <li><a href="/wiki/Timeline_of_computing_1950%E2%80%931979" title="Timeline of computing 1950–1979">1950–1979</a></li> <li><a href="/wiki/Timeline_of_computing_1980%E2%80%931989" title="Timeline of computing 1980–1989">1980–1989</a></li> <li><a href="/wiki/Timeline_of_computing_1990%E2%80%931999" title="Timeline of computing 1990–1999">1990–1999</a></li> <li><a href="/wiki/Timeline_of_computing_2000%E2%80%932009" title="Timeline of computing 2000–2009">2000–2009</a></li> <li><a href="/wiki/Timeline_of_computing_2010%E2%80%932019" title="Timeline of computing 2010–2019">2010–2019</a></li> <li><a href="/wiki/Timeline_of_computing_2020%E2%80%93present" title="Timeline of computing 2020–present">2020–present</a></li> <li><a href="/wiki/Category:Computing_timelines" title="Category:Computing timelines"><i>more timelines</i> ...</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;"> <a href="/wiki/Glossary_of_computer_science" title="Glossary of computer science">Glossary of computer science</a></th></tr><tr><td class="sidebar-below" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_computing" title="Category:History of computing">Category</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_computing" title="Template:History of computing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_computing" title="Template talk:History of computing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_computing" title="Special:EditPage/Template:History of computing"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>This is a <b>timeline of <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a></b>. </p> <style data-mw-deduplicate="TemplateStyles:r1119456059">.mw-parser-output .tocnumber{display:none}.mw-parser-output #toc ul,.mw-parser-output .toc ul{line-height:1.5em;list-style:none;margin:.3em 0 0;padding:0}.mw-parser-output .hlist #toc ul ul,.mw-parser-output .hlist .toc ul ul{margin:0}</style><style data-mw-deduplicate="TemplateStyles:r1097603156">.mw-parser-output .horizontal-toc-align-right{float:right}.mw-parser-output .horizontal-toc-align-left{float:left}.mw-parser-output .horizontal-toc-align-center{clear:none}.mw-parser-output .horizontal-toc-align-center .toc{margin-left:auto;margin-right:auto}.mw-parser-output .horizontal-toc-clear-right{clear:right}.mw-parser-output .horizontal-toc-clear-left{clear:left}.mw-parser-output .horizontal-toc-clear-both{clear:both}.mw-parser-output .horizontal-toc-clear-none{clear:none}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist horizontal-toc"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="1960s">1960s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=1" title="Edit section: 1960s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="1968">1968</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=2" title="Edit section: 1968"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Stephen_Wiesner" title="Stephen Wiesner">Stephen Wiesner</a> invents <a href="/wiki/Conjugate_coding" title="Conjugate coding">conjugate coding</a> (published in ACM SIGACT News 15(1): 78–88).<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="1970s">1970s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=3" title="Edit section: 1970s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="1970">1970</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=4" title="Edit section: 1970"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/James_L._Park" class="mw-redirect" title="James L. Park">James Park</a> articulates the <a href="/wiki/No-cloning_theorem" title="No-cloning theorem">no-cloning theorem</a>.<sup id="cite_ref-park_2-0" class="reference"><a href="#cite_note-park-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1973">1973</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=5" title="Edit section: 1973"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Alexander_Holevo" title="Alexander Holevo">Alexander Holevo</a> publishes a paper showing that <i>n</i> <a href="/wiki/Qubit" title="Qubit">qubits</a> can carry more than <i>n</i> classical bits of information, but at most <i>n</i> classical bits are accessible (a result known as "<a href="/wiki/Holevo%27s_theorem" title="Holevo's theorem">Holevo's theorem</a>" or "Holevo's bound").</li> <li><a href="/wiki/Charles_H._Bennett_(physicist)" title="Charles H. Bennett (physicist)">Charles H. Bennett</a> shows that computation can be done <a href="/wiki/Reversible_computing" title="Reversible computing">reversibly</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1975">1975</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=6" title="Edit section: 1975"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>R. P. Poplavskii publishes "Thermodynamical models of information processing" (in Russian)<sup id="cite_ref-Poplavskii_4-0" class="reference"><a href="#cite_note-Poplavskii-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> which shows the computational infeasibility of simulating quantum systems on classical computers, due to the <a href="/wiki/Superposition_principle" title="Superposition principle">superposition principle</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1976">1976</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=7" title="Edit section: 1976"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Roman_Stanis%C5%82aw_Ingarden" title="Roman Stanisław Ingarden">Roman Stanisław Ingarden</a>, a Polish mathematical physicist, publishes the paper "Quantum Information Theory" in Reports on Mathematical Physics, vol. 10, pp. 43–72, 1976 (The paper was submitted in 1975). It is one of the first attempts at creating a <a href="/wiki/Quantum_information_theory" class="mw-redirect" title="Quantum information theory">quantum information theory</a>, showing that <a href="/wiki/Shannon_information_theory" class="mw-redirect" title="Shannon information theory">Shannon information theory</a> cannot directly be generalized to the <a href="/wiki/Quantum_physics" class="mw-redirect" title="Quantum physics">quantum</a> case, but rather that it is possible to construct a quantum information theory, which is a generalization of Shannon's theory, within the formalism of a generalized quantum mechanics of open systems and a generalized concept of observables (the so-called semi-observables).</li></ul> <div class="mw-heading mw-heading2"><h2 id="1980s">1980s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=8" title="Edit section: 1980s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="1980">1980</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=9" title="Edit section: 1980"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Paul_Benioff" title="Paul Benioff">Paul Benioff</a> describes the first quantum mechanical model of a computer. In this work, Benioff showed that a computer could operate under the laws of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> by describing a Schrödinger equation description of <a href="/wiki/Turing_machine" title="Turing machine">Turing machines</a>, laying a foundation for further work in quantum computing. The paper<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> was submitted in June 1979 and published in April 1980.</li> <li><a href="/wiki/Yuri_I._Manin" class="mw-redirect" title="Yuri I. Manin">Yuri Manin</a> briefly motivates the idea of quantum computing.<sup id="cite_ref-manin1980vychislimoe_6-0" class="reference"><a href="#cite_note-manin1980vychislimoe-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Tommaso_Toffoli" title="Tommaso Toffoli">Tommaso Toffoli</a> introduces the reversible <a href="/wiki/Toffoli_gate" title="Toffoli gate">Toffoli gate</a>,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> which (together with initialized <a href="/wiki/Ancilla_bit" title="Ancilla bit">ancilla bits</a>) is <a href="/wiki/Functional_completeness" title="Functional completeness">functionally complete</a> for <a href="/wiki/Reversible_computing" title="Reversible computing">reversible</a> classical computation.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1981">1981</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=10" title="Edit section: 1981"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>At the first Conference on the Physics of Computation, held at the Massachusetts Institute of Technology (MIT) in May,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Paul_Benioff" title="Paul Benioff">Paul Benioff</a> and <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> give talks on quantum computing. Benioff's built on his earlier 1980 work showing that a computer can operate under the laws of quantum mechanics. The talk was titled “Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines”.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> In Feynman's talk, he observed that it appeared to be impossible to efficiently simulate an evolution of a quantum system on a classical computer, and he proposed a basic model for a quantum computer.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1982">1982</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=11" title="Edit section: 1982"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Paul Benioff further develops his original model of a quantum mechanical Turing machine.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/William_Wootters" title="William Wootters">William Wootters</a> and <a href="/wiki/Wojciech_Zurek" class="mw-redirect" title="Wojciech Zurek">Wojciech Zurek</a>,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> and independently <a href="/wiki/Dennis_Dieks" title="Dennis Dieks">Dennis Dieks</a><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> rediscover the <a href="/wiki/No-cloning_theorem" title="No-cloning theorem">no-cloning theorem</a> of James Park.</li> <li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> formulate a conjecture on quantum simulation, stating that quantum systems require quantum computers to be simulated efficiently.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1984">1984</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=12" title="Edit section: 1984"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Charles_H._Bennett_(computer_scientist)" class="mw-redirect" title="Charles H. Bennett (computer scientist)">Charles Bennett</a> and <a href="/wiki/Gilles_Brassard" title="Gilles Brassard">Gilles Brassard</a> employ Wiesner's conjugate coding for distribution of cryptographic keys.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1985">1985</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=13" title="Edit section: 1985"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/David_Deutsch" title="David Deutsch">David Deutsch</a>, at the University of Oxford, describes the first <a href="/wiki/Universal_quantum_computer" class="mw-redirect" title="Universal quantum computer">universal quantum computer</a>. Just as a <a href="/wiki/Universal_Turing_machine" title="Universal Turing machine">Universal Turing machine</a> can simulate any other Turing machine efficiently (<a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a>), so the universal quantum computer is able to simulate any other quantum computer with at most a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> slowdown.</li> <li><a href="/wiki/Asher_Peres" title="Asher Peres">Asher Peres</a> points out the need for quantum error correction schemes and discusses a <a href="/wiki/Quantum_error_correction#Bit_flip_code" title="Quantum error correction">repetition code</a> for amplitude errors.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1988">1988</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=14" title="Edit section: 1988"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Yoshihisa_Yamamoto_(scientist)" title="Yoshihisa Yamamoto (scientist)">Yoshihisa Yamamoto</a> and K. Igeta propose the first physical realization of a quantum computer, including Feynman's <a href="/wiki/CNOT" class="mw-redirect" title="CNOT">CNOT</a> gate.<sup id="cite_ref-qc1988_17-0" class="reference"><a href="#cite_note-qc1988-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Their approach uses atoms and photons and is the progenitor of modern quantum computing and networking protocols using photons to transmit qubits and atoms to perform two-qubit operations.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1989">1989</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=15" title="Edit section: 1989"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Gerard_J._Milburn" title="Gerard J. Milburn">Gerard J. Milburn</a> proposes a quantum-optical realization of a <a href="/wiki/Fredkin_gate" title="Fredkin gate">Fredkin gate</a>.<sup id="cite_ref-fredkin1988_18-0" class="reference"><a href="#cite_note-fredkin1988-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Bikas_K._Chakrabarti" class="mw-redirect" title="Bikas K. Chakrabarti">Bikas K. Chakrabarti</a> & collaborators from <a href="/wiki/Saha_Institute_of_Nuclear_Physics" title="Saha Institute of Nuclear Physics">Saha Institute of Nuclear Physics</a>, Kolkata, India, propose that quantum fluctuations could help explore rugged energy landscapes by escaping from local minima of glassy systems having tall but thin barriers by tunneling (instead of climbing over using thermal excitations), suggesting the effectiveness of <a href="/wiki/Quantum_annealing" title="Quantum annealing">quantum annealing</a> over classical <a href="/wiki/Simulated_annealing" title="Simulated annealing">simulated annealing</a>.<sup id="cite_ref-Chakrabarti89_19-0" class="reference"><a href="#cite_note-Chakrabarti89-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="1990s">1990s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=16" title="Edit section: 1990s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="1991">1991</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=17" title="Edit section: 1991"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Artur_Ekert" title="Artur Ekert">Artur Ekert</a> at the University of Oxford, proposes <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entanglement</a>-based secure communication.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1992">1992</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=18" title="Edit section: 1992"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>David Deutsch and Richard Jozsa propose a computational problem that can be solved efficiently with the deterministic <a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa algorithm</a> on a quantum computer, but for which no deterministic classical algorithm is possible. This was perhaps the earliest result in the <a href="/wiki/Computational_complexity" title="Computational complexity">computational complexity</a> of quantum computers, proving that they were capable of performing <i>some</i> well-defined computational task more efficiently than any classical computer.</li> <li><a href="/w/index.php?title=Ethan_Bernstein&action=edit&redlink=1" class="new" title="Ethan Bernstein (page does not exist)">Ethan Bernstein</a> and <a href="/wiki/Umesh_Vazirani" title="Umesh Vazirani">Umesh Vazirani</a> propose the <a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani algorithm</a>. It is a restricted version of the Deutsch–Jozsa algorithm where instead of distinguishing between two different classes of functions, it tries to learn a string encoded in a function. The Bernstein–Vazirani algorithm was designed to prove an oracle separation between complexity classes BQP and BPP.</li> <li>Research groups at <a href="/wiki/Max_Planck_Institute_of_Quantum_Optics" title="Max Planck Institute of Quantum Optics">Max Planck Institute of Quantum Optics</a> (Garching)<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> and shortly after at <a href="/wiki/NIST" class="mw-redirect" title="NIST">NIST</a> (Boulder)<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> experimentally realize the first crystallized strings of laser-cooled ions. Linear ion crystals constitute the qubit basis for most quantum computing and simulation experiments with trapped ions.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1993">1993</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=19" title="Edit section: 1993"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Dan_Simon" class="mw-redirect" title="Dan Simon">Dan Simon</a>, at <a href="/wiki/Universit%C3%A9_de_Montr%C3%A9al" title="Université de Montréal">Université de Montréal</a>, invent an <a href="/wiki/Oracle_machine" title="Oracle machine">oracle</a> problem, <a href="/wiki/Simon%27s_problem" title="Simon's problem">Simon's problem</a>, for which a quantum computer would be <a href="/wiki/Exponential_growth" title="Exponential growth">exponentially faster</a> than a conventional computer. This <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> introduces the main ideas which were then developed in <a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Peter Shor's factorization algorithm</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1994">1994</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=20" title="Edit section: 1994"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Peter_Shor" title="Peter Shor">Peter Shor</a>, at AT&T's <a href="/wiki/Bell_Labs" title="Bell Labs">Bell Labs</a> in <a href="/wiki/New_Jersey" title="New Jersey">New Jersey</a>, publishes <a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Shor's algorithm</a>. It would allow a quantum computer to factor large integers quickly. It solves both the <a href="/wiki/Integer_factorization" title="Integer factorization">factoring</a> problem and the <a href="/wiki/Discrete_log" class="mw-redirect" title="Discrete log">discrete log</a> problem. The algorithm can theoretically break many of the <a href="/wiki/Cryptosystem" title="Cryptosystem">cryptosystems</a> in use today. Its invention sparked a tremendous interest in quantum computers.</li> <li>The first <a href="/wiki/United_States_Government" class="mw-redirect" title="United States Government">United States Government</a> workshop on quantum computing is organized by <a href="/wiki/NIST" class="mw-redirect" title="NIST">NIST</a> in <a href="/wiki/Gaithersburg" class="mw-redirect" title="Gaithersburg">Gaithersburg, Maryland</a>, in autumn.</li> <li><a href="/wiki/Isaac_Chuang" title="Isaac Chuang">Isaac Chuang</a> and <a href="/wiki/Yoshihisa_Yamamoto_(scientist)" title="Yoshihisa Yamamoto (scientist)">Yoshihisa Yamamoto</a> propose a quantum-optical realization of a quantum computer to implement Deutsch's algorithm.<sup id="cite_ref-cy1995_25-0" class="reference"><a href="#cite_note-cy1995-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> Their work introduced dual-rail encoding for photonic qubits.</li> <li>In December, <a href="/wiki/Ignacio_Cirac" class="mw-redirect" title="Ignacio Cirac">Ignacio Cirac</a>, at <a href="/wiki/University_of_Castilla-La_Mancha" class="mw-redirect" title="University of Castilla-La Mancha">University of Castilla-La Mancha</a> at <a href="/wiki/Ciudad_Real" title="Ciudad Real">Ciudad Real</a>, and <a href="/wiki/Peter_Zoller" title="Peter Zoller">Peter Zoller</a> at the <a href="/wiki/University_of_Innsbruck" title="University of Innsbruck">University of Innsbruck</a> propose an experimental realization of the <a href="/wiki/Controlled_NOT_gate" title="Controlled NOT gate">controlled-NOT</a> gate with <a href="/wiki/Ion-trap_quantum_computing" class="mw-redirect" title="Ion-trap quantum computing">cold trapped ions</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1995">1995</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=21" title="Edit section: 1995"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The first <a href="/wiki/United_States_Department_of_Defense" title="United States Department of Defense">United States Department of Defense</a> workshop on quantum computing and <a href="/wiki/Quantum_cryptography" title="Quantum cryptography">quantum cryptography</a> is organized by <a href="/wiki/United_States_Army" title="United States Army">United States Army</a> physicists Charles M. Bowden, <a href="/wiki/Jonathan_P._Dowling" class="mw-redirect" title="Jonathan P. Dowling">Jonathan P. Dowling</a>, and <a href="/w/index.php?title=Henry_O._Everitt&action=edit&redlink=1" class="new" title="Henry O. Everitt (page does not exist)">Henry O. Everitt</a>; it took place in February at the <a href="/wiki/University_of_Arizona" title="University of Arizona">University of Arizona</a> in <a href="/wiki/Tucson" class="mw-redirect" title="Tucson">Tucson</a>.</li> <li><a href="/wiki/Peter_Shor" title="Peter Shor">Peter Shor</a> proposes the first schemes for <a href="/wiki/Quantum_error_correction" title="Quantum error correction">quantum error correction</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Christopher_Monroe" title="Christopher Monroe">Christopher Monroe</a> and <a href="/wiki/David_Wineland" class="mw-redirect" title="David Wineland">David Wineland</a> at <a href="/wiki/NIST" class="mw-redirect" title="NIST">NIST</a> (<a href="/wiki/Boulder,_Colorado" title="Boulder, Colorado">Boulder, Colorado</a>) experimentally realize the first quantum logic gate – the controlled-NOT gate – with trapped ions, following the Cirac-Zoller proposal.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></li> <li>independently, <a href="/wiki/Subhash_Kak" title="Subhash Kak">Subhash Kak</a> and <a href="/w/index.php?title=Ronald_Chrisley&action=edit&redlink=1" class="new" title="Ronald Chrisley (page does not exist)">Ronald Chrisley</a> propose the first <a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1996">1996</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=22" title="Edit section: 1996"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Lov_Grover" title="Lov Grover">Lov Grover</a>, at Bell Labs, invents the <a href="/wiki/Grover%27s_algorithm" title="Grover's algorithm">quantum database search algorithm</a>. The <a href="/wiki/Quadratic_function" title="Quadratic function">quadratic</a> speedup is not as dramatic as the speedup for factoring, discrete logs, or physics simulations. However, the algorithm can be applied to a much wider variety of problems. Any problem that can be solved by random, brute-force search, may take advantage of this quadratic speedup in the number of search queries.</li> <li>The <a href="/wiki/United_States_Government" class="mw-redirect" title="United States Government">United States Government</a>, particularly in a joint partnership of the Army Research Office (now part of the <a href="/wiki/Army_Research_Laboratory" class="mw-redirect" title="Army Research Laboratory">Army Research Laboratory</a>) and the <a href="/wiki/National_Security_Agency" title="National Security Agency">National Security Agency</a>, issues the first public call for research proposals in quantum information processing.</li> <li><a href="/wiki/Andrew_Steane" title="Andrew Steane">Andrew Steane</a> designs Steane codes for error correction.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/David_P._DiVincenzo" class="mw-redirect" title="David P. DiVincenzo">David P. DiVincenzo</a>, of IBM, proposes a list of minimal requirements for creating a quantum computer,<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> now called <a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo's criteria">DiVincenzo's criteria</a>.</li> <li><a href="/wiki/Seth_Lloyd" title="Seth Lloyd">Seth Lloyd</a> proves Feynman's conjecture on quantum simulation.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1997">1997</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=23" title="Edit section: 1997"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/David_Cory_(scientist)" class="mw-redirect" title="David Cory (scientist)">David Cory</a>, Amr Fahmy and <a href="/w/index.php?title=Timothy_Havel&action=edit&redlink=1" class="new" title="Timothy Havel (page does not exist)">Timothy Havel</a>, and at the same time <a href="/wiki/Neil_Gershenfeld" title="Neil Gershenfeld">Neil Gershenfeld</a> and <a href="/wiki/Isaac_L._Chuang" class="mw-redirect" title="Isaac L. Chuang">Isaac L. Chuang</a> at <a href="/wiki/Massachusetts_Institute_of_Technology" title="Massachusetts Institute of Technology">MIT</a> publish the first papers realizing gates for quantum computers based on bulk nuclear <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> resonance, or thermal ensembles. The technology is based on a <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">nuclear magnetic resonance</a> (NMR) machine, which is similar to the medical <a href="/wiki/Magnetic_resonance_imaging" title="Magnetic resonance imaging">magnetic resonance imaging</a> machine.</li> <li><a href="/wiki/Alexei_Kitaev" title="Alexei Kitaev">Alexei Kitaev</a> describes the principles of <a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">topological quantum computation</a> as a method for dealing with the problem of <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">decoherence</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Daniel_Loss" title="Daniel Loss">Daniel Loss</a> and David P. DiVincenzo propose the <a href="/wiki/Loss-DiVincenzo_quantum_computer" class="mw-redirect" title="Loss-DiVincenzo quantum computer">Loss-DiVincenzo quantum computer</a>, using as qubits the intrinsic <a href="/wiki/Spin-1/2" title="Spin-1/2">spin-1/2</a> degree of freedom of individual electrons confined to <a href="/wiki/Quantum_dot" title="Quantum dot">quantum dots</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1998">1998</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=24" title="Edit section: 1998"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The first experimental demonstration of a quantum algorithm is reported. A working 2-qubit <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">NMR</a> quantum computer was used to solve Deutsch's problem by <a href="/wiki/Jonathan_A._Jones" title="Jonathan A. Jones">Jonathan A. Jones</a> and <a href="/wiki/Michele_Mosca" title="Michele Mosca">Michele Mosca</a> at Oxford University and shortly after by Isaac L. Chuang at <a href="/wiki/IBM" title="IBM">IBM</a>'s <a href="/wiki/Almaden_Research_Center" class="mw-redirect" title="Almaden Research Center">Almaden Research Center</a>, in California, and Mark Kubinec and the University of California, Berkeley together with coworkers at <a href="/wiki/Stanford_University" title="Stanford University">Stanford University</a> and <a href="/wiki/Massachusetts_Institute_of_Technology" title="Massachusetts Institute of Technology">MIT</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup></li> <li>The first working 3-qubit NMR computer is reported.</li> <li>Bruce Kane proposes a silicon-based <a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">nuclear spin quantum computer</a>, using nuclear spins of individual phosphorus atoms in silicon as the qubits and donor electrons to mediate the coupling between qubits.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup></li> <li>The first execution of <a href="/wiki/Grover%27s_algorithm" title="Grover's algorithm">Grover's algorithm</a> on an NMR computer is reported.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup></li> <li>Hidetoshi Nishimori & colleagues from <a href="/wiki/Tokyo_Institute_of_Technology" title="Tokyo Institute of Technology">Tokyo Institute of Technology</a> show that a <a href="/wiki/Quantum_annealing" title="Quantum annealing">quantum annealing</a> algorithm can perform better than classical <a href="/wiki/Simulated_annealing" title="Simulated annealing">simulated annealing</a> under certain conditions.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Daniel_Gottesman" title="Daniel Gottesman">Daniel Gottesman</a> and Emanuel Knill independently prove that a certain subclass of quantum computations can be efficiently emulated with classical resources (<a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill theorem</a>).<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1999">1999</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=25" title="Edit section: 1999"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Samuel_L._Braunstein" title="Samuel L. Braunstein">Samuel L. Braunstein</a> and collaborators show that none of the bulk NMR experiments performed to date contain any entanglement; the quantum states being too strongly mixed. This is seen as evidence that NMR computers would likely not yield a benefit over classical computers. It remains an open question, however, whether entanglement is necessary for quantum computational speedup.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Gabriel_Aeppli" title="Gabriel Aeppli">Gabriel Aeppli</a>, <a href="/wiki/Thomas_Felix_Rosenbaum" class="mw-redirect" title="Thomas Felix Rosenbaum">Thomas Felix Rosenbaum</a> and colleagues demonstrate experimentally the basic concepts of quantum annealing in a condensed matter system.</li> <li><a href="/wiki/Yasunobu_Nakamura" title="Yasunobu Nakamura">Yasunobu Nakamura</a> and <a href="/wiki/Jaw-Shen_Tsai" title="Jaw-Shen Tsai">Jaw-Shen Tsai</a> demonstrate that a <a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">superconducting circuit</a> can be used as a qubit.<sup id="cite_ref-nt1999_41-0" class="reference"><a href="#cite_note-nt1999-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="2000s">2000s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=26" title="Edit section: 2000s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="2000">2000</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=27" title="Edit section: 2000"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Arun_K._Pati" title="Arun K. Pati">Arun K. Pati</a> and Samuel L. Braunstein prove the <a href="/wiki/Quantum_no-deleting_theorem" class="mw-redirect" title="Quantum no-deleting theorem">quantum no-deleting theorem</a>. This is dual to the no-cloning theorem which shows that one cannot delete a copy of an unknown qubit. Together with the stronger no-cloning theorem, the no-deleting theorem has the implication that quantum information can neither be created nor be destroyed.</li> <li>The first working 5-qubit NMR computer is demonstrated at the <a href="/wiki/Technical_University_of_Munich" title="Technical University of Munich">Technical University of Munich</a>, Germany.</li> <li>The first execution of order finding (part of Shor's algorithm) at <a href="/wiki/IBM" title="IBM">IBM</a>'s <a href="/wiki/Almaden_Research_Center" class="mw-redirect" title="Almaden Research Center">Almaden Research Center</a> and <a href="/wiki/Stanford_University" title="Stanford University">Stanford University</a> is demonstrated.</li> <li>The first working 7-qubit NMR computer is demonstrated at the <a href="/wiki/Los_Alamos_National_Laboratory" title="Los Alamos National Laboratory">Los Alamos National Laboratory</a> in New Mexico.</li> <li>The textbook, <i><a href="/wiki/Quantum_Computation_and_Quantum_Information_(book)" class="mw-redirect" title="Quantum Computation and Quantum Information (book)">Quantum Computation and Quantum Information</a></i>, by <a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Michael Nielsen</a> and Isaac Chuang is published.</li></ul> <div class="mw-heading mw-heading3"><h3 id="2001">2001</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=28" title="Edit section: 2001"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The first execution of Shor's algorithm at IBM's Almaden Research Center and Stanford University is demonstrated. The number 15 was factored using 10<sup>18</sup> identical molecules, each containing seven active nuclear spins.</li> <li><a href="/w/index.php?title=Noah_Linden&action=edit&redlink=1" class="new" title="Noah Linden (page does not exist)">Noah Linden</a> and <a href="/wiki/Sandu_Popescu" title="Sandu Popescu">Sandu Popescu</a> prove that the presence of entanglement is a necessary condition for a large class of quantum protocols. This, coupled with Braunstein's result (see 1999 above), called the validity of NMR quantum computation into question.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup></li> <li>Emanuel Knill, Raymond Laflamme, and Gerard Milburn show that <a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">optical quantum computing</a> is possible with single-photon sources, linear optical elements, and single-photon detectors, establishing the field of linear optical quantum computing.</li> <li>Robert Raussendorf and <a href="/wiki/Hans_J%C3%BCrgen_Briegel" title="Hans Jürgen Briegel">Hans Jürgen Briegel</a> propose <a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">measurement-based quantum computation</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2002">2002</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=29" title="Edit section: 2002"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The Quantum Information Science and Technology Roadmapping Project, involving some of the main participants in the field, lays out the Quantum computation roadmap.</li> <li>The <a href="/wiki/Institute_for_Quantum_Computing" title="Institute for Quantum Computing">Institute for Quantum Computing</a> is established at the <a href="/wiki/University_of_Waterloo" title="University of Waterloo">University of Waterloo</a> in Waterloo, Ontario by <a href="/wiki/Mike_Lazaridis" title="Mike Lazaridis">Mike Lazaridis</a>, <a href="/wiki/Raymond_Laflamme" title="Raymond Laflamme">Raymond Laflamme</a> and <a href="/wiki/Michele_Mosca" title="Michele Mosca">Michele Mosca</a>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup></li> <li>A group led by Gerhard Birkl (now at TU Darmstadt) demonstrates the first 2D array of optical tweezers with trapped atoms for quantum computation with atomic qubits.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2003">2003</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=30" title="Edit section: 2003"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Implementation of the <a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa algorithm</a> on an ion-trap quantum computer at the <a href="/wiki/University_of_Innsbruck" title="University of Innsbruck">University of Innsbruck</a> is reported.<sup id="cite_ref-Nat-20030102_46-0" class="reference"><a href="#cite_note-Nat-20030102-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Todd_D._Pittman&action=edit&redlink=1" class="new" title="Todd D. Pittman (page does not exist)">Todd D. Pittman</a> and collaborators at <a href="/wiki/Johns_Hopkins_University" title="Johns Hopkins University">Johns Hopkins University</a>, <a href="/wiki/Applied_Physics_Laboratory" title="Applied Physics Laboratory">Applied Physics Laboratory</a>, and independently <a href="/wiki/Jeremy_O%27Brien" title="Jeremy O'Brien">Jeremy L. O'Brien</a> and collaborators at the <a href="/wiki/University_of_Queensland" title="University of Queensland">University of Queensland</a>, demonstrate quantum controlled-not gates using only linear optical elements.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup></li> <li>The first implementation of a CNOT quantum gate, according to the Cirac–Zoller proposal, is reported by a team at the University of Innsbruck led by <a href="/wiki/Rainer_Blatt" title="Rainer Blatt">Rainer Blatt</a>.<sup id="cite_ref-Nat-20030327_49-0" class="reference"><a href="#cite_note-Nat-20030327-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/DARPA" title="DARPA">DARPA</a> <a href="/wiki/Quantum_network" title="Quantum network">Quantum Network</a> becomes fully operational on October 23, 2003.</li> <li>The <a href="/wiki/Institute_for_Quantum_Optics_and_Quantum_Information" title="Institute for Quantum Optics and Quantum Information">Institute for Quantum Optics and Quantum Information</a> (IQOQI) is established in Innsbruck and Vienna, Austria, by the founding directors <a href="/wiki/Rainer_Blatt" title="Rainer Blatt">Rainer Blatt</a>, <a href="/wiki/Hans_J%C3%BCrgen_Briegel" title="Hans Jürgen Briegel">Hans Jürgen Briegel</a>, <a href="/wiki/Rudolf_Grimm" title="Rudolf Grimm">Rudolf Grimm</a>, <a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Anton Zeilinger</a> and <a href="/wiki/Peter_Zoller" title="Peter Zoller">Peter Zoller</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="2004">2004</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=31" title="Edit section: 2004"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The first working <a href="/wiki/Pure_state" class="mw-redirect" title="Pure state">pure state</a> NMR quantum computer (based on <a href="/wiki/Orthohydrogen" class="mw-redirect" title="Orthohydrogen">parahydrogen</a>) is demonstrated at <a href="/wiki/University_of_Oxford" title="University of Oxford">Oxford University</a>, England and University of York, England.</li> <li>Physicists at the University of Innsbruck show deterministic quantum-state teleportation between a pair of trapped calcium ions.<sup id="cite_ref-NAT-20040617_50-0" class="reference"><a href="#cite_note-NAT-20040617-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup></li> <li>The first five-photon entanglement is demonstrated by <a href="/wiki/Pan_Jianwei" title="Pan Jianwei">Jian-Wei Pan</a>'s team at the University of Science and Technology of Chin; the minimal number of qubits required for universal quantum error correction.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2005">2005</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=32" title="Edit section: 2005"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/University_of_Illinois_at_Urbana%E2%80%93Champaign" class="mw-redirect" title="University of Illinois at Urbana–Champaign">University of Illinois at Urbana–Champaign</a> scientists demonstrate quantum entanglement of multiple characteristics, potentially allowing multiple qubits per particle.</li> <li>Two teams of physicists measure the capacitance of a <a href="/wiki/Josephson_junction" class="mw-redirect" title="Josephson junction">Josephson junction</a> for the first time. The methods could be used to measure the state of quantum bits in a quantum computer without disturbing the state.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup></li> <li>In December, <a href="/wiki/W-state" class="mw-redirect" title="W-state">W-states</a> of <a href="/wiki/Quantum_register" title="Quantum register">quantum registers</a> with up to 8 qubits implemented using <a href="/wiki/Trapped_ion_quantum_computing" class="mw-redirect" title="Trapped ion quantum computing">trapped ions</a> are demonstrated at the <a href="/wiki/Institute_for_Quantum_Optics_and_Quantum_Information" title="Institute for Quantum Optics and Quantum Information">Institute for Quantum Optics and Quantum Information</a> and the University of Innsbruck in Austria.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Harvard_University" title="Harvard University">Harvard University</a> and <a href="/wiki/Georgia_Institute_of_Technology" class="mw-redirect" title="Georgia Institute of Technology">Georgia Institute of Technology</a> researchers succeed in transferring quantum information between "quantum memories" – from atoms to photons and back again.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2022)">citation needed</span></a></i>]</sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2006">2006</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=33" title="Edit section: 2006"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The Materials Science Department of Oxford University, England cage a qubit in a "buckyball" (a molecule of <a href="/wiki/Buckminsterfullerene" title="Buckminsterfullerene">buckminsterfullerene</a>) and demonstrated quantum "bang-bang" error correction.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup></li> <li>Researchers from the <a href="/wiki/University_of_Illinois_at_Urbana%E2%80%93Champaign" class="mw-redirect" title="University of Illinois at Urbana–Champaign">University of Illinois at Urbana–Champaign</a> use the <a href="/wiki/Quantum_Zeno_effect" title="Quantum Zeno effect">Zeno Effect</a>, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database using <a href="/wiki/Counterfactual_quantum_computation" title="Counterfactual quantum computation">counterfactual quantum computation</a>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Vlatko_Vedral" title="Vlatko Vedral">Vlatko Vedral</a> of the University of Leeds and colleagues at the universities of Porto and Vienna find that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Samuel_L._Braunstein" title="Samuel L. Braunstein">Samuel L. Braunstein</a> at the <a href="/wiki/University_of_York" title="University of York">University of York</a> along with the University of Tokyo and the Japan Science and Technology Agency give the first experimental demonstration of quantum telecloning.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup></li> <li>Professors at the <a href="/wiki/University_of_Sheffield" title="University of Sheffield">University of Sheffield</a> develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup></li> <li>A new error checking method is theorized for Josephson junction computers.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup></li> <li>The first 12-qubit quantum computer is benchmarked by researchers at the <a href="/wiki/Institute_for_Quantum_Computing" title="Institute for Quantum Computing">Institute for Quantum Computing</a> and the <a href="/wiki/Perimeter_Institute_for_Theoretical_Physics" title="Perimeter Institute for Theoretical Physics">Perimeter Institute for Theoretical Physics</a> in Waterloo, Ontario as well as at <a href="/wiki/MIT" class="mw-redirect" title="MIT">MIT</a>, Cambridge.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup></li> <li>A two-dimensional ion trap is developed for quantum computing.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup></li> <li>Seven atoms are placed in a stable line, a step on the way to constructing a quantum gate, at the University of Bonn.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup></li> <li>A team at <a href="/wiki/Delft_University_of_Technology" title="Delft University of Technology">Delft University of Technology</a> in the Netherlands creates a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/University_of_Arkansas" title="University of Arkansas">University of Arkansas</a> develops quantum dot molecules.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup></li> <li>The spinning new theory on particle spin brings science closer to quantum computing.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/University_of_Copenhagen" title="University of Copenhagen">University of Copenhagen</a> develops quantum teleportation between photons and atoms.<sup id="cite_ref-spooky20061004_66-0" class="reference"><a href="#cite_note-spooky20061004-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/University_of_Camerino" title="University of Camerino">University of Camerino</a> scientists develop a theory of macroscopic object entanglement, which has implications for the development of <a href="/wiki/Quantum_network#Repeaters" title="Quantum network">quantum repeaters</a>.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup></li> <li>Tai-Chang Chiang, at Illinois at Urbana–Champaign, finds that quantum coherence can be maintained in mixed-material systems.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup></li> <li>Cristophe Boehme, University of Utah, demonstrates the feasibility of reading data using the <a href="/wiki/Nuclear_spin" class="mw-redirect" title="Nuclear spin">nuclear spin</a> on a silicon-phosphorus <a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane quantum computer</a>.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2007">2007</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=34" title="Edit section: 2007"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Subwavelength waveguide is developed for light.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup></li> <li>A single-photon emitter for optical fibers is developed.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup></li> <li>The first <a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">one-way quantum computers</a> are built,<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> where <a href="/wiki/Quantum_measurement" class="mw-redirect" title="Quantum measurement">measurement</a> (<a href="/wiki/Wave_function_collapse" title="Wave function collapse">collapse</a>) of an <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entangled</a> <a href="/wiki/Cluster_state" title="Cluster state">cluster state</a> is the main driving force of computation,<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> and shown to perform simple computations, such as <a href="/wiki/Deutsch%27s_algorithm" class="mw-redirect" title="Deutsch's algorithm">Deutsch's algorithm</a>.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup></li> <li>A new material is proposed for quantum computing.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup></li> <li>A single-atom single-photon server is devised.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup></li> <li>The University of Cambridge develops an electron quantum pump.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup></li> <li>A superior method of qubit coupling is developed.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup></li> <li>A successful demonstration of controllably <a href="/wiki/Quantum_coupling" title="Quantum coupling">coupled qubits</a> is reported.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup></li> <li>A breakthrough in applying <a href="/wiki/Spintronics" title="Spintronics">spin-based electronics</a> to <a href="/wiki/Silicon" title="Silicon">silicon</a> is reported.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup></li> <li>Scientists demonstrate a quantum state exchange between light and matter.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup></li> <li>A diamond <a href="/wiki/Quantum_register" title="Quantum register">quantum register</a> is developed.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup></li> <li>Controlled-NOT quantum gates on a pair of superconducting quantum bits are realized.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup></li> <li>Scientists contain and study hundreds of individual atoms in 3D array.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup></li> <li>Nitrogen in a <a href="/wiki/Buckyball" class="mw-redirect" title="Buckyball">buckyball</a> molecule is used in quantum computing.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup></li> <li>A large number of electrons are quantum coupled.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Spin%E2%80%93orbit_interaction" title="Spin–orbit interaction">Spin–orbit interaction</a> of electrons are measured.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup></li> <li>Atoms are quantum manipulated in laser light.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup></li> <li>Light pulses are used to control electron spins.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup></li> <li>Quantum effects are demonstrated across tens of nanometers.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup></li> <li>Light pulses are used to accelerate quantum computing development.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup></li> <li>A quantum RAM blueprint is unveiled.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup></li> <li>A model of a quantum transistor is developed.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup></li> <li>Long distance entanglement is demonstrated.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup></li> <li>Photonic quantum computing is used to factor a number by two independent labs.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup></li> <li>A quantum bus is developed by two independent labs.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup></li> <li>A superconducting quantum cable is developed.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup></li> <li>The transmission of qubits is demonstrated.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup></li> <li>Superior qubit material is devised.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup></li> <li>A single-electron qubit memory is reported.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Bose%E2%80%93Einstein_condensate" title="Bose–Einstein condensate">Bose–Einstein condensate</a> <a href="/wiki/Quantum_memory" title="Quantum memory">quantum memory</a> is developed.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/D-Wave_Systems" title="D-Wave Systems">D-Wave Systems</a> demonstrates use of a 28-qubit quantum annealing computer.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup></li> <li>A new cryonic method reduces decoherence and increases interaction distance, and thus quantum computing speed.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup></li> <li>A photonic quantum computer is demonstrated.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup></li> <li>Graphene quantum dot spin qubits are proposed.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2008">2008</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=35" title="Edit section: 2008"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:DWave_128chip.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/DWave_128chip.jpg/220px-DWave_128chip.jpg" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/DWave_128chip.jpg/330px-DWave_128chip.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/DWave_128chip.jpg/440px-DWave_128chip.jpg 2x" data-file-width="1626" data-file-height="1122" /></a><figcaption>Chip constructed by D-Wave Systems Inc. designed to operate as a 128-qubit superconducting adiabatic quantum optimization processor, mounted in a sample holder (2009)</figcaption></figure> <ul><li>The <a href="/wiki/Quantum_algorithm_for_linear_systems_of_equations" class="mw-redirect" title="Quantum algorithm for linear systems of equations">HHL algorithm</a> for solving linear equations is published.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Graphene" title="Graphene">Graphene</a> quantum dot qubits are described.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup></li> <li>Scientists succeed in storing a quantum bit.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup></li> <li>3D qubit-qutrit entanglement is demonstrated.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup></li> <li>Analog quantum computing is devised.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup></li> <li>Control of quantum tunneling is devised.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup></li> <li>Entangled memory is developed.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup></li> <li>A superior NOT gate is developed.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup></li> <li>Qutrits are developed.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup></li> <li>Quantum logic gate in optical fiber<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup></li> <li>A superior quantum Hall Effect is discovered.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup></li> <li>Enduring spin states in quantum dots are reported.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup></li> <li>Molecular magnets are proposed for quantum RAM.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup></li> <li>Quasiparticles offer hope of stable quantum computers.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup></li> <li>Image storage may have better storage of qubits is reported.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup></li> <li>Quantum entangled images are reported.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup></li> <li>Quantum state is intentionally altered in a molecule.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup></li> <li>Electron position is controlled in a silicon circuit.<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup></li> <li>A superconducting electronic circuit pumps microwave photons.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup></li> <li>Amplitude spectroscopy is developed.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup></li> <li>A superior quantum computer test is developed.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup></li> <li>An optical frequency comb is devised.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup></li> <li>The concept of Quantum Darwinism is supported.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup></li> <li>Hybrid qubit memory is developed.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup></li> <li>A qubit is stored for over 1 second in an atomic nucleus.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup></li> <li>Faster electron spin qubit switching and reading is developed.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup></li> <li>The possibility of non-entanglement quantum computing is described.<sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/D-Wave_Systems" title="D-Wave Systems">D-Wave Systems</a> claim to have produced a 128 qubit computer chip, though this claim had yet to be verified.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2009">2009</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=36" title="Edit section: 2009"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Carbon 12 is purified for longer coherence times.<sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup></li> <li>The lifetime of qubits is extended to hundreds of milliseconds.<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup></li> <li>Improved quantum control of photons is reported.<sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup></li> <li>Quantum entanglement is demonstrated over 240 micrometres.<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup></li> <li>Qubit lifetime is extended by a factor of 1000.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup></li> <li>The first electronic quantum processor is created.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup></li> <li>Six-photon graph state entanglement is used to simulate the fractional statistics of anyons living in artificial spin-lattice models.<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup></li> <li>A single-molecule optical transistor is devised.<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup></li> <li>NIST is reads and writes individual qubits.<sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup></li> <li>NIST demonstrates multiple computing operations on qubits.<sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup></li> <li>The first large-scale topological cluster state quantum architecture is developed for atom-optics.<sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup></li> <li>A combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions is shown.<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup></li> <li>Researchers at University of Bristol demonstrate Shor's algorithm on a silicon photonic chip.<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup></li> <li>Quantum Computing with an Electron Spin Ensemble is reported.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup></li> <li>A so-called photon machine gun is developed for quantum computing.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup></li> <li>The first universal programmable quantum computer is unveiled.<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup></li> <li>Scientists electrically control quantum states of electrons.<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup></li> <li>Google collaborates with D-Wave Systems on image search technology using quantum computing.<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup></li> <li>A method for synchronizing the properties of multiple coupled CJJ rf-SQUID flux qubits with a small spread of device parameters due to fabrication variations is demonstrated.<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup></li> <li>Universal Ion Trap Quantum Computation with decoherence free qubits is realized.<sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup></li> <li>The first chip-scale quantum computer is reported.<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="2010s">2010s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=37" title="Edit section: 2010s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="2010">2010</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=38" title="Edit section: 2010"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Ions were trapped in an optical trap.<sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup></li> <li>An optical quantum computer with three qubits calculated the energy spectrum of molecular hydrogen to high precision.<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup></li> <li>The first germanium laser advanced the state of optical computers.<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup></li> <li>A single-electron qubit was developed<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup></li> <li>The quantum state in a macroscopic object was reported.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup></li> <li>A new quantum computer cooling method was developed.<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup></li> <li>Racetrack ion trap was developed.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup></li> <li>Evidence for a Moore-Read state in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=5/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=5/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e6cf610862620b1f80d912258f14236a51a034b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.916ex; height:2.843ex;" alt="{\displaystyle u=5/2}"></span> quantum Hall plateau,<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup> which would be suitable for topological quantum computation was reported</li> <li>A quantum interface between a single photon and a single atom was demonstrated.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup></li> <li>LED quantum entanglement was demonstrated.<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup></li> <li>Multiplexed design increased the speed of transmission of quantum information through a quantum communications channel.<sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup></li> <li>A two-photon optical chip was reported.<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup></li> <li>Microfabricated planar ion traps were tested.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup></li> <li>A <a href="/wiki/Boson_sampling" title="Boson sampling">boson sampling</a> technique was proposed by Aaronson and Arkhipov.<sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Quantum_dot" title="Quantum dot">Quantum dot</a> qubits were manipulated electrically, not magnetically.<sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">[</span>170<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2011">2011</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=39" title="Edit section: 2011"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Entanglement in a solid-state spin ensemble was reported<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup></li> <li>NOON photons in a superconducting quantum integrated circuit were reported.<sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>172<span class="cite-bracket">]</span></a></sup></li> <li>A quantum antenna was described.<sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">[</span>173<span class="cite-bracket">]</span></a></sup></li> <li>Multimode quantum interference was documented.<sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup></li> <li>Magnetic Resonance applied to quantum computing was reported.<sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup></li> <li>The quantum pen for single atoms was documented.<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">[</span>176<span class="cite-bracket">]</span></a></sup></li> <li>Atomic "Racing Dual" was reported.<sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">[</span>177<span class="cite-bracket">]</span></a></sup></li> <li>A 14 qubit register was reported.<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">[</span>178<span class="cite-bracket">]</span></a></sup></li> <li>D-Wave claimed to have developed quantum annealing and introduced their product called D-Wave One. The company claims this is the first commercially available quantum computer.<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup></li> <li>Repetitive error correction was demonstrated in a quantum processor.<sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup></li> <li>Diamond quantum computer memory was demonstrated.<sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">[</span>181<span class="cite-bracket">]</span></a></sup></li> <li>Qmodes were developed.<sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup></li> <li>Decoherence was demonstrated as suppressed.<sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">[</span>183<span class="cite-bracket">]</span></a></sup></li> <li>Simplification of controlled operations was reported.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup></li> <li>Ions entangled using microwaves were documented.<sup id="cite_ref-185" class="reference"><a href="#cite_note-185"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup></li> <li>Practical error rates were achieved.<sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">[</span>186<span class="cite-bracket">]</span></a></sup></li> <li>A quantum computer employing <a href="/wiki/Von_Neumann_architecture" title="Von Neumann architecture">Von Neumann architecture</a> was described.<sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">[</span>187<span class="cite-bracket">]</span></a></sup></li> <li>A quantum spin Hall topological insulator was reported.<sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">[</span>188<span class="cite-bracket">]</span></a></sup></li> <li>The concept of two diamonds linked by quantum entanglement could help develop photonic processors was described.<sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">[</span>189<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2012">2012</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=40" title="Edit section: 2012"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>D-Wave claimed a quantum computation using 84 qubits.<sup id="cite_ref-190" class="reference"><a href="#cite_note-190"><span class="cite-bracket">[</span>190<span class="cite-bracket">]</span></a></sup></li> <li>Physicists created a working transistor from a single atom.<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">[</span>191<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-192" class="reference"><a href="#cite_note-192"><span class="cite-bracket">[</span>192<span class="cite-bracket">]</span></a></sup></li> <li>A method for manipulating the charge of nitrogen vacancy-centres in diamond was reported.<sup id="cite_ref-193" class="reference"><a href="#cite_note-193"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup></li> <li>Creation of a 300 qubit/particle quantum simulator was reported.<sup id="cite_ref-194" class="reference"><a href="#cite_note-194"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">[</span>195<span class="cite-bracket">]</span></a></sup></li> <li>Demonstration of topologically protected qubits with an eight-photon entanglement was reported; a robust approach to practical quantum computing.<sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">[</span>196<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/1QB_Information_Technologies_(1QBit)" class="mw-redirect" title="1QB Information Technologies (1QBit)">1QB Information Technologies (1QBit)</a> was founded; the world's first dedicated quantum computing software company.<sup id="cite_ref-197" class="reference"><a href="#cite_note-197"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup></li> <li>The first design of a quantum repeater system without a need for quantum memories was reported.<sup id="cite_ref-198" class="reference"><a href="#cite_note-198"><span class="cite-bracket">[</span>198<span class="cite-bracket">]</span></a></sup></li> <li>Decoherence suppressed for 2 seconds at room temperature by manipulating Carbon-13 atoms with lasers was reported.<sup id="cite_ref-199" class="reference"><a href="#cite_note-199"><span class="cite-bracket">[</span>199<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-200" class="reference"><a href="#cite_note-200"><span class="cite-bracket">[</span>200<span class="cite-bracket">]</span></a></sup></li> <li>The theory of Bell-based randomness expansion with reduced assumption of measurement independence was reported.<sup id="cite_ref-201" class="reference"><a href="#cite_note-201"><span class="cite-bracket">[</span>201<span class="cite-bracket">]</span></a></sup></li> <li>New low overhead method for fault-tolerant quantum logic was developed called lattice surgery.<sup id="cite_ref-202" class="reference"><a href="#cite_note-202"><span class="cite-bracket">[</span>202<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2013">2013</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=41" title="Edit section: 2013"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Coherence time of 39 minutes at room temperature (and 3 hours at cryogenic temperatures) was demonstrated for an ensemble of impurity-spin qubits in isotopically purified silicon.<sup id="cite_ref-39_minutes_203-0" class="reference"><a href="#cite_note-39_minutes-203"><span class="cite-bracket">[</span>203<span class="cite-bracket">]</span></a></sup></li> <li>Extension of time for a qubit maintained in superimposed state for ten times longer than what has ever been achieved before was reported.<sup id="cite_ref-204" class="reference"><a href="#cite_note-204"><span class="cite-bracket">[</span>204<span class="cite-bracket">]</span></a></sup></li> <li>The first resource analysis of a large-scale quantum algorithm using explicit fault-tolerant, error-correction protocols was developed for factoring.<sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">[</span>205<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2014">2014</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=42" title="Edit section: 2014"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Documents leaked by <a href="/wiki/Edward_Snowden" title="Edward Snowden">Edward Snowden</a> confirmed the <a href="/w/index.php?title=Penetrating_Hard_Targets_project&action=edit&redlink=1" class="new" title="Penetrating Hard Targets project (page does not exist)">Penetrating Hard Targets project</a>,<sup id="cite_ref-206" class="reference"><a href="#cite_note-206"><span class="cite-bracket">[</span>206<span class="cite-bracket">]</span></a></sup> by which the <a href="/wiki/National_Security_Agency" title="National Security Agency">National Security Agency</a> sought to develop a quantum computing capability for <a href="/wiki/Cryptography" title="Cryptography">cryptography</a> purposes.<sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">[</span>207<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-208" class="reference"><a href="#cite_note-208"><span class="cite-bracket">[</span>208<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-209" class="reference"><a href="#cite_note-209"><span class="cite-bracket">[</span>209<span class="cite-bracket">]</span></a></sup></li> <li>Researchers in Japan and Austria published the first large-scale quantum computing architecture for a diamond-based system.<sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">[</span>210<span class="cite-bracket">]</span></a></sup></li> <li>Scientists at the University of Innsbruck performed quantum computations on a topologically encoded qubit which was encoded in entangled states distributed over seven trapped-ion qubits.<sup id="cite_ref-SCI-20140718_211-0" class="reference"><a href="#cite_note-SCI-20140718-211"><span class="cite-bracket">[</span>211<span class="cite-bracket">]</span></a></sup></li> <li>Scientists transferred data by <a href="/wiki/Quantum_teleportation" title="Quantum teleportation">quantum teleportation</a> over a distance of 10 feet (3.0 meters) with zero percent error rate; a vital step towards a quantum Internet.<sup id="cite_ref-NYT-20140529_212-0" class="reference"><a href="#cite_note-NYT-20140529-212"><span class="cite-bracket">[</span>212<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SCI-20140529_213-0" class="reference"><a href="#cite_note-SCI-20140529-213"><span class="cite-bracket">[</span>213<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2015">2015</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=43" title="Edit section: 2015"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Optically addressable nuclear spins in a solid with a six-hour coherence time were documented.<sup id="cite_ref-214" class="reference"><a href="#cite_note-214"><span class="cite-bracket">[</span>214<span class="cite-bracket">]</span></a></sup></li> <li>Quantum information encoded by simple electrical pulses was documented.<sup id="cite_ref-215" class="reference"><a href="#cite_note-215"><span class="cite-bracket">[</span>215<span class="cite-bracket">]</span></a></sup></li> <li>Quantum error detection code using a square lattice of four superconducting qubits was documented.<sup id="cite_ref-216" class="reference"><a href="#cite_note-216"><span class="cite-bracket">[</span>216<span class="cite-bracket">]</span></a></sup></li> <li>D-Wave Systems Inc. announced on June 22 that it had broken the 1,000-qubit barrier.<sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">[</span>217<span class="cite-bracket">]</span></a></sup></li> <li>A two-qubit silicon logic gate was successfully developed.<sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">[</span>218<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2016">2016</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=44" title="Edit section: 2016"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Physicists led by Rainer Blatt joined forces with scientists at the Massachusetts Institute of Technology (MIT), led by Isaac Chuang, to efficiently implement Shor's algorithm in an ion-trap-based quantum computer.<sup id="cite_ref-219" class="reference"><a href="#cite_note-219"><span class="cite-bracket">[</span>219<span class="cite-bracket">]</span></a></sup></li> <li>IBM released the Quantum Experience, an online interface to their superconducting systems. The system is immediately used to publish new protocols in quantum information processing.<sup id="cite_ref-220" class="reference"><a href="#cite_note-220"><span class="cite-bracket">[</span>220<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">[</span>221<span class="cite-bracket">]</span></a></sup></li> <li>Google, using an array of 9 superconducting qubits developed by the <a href="/w/index.php?title=Martinis_group&action=edit&redlink=1" class="new" title="Martinis group (page does not exist)">Martinis group</a> and <a href="/wiki/University_of_California,_Santa_Barbara" title="University of California, Santa Barbara">UCSB</a>, simulated a <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> molecule.<sup id="cite_ref-222" class="reference"><a href="#cite_note-222"><span class="cite-bracket">[</span>222<span class="cite-bracket">]</span></a></sup></li> <li>Scientists in Japan and Australia invented a quantum version of a <a href="/wiki/Sneakernet" title="Sneakernet">Sneakernet</a> communications system.<sup id="cite_ref-223" class="reference"><a href="#cite_note-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2017">2017</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=45" title="Edit section: 2017"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>D-Wave Systems Inc. announced general commercial availability of the D-Wave 2000Q quantum annealer, which it claimed has 2000 qubits.<sup id="cite_ref-224" class="reference"><a href="#cite_note-224"><span class="cite-bracket">[</span>224<span class="cite-bracket">]</span></a></sup></li> <li>A blueprint for a microwave trapped ion quantum computer was published.<sup id="cite_ref-225" class="reference"><a href="#cite_note-225"><span class="cite-bracket">[</span>225<span class="cite-bracket">]</span></a></sup></li> <li>IBM unveiled a 17-qubit quantum computer—and a better way of benchmarking it.<sup id="cite_ref-226" class="reference"><a href="#cite_note-226"><span class="cite-bracket">[</span>226<span class="cite-bracket">]</span></a></sup></li> <li>Scientists built a microchip that generates two entangled <a href="/wiki/Qudit" class="mw-redirect" title="Qudit">qudits</a> each with 10 states, for 100 dimensions total.<sup id="cite_ref-227" class="reference"><a href="#cite_note-227"><span class="cite-bracket">[</span>227<span class="cite-bracket">]</span></a></sup></li> <li>Microsoft revealed <a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a>, a quantum programming language integrated with its <a href="/wiki/Visual_Studio" title="Visual Studio">Visual Studio</a> development environment. Programs can be executed locally on a 32-qubit simulator, or a 40-qubit simulator on <a href="/wiki/Azure_DevOps_Server" title="Azure DevOps Server">Azure</a>.<sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">[</span>228<span class="cite-bracket">]</span></a></sup></li> <li>IBM revealed a working 50-qubit quantum computer that can maintain its quantum state for 90 microseconds.<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">[</span>229<span class="cite-bracket">]</span></a></sup></li> <li>The first <a href="/wiki/Quantum_teleportation" title="Quantum teleportation">teleportation</a> using a satellite, connecting ground stations over a distance of 1400 km apart was announced.<sup id="cite_ref-230" class="reference"><a href="#cite_note-230"><span class="cite-bracket">[</span>230<span class="cite-bracket">]</span></a></sup> Previous experiments were at <a href="/wiki/Earth" title="Earth">Earth</a>, at shorter distances.</li></ul> <div class="mw-heading mw-heading3"><h3 id="2018">2018</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=46" title="Edit section: 2018"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/John_Preskill" title="John Preskill">John Preskill</a> introduces the concept of <a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">noisy intermediate-scale quantum</a> (NISQ) era.<sup id="cite_ref-231" class="reference"><a href="#cite_note-231"><span class="cite-bracket">[</span>231<span class="cite-bracket">]</span></a></sup></li> <li>MIT scientists reported the discovery of a new triple-photon form of <a href="/wiki/Light" title="Light">light</a>.<sup id="cite_ref-NW-20180216_232-0" class="reference"><a href="#cite_note-NW-20180216-232"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SCI-20180216_233-0" class="reference"><a href="#cite_note-SCI-20180216-233"><span class="cite-bracket">[</span>233<span class="cite-bracket">]</span></a></sup></li> <li>Oxford researchers successfully use a trapped-ion technique, where they placed two charged atoms in a state of quantum entanglement to speed up logic gates by a factor of 20 to 60 times, as compared with the previous best gates, translated to 1.6 microseconds long, with 99.8% precision.<sup id="cite_ref-234" class="reference"><a href="#cite_note-234"><span class="cite-bracket">[</span>234<span class="cite-bracket">]</span></a></sup></li> <li>QuTech successfully tested a silicon-based 2-spin-qubit processor.<sup id="cite_ref-235" class="reference"><a href="#cite_note-235"><span class="cite-bracket">[</span>235<span class="cite-bracket">]</span></a></sup></li> <li>Google announced the creation of a 72-qubit quantum chip, called "Bristlecone",<sup id="cite_ref-236" class="reference"><a href="#cite_note-236"><span class="cite-bracket">[</span>236<span class="cite-bracket">]</span></a></sup> achieving a new record.</li> <li>Intel began testing a silicon-based spin-qubit processor manufactured in the company's D1D fab in Oregon.<sup id="cite_ref-237" class="reference"><a href="#cite_note-237"><span class="cite-bracket">[</span>237<span class="cite-bracket">]</span></a></sup></li> <li>Intel confirmed development of a 49-qubit superconducting test chip, called "Tangle Lake".<sup id="cite_ref-238" class="reference"><a href="#cite_note-238"><span class="cite-bracket">[</span>238<span class="cite-bracket">]</span></a></sup></li> <li>Japanese researchers demonstrated universal holonomic quantum gates.<sup id="cite_ref-239" class="reference"><a href="#cite_note-239"><span class="cite-bracket">[</span>239<span class="cite-bracket">]</span></a></sup></li> <li>An integrated photonic platform for quantum information with continuous variables was documented.<sup id="cite_ref-240" class="reference"><a href="#cite_note-240"><span class="cite-bracket">[</span>240<span class="cite-bracket">]</span></a></sup></li> <li>On December 17, 2018, the company IonQ introduced the first commercial trapped-ion quantum computer, with a program length of over 60 two-qubit gates, 11 fully connected qubits, 55 addressable pairs, one-qubit gate error of <0.03% and two-qubit gate error of <1.0%.<sup id="cite_ref-241" class="reference"><a href="#cite_note-241"><span class="cite-bracket">[</span>241<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-242" class="reference"><a href="#cite_note-242"><span class="cite-bracket">[</span>242<span class="cite-bracket">]</span></a></sup></li> <li>On December 21, 2018, the <a href="/wiki/National_Quantum_Initiative_Act" title="National Quantum Initiative Act">National Quantum Initiative Act</a> was signed into law by <a href="/wiki/President_of_the_United_States" title="President of the United States">President</a> <a href="/wiki/Donald_Trump" title="Donald Trump">Donald Trump</a>, establishing the goals and priorities for a 10-year plan to accelerate the development of quantum information science and technology applications in the <a href="/wiki/United_States" title="United States">United States</a>.<sup id="cite_ref-govtrack_243-0" class="reference"><a href="#cite_note-govtrack-243"><span class="cite-bracket">[</span>243<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-244" class="reference"><a href="#cite_note-244"><span class="cite-bracket">[</span>244<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-245" class="reference"><a href="#cite_note-245"><span class="cite-bracket">[</span>245<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2019">2019</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=47" title="Edit section: 2019"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/2019_in_science" title="2019 in science">2019 in science</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:IBM_Q_system_(Fraunhofer_2).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/IBM_Q_system_%28Fraunhofer_2%29.jpg/260px-IBM_Q_system_%28Fraunhofer_2%29.jpg" decoding="async" width="260" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/IBM_Q_system_%28Fraunhofer_2%29.jpg/390px-IBM_Q_system_%28Fraunhofer_2%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/IBM_Q_system_%28Fraunhofer_2%29.jpg/520px-IBM_Q_system_%28Fraunhofer_2%29.jpg 2x" data-file-width="5166" data-file-height="3584" /></a><figcaption><a href="/wiki/IBM_Q_System_One" title="IBM Q System One">IBM Q System One</a> (2019), the first circuit-based commercial quantum computer</figcaption></figure> <ul><li>IBM unveiled its first commercial quantum computer, the <a href="/wiki/IBM_Q_System_One" title="IBM Q System One">IBM Q System One</a>,<sup id="cite_ref-246" class="reference"><a href="#cite_note-246"><span class="cite-bracket">[</span>246<span class="cite-bracket">]</span></a></sup> designed by UK-based <a href="/wiki/Map_Project_Office" title="Map Project Office">Map Project Office</a> and Universal Design Studio and manufactured by Goppion.<sup id="cite_ref-247" class="reference"><a href="#cite_note-247"><span class="cite-bracket">[</span>247<span class="cite-bracket">]</span></a></sup></li> <li>Austrian physicists demonstrated self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics using a feedback loop between a classical computer and a quantum co-processor.<sup id="cite_ref-Nat-20190515_248-0" class="reference"><a href="#cite_note-Nat-20190515-248"><span class="cite-bracket">[</span>248<span class="cite-bracket">]</span></a></sup></li> <li>Griffith University, UNSW and UTS, in partnership with seven universities in the United States, develop noise cancelling for quantum bits via machine learning, taking quantum noise in a quantum chip down to 0%.<sup id="cite_ref-249" class="reference"><a href="#cite_note-249"><span class="cite-bracket">[</span>249<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-250" class="reference"><a href="#cite_note-250"><span class="cite-bracket">[</span>250<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Quantum_Darwinism" title="Quantum Darwinism">Quantum Darwinism</a> was observed in diamond at room temperature.<sup id="cite_ref-PRL-20191001_251-0" class="reference"><a href="#cite_note-PRL-20191001-251"><span class="cite-bracket">[</span>251<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Science-20190913_252-0" class="reference"><a href="#cite_note-Science-20190913-252"><span class="cite-bracket">[</span>252<span class="cite-bracket">]</span></a></sup></li> <li>Google revealed its <a href="/wiki/Sycamore_processor" title="Sycamore processor">Sycamore processor</a>, consisting of 53 qubits. A paper by Google's quantum computer research team was briefly available in late September 2019, claiming the project had reached <a href="/wiki/Quantum_supremacy" title="Quantum supremacy">quantum supremacy</a>.<sup id="cite_ref-253" class="reference"><a href="#cite_note-253"><span class="cite-bracket">[</span>253<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-254" class="reference"><a href="#cite_note-254"><span class="cite-bracket">[</span>254<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-255" class="reference"><a href="#cite_note-255"><span class="cite-bracket">[</span>255<span class="cite-bracket">]</span></a></sup> Google also developed a cryogenic chip for controlling qubits from within a dilution refrigerator.<sup id="cite_ref-256" class="reference"><a href="#cite_note-256"><span class="cite-bracket">[</span>256<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/University_of_Science_and_Technology_of_China" title="University of Science and Technology of China">University of Science and Technology of China</a> researchers demonstrated boson sampling with 14 detected photons.<sup id="cite_ref-257" class="reference"><a href="#cite_note-257"><span class="cite-bracket">[</span>257<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="2020s">2020s</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=48" title="Edit section: 2020s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="2020">2020</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=49" title="Edit section: 2020"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/2020_in_science" title="2020 in science">2020 in science</a>, <a href="/wiki/Timeline_of_computing_2020%E2%80%93present" title="Timeline of computing 2020–present">Timeline of computing 2020–present</a>, and <a href="/wiki/2020_in_philosophy" title="2020 in philosophy">2020 in philosophy</a></div> <ul><li>20 April – UNSW Sydney develops a way of producing 'hot qubits' – quantum devices that operate at 1.5 kelvin.<sup id="cite_ref-258" class="reference"><a href="#cite_note-258"><span class="cite-bracket">[</span>258<span class="cite-bracket">]</span></a></sup></li> <li>11 March – UNSW perform electric nuclear resonance to control single atoms in electronic devices.<sup id="cite_ref-259" class="reference"><a href="#cite_note-259"><span class="cite-bracket">[</span>259<span class="cite-bracket">]</span></a></sup></li> <li>23 April – University of Tokyo and Australian scientists create and successfully test a solution to the quantum wiring problem, creating a 2D structure for qubits. Such structure can be built using existing integrated circuit technology and has considerably lower cross-talk.<sup id="cite_ref-260" class="reference"><a href="#cite_note-260"><span class="cite-bracket">[</span>260<span class="cite-bracket">]</span></a></sup></li> <li>16 January – Quantum physicists report the first direct splitting of one photon into three using <a href="/wiki/Spontaneous_parametric_down-conversion" title="Spontaneous parametric down-conversion">spontaneous parametric down-conversion</a> which may have applications in <a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">quantum technology</a>.<sup id="cite_ref-261" class="reference"><a href="#cite_note-261"><span class="cite-bracket">[</span>261<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-262" class="reference"><a href="#cite_note-262"><span class="cite-bracket">[</span>262<span class="cite-bracket">]</span></a></sup></li> <li>11 February – Quantum engineers report that they created <a href="/wiki/Artificial_atom" class="mw-redirect" title="Artificial atom">artificial atoms</a> in <a href="/wiki/Silicon_quantum_dot" title="Silicon quantum dot">silicon quantum dots</a> for <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a> and that artificial atoms with a higher number of electrons can be more stable qubits than previously thought possible. Enabling <a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">silicon-based quantum computers</a> may make it possible to reuse the manufacturing technology of "classical" modern-day computer chips among other advantages.<sup id="cite_ref-263" class="reference"><a href="#cite_note-263"><span class="cite-bracket">[</span>263<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-264" class="reference"><a href="#cite_note-264"><span class="cite-bracket">[</span>264<span class="cite-bracket">]</span></a></sup></li> <li>14 February – Quantum physicists develop a novel <a href="/wiki/Single-photon_source" title="Single-photon source">single-photon source</a> which may allow bridging of semiconductor-based quantum-computers that use photons by converting the state of an electron <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> to the <a href="/wiki/Polarization_(waves)" title="Polarization (waves)">polarisation</a> of a photon. They showed that they can generate a single photon in a controlled way without the need for <a href="/wiki/Random" class="mw-redirect" title="Random">randomly</a> formed <a href="/wiki/Quantum_dot_single-photon_source" title="Quantum dot single-photon source">quantum dots</a> or structural defects in diamonds.<sup id="cite_ref-265" class="reference"><a href="#cite_note-265"><span class="cite-bracket">[</span>265<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-266" class="reference"><a href="#cite_note-266"><span class="cite-bracket">[</span>266<span class="cite-bracket">]</span></a></sup></li> <li>25 February – Scientists visualize a <a href="/wiki/Quantum_measurement" class="mw-redirect" title="Quantum measurement">quantum measurement</a>: by taking snapshots of ion states at different times of measurement via coupling of a trapped ion <a href="/wiki/Qutrit" title="Qutrit">qutrit</a> to the photon environment, they showed that the changes of the degrees of <a href="/wiki/Quantum_superposition" title="Quantum superposition">superpositions</a>, and therefore of <a href="/wiki/Probabilities" class="mw-redirect" title="Probabilities">probabilities</a> of states after measurement, happens gradually under the measurement influence.<sup id="cite_ref-267" class="reference"><a href="#cite_note-267"><span class="cite-bracket">[</span>267<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-268" class="reference"><a href="#cite_note-268"><span class="cite-bracket">[</span>268<span class="cite-bracket">]</span></a></sup></li> <li><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:IQM_Quantum_Computer_Espoo_Finland.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/IQM_Quantum_Computer_Espoo_Finland.jpg/220px-IQM_Quantum_Computer_Espoo_Finland.jpg" decoding="async" width="220" height="330" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/IQM_Quantum_Computer_Espoo_Finland.jpg/330px-IQM_Quantum_Computer_Espoo_Finland.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/IQM_Quantum_Computer_Espoo_Finland.jpg/440px-IQM_Quantum_Computer_Espoo_Finland.jpg 2x" data-file-width="4480" data-file-height="6720" /></a><figcaption>Working IQM Quantum Computer installed in Espoo, Finland in 2020</figcaption></figure>2 March – Scientists report achieving repeated <a href="/wiki/Quantum_nondemolition_measurement" title="Quantum nondemolition measurement">quantum nondemolition measurements</a> of an electron's spin in a silicon quantum dot: measurements that do not change the electron's spin in the process.<sup id="cite_ref-269" class="reference"><a href="#cite_note-269"><span class="cite-bracket">[</span>269<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-270" class="reference"><a href="#cite_note-270"><span class="cite-bracket">[</span>270<span class="cite-bracket">]</span></a></sup></li> <li>11 March – Quantum engineers report to have controlled the nucleus of a single atom using only electric fields. This was first suggested to be possible in 1961 and may be used for silicon <a href="/wiki/Quantum_computer" class="mw-redirect" title="Quantum computer">quantum computers</a> that use single-atom spins without needing oscillating magnetic fields. This may be especially useful for <a href="/wiki/Nanodevice" class="mw-redirect" title="Nanodevice">nanodevices</a>, for precise sensors of electric and magnetic fields, as well as for fundamental inquiries into <a href="/wiki/Quantum_physics" class="mw-redirect" title="Quantum physics">quantum nature</a>.<sup id="cite_ref-271" class="reference"><a href="#cite_note-271"><span class="cite-bracket">[</span>271<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-272" class="reference"><a href="#cite_note-272"><span class="cite-bracket">[</span>272<span class="cite-bracket">]</span></a></sup></li> <li>19 March – A US Army laboratory announces that its scientists analysed a <a href="/wiki/Rydberg_atom#Current_research_directions" title="Rydberg atom">Rydberg sensor</a>'s sensitivity to oscillating electric fields over an enormous range of frequencies—from <span class="nowrap">0 to 10^12 <a href="/wiki/Hertz" title="Hertz">Hz</a></span> (the spectrum to 0.3 mm wavelength). The Rydberg sensor may potentially be used to detect communications signals as it could reliably detect signals over the entire spectrum and compare favourably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.<sup id="cite_ref-2020-03-19_Phys_273-0" class="reference"><a href="#cite_note-2020-03-19_Phys-273"><span class="cite-bracket">[</span>273<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-274" class="reference"><a href="#cite_note-274"><span class="cite-bracket">[</span>274<span class="cite-bracket">]</span></a></sup></li> <li>23 March – Researchers report that they corrected for <a href="/wiki/Attenuation#Electromagnetic" title="Attenuation">signal loss</a> in a prototype quantum <a href="/wiki/Node_(networking)" title="Node (networking)">node</a> that can catch, store and entangle bits of quantum information. Their concepts could be used for key components of <a href="/w/index.php?title=Quantum_repeater&action=edit&redlink=1" class="new" title="Quantum repeater (page does not exist)">quantum repeaters</a> in quantum networks and extend their longest possible range.<sup id="cite_ref-275" class="reference"><a href="#cite_note-275"><span class="cite-bracket">[</span>275<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-276" class="reference"><a href="#cite_note-276"><span class="cite-bracket">[</span>276<span class="cite-bracket">]</span></a></sup></li> <li>15 April – Researchers demonstrate a proof-of-concept silicon quantum processor unit cell which works at 1.5 kelvin – many times warmer than common quantum processors that are being developed. The finding may enable the integration of classical control electronics with a qubit array and substantially reduce costs. The cooling requirements necessary for quantum computing have been called one of the toughest roadblocks in the field.<sup id="cite_ref-277" class="reference"><a href="#cite_note-277"><span class="cite-bracket">[</span>277<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-278" class="reference"><a href="#cite_note-278"><span class="cite-bracket">[</span>278<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-279" class="reference"><a href="#cite_note-279"><span class="cite-bracket">[</span>279<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-280" class="reference"><a href="#cite_note-280"><span class="cite-bracket">[</span>280<span class="cite-bracket">]</span></a></sup></li> <li>16 April – Scientists prove the existence of the <a href="/wiki/Rashba_effect" title="Rashba effect">Rashba effect</a> in bulk <a href="/wiki/Perovskite" title="Perovskite">perovskites</a>. Previously researchers have hypothesized that the materials' extraordinary electronic, magnetic and optical properties – which make it a commonly used material <a href="/wiki/Perovskite_solar_cell" title="Perovskite solar cell">for solar cells</a> and <a href="/wiki/Perovskite_nanocrystal" title="Perovskite nanocrystal">quantum electronics</a> – are related to this effect which to date had not been proven to be present in the material.<sup id="cite_ref-281" class="reference"><a href="#cite_note-281"><span class="cite-bracket">[</span>281<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-282" class="reference"><a href="#cite_note-282"><span class="cite-bracket">[</span>282<span class="cite-bracket">]</span></a></sup></li> <li>8 May – Researchers report to have developed a proof-of-concept of a <a href="/wiki/Quantum_radar" title="Quantum radar">quantum radar</a> using quantum entanglement and <a href="/wiki/Microwave" title="Microwave">microwaves</a> which may potentially be useful for the development of improved radar systems, security scanners and medical imaging systems.<sup id="cite_ref-283" class="reference"><a href="#cite_note-283"><span class="cite-bracket">[</span>283<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-284" class="reference"><a href="#cite_note-284"><span class="cite-bracket">[</span>284<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-285" class="reference"><a href="#cite_note-285"><span class="cite-bracket">[</span>285<span class="cite-bracket">]</span></a></sup></li> <li>12 May – Researchers report to have developed a method to selectively manipulate a layered <a href="/wiki/Manganite" title="Manganite">manganite</a>'s <a href="/wiki/Electronic_correlation" title="Electronic correlation">correlated electrons'</a> spin state while leaving its <a href="/wiki/Atomic_orbital" title="Atomic orbital">orbital state</a> intact using <a href="/wiki/Ultrashort_pulse" title="Ultrashort pulse">femtosecond</a> <a href="/wiki/X-ray_laser" title="X-ray laser">X-ray laser</a> pulses. This may indicate that <a href="/w/index.php?title=Orbitronics&action=edit&redlink=1" class="new" title="Orbitronics (page does not exist)">orbitronics</a> – using variations in the orientations of orbitals – may be used as the <a href="/wiki/Bit" title="Bit">basic unit of information</a> in novel IT devices.<sup id="cite_ref-286" class="reference"><a href="#cite_note-286"><span class="cite-bracket">[</span>286<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-287" class="reference"><a href="#cite_note-287"><span class="cite-bracket">[</span>287<span class="cite-bracket">]</span></a></sup></li> <li>19 May – Researchers report to have developed the first integrated silicon on-chip low-noise <a href="/wiki/Single-photon_source" title="Single-photon source">single-photon source</a> compatible with large-scale <a href="/wiki/Integrated_quantum_photonics" title="Integrated quantum photonics">quantum photonics</a>.<sup id="cite_ref-288" class="reference"><a href="#cite_note-288"><span class="cite-bracket">[</span>288<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-289" class="reference"><a href="#cite_note-289"><span class="cite-bracket">[</span>289<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-290" class="reference"><a href="#cite_note-290"><span class="cite-bracket">[</span>290<span class="cite-bracket">]</span></a></sup></li> <li>11 June – Scientists report the generation of <a href="/wiki/Rubidium" title="Rubidium">rubidium</a> <a href="/wiki/Bose%E2%80%93Einstein_condensate" title="Bose–Einstein condensate">Bose–Einstein condensates</a> (BECs) in the <a href="/wiki/Cold_Atom_Laboratory" title="Cold Atom Laboratory">Cold Atom Laboratory</a> aboard the <a href="/wiki/International_Space_Station" title="International Space Station">International Space Station</a> under <a href="/wiki/Microgravity" class="mw-redirect" title="Microgravity">microgravity</a> which could enable improved research of BECs and <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, whose physics are scaled to macroscopic scales in BECs, support long-term investigations of <a href="/wiki/Few-body_systems" title="Few-body systems">few-body physics</a>, support the development of techniques for <a href="/wiki/Atom_interferometer" title="Atom interferometer">atom–wave interferometry</a> and <a href="/wiki/Atom_laser" title="Atom laser">atom lasers</a> and verified the successful operation of the laboratory.<sup id="cite_ref-cal-iss_291-0" class="reference"><a href="#cite_note-cal-iss-291"><span class="cite-bracket">[</span>291<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-292" class="reference"><a href="#cite_note-292"><span class="cite-bracket">[</span>292<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-293" class="reference"><a href="#cite_note-293"><span class="cite-bracket">[</span>293<span class="cite-bracket">]</span></a></sup></li> <li>15 June – Scientists report the development of the smallest <a href="/wiki/Synthetic_molecular_motor" title="Synthetic molecular motor">synthetic molecular motor</a>, consisting of 12 atoms and a rotor of 4 atoms, shown to be capable of being powered by an electric current using an electron scanning microscope and moving even with very low amounts of energy due to <a href="/wiki/Quantum_tunneling" class="mw-redirect" title="Quantum tunneling">quantum tunneling</a>.<sup id="cite_ref-294" class="reference"><a href="#cite_note-294"><span class="cite-bracket">[</span>294<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-295" class="reference"><a href="#cite_note-295"><span class="cite-bracket">[</span>295<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-296" class="reference"><a href="#cite_note-296"><span class="cite-bracket">[</span>296<span class="cite-bracket">]</span></a></sup></li> <li>17 June – Quantum scientists report the development of a system that entangled two photon <a href="/wiki/Quantum_information_science" title="Quantum information science">quantum communication nodes</a> through a microwave cable that can send information in between without the photons being sent through, or occupying, the cable. On 12 June it was reported that they also, for the first time, entangled two <a href="/wiki/Phonon" title="Phonon">phonons</a> as well as erase information from their measurement after the measurement had been completed using <a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">delayed-choice quantum erasure</a>.<sup id="cite_ref-297" class="reference"><a href="#cite_note-297"><span class="cite-bracket">[</span>297<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-298" class="reference"><a href="#cite_note-298"><span class="cite-bracket">[</span>298<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-299" class="reference"><a href="#cite_note-299"><span class="cite-bracket">[</span>299<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-300" class="reference"><a href="#cite_note-300"><span class="cite-bracket">[</span>300<span class="cite-bracket">]</span></a></sup></li> <li>18 June – Honeywell announces a quantum computer with a quantum volume of 64, the highest at the time.<sup id="cite_ref-301" class="reference"><a href="#cite_note-301"><span class="cite-bracket">[</span>301<span class="cite-bracket">]</span></a></sup></li> <li>13 August – Universal coherence protection is reported to have been achieved in a solid-state spin qubit, a modification that allows quantum systems to stay operational (or "<a href="/wiki/Quantum_coherence" class="mw-redirect" title="Quantum coherence">coherent</a>") for 10,000 times longer than before.<sup id="cite_ref-302" class="reference"><a href="#cite_note-302"><span class="cite-bracket">[</span>302<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Miao_Blanton_Anderson_Bourassa_2020_303-0" class="reference"><a href="#cite_note-Miao_Blanton_Anderson_Bourassa_2020-303"><span class="cite-bracket">[</span>303<span class="cite-bracket">]</span></a></sup></li> <li>26 August – Scientists report that ionizing radiation from environmental radioactive materials and <a href="/wiki/Cosmic_ray" title="Cosmic ray">cosmic rays</a> may substantially limit the <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">coherence</a> times of qubits if they are not <a href="/wiki/Radiation_hardening" title="Radiation hardening">shielded</a> adequately.<sup id="cite_ref-304" class="reference"><a href="#cite_note-304"><span class="cite-bracket">[</span>304<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-305" class="reference"><a href="#cite_note-305"><span class="cite-bracket">[</span>305<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-306" class="reference"><a href="#cite_note-306"><span class="cite-bracket">[</span>306<span class="cite-bracket">]</span></a></sup></li> <li><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Google_Sycamore_Chip_002.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Google_Sycamore_Chip_002.png/220px-Google_Sycamore_Chip_002.png" decoding="async" width="220" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Google_Sycamore_Chip_002.png/330px-Google_Sycamore_Chip_002.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Google_Sycamore_Chip_002.png/440px-Google_Sycamore_Chip_002.png 2x" data-file-width="879" data-file-height="534" /></a><figcaption>Google Sycamore quantum computer processor in 2019</figcaption></figure>28 August – Quantum engineers working for Google report the largest chemical simulation on a <a href="/wiki/Quantum_computer" class="mw-redirect" title="Quantum computer">quantum computer</a> – a <a href="/wiki/Hartree%E2%80%93Fock_method" title="Hartree–Fock method">Hartree–Fock approximation</a> with a <a href="/wiki/Sycamore_(quantum_computer)" class="mw-redirect" title="Sycamore (quantum computer)">Sycamore</a> computer paired with a classical computer that analyzed results to provide new parameters for a 12-qubit system.<sup id="cite_ref-307" class="reference"><a href="#cite_note-307"><span class="cite-bracket">[</span>307<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-308" class="reference"><a href="#cite_note-308"><span class="cite-bracket">[</span>308<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-309" class="reference"><a href="#cite_note-309"><span class="cite-bracket">[</span>309<span class="cite-bracket">]</span></a></sup></li> <li>2 September – Researchers present an eight-user city-scale <a href="/wiki/Quantum_network" title="Quantum network">quantum communication network</a>, located in <a href="/wiki/Bristol" title="Bristol">Bristol</a>, England, using already deployed fibres without active switching or trusted nodes.<sup id="cite_ref-310" class="reference"><a href="#cite_note-310"><span class="cite-bracket">[</span>310<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-311" class="reference"><a href="#cite_note-311"><span class="cite-bracket">[</span>311<span class="cite-bracket">]</span></a></sup></li> <li>9 September – Xanadu offers a cloud quantum computing service, offering a photonic quantum computer.<sup id="cite_ref-312" class="reference"><a href="#cite_note-312"><span class="cite-bracket">[</span>312<span class="cite-bracket">]</span></a></sup></li> <li><span class="anchor" id="#10.1038/s41567-020-1031-5"></span>21 September – Researchers report the achievement of quantum entanglement between the <a href="/wiki/Vibrations_of_a_circular_membrane" title="Vibrations of a circular membrane">motion of a millimetre-sized mechanical oscillator</a> and a disparate distant spin system of a cloud of atoms.<sup id="cite_ref-313" class="reference"><a href="#cite_note-313"><span class="cite-bracket">[</span>313<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-314" class="reference"><a href="#cite_note-314"><span class="cite-bracket">[</span>314<span class="cite-bracket">]</span></a></sup></li> <li>3 December – Chinese researchers claim to have achieved <a href="/wiki/Quantum_supremacy" title="Quantum supremacy">quantum supremacy</a>, using a <a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">photonic</a> peak 76-qubit system (43 average) known as <i><a href="/wiki/Jiuzhang_(quantum_computer)" title="Jiuzhang (quantum computer)">Jiuzhang</a></i>, which performed calculations at 100 trillion times the speed of classical supercomputers.<sup id="cite_ref-315" class="reference"><a href="#cite_note-315"><span class="cite-bracket">[</span>315<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-316" class="reference"><a href="#cite_note-316"><span class="cite-bracket">[</span>316<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-317" class="reference"><a href="#cite_note-317"><span class="cite-bracket">[</span>317<span class="cite-bracket">]</span></a></sup></li> <li>29 October – Honeywell introduces a subscription for a quantum computing service, known as quantum computing as a service, with an ion trap quantum computer.<sup id="cite_ref-318" class="reference"><a href="#cite_note-318"><span class="cite-bracket">[</span>318<span class="cite-bracket">]</span></a></sup></li> <li>12 December – At the IEEE International Electron Devices Meeting (IEDM), IMEC shows an RF multiplexer chip that operates at temperatures as low as a few millikelvins, designed for quantum computers. Researchers from the Chalmers University of Technology developed a cryogenic low-noise amplifier (LNA) for amplifying signals from qubits, made of indium phosphide (InP) high-electron-mobility transistors (HEMTs).<sup id="cite_ref-319" class="reference"><a href="#cite_note-319"><span class="cite-bracket">[</span>319<span class="cite-bracket">]</span></a></sup></li> <li>21 December – Publication of research of "<a href="/wiki/Interaction-free_measurement" title="Interaction-free measurement">counterfactual quantum communication</a>" – whose first achievement was reported in 2017 – by which information can be exchanged without any physical particle traveling between observers and without quantum teleportation.<sup id="cite_ref-320" class="reference"><a href="#cite_note-320"><span class="cite-bracket">[</span>320<span class="cite-bracket">]</span></a></sup> The research suggests that this is based on some form of relation between the properties of modular angular momentum.<sup id="cite_ref-321" class="reference"><a href="#cite_note-321"><span class="cite-bracket">[</span>321<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-322" class="reference"><a href="#cite_note-322"><span class="cite-bracket">[</span>322<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-323" class="reference"><a href="#cite_note-323"><span class="cite-bracket">[</span>323<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2021">2021</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=50" title="Edit section: 2021"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>6 January – Chinese researchers report that they have built the world's largest integrated quantum communication network, combining over 700 optical fibers with two <a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">QKD</a>-ground-to-satellite links for a total distance between nodes of the network of networks of up to ~4,600 km.<sup id="cite_ref-324" class="reference"><a href="#cite_note-324"><span class="cite-bracket">[</span>324<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-325" class="reference"><a href="#cite_note-325"><span class="cite-bracket">[</span>325<span class="cite-bracket">]</span></a></sup></li> <li>13 January – Austrian researchers report the first realization of an <a href="/wiki/Controlled_NOT_gate" title="Controlled NOT gate">entangling gate</a> between two <a href="/wiki/Quantum_error_correction" title="Quantum error correction">logical qubits</a> encoded in <a href="/wiki/Toric_code" title="Toric code">topological quantum error-correction codes</a> using a <a href="/wiki/Trapped_ion_quantum_computer" class="mw-redirect" title="Trapped ion quantum computer">trapped-ion quantum computer</a> with 10 ions.<sup id="cite_ref-326" class="reference"><a href="#cite_note-326"><span class="cite-bracket">[</span>326<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-327" class="reference"><a href="#cite_note-327"><span class="cite-bracket">[</span>327<span class="cite-bracket">]</span></a></sup></li> <li>15 January – Researchers in China report the successful transmission of entangled photons between <a href="/wiki/Drone_(aircraft)" class="mw-redirect" title="Drone (aircraft)">drones</a>, used as nodes for the development of mobile quantum networks or flexible network extensions, marking the first work in which entangled particles were sent between two moving devices.<sup id="cite_ref-328" class="reference"><a href="#cite_note-328"><span class="cite-bracket">[</span>328<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-329" class="reference"><a href="#cite_note-329"><span class="cite-bracket">[</span>329<span class="cite-bracket">]</span></a></sup></li> <li>27 January – BMW announces the use of a quantum computer for the optimization of supply chains.<sup id="cite_ref-330" class="reference"><a href="#cite_note-330"><span class="cite-bracket">[</span>330<span class="cite-bracket">]</span></a></sup></li> <li>28 January – Swiss and German researchers report the development of a highly efficient single-photon source for quantum IT with a system of gated quantum dots in a tunable microcavity which captures photons released from these excited "artificial atoms".<sup id="cite_ref-331" class="reference"><a href="#cite_note-331"><span class="cite-bracket">[</span>331<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-332" class="reference"><a href="#cite_note-332"><span class="cite-bracket">[</span>332<span class="cite-bracket">]</span></a></sup></li> <li>3 February – Microsoft starts offering a cloud quantum computing service, called <a href="/wiki/Microsoft_Azure_Quantum" title="Microsoft Azure Quantum">Azure Quantum</a>.<sup id="cite_ref-333" class="reference"><a href="#cite_note-333"><span class="cite-bracket">[</span>333<span class="cite-bracket">]</span></a></sup></li> <li>5 February – Researchers demonstrate a first prototype of quantum-logic gates for <a href="/wiki/Quantum_network#Quantum_networks_for_computation" title="Quantum network">distributed quantum computers</a>.<sup id="cite_ref-334" class="reference"><a href="#cite_note-334"><span class="cite-bracket">[</span>334<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-335" class="reference"><a href="#cite_note-335"><span class="cite-bracket">[</span>335<span class="cite-bracket">]</span></a></sup></li> <li>11 March – Honeywell announces a quantum computer with a quantum volume of 512.<sup id="cite_ref-336" class="reference"><a href="#cite_note-336"><span class="cite-bracket">[</span>336<span class="cite-bracket">]</span></a></sup></li> <li>13 April – In a <a href="/wiki/Preprint" title="Preprint">preprint</a>, an astronomer describes for the first time how one could search for quantum communication <a href="/wiki/Quantum_information_science" title="Quantum information science">transmissions</a> sent by <a href="/wiki/Extraterrestrial_intelligence" title="Extraterrestrial intelligence">extraterrestrial intelligence</a> using existing telescope and receiver technology. He also provides arguments for why future searches of <a href="/wiki/Search_for_Extraterrestrial_Intelligence" class="mw-redirect" title="Search for Extraterrestrial Intelligence">SETI</a> should also target interstellar quantum communications.<sup id="cite_ref-337" class="reference"><a href="#cite_note-337"><span class="cite-bracket">[</span>337<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-338" class="reference"><a href="#cite_note-338"><span class="cite-bracket">[</span>338<span class="cite-bracket">]</span></a></sup></li> <li>7 May – Two studies complement research published September 2020 by <a href="/wiki/Quantum_entanglement#Entanglement_of_macroscopic_objects" title="Quantum entanglement">quantum-entangling</a> two mechanical oscillators.<sup id="cite_ref-339" class="reference"><a href="#cite_note-339"><span class="cite-bracket">[</span>339<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-340" class="reference"><a href="#cite_note-340"><span class="cite-bracket">[</span>340<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-341" class="reference"><a href="#cite_note-341"><span class="cite-bracket">[</span>341<span class="cite-bracket">]</span></a></sup></li> <li>8 June – Researchers from <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a> achieve <a href="/wiki/Quantum_communications" class="mw-redirect" title="Quantum communications">quantum communications</a> over optical fibres exceeding 600 km in length, a world-record distance.<sup id="cite_ref-342" class="reference"><a href="#cite_note-342"><span class="cite-bracket">[</span>342<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-343" class="reference"><a href="#cite_note-343"><span class="cite-bracket">[</span>343<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-344" class="reference"><a href="#cite_note-344"><span class="cite-bracket">[</span>344<span class="cite-bracket">]</span></a></sup></li></ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png/310px-Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png" decoding="async" width="310" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png/465px-Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png/620px-Simplified_scale_model_of_the_quantum_computing_demonstrator_housed_in_two_19-inch_racks_with_major_components_labeled.png 2x" data-file-width="1318" data-file-height="816" /></a><figcaption></figcaption></figure> <ul><li>17 June – Austrian, German and Swiss researchers present a quantum computing demonstrator fitting into two 19-inch <a href="/wiki/Server_rack" class="mw-redirect" title="Server rack">racks</a>, the world's first quality standards-meeting compact quantum computer.<sup id="cite_ref-345" class="reference"><a href="#cite_note-345"><span class="cite-bracket">[</span>345<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10.1103/PRXQuantum.2.020343_346-0" class="reference"><a href="#cite_note-10.1103/PRXQuantum.2.020343-346"><span class="cite-bracket">[</span>346<span class="cite-bracket">]</span></a></sup></li> <li>29 June – IBM demonstrates a quantum advantage.<sup id="cite_ref-347" class="reference"><a href="#cite_note-347"><span class="cite-bracket">[</span>347<span class="cite-bracket">]</span></a></sup></li> <li>1 July – Rigetti develops a method to join several quantum processor chips together.<sup id="cite_ref-348" class="reference"><a href="#cite_note-348"><span class="cite-bracket">[</span>348<span class="cite-bracket">]</span></a></sup></li> <li>7 July – American researchers present a programmable <a href="/wiki/Quantum_simulator" title="Quantum simulator">quantum simulator</a> that can operate with 256 qubits,<sup id="cite_ref-349" class="reference"><a href="#cite_note-349"><span class="cite-bracket">[</span>349<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-350" class="reference"><a href="#cite_note-350"><span class="cite-bracket">[</span>350<span class="cite-bracket">]</span></a></sup> and on the same date and journal another team presents a quantum simulator of 196 Rydeberg atoms trapped in <a href="/wiki/Optical_tweezer" class="mw-redirect" title="Optical tweezer">optical tweezers</a>.<sup id="cite_ref-351" class="reference"><a href="#cite_note-351"><span class="cite-bracket">[</span>351<span class="cite-bracket">]</span></a></sup></li> <li>25 October – Chinese researchers report that they have developed the world's fastest programmable quantum computers. The photon-based <i>Jiuzhang 2</i> is claimed to calculate a task in one millisecond, that otherwise would have taken a conventional computer 30 trillion years to complete. Additionally, <i>Zuchongzhi 2</i> is a 66-qubit programmable superconducting quantum computer that was claimed to be the world's fastest quantum computer that can run a calculation task one million times more complex than Google's <a href="/wiki/Sycamore_processor" title="Sycamore processor">Sycamore</a>, as well as being 10 million times faster.<sup id="cite_ref-352" class="reference"><a href="#cite_note-352"><span class="cite-bracket">[</span>352<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-353" class="reference"><a href="#cite_note-353"><span class="cite-bracket">[</span>353<span class="cite-bracket">]</span></a></sup><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Quantum_supremacy#Progress_in_the_21st_century" title="Quantum supremacy">Quantum supremacy § Progress in the 21st century</a></div></li> <li>11 November – The first simulation of <a href="/wiki/Baryon" title="Baryon">baryons</a> on a quantum computer is reported by <a href="/wiki/University_of_Waterloo" title="University of Waterloo">University of Waterloo</a>.<sup id="cite_ref-354" class="reference"><a href="#cite_note-354"><span class="cite-bracket">[</span>354<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-355" class="reference"><a href="#cite_note-355"><span class="cite-bracket">[</span>355<span class="cite-bracket">]</span></a></sup></li> <li>16 November – IBM claims that it has created a 127 quantum bit processor, '<a href="/wiki/IBM_Eagle" title="IBM Eagle">IBM Eagle</a>', which according to a report is the most powerful quantum processor known. According to the report, the company had not yet published an academic paper describing its metrics, performance or abilities.<sup id="cite_ref-356" class="reference"><a href="#cite_note-356"><span class="cite-bracket">[</span>356<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-357" class="reference"><a href="#cite_note-357"><span class="cite-bracket">[</span>357<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2022">2022</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=51" title="Edit section: 2022"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>18 January – Europe's first quantum annealer with more than 5,000 qubits is presented in Jülich, Germany.<sup id="cite_ref-358" class="reference"><a href="#cite_note-358"><span class="cite-bracket">[</span>358<span class="cite-bracket">]</span></a></sup></li> <li>24 March – The first prototype, photonic, quantum <a href="/wiki/Memristor" title="Memristor">memristive device</a>, for <a href="/wiki/Neuromorphic_computing" title="Neuromorphic computing">neuromorphic (quantum-) computers</a> and <a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">artificial neural networks</a>, that is "able to produce memristive dynamics on single-photon states through a scheme of measurement and classical feedback" is invented.<sup id="cite_ref-359" class="reference"><a href="#cite_note-359"><span class="cite-bracket">[</span>359<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-360" class="reference"><a href="#cite_note-360"><span class="cite-bracket">[</span>360<span class="cite-bracket">]</span></a></sup></li> <li>14 April – The Quantinuum System Model H1-2 doubles its performance claiming to be the first commercial quantum computer to pass <a href="/wiki/Quantum_volume" title="Quantum volume">quantum volume</a> 4096.<sup id="cite_ref-361" class="reference"><a href="#cite_note-361"><span class="cite-bracket">[</span>361<span class="cite-bracket">]</span></a></sup></li> <li>26 May – A universal set of computational operations on fault-tolerant quantum bits is demonstrated by a team of experimental physicists in Innsbruck, Austria.<sup id="cite_ref-362" class="reference"><a href="#cite_note-362"><span class="cite-bracket">[</span>362<span class="cite-bracket">]</span></a></sup></li> <li>22 June – The world's first quantum computer <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuit</a> is demonstrated.<sup id="cite_ref-363" class="reference"><a href="#cite_note-363"><span class="cite-bracket">[</span>363<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-364" class="reference"><a href="#cite_note-364"><span class="cite-bracket">[</span>364<span class="cite-bracket">]</span></a></sup></li> <li>28 June – Physicists report that <a href="/wiki/Search_for_extraterrestrial_intelligence#Quantum_communications" title="Search for extraterrestrial intelligence">interstellar quantum communication by other civilizations</a> could be possible and may be advantageous, identifying some potential challenges and factors for detecting such. They may use, for example, X-ray photons for remotely established <a href="/wiki/Quantum_communication" class="mw-redirect" title="Quantum communication">quantum communications</a> and quantum teleportation as the communication mode.<sup id="cite_ref-365" class="reference"><a href="#cite_note-365"><span class="cite-bracket">[</span>365<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-366" class="reference"><a href="#cite_note-366"><span class="cite-bracket">[</span>366<span class="cite-bracket">]</span></a></sup></li> <li>21 July – A universal <a href="/wiki/Qubit#Qudits_and_qutrits" title="Qubit">qudit</a> quantum processor is demonstrated with trapped ions.<sup id="cite_ref-367" class="reference"><a href="#cite_note-367"><span class="cite-bracket">[</span>367<span class="cite-bracket">]</span></a></sup></li> <li>15 August – <i><a href="/wiki/Nature_Materials" title="Nature Materials">Nature Materials</a></i> publishes the first work showing optical initialization and coherent control of nuclear spin qubits in 2D materials (an ultrathin hexagonal boron nitride).<sup id="cite_ref-368" class="reference"><a href="#cite_note-368"><span class="cite-bracket">[</span>368<span class="cite-bracket">]</span></a></sup></li> <li>24 August – <i>Nature</i> publishes the first research related to a set of 14 photons entangled with high efficiency and in a defined way.<sup id="cite_ref-369" class="reference"><a href="#cite_note-369"><span class="cite-bracket">[</span>369<span class="cite-bracket">]</span></a></sup></li> <li>26 August – Created photon pairs at several different frequencies using optical ultra-thin resonant <a href="/wiki/Electromagnetic_metasurface" title="Electromagnetic metasurface">metasurfaces</a> made up of arrays of <a href="/w/index.php?title=Sanomechanical_resonator&action=edit&redlink=1" class="new" title="Sanomechanical resonator (page does not exist)">nanoresonators</a> is reported.<sup id="cite_ref-370" class="reference"><a href="#cite_note-370"><span class="cite-bracket">[</span>370<span class="cite-bracket">]</span></a></sup></li> <li>29 August – Physicists at the Max Planck Institute for Quantum Optics deterministically generate entangled <a href="/wiki/Graph_state" title="Graph state">graph states</a> of up to 14 photons using a trapped rubidium atom in an optical cavity.<sup id="cite_ref-371" class="reference"><a href="#cite_note-371"><span class="cite-bracket">[</span>371<span class="cite-bracket">]</span></a></sup></li> <li>2 September – Researchers from The University of Tokyo and other Japanese institutions develop a systematic method that applies optimal control theory (GRAPE algorithm) to identify the theoretically optimal sequence from among all conceivable quantum operation sequences. It is necessary to complete the operations within the time that the coherent quantum state is maintained.<sup id="cite_ref-372" class="reference"><a href="#cite_note-372"><span class="cite-bracket">[</span>372<span class="cite-bracket">]</span></a></sup></li> <li>30 September – Researchers at University of New South Wales achieve a coherence time of two milliseconds, 100 times higher than the previous benchmark in the same quantum processor.<sup id="cite_ref-373" class="reference"><a href="#cite_note-373"><span class="cite-bracket">[</span>373<span class="cite-bracket">]</span></a></sup></li> <li>9 November – IBM presents its 433-qubit 'Osprey' quantum processor, the successor to its Eagle system.<sup id="cite_ref-374" class="reference"><a href="#cite_note-374"><span class="cite-bracket">[</span>374<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-375" class="reference"><a href="#cite_note-375"><span class="cite-bracket">[</span>375<span class="cite-bracket">]</span></a></sup></li> <li>1 December – The world's first portable quantum computer enters into commerce in <a href="/wiki/Japan" title="Japan">Japan</a>. With three variants, topping out at 3 qubits, they are meant for education. They are based on nuclear magnetic resonance (NMR), "NMR has extremely limited scaling capabilities" and <a href="/wiki/Dimethylphosphite" title="Dimethylphosphite">dimethylphosphite</a>.<sup id="cite_ref-376" class="reference"><a href="#cite_note-376"><span class="cite-bracket">[</span>376<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-377" class="reference"><a href="#cite_note-377"><span class="cite-bracket">[</span>377<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-378" class="reference"><a href="#cite_note-378"><span class="cite-bracket">[</span>378<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2023">2023</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=52" title="Edit section: 2023"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>3 February – At the University of Innsbruck, researchers entangle two ions over a distance of 230 meters.<sup id="cite_ref-379" class="reference"><a href="#cite_note-379"><span class="cite-bracket">[</span>379<span class="cite-bracket">]</span></a></sup></li> <li>8 February – <a href="/w/index.php?title=Alpine_Quantum_Technologies&action=edit&redlink=1" class="new" title="Alpine Quantum Technologies (page does not exist)">Alpine Quantum Technologies</a> (AQT) demonstrates a <a href="/wiki/Quantum_volume" title="Quantum volume">quantum volume</a> of 128 on its 19-inch rack-compatible quantum computer system PINE – a new record in Europe.<sup id="cite_ref-380" class="reference"><a href="#cite_note-380"><span class="cite-bracket">[</span>380<span class="cite-bracket">]</span></a></sup></li> <li>17 February - Fusion-based quantum computation is proposed<sup id="cite_ref-381" class="reference"><a href="#cite_note-381"><span class="cite-bracket">[</span>381<span class="cite-bracket">]</span></a></sup></li> <li>27 March – India's first quantum computing-based telecom network link is inaugurated.<sup id="cite_ref-382" class="reference"><a href="#cite_note-382"><span class="cite-bracket">[</span>382<span class="cite-bracket">]</span></a></sup></li> <li>14 June – IBM computer scientists report that a quantum computer produced better results for a <a href="/wiki/Physics" title="Physics">physics</a> problem than a conventional <a href="/wiki/Supercomputer" title="Supercomputer">supercomputer</a>.<sup id="cite_ref-NYT-20230614_383-0" class="reference"><a href="#cite_note-NYT-20230614-383"><span class="cite-bracket">[</span>383<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NAT-20230614_384-0" class="reference"><a href="#cite_note-NAT-20230614-384"><span class="cite-bracket">[</span>384<span class="cite-bracket">]</span></a></sup></li> <li>21 June – <a href="/wiki/Microsoft" title="Microsoft">Microsoft</a> declares that it is working on a <a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">topological quantum computer</a> based on <a href="/wiki/Majorana_fermion" title="Majorana fermion">Majorana fermions</a>, with the aim of arriving within 10 years at a computer capable of carrying out at least one million operations per second with an error rate of one operation every 1,000 billion (corresponding to 11 uninterrupted days of calculation).<sup id="cite_ref-385" class="reference"><a href="#cite_note-385"><span class="cite-bracket">[</span>385<span class="cite-bracket">]</span></a></sup></li> <li>13 October – Researchers at TU Darmstadt publish the first experimental demonstration of a qubit array with more than 1,000 qubits:<sup id="cite_ref-386" class="reference"><a href="#cite_note-386"><span class="cite-bracket">[</span>386<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-387" class="reference"><a href="#cite_note-387"><span class="cite-bracket">[</span>387<span class="cite-bracket">]</span></a></sup> A 3,000-site atomic array based on a 2D configuration of optical tweezers<sup id="cite_ref-388" class="reference"><a href="#cite_note-388"><span class="cite-bracket">[</span>388<span class="cite-bracket">]</span></a></sup> holds up to 1,305 atomic qubits.</li> <li>24 October – Atom Computing announces that it has "created a 1,225-site atomic array, currently populated with 1,180 qubits",<sup id="cite_ref-389" class="reference"><a href="#cite_note-389"><span class="cite-bracket">[</span>389<span class="cite-bracket">]</span></a></sup> based on <a href="/wiki/Rydberg_atom" title="Rydberg atom">Rydberg atoms</a>.<sup id="cite_ref-390" class="reference"><a href="#cite_note-390"><span class="cite-bracket">[</span>390<span class="cite-bracket">]</span></a></sup></li> <li>4 December – IBM presents its 1121-qubit ‘<a href="/wiki/IBM_Condor" title="IBM Condor">Condor</a>’ quantum processor, the successor to its <a href="/wiki/IBM_Osprey" title="IBM Osprey">Osprey</a> and <a href="/wiki/IBM_Eagle" title="IBM Eagle">Eagle</a> systems.<sup id="cite_ref-391" class="reference"><a href="#cite_note-391"><span class="cite-bracket">[</span>391<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-392" class="reference"><a href="#cite_note-392"><span class="cite-bracket">[</span>392<span class="cite-bracket">]</span></a></sup> The Condor system was the culmination of IBM's multi-year ‘Roadmap to Quantum Advantage’ seeking to break the 1,000 qubit threshold.<sup id="cite_ref-393" class="reference"><a href="#cite_note-393"><span class="cite-bracket">[</span>393<span class="cite-bracket">]</span></a></sup></li> <li>6 December – A group led by Misha Lukin at Harvard University realises a programmable quantum processor based on logical qubits using reconfigurable neutral atom arrays.<sup id="cite_ref-394" class="reference"><a href="#cite_note-394"><span class="cite-bracket">[</span>394<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="2024">2024</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=53" title="Edit section: 2024"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>8 May - Researchers deterministically fused small quantum states into states with up to eight qubits<sup id="cite_ref-395" class="reference"><a href="#cite_note-395"><span class="cite-bracket">[</span>395<span class="cite-bracket">]</span></a></sup></li> <li>30 May - Researchers at Photonic and Microsoft performed a teleported CNOT gate between qubits physically separated by 40 meters, confirming remote quantum entanglement between T-centers.<sup id="cite_ref-396" class="reference"><a href="#cite_note-396"><span class="cite-bracket">[</span>396<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=54" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_companies_involved_in_quantum_computing_or_communication" title="List of companies involved in quantum computing or communication">List of companies involved in quantum computing or communication</a></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">List of quantum processors</a></li> <li><a href="/wiki/Category:Quantum_information_scientists" title="Category:Quantum information scientists">Category: Quantum information scientists</a></li> <li><a href="/wiki/Timeline_of_computing_2020%E2%80%93present" title="Timeline of computing 2020–present">Timeline of computing 2020–present</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_computing_and_communication&action=edit&section=55" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMorRenner2014" class="citation journal cs1">Mor, Tal; Renner, Renato (2014). "Preface". <i>Natural Computing</i>. <b>13</b> (4): 447–452. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11047-014-9464-3">10.1007/s11047-014-9464-3</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Natural+Computing&rft.atitle=Preface&rft.volume=13&rft.issue=4&rft.pages=447-452&rft.date=2014&rft_id=info%3Adoi%2F10.1007%2Fs11047-014-9464-3&rft.aulast=Mor&rft.aufirst=Tal&rft.au=Renner%2C+Renato&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-park-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-park_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPark1970" class="citation journal cs1">Park, James (1970). "The concept of transition in quantum mechanics". <i><a href="/w/index.php?title=Foundations_of_Physics_(journal)&action=edit&redlink=1" class="new" title="Foundations of Physics (journal) (page does not exist)">Foundations of Physics</a></i>. <b>1</b> (1): 23–33. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1970FoPh....1...23P">1970FoPh....1...23P</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.623.5267">10.1.1.623.5267</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00708652">10.1007/BF00708652</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55890485">55890485</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=The+concept+of+transition+in+quantum+mechanics&rft.volume=1&rft.issue=1&rft.pages=23-33&rft.date=1970&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.623.5267%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55890485%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00708652&rft_id=info%3Abibcode%2F1970FoPh....1...23P&rft.aulast=Park&rft.aufirst=James&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennett1973" class="citation journal cs1">Bennett, C. (November 1973). <a rel="nofollow" class="external text" href="https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf">"Logical Reversibility of Computation"</a> <span class="cs1-format">(PDF)</span>. <i>IBM Journal of Research and Development</i>. <b>17</b> (6): 525–532. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1147%2Frd.176.0525">10.1147/rd.176.0525</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IBM+Journal+of+Research+and+Development&rft.atitle=Logical+Reversibility+of+Computation&rft.volume=17&rft.issue=6&rft.pages=525-532&rft.date=1973-11&rft_id=info%3Adoi%2F10.1147%2Frd.176.0525&rft.aulast=Bennett&rft.aufirst=C.&rft_id=https%3A%2F%2Fwww.math.ucsd.edu%2F~sbuss%2FCourseWeb%2FMath268_2013W%2FBennett_Reversibiity.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Poplavskii-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Poplavskii_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoplavskii1975" class="citation journal cs1 cs1-prop-foreign-lang-source">Poplavskii, R. P. (1975). <a rel="nofollow" class="external text" href="https://doi.org/10.3367%2FUFNr.0115.197503d.0465">"Thermodynamical models of information processing"</a>. <i>Uspekhi Fizicheskikh Nauk</i> (in Russian). <b>115</b> (3): 465–501. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3367%2FUFNr.0115.197503d.0465">10.3367/UFNr.0115.197503d.0465</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Uspekhi+Fizicheskikh+Nauk&rft.atitle=Thermodynamical+models+of+information+processing&rft.volume=115&rft.issue=3&rft.pages=465-501&rft.date=1975&rft_id=info%3Adoi%2F10.3367%2FUFNr.0115.197503d.0465&rft.aulast=Poplavskii&rft.aufirst=R.+P.&rft_id=https%3A%2F%2Fdoi.org%2F10.3367%252FUFNr.0115.197503d.0465&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenioff1980" class="citation journal cs1">Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". <i>Journal of Statistical Physics</i>. <b>22</b> (5): 563–591. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1980JSP....22..563B">1980JSP....22..563B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01011339">10.1007/bf01011339</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122949592">122949592</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Physics&rft.atitle=The+computer+as+a+physical+system%3A+A+microscopic+quantum+mechanical+Hamiltonian+model+of+computers+as+represented+by+Turing+machines&rft.volume=22&rft.issue=5&rft.pages=563-591&rft.date=1980&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122949592%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fbf01011339&rft_id=info%3Abibcode%2F1980JSP....22..563B&rft.aulast=Benioff&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-manin1980vychislimoe-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-manin1980vychislimoe_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManin1980" class="citation book cs1 cs1-prop-foreign-lang-source">Manin, Yu I (1980). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130510173823/http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.%281980%29.%5Bdjv%5D.zip"><i>Vychislimoe i nevychislimoe (Computable and Noncomputable)</i></a> (in Russian). Soviet Radio. pp. 13–15. Archived from <a rel="nofollow" class="external text" href="http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.(1980).%5Bdjv%5D.zip">the original</a> on May 10, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">March 4,</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vychislimoe+i+nevychislimoe+%28Computable+and+Noncomputable%29&rft.pages=13-15&rft.pub=Soviet+Radio&rft.date=1980&rft.aulast=Manin&rft.aufirst=Yu+I&rft_id=http%3A%2F%2Fpubl.lib.ru%2FARCHIVES%2FM%2FMANIN_Yuriy_Ivanovich%2FManin_Yu.I._Vychislimoe_i_nevychislimoe.%281980%29.%255Bdjv%255D.zip&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFToffoli1980" class="citation conference cs1"><a href="/wiki/Tommaso_Toffoli" title="Tommaso Toffoli">Toffoli, Tommaso</a> (1980). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100415041123/http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf">"Reversible computing"</a> <span class="cs1-format">(PDF)</span>. In J. W. de Bakker and <a href="/wiki/Jan_van_Leeuwen" title="Jan van Leeuwen">J. van Leeuwen</a> (ed.). <i>Automata, Languages and Programming</i>. Automata, Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science. Vol. 85. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-10003-2_104">10.1007/3-540-10003-2_104</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-10003-2" title="Special:BookSources/3-540-10003-2"><bdi>3-540-10003-2</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf">the original</a> <span class="cs1-format">(PDF)</span> on April 15, 2010.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Reversible+computing&rft.btitle=Automata%2C+Languages+and+Programming&rft.place=Noordwijkerhout%2C+Netherlands&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=632-644&rft.pub=Springer+Verlag&rft.date=1980&rft_id=info%3Adoi%2F10.1007%2F3-540-10003-2_104&rft.isbn=3-540-10003-2&rft.aulast=Toffoli&rft.aufirst=Tommaso&rft_id=http%3A%2F%2Fpm1.bu.edu%2F~tt%2Fpubl%2Frevcomp-rep.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimson_Garfinkel2021" class="citation magazine cs1">Simson Garfinkel (April 27, 2021). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/2021/04/27/1021714/tomorrows-computer-yesterday/">"Tomorrow's computer, yesterday: Four decades ago at Endicott House, an MIT professor convened a conference that launched quantum computing"</a>. <i>MIT News</i>. p. 10.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=MIT+News&rft.atitle=Tomorrow%27s+computer%2C+yesterday%3A+Four+decades+ago+at+Endicott+House%2C+an+MIT+professor+convened+a+conference+that+launched+quantum+computing.&rft.pages=10&rft.date=2021-04-27&rft.au=Simson+Garfinkel&rft_id=https%3A%2F%2Fwww.technologyreview.com%2F2021%2F04%2F27%2F1021714%2Ftomorrows-computer-yesterday%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenioff1982" class="citation journal cs1">Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines". <i>International Journal of Theoretical Physics</i>. <b>21</b> (3): 177–201. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982IJTP...21..177B">1982IJTP...21..177B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01857725">10.1007/BF01857725</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1572-9575">1572-9575</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122151269">122151269</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Theoretical+Physics&rft.atitle=Quantum+mechanical+Hamiltonian+models+of+discrete+processes+that+erase+their+own+histories%3A+Application+to+Turing+machines&rft.volume=21&rft.issue=3&rft.pages=177-201&rft.date=1982-04-01&rft_id=info%3Adoi%2F10.1007%2FBF01857725&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122151269%23id-name%3DS2CID&rft.issn=1572-9575&rft_id=info%3Abibcode%2F1982IJTP...21..177B&rft.aulast=Benioff&rft.aufirst=Paul+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf">"Simulating physics with computers"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf">the original</a> <span class="cs1-format">(PDF)</span> on August 30, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Simulating+physics+with+computers&rft_id=https%3A%2F%2Fpeople.eecs.berkeley.edu%2F~christos%2Fclassics%2FFeynman.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenioff1982" class="citation journal cs1">Benioff, Paul (1982). "Quantum mechanical hamiltonian models of turing machines". <i>Journal of Statistical Physics</i>. <b>29</b> (3): 515–546. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982JSP....29..515B">1982JSP....29..515B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01342185">10.1007/BF01342185</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14956017">14956017</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Physics&rft.atitle=Quantum+mechanical+hamiltonian+models+of+turing+machines&rft.volume=29&rft.issue=3&rft.pages=515-546&rft.date=1982&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14956017%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01342185&rft_id=info%3Abibcode%2F1982JSP....29..515B&rft.aulast=Benioff&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoottersZurek1982" class="citation journal cs1">Wootters, William K.; Zurek, Wojciech H. (1982). "A single quantum cannot be cloned". <i>Nature</i>. <b>299</b> (5886): 802–803. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982Natur.299..802W">1982Natur.299..802W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F299802a0">10.1038/299802a0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4339227">4339227</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+single+quantum+cannot+be+cloned&rft.volume=299&rft.issue=5886&rft.pages=802-803&rft.date=1982&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4339227%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F299802a0&rft_id=info%3Abibcode%2F1982Natur.299..802W&rft.aulast=Wootters&rft.aufirst=William+K.&rft.au=Zurek%2C+Wojciech+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieks1982" class="citation journal cs1">Dieks, Dennis (1982). "Communication by EPR devices". <i>Physics Letters A</i>. <b>92</b> (6): 271–272. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982PhLA...92..271D">1982PhLA...92..271D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.7183">10.1.1.654.7183</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2882%2990084-6">10.1016/0375-9601(82)90084-6</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+A&rft.atitle=Communication+by+EPR+devices&rft.volume=92&rft.issue=6&rft.pages=271-272&rft.date=1982&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.654.7183%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1016%2F0375-9601%2882%2990084-6&rft_id=info%3Abibcode%2F1982PhLA...92..271D&rft.aulast=Dieks&rft.aufirst=Dennis&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynman1982" class="citation journal cs1"><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman, Richard</a> (1982). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/BF02650179">"SIMULATING PHYSICS WITH COMPUTERS"</a>. <i>International Journal of Theoretical Physics</i>. <b>21</b> (6). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02650179">10.1007/BF02650179</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Theoretical+Physics&rft.atitle=SIMULATING+PHYSICS+WITH+COMPUTERS&rft.volume=21&rft.issue=6&rft.date=1982&rft_id=info%3Adoi%2F10.1007%2FBF02650179&rft.aulast=Feynman&rft.aufirst=Richard&rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2FBF02650179&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennettBrassard1984" class="citation journal cs1">Bennett, Charles H.; Brassard, Gilles (1984). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2014.05.025">"Quantum cryptography: Public key distribution and coin tossing"</a>. <i>Theoretical Computer Science</i>. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. <b>560</b>: 7–11. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.06557">2003.06557</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2014.05.025">10.1016/j.tcs.2014.05.025</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-3975">0304-3975</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+Computer+Science&rft.atitle=Quantum+cryptography%3A+Public+key+distribution+and+coin+tossing&rft.volume=560&rft.pages=7-11&rft.date=1984&rft_id=info%3Aarxiv%2F2003.06557&rft.issn=0304-3975&rft_id=info%3Adoi%2F10.1016%2Fj.tcs.2014.05.025&rft.aulast=Bennett&rft.aufirst=Charles+H.&rft.au=Brassard%2C+Gilles&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.tcs.2014.05.025&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeres1985" class="citation journal cs1">Peres, Asher (1985). "SReversible Logic and Quantum Compzters". <i>Physical Review A</i>. <b>32</b> (6): 3266–3276. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985PhRvA..32.3266P">1985PhRvA..32.3266P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.32.3266">10.1103/PhysRevA.32.3266</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9896493">9896493</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=SReversible+Logic+and+Quantum+Compzters&rft.volume=32&rft.issue=6&rft.pages=3266-3276&rft.date=1985&rft_id=info%3Apmid%2F9896493&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.32.3266&rft_id=info%3Abibcode%2F1985PhRvA..32.3266P&rft.aulast=Peres&rft.aufirst=Asher&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-qc1988-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-qc1988_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgetaYamamoto1988" class="citation journal cs1">Igeta, K.; Yamamoto, Yoshihisa (July 18, 1988). <a rel="nofollow" class="external text" href="https://opg.optica.org/abstract.cfm?uri=IQEC-1988-TuI4">"Quantum mechanical computers with single atom and photon fields"</a>. <i>International Conference on Quantum Electronics (1988), Paper TuI4</i>. Optica Publishing Group: TuI4.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Conference+on+Quantum+Electronics+%281988%29%2C+Paper+TuI4&rft.atitle=Quantum+mechanical+computers+with+single+atom+and+photon+fields&rft.pages=TuI4&rft.date=1988-07-18&rft.aulast=Igeta&rft.aufirst=K.&rft.au=Yamamoto%2C+Yoshihisa&rft_id=https%3A%2F%2Fopg.optica.org%2Fabstract.cfm%3Furi%3DIQEC-1988-TuI4&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-fredkin1988-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-fredkin1988_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilburn1989" class="citation journal cs1">Milburn, Gerard J. (May 1, 1989). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.62.2124">"Quantum optical Fredkin gate"</a>. <i>Physical Review Letters</i>. <b>62</b> (18): 2124–2127. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989PhRvL..62.2124M">1989PhRvL..62.2124M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.62.2124">10.1103/PhysRevLett.62.2124</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10039862">10039862</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Quantum+optical+Fredkin+gate&rft.volume=62&rft.issue=18&rft.pages=2124-2127&rft.date=1989-05-01&rft_id=info%3Apmid%2F10039862&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.62.2124&rft_id=info%3Abibcode%2F1989PhRvL..62.2124M&rft.aulast=Milburn&rft.aufirst=Gerard+J.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.62.2124&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Chakrabarti89-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chakrabarti89_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRayChakrabartiChakrabarti1989" class="citation journal cs1">Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". <i>Physical Review B</i>. <b>39</b> (16): 11828–11832. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989PhRvB..3911828R">1989PhRvB..3911828R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.39.11828">10.1103/PhysRevB.39.11828</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9948016">9948016</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Sherrington-Kirkpatrick+model+in+a+transverse+field%3A+Absence+of+replica+symmetry+breaking+due+to+quantum+fluctuations&rft.volume=39&rft.issue=16&rft.pages=11828-11832&rft.date=1989&rft_id=info%3Apmid%2F9948016&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.39.11828&rft_id=info%3Abibcode%2F1989PhRvB..3911828R&rft.aulast=Ray&rft.aufirst=P.&rft.au=Chakrabarti%2C+B.+K.&rft.au=Chakrabarti%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDasChakrabarti2008" class="citation journal cs1">Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". <i><a href="/wiki/Reviews_of_Modern_Physics" title="Reviews of Modern Physics">Rev. Mod. Phys.</a></i> <b>80</b> (3): 1061–1081. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0801.2193">0801.2193</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008RvMP...80.1061D">2008RvMP...80.1061D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.563.9990">10.1.1.563.9990</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.80.1061">10.1103/RevModPhys.80.1061</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14255125">14255125</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Rev.+Mod.+Phys.&rft.atitle=Quantum+Annealing+and+Analog+Quantum+Computation&rft.volume=80&rft.issue=3&rft.pages=1061-1081&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14255125%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2008RvMP...80.1061D&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.563.9990%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1103%2FRevModPhys.80.1061&rft_id=info%3Aarxiv%2F0801.2193&rft.aulast=Das&rft.aufirst=A.&rft.au=Chakrabarti%2C+B.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEkert1991" class="citation journal cs1">Ekert, A. K. (1991). "Quantum cryptography based on Bell's theorem". <i>Physical Review Letters</i>. <b>67</b> (6): 661–663. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PhRvL..67..661E">1991PhRvL..67..661E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.67.661">10.1103/PhysRevLett.67.661</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10044956">10044956</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27683254">27683254</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Quantum+cryptography+based+on+Bell%27s+theorem&rft.volume=67&rft.issue=6&rft.pages=661-663&rft.date=1991&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.67.661&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27683254%23id-name%3DS2CID&rft_id=info%3Apmid%2F10044956&rft_id=info%3Abibcode%2F1991PhRvL..67..661E&rft.aulast=Ekert&rft.aufirst=A.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWakiKassnerBirklWalther1992" class="citation journal cs1">Waki, I.; Kassner, S.; Birkl, G.; Walther, H. (March 30, 1992). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.68.2007">"Observation of ordered structures of laser-cooled ions in a quadrupole storage ring"</a>. <i>Physical Review Letters</i>. <b>68</b> (13): 2007–2010. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PhRvL..68.2007W">1992PhRvL..68.2007W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.68.2007">10.1103/PhysRevLett.68.2007</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10045280">10045280</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+ordered+structures+of+laser-cooled+ions+in+a+quadrupole+storage+ring&rft.volume=68&rft.issue=13&rft.pages=2007-2010&rft.date=1992-03-30&rft_id=info%3Apmid%2F10045280&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.68.2007&rft_id=info%3Abibcode%2F1992PhRvL..68.2007W&rft.aulast=Waki&rft.aufirst=I.&rft.au=Kassner%2C+S.&rft.au=Birkl%2C+G.&rft.au=Walther%2C+H.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.68.2007&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirklKassnerWalther1992" class="citation journal cs1">Birkl, G.; Kassner, S.; Walther, H. (May 28, 1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1038/357310a0">"Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring"</a>. <i>Nature</i>. <b>357</b> (6376): 310–313. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F357310a0">10.1038/357310a0</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Multiple-shell+structures+of+laser-cooled+24Mg%2B+ions+in+a+quadrupole+storage+ring&rft.volume=357&rft.issue=6376&rft.pages=310-313&rft.date=1992-05-28&rft_id=info%3Adoi%2F10.1038%2F357310a0&rft.aulast=Birkl&rft.aufirst=G.&rft.au=Kassner%2C+S.&rft.au=Walther%2C+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%2F357310a0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaizenGilliganBergquistItano1992" class="citation journal cs1">Raizen, M. G.; Gilligan, J. M.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J. (May 1, 1992). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevA.45.6493">"Ionic crystals in a linear Paul trap"</a>. <i>Physical Review A</i>. <b>45</b> (9): 6493–6501. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PhRvA..45.6493R">1992PhRvA..45.6493R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.45.6493">10.1103/PhysRevA.45.6493</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9907772">9907772</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Ionic+crystals+in+a+linear+Paul+trap&rft.volume=45&rft.issue=9&rft.pages=6493-6501&rft.date=1992-05-01&rft_id=info%3Apmid%2F9907772&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.45.6493&rft_id=info%3Abibcode%2F1992PhRvA..45.6493R&rft.aulast=Raizen&rft.aufirst=M.+G.&rft.au=Gilligan%2C+J.+M.&rft.au=Bergquist%2C+J.+C.&rft.au=Itano%2C+W.+M.&rft.au=Wineland%2C+D.+J.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevA.45.6493&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-cy1995-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-cy1995_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuangYamamoto1995" class="citation journal cs1">Chuang, Isaac L.; Yamamoto, Yoshihisa (1995). "Simple quantum computer". <i>Physical Review A</i>. <b>52</b> (5): 3489–3496. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9505011">quant-ph/9505011</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhRvA..52.3489C">1995PhRvA..52.3489C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.52.3489">10.1103/PhysRevA.52.3489</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9912648">9912648</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Simple+quantum+computer&rft.volume=52&rft.issue=5&rft.pages=3489-3496&rft.date=1995&rft_id=info%3Aarxiv%2Fquant-ph%2F9505011&rft_id=info%3Apmid%2F9912648&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.52.3489&rft_id=info%3Abibcode%2F1995PhRvA..52.3489C&rft.aulast=Chuang&rft.aufirst=Isaac+L.&rft.au=Yamamoto%2C+Yoshihisa&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShor1995" class="citation journal cs1"><a href="/wiki/Peter_W._Shor" class="mw-redirect" title="Peter W. Shor">Shor, Peter W.</a> (1995). "Scheme for reducing decoherence in quantum computer memory". <i>Physical Review A</i>. <b>52</b> (4): R2493–R2496. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhRvA..52.2493S">1995PhRvA..52.2493S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.52.R2493">10.1103/PhysRevA.52.R2493</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9912632">9912632</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Scheme+for+reducing+decoherence+in+quantum+computer+memory&rft.volume=52&rft.issue=4&rft.pages=R2493-R2496&rft.date=1995&rft_id=info%3Apmid%2F9912632&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.52.R2493&rft_id=info%3Abibcode%2F1995PhRvA..52.2493S&rft.aulast=Shor&rft.aufirst=Peter+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonroeMeekhofKingItano1995" class="citation journal cs1">Monroe, C.; Meekhof, D. M.; King, B. E.; Itano, W. M.; Wineland, D. J. (December 18, 1995). <a rel="nofollow" class="external text" href="http://tf.nist.gov/general/pdf/140.pdf">"Demonstration of a Fundamental Quantum Logic Gate"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review Letters</i>. <b>75</b> (25): 4714–4717. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhRvL..75.4714M">1995PhRvL..75.4714M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.75.4714">10.1103/PhysRevLett.75.4714</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10059979">10059979</a><span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Demonstration+of+a+Fundamental+Quantum+Logic+Gate&rft.volume=75&rft.issue=25&rft.pages=4714-4717&rft.date=1995-12-18&rft_id=info%3Apmid%2F10059979&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.75.4714&rft_id=info%3Abibcode%2F1995PhRvL..75.4714M&rft.aulast=Monroe&rft.aufirst=C.&rft.au=Meekhof%2C+D.+M.&rft.au=King%2C+B.+E.&rft.au=Itano%2C+W.+M.&rft.au=Wineland%2C+D.+J.&rft_id=http%3A%2F%2Ftf.nist.gov%2Fgeneral%2Fpdf%2F140.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKak1995" class="citation journal cs1">Kak, S. C. (1995). "Quantum Neural Computing". <i>Advances in Imaging and Electron Physics</i>. <b>94</b>: 259–313. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1076-5670%2808%2970147-2">10.1016/S1076-5670(08)70147-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780120147366" title="Special:BookSources/9780120147366"><bdi>9780120147366</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Imaging+and+Electron+Physics&rft.atitle=Quantum+Neural+Computing&rft.volume=94&rft.pages=259-313&rft.date=1995&rft_id=info%3Adoi%2F10.1016%2FS1076-5670%2808%2970147-2&rft.isbn=9780120147366&rft.aulast=Kak&rft.aufirst=S.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChrisley1995" class="citation journal cs1">Chrisley, R. (1995). Pyllkkänen, P.; Pyllkkö, P. (eds.). <a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4051e9f560742b9d28afb78da4622141ec4db89">"Quantum learning"</a>. <i>New Directions in Cognitive Science</i>. Finnish Society for Artificial Intelligence.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Directions+in+Cognitive+Science&rft.atitle=Quantum+learning&rft.date=1995&rft.aulast=Chrisley&rft.aufirst=R.&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fdocument%3Frepid%3Drep1%26type%3Dpdf%26doi%3Da4051e9f560742b9d28afb78da4622141ec4db89&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteane1996" class="citation journal cs1"><a href="/wiki/Andrew_Steane" title="Andrew Steane">Steane, Andrew</a> (1996). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060519062515/http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:quant-ph/9601029">"Multiple-Particle Interference and Quantum Error Correction"</a>. <i>Proceedings of the Royal Society of London A</i>. <b>452</b> (1954): 2551–2577. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9601029">quant-ph/9601029</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996RSPSA.452.2551S">1996RSPSA.452.2551S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1996.0136">10.1098/rspa.1996.0136</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8246615">8246615</a>. Archived from <a rel="nofollow" class="external text" href="http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:quant-ph/9601029">the original</a> on May 19, 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">April 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London+A&rft.atitle=Multiple-Particle+Interference+and+Quantum+Error+Correction&rft.volume=452&rft.issue=1954&rft.pages=2551-2577&rft.date=1996&rft_id=info%3Aarxiv%2Fquant-ph%2F9601029&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8246615%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frspa.1996.0136&rft_id=info%3Abibcode%2F1996RSPSA.452.2551S&rft.aulast=Steane&rft.aufirst=Andrew&rft_id=http%3A%2F%2Fwww.citebase.org%2Fcgi-bin%2Fcitations%3Fid%3Doai%3AarXiv.org%3Aquant-ph%2F9601029&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiVincenzo1996" class="citation news cs1">DiVincenzo, David P. (1996). "Topics in Quantum Computers". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/9612126">cond-mat/9612126</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996cond.mat.12126D">1996cond.mat.12126D</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topics+in+Quantum+Computers&rft.date=1996&rft_id=info%3Aarxiv%2Fcond-mat%2F9612126&rft_id=info%3Abibcode%2F1996cond.mat.12126D&rft.aulast=DiVincenzo&rft.aufirst=David+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLloyd1996" class="citation journal cs1"><a href="/wiki/Seth_Lloyd" title="Seth Lloyd">Lloyd, Lloyd</a> (1996). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.273.5278.1073">"Universal Quantum Simulators"</a>. <i>Science</i>. <b>273</b> (5278). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.273.5278.1073">10.1126/science.273.5278.1073</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Universal+Quantum+Simulators&rft.volume=273&rft.issue=5278&rft.date=1996&rft_id=info%3Adoi%2F10.1126%2Fscience.273.5278.1073&rft.aulast=Lloyd&rft.aufirst=Lloyd&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.273.5278.1073&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaev2003" class="citation journal cs1">Kitaev, A. Yu (2003). "Fault-tolerant quantum computation by anyons". <i>Annals of Physics</i>. <b>303</b> (1): 2–30. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9707021">quant-ph/9707021</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003AnPhy.303....2K">2003AnPhy.303....2K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0003-4916%2802%2900018-0">10.1016/S0003-4916(02)00018-0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119087885">119087885</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Physics&rft.atitle=Fault-tolerant+quantum+computation+by+anyons&rft.volume=303&rft.issue=1&rft.pages=2-30&rft.date=2003&rft_id=info%3Aarxiv%2Fquant-ph%2F9707021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119087885%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2FS0003-4916%2802%2900018-0&rft_id=info%3Abibcode%2F2003AnPhy.303....2K&rft.aulast=Kitaev&rft.aufirst=A.+Yu&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLossDiVincenzo1998" class="citation journal cs1">Loss, Daniel; DiVincenzo, David P. (January 1, 1998). "Quantum Computation with Quantum Dots". <i>Physical Review A</i>. <b>57</b> (1): 120–126. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/9701055">cond-mat/9701055</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvA..57..120L">1998PhRvA..57..120L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.57.120">10.1103/PhysRevA.57.120</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1050-2947">1050-2947</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13152124">13152124</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Quantum+Computation+with+Quantum+Dots&rft.volume=57&rft.issue=1&rft.pages=120-126&rft.date=1998-01-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13152124%23id-name%3DS2CID&rft_id=info%3Abibcode%2F1998PhRvA..57..120L&rft_id=info%3Aarxiv%2Fcond-mat%2F9701055&rft.issn=1050-2947&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.57.120&rft.aulast=Loss&rft.aufirst=Daniel&rft.au=DiVincenzo%2C+David+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuangGershenfeldKubinec1998" class="citation journal cs1">Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". <i>Physical Review Letters</i>. <b>80</b> (15): 3408–3411. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvL..80.3408C">1998PhRvL..80.3408C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.80.3408">10.1103/PhysRevLett.80.3408</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13891055">13891055</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Experimental+Implementation+of+Fast+Quantum+Searching&rft.volume=80&rft.issue=15&rft.pages=3408-3411&rft.date=1998-04-13&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13891055%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.80.3408&rft_id=info%3Abibcode%2F1998PhRvL..80.3408C&rft.aulast=Chuang&rft.aufirst=Isaac+L.&rft.au=Gershenfeld%2C+Neil&rft.au=Kubinec%2C+Mark&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKane1998" class="citation journal cs1">Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". <i>Nature</i>. <b>393</b> (6681): 133–137. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998Natur.393..133K">1998Natur.393..133K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F30156">10.1038/30156</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8470520">8470520</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+silicon-based+nuclear+spin+quantum+computer&rft.volume=393&rft.issue=6681&rft.pages=133-137&rft.date=1998-05-14&rft_id=info%3Adoi%2F10.1038%2F30156&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8470520%23id-name%3DS2CID&rft.issn=0028-0836&rft_id=info%3Abibcode%2F1998Natur.393..133K&rft.aulast=Kane&rft.aufirst=B.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuangGershenfeldKubinec1998" class="citation journal cs1"><a href="/wiki/Isaac_Chuang" title="Isaac Chuang">Chuang, Isaac L.</a>; <a href="/wiki/Neil_Gershenfeld" title="Neil Gershenfeld">Gershenfeld, Neil</a>; Kubinec, Markdoi (April 1998). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.80.3408">"Experimental Implementation of Fast Quantum Searching"</a>. <i>Physical Review Letters</i>. <b>80</b> (15). <a href="/wiki/American_Physical_Society" title="American Physical Society">American Physical Society</a>: 3408–3411. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvL..80.3408C">1998PhRvL..80.3408C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.80.3408">10.1103/PhysRevLett.80.3408</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Experimental+Implementation+of+Fast+Quantum+Searching&rft.volume=80&rft.issue=15&rft.pages=3408-3411&rft.date=1998-04&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.80.3408&rft_id=info%3Abibcode%2F1998PhRvL..80.3408C&rft.aulast=Chuang&rft.aufirst=Isaac+L.&rft.au=Gershenfeld%2C+Neil&rft.au=Kubinec%2C+Markdoi&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.80.3408&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.titech.ac.jp/english/public-relations/research/stories/faces13-nishimori">"Hidetoshi Nishimori – Applying quantum annealing to computers"</a>. <i>Tokyo Institute of Technology</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 8,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Tokyo+Institute+of+Technology&rft.atitle=Hidetoshi+Nishimori+%E2%80%93+Applying+quantum+annealing+to+computers&rft_id=https%3A%2F%2Fwww.titech.ac.jp%2Fenglish%2Fpublic-relations%2Fresearch%2Fstories%2Ffaces13-nishimori&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGottesman1999" class="citation book cs1"><a href="/wiki/Daniel_Gottesman" title="Daniel Gottesman">Gottesman, Daniel</a> (1999). "The Heisenberg Representation of Quantum Computers". In Corney, S. P.; Delbourgo, R.; Jarvis, P. D. (eds.). <i>Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics</i>. Vol. 22. Cambridge, Massachusetts: International Press. pp. 32–43. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9807006v1">quant-ph/9807006v1</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998quant.ph..7006G">1998quant.ph..7006G</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Heisenberg+Representation+of+Quantum+Computers&rft.btitle=Proceedings+of+the+Xxii+International+Colloquium+on+Group+Theoretical+Methods+in+Physics&rft.place=Cambridge%2C+Massachusetts&rft.pages=32-43&rft.pub=International+Press&rft.date=1999&rft_id=info%3Aarxiv%2Fquant-ph%2F9807006v1&rft_id=info%3Abibcode%2F1998quant.ph..7006G&rft.aulast=Gottesman&rft.aufirst=Daniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraunsteinCavesJozsaLinden1999" class="citation journal cs1">Braunstein, S. L.; Caves, C. M.; Jozsa, R.; Linden, N.; Popescu, S.; Schack, R. (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". <i>Physical Review Letters</i>. <b>83</b> (5): 1054–1057. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9811018">quant-ph/9811018</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999PhRvL..83.1054B">1999PhRvL..83.1054B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.83.1054">10.1103/PhysRevLett.83.1054</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14429986">14429986</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Separability+of+Very+Noisy+Mixed+States+and+Implications+for+NMR+Quantum+Computing&rft.volume=83&rft.issue=5&rft.pages=1054-1057&rft.date=1999&rft_id=info%3Aarxiv%2Fquant-ph%2F9811018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14429986%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.83.1054&rft_id=info%3Abibcode%2F1999PhRvL..83.1054B&rft.aulast=Braunstein&rft.aufirst=S.+L.&rft.au=Caves%2C+C.+M.&rft.au=Jozsa%2C+R.&rft.au=Linden%2C+N.&rft.au=Popescu%2C+S.&rft.au=Schack%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-nt1999-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-nt1999_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNakamuraPashkinTsai1999" class="citation journal cs1">Nakamura, Y.; Pashkin, Yu A.; Tsai, J. S. (April 1999). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/19718">"Coherent control of macroscopic quantum states in a single-Cooper-pair box"</a>. <i>Nature</i>. <b>398</b> (6730): 786–788. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/9904003">cond-mat/9904003</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999Natur.398..786N">1999Natur.398..786N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F19718">10.1038/19718</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4392755">4392755</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Coherent+control+of+macroscopic+quantum+states+in+a+single-Cooper-pair+box&rft.volume=398&rft.issue=6730&rft.pages=786-788&rft.date=1999-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4392755%23id-name%3DS2CID&rft_id=info%3Abibcode%2F1999Natur.398..786N&rft_id=info%3Aarxiv%2Fcond-mat%2F9904003&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2F19718&rft.aulast=Nakamura&rft.aufirst=Y.&rft.au=Pashkin%2C+Yu+A.&rft.au=Tsai%2C+J.+S.&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2F19718&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLindenPopescu2001" class="citation journal cs1">Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". <i>Physical Review Letters</i>. <b>87</b> (4): 047901. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9906008">quant-ph/9906008</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvL..87d7901L">2001PhRvL..87d7901L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.87.047901">10.1103/PhysRevLett.87.047901</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11461646">11461646</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10533287">10533287</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Good+Dynamics+versus+Bad+Kinematics%3A+Is+Entanglement+Needed+for+Quantum+Computation%3F&rft.volume=87&rft.issue=4&rft.pages=047901&rft.date=2001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10533287%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2001PhRvL..87d7901L&rft_id=info%3Aarxiv%2Fquant-ph%2F9906008&rft_id=info%3Apmid%2F11461646&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.87.047901&rft.aulast=Linden&rft.aufirst=Noah&rft.au=Popescu%2C+Sandu&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaussendorfBriegel2001" class="citation journal cs1">Raussendorf, R.; Briegel, H. J. (2001). "A One-Way Quantum Computer". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>86</b> (22): 5188–91. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvL..86.5188R">2001PhRvL..86.5188R</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.5345">10.1.1.252.5345</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.86.5188">10.1103/PhysRevLett.86.5188</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11384453">11384453</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=A+One-Way+Quantum+Computer&rft.volume=86&rft.issue=22&rft.pages=5188-91&rft.date=2001&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.5345%23id-name%3DCiteSeerX&rft_id=info%3Apmid%2F11384453&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.86.5188&rft_id=info%3Abibcode%2F2001PhRvL..86.5188R&rft.aulast=Raussendorf&rft.aufirst=R.&rft.au=Briegel%2C+H.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">n.d. <a rel="nofollow" class="external text" href="http://www.iqc.ca">Institute for Quantum Computing</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190507063322/https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts">"Quick Facts"</a>. May 15, 2013. Archived from <a rel="nofollow" class="external text" href="https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts">the original</a> on May 7, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">July 26,</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Quick+Facts&rft.date=2013-05-15&rft_id=https%3A%2F%2Fuwaterloo.ca%2Finstitute-for-quantum-computing%2Fabout%2Fquick-facts&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumkeVolkMütherBuchkremer2002" class="citation journal cs1">Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.89.097903">"Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits"</a>. <i>Physical Review Letters</i>. <b>89</b> (9): 097903. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0110140">quant-ph/0110140</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhRvL..89i7903D">2002PhRvL..89i7903D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.89.097903">10.1103/PhysRevLett.89.097903</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12190441">12190441</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Micro-optical+Realization+of+Arrays+of+Selectively+Addressable+Dipole+Traps%3A+A+Scalable+Configuration+for+Quantum+Computation+with+Atomic+Qubits&rft.volume=89&rft.issue=9&rft.pages=097903&rft.date=2002-08-08&rft_id=info%3Aarxiv%2Fquant-ph%2F0110140&rft_id=info%3Apmid%2F12190441&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.89.097903&rft_id=info%3Abibcode%2F2002PhRvL..89i7903D&rft.aulast=Dumke&rft.aufirst=R.&rft.au=Volk%2C+M.&rft.au=M%C3%BCther%2C+T.&rft.au=Buchkremer%2C+F.+B.+J.&rft.au=Birkl%2C+G.&rft.au=Ertmer%2C+W.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.89.097903&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Nat-20030102-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nat-20030102_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuldeRiebeLancasterBecher2003" class="citation journal cs1">Gulde, S.; Riebe, M.; Lancaster, G. P. T.; Becher, C.; Eschner, J.; Häffner, H.; Schmidt-Kaler, F.; Chuang, I. L.; Blatt, R. (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>421</b> (6918): 48–50. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Natur.421...48G">2003Natur.421...48G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature01336">10.1038/nature01336</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12511949">12511949</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4401708">4401708</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Implementation+of+the+Deutsch%E2%80%93Jozsa+algorithm+on+an+ion-trap+quantum+computer&rft.volume=421&rft.issue=6918&rft.pages=48-50&rft.date=2003-01-02&rft_id=info%3Adoi%2F10.1038%2Fnature01336&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4401708%23id-name%3DS2CID&rft_id=info%3Apmid%2F12511949&rft_id=info%3Abibcode%2F2003Natur.421...48G&rft.aulast=Gulde&rft.aufirst=S.&rft.au=Riebe%2C+M.&rft.au=Lancaster%2C+G.+P.+T.&rft.au=Becher%2C+C.&rft.au=Eschner%2C+J.&rft.au=H%C3%A4ffner%2C+H.&rft.au=Schmidt-Kaler%2C+F.&rft.au=Chuang%2C+I.+L.&rft.au=Blatt%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPittmanFitchJacobsFranson2003" class="citation journal cs1">Pittman, T. B.; Fitch, M. J.; Jacobs, B. C.; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". <i>Physical Review A</i>. <b>68</b> (3): 032316. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0303095">quant-ph/0303095</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003PhRvA..68c2316P">2003PhRvA..68c2316P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.68.032316">10.1103/physreva.68.032316</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119476903">119476903</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Experimental+controlled-not+logic+gate+for+single+photons+in+the+coincidence+basis&rft.volume=68&rft.issue=3&rft.pages=032316&rft.date=2003&rft_id=info%3Aarxiv%2Fquant-ph%2F0303095&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119476903%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2Fphysreva.68.032316&rft_id=info%3Abibcode%2F2003PhRvA..68c2316P&rft.aulast=Pittman&rft.aufirst=T.+B.&rft.au=Fitch%2C+M.+J.&rft.au=Jacobs%2C+B.+C.&rft.au=Franson%2C+J.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'BrienPrydeWhiteRalph2003" class="citation journal cs1">O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". <i>Nature</i>. <b>426</b> (6964): 264–267. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0403062">quant-ph/0403062</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Natur.426..264O">2003Natur.426..264O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02054">10.1038/nature02054</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14628045">14628045</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9883628">9883628</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Demonstration+of+an+all-optical+quantum+controlled-NOT+gate&rft.volume=426&rft.issue=6964&rft.pages=264-267&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9883628%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2003Natur.426..264O&rft_id=info%3Aarxiv%2Fquant-ph%2F0403062&rft_id=info%3Apmid%2F14628045&rft_id=info%3Adoi%2F10.1038%2Fnature02054&rft.aulast=O%27Brien&rft.aufirst=J.+L.&rft.au=Pryde%2C+G.+J.&rft.au=White%2C+A.+G.&rft.au=Ralph%2C+T.+C.&rft.au=Branning%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Nat-20030327-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nat-20030327_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt-KalerHäffnerRiebeGulde2003" class="citation journal cs1">Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G. P. T.; Deutschle, T.; Becher, C.; Roos, C. F.; Eschner, J.; Blatt, R. (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>422</b> (6930): 408–411. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Natur.422..408S">2003Natur.422..408S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature01494">10.1038/nature01494</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12660777">12660777</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4401898">4401898</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Realization+of+the+Cirac-Zoller+controlled-NOT+quantum+gate&rft.volume=422&rft.issue=6930&rft.pages=408-411&rft.date=2003-03-27&rft_id=info%3Adoi%2F10.1038%2Fnature01494&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4401898%23id-name%3DS2CID&rft_id=info%3Apmid%2F12660777&rft_id=info%3Abibcode%2F2003Natur.422..408S&rft.aulast=Schmidt-Kaler&rft.aufirst=F.&rft.au=H%C3%A4ffner%2C+H.&rft.au=Riebe%2C+M.&rft.au=Gulde%2C+S.&rft.au=Lancaster%2C+G.+P.+T.&rft.au=Deutschle%2C+T.&rft.au=Becher%2C+C.&rft.au=Roos%2C+C.+F.&rft.au=Eschner%2C+J.&rft.au=Blatt%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-NAT-20040617-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-NAT-20040617_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiebeHäffnerRoosHänsel2004" class="citation journal cs1">Riebe, M.; Häffner, H.; Roos, C. F.; Hänsel, W.; Benhelm, J.; Lancaster, G. P. T.; Körber, T. W.; Becher, C.; Schmidt-Kaler, F.; James, D. F. V.; Blatt, R. (June 17, 2004). "Deterministic quantum teleportation with atoms". <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>429</b> (6993): 734–737. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Natur.429..734R">2004Natur.429..734R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02570">10.1038/nature02570</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15201903">15201903</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4397716">4397716</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Deterministic+quantum+teleportation+with+atoms&rft.volume=429&rft.issue=6993&rft.pages=734-737&rft.date=2004-06-17&rft_id=info%3Adoi%2F10.1038%2Fnature02570&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4397716%23id-name%3DS2CID&rft_id=info%3Apmid%2F15201903&rft_id=info%3Abibcode%2F2004Natur.429..734R&rft.aulast=Riebe&rft.aufirst=M.&rft.au=H%C3%A4ffner%2C+H.&rft.au=Roos%2C+C.+F.&rft.au=H%C3%A4nsel%2C+W.&rft.au=Benhelm%2C+J.&rft.au=Lancaster%2C+G.+P.+T.&rft.au=K%C3%B6rber%2C+T.+W.&rft.au=Becher%2C+C.&rft.au=Schmidt-Kaler%2C+F.&rft.au=James%2C+D.+F.+V.&rft.au=Blatt%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaoChenZhangYang2004" class="citation journal cs1">Zhao, Z.; Chen, Y. A.; Zhang, A. N.; Yang, T.; Briegel, H. J.; Pan, J. W. (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". <i>Nature</i>. <b>430</b> (6995): 54–58. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0402096">quant-ph/0402096</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Natur.430...54Z">2004Natur.430...54Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02643">10.1038/nature02643</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15229594">15229594</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4336020">4336020</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Experimental+demonstration+of+five-photon+entanglement+and+open-destination+teleportation&rft.volume=430&rft.issue=6995&rft.pages=54-58&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4336020%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004Natur.430...54Z&rft_id=info%3Aarxiv%2Fquant-ph%2F0402096&rft_id=info%3Apmid%2F15229594&rft_id=info%3Adoi%2F10.1038%2Fnature02643&rft.aulast=Zhao&rft.aufirst=Z.&rft.au=Chen%2C+Y.+A.&rft.au=Zhang%2C+A.+N.&rft.au=Yang%2C+T.&rft.au=Briegel%2C+H.+J.&rft.au=Pan%2C+J.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumé2005" class="citation news cs1">Dumé, Belle (November 22, 2005). <a rel="nofollow" class="external text" href="https://physicsworld.com/a/breakthrough-for-quantum-measurement/">"Breakthrough for quantum measurement"</a>. PhysicsWeb<span class="reference-accessdate">. Retrieved <span class="nowrap">August 10,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breakthrough+for+quantum+measurement&rft.date=2005-11-22&rft.aulast=Dum%C3%A9&rft.aufirst=Belle&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fbreakthrough-for-quantum-measurement%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHäffnerHänselRoosBenhelm2005" class="citation journal cs1">Häffner, H.; Hänsel, W.; Roos, C. F.; Benhelm, J.; Chek-Al-Kar, D.; Chwalla, M.; Körber, T.; Rapol, U. D.; Riebe, M.; Schmidt, P. O.; Becher, C.; Gühne, O.; Dür, W.; Blatt, R. (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". <i>Nature</i>. <b>438</b> (7068): 643–646. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0603217">quant-ph/0603217</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Natur.438..643H">2005Natur.438..643H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature04279">10.1038/nature04279</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16319886">16319886</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4411480">4411480</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Scalable+multiparticle+entanglement+of+trapped+ions&rft.volume=438&rft.issue=7068&rft.pages=643-646&rft.date=2005-12-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4411480%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005Natur.438..643H&rft_id=info%3Aarxiv%2Fquant-ph%2F0603217&rft_id=info%3Apmid%2F16319886&rft_id=info%3Adoi%2F10.1038%2Fnature04279&rft.aulast=H%C3%A4ffner&rft.aufirst=H.&rft.au=H%C3%A4nsel%2C+W.&rft.au=Roos%2C+C.+F.&rft.au=Benhelm%2C+J.&rft.au=Chek-Al-Kar%2C+D.&rft.au=Chwalla%2C+M.&rft.au=K%C3%B6rber%2C+T.&rft.au=Rapol%2C+U.+D.&rft.au=Riebe%2C+M.&rft.au=Schmidt%2C+P.+O.&rft.au=Becher%2C+C.&rft.au=G%C3%BChne%2C+O.&rft.au=D%C3%BCr%2C+W.&rft.au=Blatt%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180830005255/http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml">"Bang-bang: a step closer to quantum supercomputers"</a>. England: University of Oxford. January 4, 2006. Archived from <a rel="nofollow" class="external text" href="http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml">the original</a> on August 30, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bang-bang%3A+a+step+closer+to+quantum+supercomputers&rft.date=2006-01-04&rft_id=http%3A%2F%2Fwww.admin.ox.ac.uk%2Fpo%2Fnews%2F2005-06%2Fjan%2F04a.shtml&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDowling2006" class="citation journal cs1"><a href="/wiki/Jonathan_P._Dowling" class="mw-redirect" title="Jonathan P. Dowling">Dowling, Jonathan P.</a> (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F439919a">"To Compute or Not to Compute?"</a>. <i>Nature</i>. <b>439</b> (7079): 919–920. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Natur.439..919D">2006Natur.439..919D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F439919a">10.1038/439919a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16495978">16495978</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4327844">4327844</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=To+Compute+or+Not+to+Compute%3F&rft.volume=439&rft.issue=7079&rft.pages=919-920&rft.date=2006&rft_id=info%3Adoi%2F10.1038%2F439919a&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4327844%23id-name%3DS2CID&rft_id=info%3Apmid%2F16495978&rft_id=info%3Abibcode%2F2006Natur.439..919D&rft.aulast=Dowling&rft.aufirst=Jonathan+P.&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F439919a&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumé2007" class="citation web cs1">Dumé, Belle (February 23, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071019032222/http://physicsworld.com/cws/article/news/24285">"Entanglement heats up"</a>. <i>Physics World</i>. Archived from <a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/news/24285">the original</a> on October 19, 2007.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+World&rft.atitle=Entanglement+heats+up&rft.date=2007-02-23&rft.aulast=Dum%C3%A9&rft.aufirst=Belle&rft_id=http%3A%2F%2Fphysicsworld.com%2Fcws%2Farticle%2Fnews%2F24285&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070207105035/http://www.york.ac.uk/admin/presspr/pressreleases/kirkclone.htm">"Captain Kirk's clone and the eavesdropper"</a> (Press release). England: University of York. February 16, 2006. Archived from <a rel="nofollow" class="external text" href="http://www.york.ac.uk/admin/presspr/pressreleases/kirkclone.htm">the original</a> on February 7, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Captain+Kirk%27s+clone+and+the+eavesdropper&rft.place=England&rft.pub=University+of+York&rft.date=2006-02-16&rft_id=http%3A%2F%2Fwww.york.ac.uk%2Fadmin%2Fpresspr%2Fpressreleases%2Fkirkclone.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.softmachines.org/wordpress/">"Soft Machines – Some personal views on nanotechnology, science and science policy from Richard Jones"</a>. June 23, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Soft+Machines+%E2%80%93+Some+personal+views+on+nanotechnology%2C+science+and+science+policy+from+Richard+Jones&rft.date=2023-06-23&rft_id=http%3A%2F%2Fwww.softmachines.org%2Fwordpress%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonite2010" class="citation news cs1">Simonite, Tom (June 8, 2010). <a rel="nofollow" class="external text" href="http://www.newscientisttech.com/article/dn9301-errorcheck-breakthrough-in-quantum-computing.html">"Error-check breakthrough in quantum computing"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 20,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Error-check+breakthrough+in+quantum+computing&rft.date=2010-06-08&rft.aulast=Simonite&rft.aufirst=Tom&rft_id=http%3A%2F%2Fwww.newscientisttech.com%2Farticle%2Fdn9301-errorcheck-breakthrough-in-quantum-computing.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2006/05/060508164700.htm">"12-qubits Reached In Quantum Information Quest"</a>. <i>ScienceDaily</i>. May 8, 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">May 20,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=12-qubits+Reached+In+Quantum+Information+Quest&rft.date=2006-05-08&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2006%2F05%2F060508164700.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonite2010" class="citation news cs1">Simonite, Tom (July 7, 2010). <a rel="nofollow" class="external text" href="http://www.newscientisttech.com/article/dn9502-flat-ion-trap-holds-quantum-computing-promise.html">"Flat 'ion trap' holds quantum computing promise"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 20,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Flat+%27ion+trap%27+holds+quantum+computing+promise&rft.date=2010-07-07&rft.aulast=Simonite&rft.aufirst=Tom&rft_id=http%3A%2F%2Fwww.newscientisttech.com%2Farticle%2Fdn9502-flat-ion-trap-holds-quantum-computing-promise.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuerweg2006" class="citation news cs1">Luerweg, Frank (July 12, 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071215041757/http://www.physorg.com/news71935118.html">"Quantum Computer: Laser tweezers sort atoms"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news71935118.html">the original</a> on December 15, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Quantum+Computer%3A+Laser+tweezers+sort+atoms&rft.date=2006-07-12&rft.aulast=Luerweg&rft.aufirst=Frank&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews71935118.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20061122102719/http://www.newscientisttech.com/article.ns?id=dn9768">"<span class="cs1-kern-left"></span>'Electron-spin' trick boosts quantum computing"</a>. <i>New Scientist</i>. August 16, 2006. Archived from <a rel="nofollow" class="external text" href="http://www.newscientisttech.com/article.ns?id=dn9768">the original</a> on November 22, 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=%27Electron-spin%27+trick+boosts+quantum+computing&rft.date=2006-08-16&rft_id=http%3A%2F%2Fwww.newscientisttech.com%2Farticle.ns%3Fid%3Ddn9768&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger2006" class="citation news cs1">Berger, Michael (August 16, 2006). <a rel="nofollow" class="external text" href="http://www.newswiretoday.com/news/7723/">"Quantum Dot Molecules – One Step Further Towards Quantum Computing"</a>. <i>Newswire Today</i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Newswire+Today&rft.atitle=Quantum+Dot+Molecules+%E2%80%93+One+Step+Further+Towards+Quantum+Computing&rft.date=2006-08-16&rft.aulast=Berger&rft.aufirst=Michael&rft_id=http%3A%2F%2Fwww.newswiretoday.com%2Fnews%2F7723%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080117223659/http://www.physorg.com/news76863086.html">"Spinning new theory on particle spin brings science closer to quantum computing"</a>. <i>PhysOrg.com</i>. September 7, 2006. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news76863086.html">the original</a> on January 17, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Spinning+new+theory+on+particle+spin+brings+science+closer+to+quantum+computing&rft.date=2006-09-07&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews76863086.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-spooky20061004-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-spooky20061004_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMerali2006" class="citation journal cs1">Merali, Zeeya (October 4, 2006). <a rel="nofollow" class="external text" href="http://www.newscientisttech.com/article/dn10226-spooky-steps-to-a-quantum-network.html">"Spooky steps to a quantum network"</a>. <i>New Scientist</i>. <b>192</b> (2572): 12. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0262-4079%2806%2960639-8">10.1016/s0262-4079(06)60639-8</a><span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Spooky+steps+to+a+quantum+network&rft.volume=192&rft.issue=2572&rft.pages=12&rft.date=2006-10-04&rft_id=info%3Adoi%2F10.1016%2Fs0262-4079%2806%2960639-8&rft.aulast=Merali&rft.aufirst=Zeeya&rft_id=http%3A%2F%2Fwww.newscientisttech.com%2Farticle%2Fdn10226-spooky-steps-to-a-quantum-network.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZyga2006" class="citation news cs1">Zyga, Lisa (October 24, 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071013014512/http://physorg.com/news80896839.html">"Scientists present method for entangling macroscopic objects"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://physorg.com/news80896839.html">the original</a> on October 13, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Scientists+present+method+for+entangling+macroscopic+objects&rft.date=2006-10-24&rft.aulast=Zyga&rft.aufirst=Lisa&rft_id=http%3A%2F%2Fphysorg.com%2Fnews80896839.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKloeppel2006" class="citation news cs1">Kloeppel, James E. (November 2, 2006). <a rel="nofollow" class="external text" href="http://news.illinois.edu/news/06/1102quantum.html">"Quantum coherence possible in incommensurate electronic systems"</a>. Champaign-Urbana, Illinois: University of Illinois<span class="reference-accessdate">. Retrieved <span class="nowrap">August 19,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+coherence+possible+in+incommensurate+electronic+systems&rft.date=2006-11-02&rft.aulast=Kloeppel&rft.aufirst=James+E.&rft_id=http%3A%2F%2Fnews.illinois.edu%2Fnews%2F06%2F1102quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070929120422/http://physorg.com/news83163617.html">"A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'<span class="cs1-kern-right"></span>"</a>. <i>PhysOrg.com</i>. November 19, 2006. Archived from <a rel="nofollow" class="external text" href="http://physorg.com/news83163617.html">the original</a> on September 29, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=A+Quantum+%28Computer%29+Step%3A+Study+Shows+It%27s+Feasible+to+Read+Data+Stored+as+Nuclear+%27Spins%27&rft.date=2006-11-19&rft_id=http%3A%2F%2Fphysorg.com%2Fnews83163617.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHecht2007" class="citation news cs1">Hecht, Jeff (January 8, 2007). <a rel="nofollow" class="external text" href="http://www.newscientisttech.com/article/dn10911-nanoscopic-coaxial-cable-transmits-light.html">"Nanoscopic 'coaxial cable' transmits light"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Nanoscopic+%27coaxial+cable%27+transmits+light&rft.date=2007-01-08&rft.aulast=Hecht&rft.aufirst=Jeff&rft_id=http%3A%2F%2Fwww.newscientisttech.com%2Farticle%2Fdn10911-nanoscopic-coaxial-cable-transmits-light.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070304090639/http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm">"Toshiba unveils quantum security"</a>. <i>The Engineer</i>. February 21, 2007. Archived from <a rel="nofollow" class="external text" href="http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm">the original</a> on March 4, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Engineer&rft.atitle=Toshiba+unveils+quantum+security&rft.date=2007-02-21&rft_id=http%3A%2F%2Fwww.e4engineering.com%2FArticles%2F298360%2FToshiba%2Bunveils%2Bquantum%2Bsecurity.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuZhouGühneGao2007" class="citation journal cs1">Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". <i>Nature Physics</i>. <b>3</b> (2): 91–95. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0609130">quant-ph/0609130</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007NatPh...3...91L">2007NatPh...3...91L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphys507">10.1038/nphys507</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16319327">16319327</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Physics&rft.atitle=Experimental+entanglement+of+six+photons+in+graph+states&rft.volume=3&rft.issue=2&rft.pages=91-95&rft.date=2007&rft_id=info%3Aarxiv%2Fquant-ph%2F0609130&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16319327%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphys507&rft_id=info%3Abibcode%2F2007NatPh...3...91L&rft.aulast=Lu&rft.aufirst=Chao-Yang&rft.au=Zhou%2C+Xiao-Qi&rft.au=G%C3%BChne%2C+Otfried&rft.au=Gao%2C+Wei-Bo&rft.au=Zhang%2C+Jin&rft.au=Yuan%2C+Zhen-Sheng&rft.au=Goebel%2C+Alexander&rft.au=Yang%2C+Tao&rft.au=Pan%2C+Jian-Wei&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDanosKashefiPanangaden2007" class="citation journal cs1">Danos, V.; Kashefi, E.; Panangaden, P. (2007). "The measurement calculus". <i>Journal of the Association for Computing Machinery</i>. <b>54</b> (2): 8. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0704.1263">0704.1263</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1219092.1219096">10.1145/1219092.1219096</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5851623">5851623</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Association+for+Computing+Machinery&rft.atitle=The+measurement+calculus&rft.volume=54&rft.issue=2&rft.pages=8&rft.date=2007&rft_id=info%3Aarxiv%2F0704.1263&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5851623%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1145%2F1219092.1219096&rft.aulast=Danos&rft.aufirst=V.&rft.au=Kashefi%2C+E.&rft.au=Panangaden%2C+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarquit2007" class="citation news cs1">Marquit, Miranda (April 18, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080117224207/http://www.physorg.com/news96107220.html">"First use of Deutsch's Algorithm in a cluster state quantum computer"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news96107220.html">the original</a> on January 17, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=First+use+of+Deutsch%27s+Algorithm+in+a+cluster+state+quantum+computer&rft.date=2007-04-18&rft.aulast=Marquit&rft.aufirst=Miranda&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews96107220.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeeya_Merali2007" class="citation news cs1">Zeeya Merali (March 15, 2007). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article.ns?id=mg19325954.200&feedId=fundamentals_rss20">"The universe is a string-net liquid"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=The+universe+is+a+string-net+liquid&rft.date=2007-03-15&rft.au=Zeeya+Merali&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle.ns%3Fid%3Dmg19325954.200%26feedId%3Dfundamentals_rss20&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://www.mpg.de/english/illustrationsDocumentation/documentation/pressReleases/2007/pressRelease200703091/index.html">"A Single-Photon Server with Just One Atom"</a> (Press release). <a href="/wiki/Max_Planck_Society" title="Max Planck Society">Max Planck Society</a>. March 12, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+Single-Photon+Server+with+Just+One+Atom&rft.pub=Max+Planck+Society&rft.date=2007-03-12&rft_id=http%3A%2F%2Fwww.mpg.de%2Fenglish%2FillustrationsDocumentation%2Fdocumentation%2FpressReleases%2F2007%2FpressRelease200703091%2Findex.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteve_Bush2007" class="citation news cs1">Steve Bush (April 19, 2007). <a rel="nofollow" class="external text" href="https://archive.today/20120515222358/http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm">"Cambridge team closer to working quantum computer"</a>. <i><a href="/wiki/Electronics_Weekly" title="Electronics Weekly">Electronics Weekly</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm">the original</a> on May 15, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Weekly&rft.atitle=Cambridge+team+closer+to+working+quantum+computer&rft.date=2007-04-19&rft.au=Steve+Bush&rft_id=http%3A%2F%2Fwww.electronicsweekly.com%2FArticles%2F2007%2F04%2F19%2F41206%2FCambridge%2Bteam%2Bcloser%2Bto%2Bworking%2Bquantum%2Bcomputer.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarivar2007" class="citation magazine cs1">Farivar, Cyrus (May 7, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080706171401/http://www.wired.com/science/discoveries/news/2007/05/quantumcoupling">"It's the "Wiring" That's Tricky in Quantum Computing"</a>. <i>Wired</i>. Archived from <a rel="nofollow" class="external text" href="https://www.wired.com/science/discoveries/news/2007/05/quantumcoupling">the original</a> on July 6, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wired&rft.atitle=It%27s+the+%22Wiring%22+That%27s+Tricky+in+Quantum+Computing&rft.date=2007-05-07&rft.aulast=Farivar&rft.aufirst=Cyrus&rft_id=https%3A%2F%2Fwww.wired.com%2Fscience%2Fdiscoveries%2Fnews%2F2007%2F05%2Fquantumcoupling&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://media-newswire.com/release_1049194.html">"NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits"</a> (Press release). Media-Newswire.com. May 8, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NEC%2C+JST%2C+and+RIKEN+Successfully+Demonstrate+World%27s+First+Controllably+Coupled+Qubits&rft.pub=Media-Newswire.com&rft.date=2007-05-08&rft_id=http%3A%2F%2Fmedia-newswire.com%2Frelease_1049194.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkel2007" class="citation news cs1">Minkel, J. R. (May 16, 2007). <a rel="nofollow" class="external text" href="http://www.sciam.com/article.cfm?articleId=959FBD96-E7F2-99DF-341F959A7DA2A292&chanId=sa013&modsrc=most_popular">"Spintronics Breaks the Silicon Barrier"</a>. <i><a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+American&rft.atitle=Spintronics+Breaks+the+Silicon+Barrier&rft.date=2007-05-16&rft.aulast=Minkel&rft.aufirst=J.+R.&rft_id=http%3A%2F%2Fwww.sciam.com%2Farticle.cfm%3FarticleId%3D959FBD96-E7F2-99DF-341F959A7DA2A292%26chanId%3Dsa013%26modsrc%3Dmost_popular&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZyga2007" class="citation news cs1">Zyga, Lisa (May 22, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080307093926/http://www.physorg.com/news99050442.html">"Scientists demonstrate quantum state exchange between light and matter"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news99050442.html">the original</a> on March 7, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Scientists+demonstrate+quantum+state+exchange+between+light+and+matter&rft.date=2007-05-22&rft.aulast=Zyga&rft.aufirst=Lisa&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews99050442.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuttChildressJiangTogan2007" class="citation journal cs1">Dutt, M. V.; Childress, L.; Jiang, L.; Togan, E.; Maze, J.; Jelezko, F.; Zibrov, A. S.; Hemmer, P. R; Lukin, M. D. (June 1, 2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". <i>Science</i>. <b>316</b> (5829): 1312–1316. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Sci...316.....D">2007Sci...316.....D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1139831">10.1126/science.1139831</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17540898">17540898</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20697722">20697722</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Quantum+Register+Based+on+Individual+Electronic+and+Nuclear+Spin+Qubits+in+Diamond&rft.volume=316&rft.issue=5829&rft.pages=1312-1316&rft.date=2007-06-01&rft_id=info%3Adoi%2F10.1126%2Fscience.1139831&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20697722%23id-name%3DS2CID&rft_id=info%3Apmid%2F17540898&rft_id=info%3Abibcode%2F2007Sci...316.....D&rft.aulast=Dutt&rft.aufirst=M.+V.&rft.au=Childress%2C+L.&rft.au=Jiang%2C+L.&rft.au=Togan%2C+E.&rft.au=Maze%2C+J.&rft.au=Jelezko%2C+F.&rft.au=Zibrov%2C+A.+S.&rft.au=Hemmer%2C+P.+R&rft.au=Lukin%2C+M.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlantenbergDe_GrootHarmansMooij2007" class="citation journal cs1">Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (June 14, 2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". <i>Nature</i>. <b>447</b> (7146): 836–839. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.447..836P">2007Natur.447..836P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05896">10.1038/nature05896</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17568742">17568742</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3054763">3054763</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Demonstration+of+controlled-NOT+quantum+gates+on+a+pair+of+superconducting+quantum+bits&rft.volume=447&rft.issue=7146&rft.pages=836-839&rft.date=2007-06-14&rft_id=info%3Adoi%2F10.1038%2Fnature05896&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3054763%23id-name%3DS2CID&rft_id=info%3Apmid%2F17568742&rft_id=info%3Abibcode%2F2007Natur.447..836P&rft.aulast=Plantenberg&rft.aufirst=J.+H.&rft.au=De+Groot%2C+P.+C.&rft.au=Harmans%2C+C.+J.+P.+M.&rft.au=Mooij%2C+J.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFInman2007" class="citation news cs1">Inman, Mason (June 17, 2007). <a rel="nofollow" class="external text" href="http://www.newscientisttech.com/article/dn12082-atom-trap-is-a-step-towards-a-quantum-computer-.html">"Atom trap is a step towards a quantum computer"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Atom+trap+is+a+step+towards+a+quantum+computer&rft.date=2007-06-17&rft.aulast=Inman&rft.aufirst=Mason&rft_id=http%3A%2F%2Fwww.newscientisttech.com%2Farticle%2Fdn12082-atom-trap-is-a-step-towards-a-quantum-computer-.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nanowerk.com/">"Nanotechnology and Emerging Technologies News from Nanowerk"</a>. <i>www.nanowerk.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.nanowerk.com&rft.atitle=Nanotechnology+and+Emerging+Technologies+News+from+Nanowerk&rft_id=https%3A%2F%2Fwww.nanowerk.com%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2007/07/070726142010.htm">"Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers"</a>. <i><a href="/wiki/Science_Daily" class="mw-redirect" title="Science Daily">Science Daily</a></i>. July 27, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Daily&rft.atitle=Discovery+Of+%27Hidden%27+Quantum+Order+Improves+Prospects+For+Quantum+Super+Computers&rft.date=2007-07-27&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2007%2F07%2F070726142010.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarquit2007" class="citation news cs1">Marquit, Miranda (July 23, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070926220146/http://www.physorg.com/news104418332.html">"Indium arsenide may provide clues to quantum information processing"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news104418332.html">the original</a> on September 26, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Indium+arsenide+may+provide+clues+to+quantum+information+processing&rft.date=2007-07-23&rft.aulast=Marquit&rft.aufirst=Miranda&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews104418332.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071218224341/http://www.nist.gov/public_affairs/releases/quantum_gate.html">"Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance"</a>. <i><a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">National Institute of Standards and Technology</a></i>. July 25, 2007. Archived from <a rel="nofollow" class="external text" href="https://www.nist.gov/public_affairs/releases/quantum_gate.html">the original</a> on December 18, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=National+Institute+of+Standards+and+Technology&rft.atitle=Thousands+of+Atoms+Swap+%27Spins%27+with+Partners+in+Quantum+Square+Dance&rft.date=2007-07-25&rft_id=https%3A%2F%2Fwww.nist.gov%2Fpublic_affairs%2Freleases%2Fquantum_gate.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZyga2007" class="citation news cs1">Zyga, Lisa (August 15, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080102004025/http://www.physorg.com/news106395871.html">"Ultrafast quantum computer uses optically controlled electrons"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news106395871.html">the original</a> on January 2, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Ultrafast+quantum+computer+uses+optically+controlled+electrons&rft.date=2007-08-15&rft.aulast=Zyga&rft.aufirst=Lisa&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews106395871.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBush2007" class="citation news cs1">Bush, Steve (August 15, 2007). <a rel="nofollow" class="external text" href="http://www.electronicsweekly.com/Articles/2007/08/15/41988/research-points-way-to-qubits-on-standard-chips.htm">"Research points way to qubits on standard chips"</a>. <i><a href="/wiki/Electronics_Weekly" title="Electronics Weekly">Electronics Weekly</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Weekly&rft.atitle=Research+points+way+to+qubits+on+standard+chips&rft.date=2007-08-15&rft.aulast=Bush&rft.aufirst=Steve&rft_id=http%3A%2F%2Fwww.electronicsweekly.com%2FArticles%2F2007%2F08%2F15%2F41988%2Fresearch-points-way-to-qubits-on-standard-chips.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2007/08/070816143801.htm">"Computing Breakthrough Could Elevate Security To Unprecedented Levels"</a>. <i>ScienceDaily</i>. August 17, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=Computing+Breakthrough+Could+Elevate+Security+To+Unprecedented+Levels&rft.date=2007-08-17&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2007%2F08%2F070816143801.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBattersby2007" class="citation news cs1">Battersby, Stephen (August 21, 2007). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/dn12516-blueprints-drawn-up-for-quantum-computer-ram.html">"Blueprints drawn up for quantum computer RAM"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Blueprints+drawn+up+for+quantum+computer+RAM&rft.date=2007-08-21&rft.aulast=Battersby&rft.aufirst=Stephen&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fdn12516-blueprints-drawn-up-for-quantum-computer-ram.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080101165713/http://physorg.com/news107357370.html">"Photon-transistors for the supercomputers of the future"</a>. <i>PhysOrg.com</i>. August 26, 2007. Archived from <a rel="nofollow" class="external text" href="http://physorg.com/news107357370.html">the original</a> on January 1, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Photon-transistors+for+the+supercomputers+of+the+future&rft.date=2007-08-26&rft_id=http%3A%2F%2Fphysorg.com%2Fnews107357370.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071228220630/http://www.ns.umich.edu/htdocs/releases/story.php?id=6016">"Physicists establish "spooky" quantum communication"</a>. University of Michigan. September 5, 2007. Archived from <a rel="nofollow" class="external text" href="http://www.ns.umich.edu/htdocs/releases/story.php?id=6016">the original</a> on December 28, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physicists+establish+%22spooky%22+quantum+communication&rft.date=2007-09-05&rft_id=http%3A%2F%2Fwww.ns.umich.edu%2Fhtdocs%2Freleases%2Fstory.php%3Fid%3D6016&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"> <a rel="nofollow" class="external text" href="http://www.huliq.com">huliq.com</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.huliq.com/34160/qubits-poised-to-reveal-our-secrets">"Qubits poised to reveal our secrets"</a>. September 13, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qubits+poised+to+reveal+our+secrets&rft.date=2007-09-13&rft_id=http%3A%2F%2Fwww.huliq.com%2F34160%2Fqubits-poised-to-reveal-our-secrets&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDas2007" class="citation news cs1">Das, Saswato (September 26, 2007). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/dn12696-quantum-chip-rides-on-superconducting-bus.html">"Quantum chip rides on superconducting bus"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Quantum+chip+rides+on+superconducting+bus&rft.date=2007-09-26&rft.aulast=Das&rft.aufirst=Saswato&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fdn12696-quantum-chip-rides-on-superconducting-bus.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2007/09/070926172232.htm">"Superconducting Quantum Computing Cable Created"</a>. <i><a href="/wiki/ScienceDaily" title="ScienceDaily">ScienceDaily</a></i>. September 27, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=Superconducting+Quantum+Computing+Cable+Created&rft.date=2007-09-27&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2007%2F09%2F070926172232.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBush2007" class="citation news cs1">Bush, Steve (October 11, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071012144831/http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm">"Qubit transmission signals quantum computing advance"</a>. <i><a href="/wiki/Electronics_Weekly" title="Electronics Weekly">Electronics Weekly</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm">the original</a> on October 12, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Weekly&rft.atitle=Qubit+transmission+signals+quantum+computing+advance&rft.date=2007-10-11&rft.aulast=Bush&rft.aufirst=Steve&rft_id=http%3A%2F%2Fwww.electronicsweekly.com%2FArticles%2F2007%2F10%2F11%2F42346%2Fqubit%2Btransmission%2Bsignals%2Bquantum%2Bcomputing%2Badvance.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgin2007" class="citation news cs1">Hodgin, Rick C. (October 8, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071212162540/http://www.tgdaily.com/content/view/34244/113/">"New material breakthrough brings quantum computers one step closer"</a>. <i>TG Daily</i>. Archived from <a rel="nofollow" class="external text" href="http://www.tgdaily.com/content/view/34244/113/">the original</a> on December 12, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=TG+Daily&rft.atitle=New+material+breakthrough+brings+quantum+computers+one+step+closer&rft.date=2007-10-08&rft.aulast=Hodgin&rft.aufirst=Rick+C.&rft_id=http%3A%2F%2Fwww.tgdaily.com%2Fcontent%2Fview%2F34244%2F113%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://optics.org/cws/article/journals/31503">"Single electron-spin memory with a semiconductor quantum dot"</a>. <i>Optics.org</i>. October 19, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optics.org&rft.atitle=Single+electron-spin+memory+with+a+semiconductor+quantum+dot&rft.date=2007-10-19&rft_id=http%3A%2F%2Foptics.org%2Fcws%2Farticle%2Fjournals%2F31503&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBattersby2007" class="citation news cs1">Battersby, Stephen (November 7, 2007). <a rel="nofollow" class="external text" href="https://www.newscientist.com/channel/fundamentals/quantum-world/dn12887-light-trap-is-a-step-towards-quantum-memory-.html">"<span class="cs1-kern-left"></span>'Light trap' is a step towards quantum memory"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=%27Light+trap%27+is+a+step+towards+quantum+memory&rft.date=2007-11-07&rft.aulast=Battersby&rft.aufirst=Stephen&rft_id=https%3A%2F%2Fwww.newscientist.com%2Fchannel%2Ffundamentals%2Fquantum-world%2Fdn12887-light-trap-is-a-step-towards-quantum-memory-.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180830041346/https://www.nanowerk.com/news/newsid=3274.php">"World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference"</a>. <i>Nanowerk.com</i>. November 12, 2007. Archived from <a rel="nofollow" class="external text" href="http://www.nanowerk.com/news/newsid=3274.php">the original</a> on August 30, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">December 30,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nanowerk.com&rft.atitle=World%27s+First+28+qubit+Quantum+Computer+Demonstrated+Online+at+Supercomputing+2007+Conference&rft.date=2007-11-12&rft_id=http%3A%2F%2Fwww.nanowerk.com%2Fnews%2Fnewsid%3D3274.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071215075835/http://www.physorg.com/news116696579.html">"Desktop device generates and traps rare ultracold molecules"</a>. <i>PhysOrg.com</i>. December 12, 2007. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news116696579.html">the original</a> on December 15, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 31,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Desktop+device+generates+and+traps+rare+ultracold+molecules&rft.date=2007-12-12&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews116696579.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuke2007" class="citation news cs1">Luke, Kim (December 19, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071228170511/http://www.news.utoronto.ca/bin6/071219-3563.asp">"U of T scientists make quantum computing leap Research is step toward building first quantum computers"</a>. <a href="/wiki/University_of_Toronto" title="University of Toronto">University of Toronto</a>. Archived from <a rel="nofollow" class="external text" href="http://www.news.utoronto.ca/bin6/071219-3563.asp">the original</a> on December 28, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">December 31,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=U+of+T+scientists+make+quantum+computing+leap+Research+is+step+toward+building+first+quantum+computers&rft.date=2007-12-19&rft.aulast=Luke&rft.aufirst=Kim&rft_id=http%3A%2F%2Fwww.news.utoronto.ca%2Fbin6%2F071219-3563.asp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrauzettelBulaevLossBurkard2007" class="citation journal cs1">Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (February 18, 2007). "Spin qubits in graphene quantum dots". <i>Nature Physics</i>. <b>3</b> (3): 192–196. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0611252">cond-mat/0611252</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007NatPh...3..192T">2007NatPh...3..192T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphys544">10.1038/nphys544</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119431314">119431314</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Physics&rft.atitle=Spin+qubits+in+graphene+quantum+dots&rft.volume=3&rft.issue=3&rft.pages=192-196&rft.date=2007-02-18&rft_id=info%3Aarxiv%2Fcond-mat%2F0611252&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119431314%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphys544&rft_id=info%3Abibcode%2F2007NatPh...3..192T&rft.aulast=Trauzettel&rft.aufirst=Bj%C3%B6rn&rft.au=Bulaev%2C+Denis+V.&rft.au=Loss%2C+Daniel&rft.au=Burkard%2C+Guido&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrowHassidimLloyd2008" class="citation journal cs1">Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". <i>Physical Review Letters</i>. <b>103</b> (15): 150502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.3171">0811.3171</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.103o0502H">2009PhRvL.103o0502H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.103.150502">10.1103/PhysRevLett.103.150502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19905613">19905613</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5187993">5187993</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Quantum+algorithm+for+solving+linear+systems+of+equations&rft.volume=103&rft.issue=15&rft.pages=150502&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5187993%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhRvL.103o0502H&rft_id=info%3Aarxiv%2F0811.3171&rft_id=info%3Apmid%2F19905613&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.103.150502&rft.aulast=Harrow&rft.aufirst=Aram+W&rft.au=Hassidim%2C+Avinatan&rft.au=Lloyd%2C+Seth&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarquit2008" class="citation news cs1">Marquit, Miranda (January 15, 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080117230333/http://www.physorg.com/news119632225.html">"Graphene quantum dot may solve some quantum computing problems"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news119632225.html">the original</a> on January 17, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">January 16,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dot+may+solve+some+quantum+computing+problems&rft.date=2008-01-15&rft.aulast=Marquit&rft.aufirst=Miranda&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews119632225.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=205918527">"Scientists succeed in storing quantum bit"</a>. <i>EE Times Europe</i>. January 25, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">February 5,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EE+Times+Europe&rft.atitle=Scientists+succeed+in+storing+quantum+bit&rft.date=2008-01-25&rft_id=http%3A%2F%2Fwww.eetimes.com%2Fnews%2Flatest%2FshowArticle.jhtml%3FarticleID%3D205918527&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZyga2008" class="citation news cs1">Zyga, Lisa (February 26, 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080229001836/http://www.physorg.com/news123244300.html">"Physicists demonstrate qubit-qutrit entanglement"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news123244300.html">the original</a> on February 29, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">February 27,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Physicists+demonstrate+qubit-qutrit+entanglement&rft.date=2008-02-26&rft.aulast=Zyga&rft.aufirst=Lisa&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews123244300.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2008/02/080221101910.htm">"Analog logic for quantum computing"</a>. <i>ScienceDaily</i>. February 26, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">February 27,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=Analog+logic+for+quantum+computing&rft.date=2008-02-26&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2008%2F02%2F080221101910.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKotala2008" class="citation news cs1">Kotala, Zenaida Gonzalez (March 5, 2008). <a rel="nofollow" class="external text" href="http://www.eurekalert.org/pub_releases/2008-03/uocf-fc030508.php">"Future 'quantum computers' will offer increased efficiency... and risks"</a>. <i>Eurekalert.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 5,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eurekalert.org&rft.atitle=Future+%27quantum+computers%27+will+offer+increased+efficiency...+and+risks&rft.date=2008-03-05&rft.aulast=Kotala&rft.aufirst=Zenaida+Gonzalez&rft_id=http%3A%2F%2Fwww.eurekalert.org%2Fpub_releases%2F2008-03%2Fuocf-fc030508.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurzweil2008" class="citation news cs1">Kurzweil, Ray (March 6, 2008). <a rel="nofollow" class="external text" href="http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8142">"Entangled memory is a first"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">March 8,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entangled+memory+is+a+first&rft.date=2008-03-06&rft.aulast=Kurzweil&rft.aufirst=Ray&rft_id=http%3A%2F%2Fwww.kurzweilai.net%2Fnews%2Fframe.html%3Fmain%3Dnews_single.html%3Fid%253D8142&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFryer2008" class="citation news cs1">Fryer, Joann (March 27, 2008). <a rel="nofollow" class="external text" href="http://www.eurekalert.org/pub_releases/2008-03/uob-scf032608.php">"Silicon chips for optical quantum technologies"</a>. <i>Eurekalert.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 29,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eurekalert.org&rft.atitle=Silicon+chips+for+optical+quantum+technologies&rft.date=2008-03-27&rft.aulast=Fryer&rft.aufirst=Joann&rft_id=http%3A%2F%2Fwww.eurekalert.org%2Fpub_releases%2F2008-03%2Fuob-scf032608.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurzweil2008" class="citation news cs1">Kurzweil, Ray (April 7, 2008). <a rel="nofollow" class="external text" href="http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8354">"Qutrit breakthrough brings quantum computers closer"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">April 7,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qutrit+breakthrough+brings+quantum+computers+closer&rft.date=2008-04-07&rft.aulast=Kurzweil&rft.aufirst=Ray&rft_id=http%3A%2F%2Fwww.kurzweilai.net%2Fnews%2Fframe.html%3Fmain%3Dnews_single.html%3Fid%253D8354&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreene2008" class="citation news cs1">Greene, Kate (April 15, 2008). <a rel="nofollow" class="external text" href="http://www.technologyreview.com/Infotech/20565/?a=f">"Toward a quantum internet"</a>. <i>Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">April 16,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technology+Review&rft.atitle=Toward+a+quantum+internet&rft.date=2008-04-15&rft.aulast=Greene&rft.aufirst=Kate&rft_id=http%3A%2F%2Fwww.technologyreview.com%2FInfotech%2F20565%2F%3Fa%3Df&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080430131534/http://physorg.com/news128261028.html">"Scientists discover exotic quantum state of matter"</a>. <a href="/wiki/Princeton_University" title="Princeton University">Princeton University</a>. April 24, 2008. Archived from <a rel="nofollow" class="external text" href="http://physorg.com/news128261028.html">the original</a> on April 30, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">April 29,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scientists+discover+exotic+quantum+state+of+matter&rft.date=2008-04-24&rft_id=http%3A%2F%2Fphysorg.com%2Fnews128261028.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumé2008" class="citation news cs1">Dumé, Belle (May 23, 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080529004841/http://physicsworld.com/cws/article/news/34359">"Spin states endure in quantum dot"</a>. <i>Physics World</i>. Archived from <a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/news/34359">the original</a> on May 29, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">June 3,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+World&rft.atitle=Spin+states+endure+in+quantum+dot&rft.date=2008-05-23&rft.aulast=Dum%C3%A9&rft.aufirst=Belle&rft_id=http%3A%2F%2Fphysicsworld.com%2Fcws%2Farticle%2Fnews%2F34359&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLee2008" class="citation news cs1">Lee, Chris (May 27, 2008). <a rel="nofollow" class="external text" href="https://arstechnica.com/news.ars/post/20080527-molecular-magnets-in-soap-bubbles-could-lead-to-quantum-ram.html">"Molecular magnets in soap bubbles could lead to quantum RAM"</a>. <i>ARSTechnica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 3,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ARSTechnica&rft.atitle=Molecular+magnets+in+soap+bubbles+could+lead+to+quantum+RAM&rft.date=2008-05-27&rft.aulast=Lee&rft.aufirst=Chris&rft_id=https%3A%2F%2Farstechnica.com%2Fnews.ars%2Fpost%2F20080527-molecular-magnets-in-soap-bubbles-could-lead-to-quantum-ram.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeizmann_Institute_of_Science2008" class="citation news cs1">Weizmann Institute of Science (June 2, 2008). <a rel="nofollow" class="external text" href="http://physorg.com/news131631206.html">"Scientists find new 'quasiparticles'<span class="cs1-kern-right"></span>"</a>. <i>PhysOrg.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 3,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Scientists+find+new+%27quasiparticles%27&rft.date=2008-06-02&rft.au=Weizmann+Institute+of+Science&rft_id=http%3A%2F%2Fphysorg.com%2Fnews131631206.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZyga2008" class="citation news cs1">Zyga, Lisa (June 23, 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080915130750/http://www.physorg.com/news133439288.html">"Physicists Store Images in Vapor"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news133439288.html">the original</a> on September 15, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">June 26,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Physicists+Store+Images+in+Vapor&rft.date=2008-06-23&rft.aulast=Zyga&rft.aufirst=Lisa&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews133439288.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080829225636/http://www.physorg.com/news133624014.html">"Physicists Produce Quantum-Entangled Images"</a>. <i>PhysOrg.com</i>. June 25, 2008. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news133624014.html">the original</a> on August 29, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">June 26,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Physicists+Produce+Quantum-Entangled+Images&rft.date=2008-06-25&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews133624014.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTally2008" class="citation news cs1">Tally, Steve (June 26, 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190202103204/https://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html">"Quantum computing breakthrough arises from unknown molecule"</a>. <a href="/wiki/Purdue_University" title="Purdue University">Purdue University</a>. Archived from <a rel="nofollow" class="external text" href="http://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html">the original</a> on February 2, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">June 28,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+computing+breakthrough+arises+from+unknown+molecule&rft.date=2008-06-26&rft.aulast=Tally&rft.aufirst=Steve&rft_id=http%3A%2F%2Fnews.uns.purdue.edu%2Fx%2F2008a%2F080626KlimeckArsenic.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRugani2008" class="citation news cs1">Rugani, Lauren (July 17, 2008). <a rel="nofollow" class="external text" href="http://www.technologyreview.com/Infotech/21086/">"Quantum Leap"</a>. <i>Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 17,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technology+Review&rft.atitle=Quantum+Leap&rft.date=2008-07-17&rft.aulast=Rugani&rft.aufirst=Lauren&rft_id=http%3A%2F%2Fwww.technologyreview.com%2FInfotech%2F21086%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2008/08/080805150812.htm">"Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons"</a>. <i>ScienceDaily</i>. August 5, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">August 6,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=Breakthrough+In+Quantum+Mechanics%3A+Superconducting+Electronic+Circuit+Pumps+Microwave+Photons&rft.date=2008-08-05&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2008%2F08%2F080805150812.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080905193420/http://www.physorg.com/news139665168.html">"New probe could aid quantum computing"</a>. <i>PhysOrg.com</i>. September 3, 2008. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news139665168.html">the original</a> on September 5, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">September 6,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=New+probe+could+aid+quantum+computing&rft.date=2008-09-03&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews139665168.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2008/09/080925144609.htm">"Novel Process Promises To Kick-start Quantum Technology Sector"</a>. <i>ScienceDaily</i>. September 25, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">October 16,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=Novel+Process+Promises+To+Kick-start+Quantum+Technology+Sector&rft.date=2008-09-25&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2008%2F09%2F080925144609.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO’Brien2008" class="citation news cs1">O’Brien, Jeremy L. (September 22, 2008). <a rel="nofollow" class="external text" href="http://physics.aps.org/articles/v1/23">"Quantum computing over the rainbow"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 16,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+computing+over+the+rainbow&rft.date=2008-09-22&rft.aulast=O%E2%80%99Brien&rft.aufirst=Jeremy+L.&rft_id=http%3A%2F%2Fphysics.aps.org%2Farticles%2Fv1%2F23&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20081022201107/http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html">"Relationships Between Quantum Dots – Stability and Reproduction"</a>. <i>Science Blog</i>. October 20, 2008. Archived from <a rel="nofollow" class="external text" href="http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html">the original</a> on October 22, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">October 20,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Blog&rft.atitle=Relationships+Between+Quantum+Dots+%E2%80%93+Stability+and+Reproduction&rft.date=2008-10-20&rft_id=http%3A%2F%2Fwww.scienceblog.com%2Fcms%2Fblog%2F624-relationships-between-quantum-dots-stability-and-reproduction-17599.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchultz2008" class="citation news cs1">Schultz, Steven (October 22, 2008). <a rel="nofollow" class="external text" href="http://www.eurekalert.org/pub_releases/2008-10/pues-smt102208.php">"Memoirs of a qubit: Hybrid memory solves key problem for quantum computing"</a>. <i>Eurekalert.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">October 23,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eurekalert.com&rft.atitle=Memoirs+of+a+qubit%3A+Hybrid+memory+solves+key+problem+for+quantum+computing&rft.date=2008-10-22&rft.aulast=Schultz&rft.aufirst=Steven&rft_id=http%3A%2F%2Fwww.eurekalert.org%2Fpub_releases%2F2008-10%2Fpues-smt102208.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.nsf.gov/news/news_summ.jsp?cntn_id=112538&govDel=USNSF_51">"World's Smallest Storage Space ... the Nucleus of an Atom"</a>. <i>National Science Foundation News</i>. October 23, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">October 27,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=National+Science+Foundation+News&rft.atitle=World%27s+Smallest+Storage+Space+...+the+Nucleus+of+an+Atom&rft.date=2008-10-23&rft_id=https%3A%2F%2Fwww.nsf.gov%2Fnews%2Fnews_summ.jsp%3Fcntn_id%3D112538%26govDel%3DUSNSF_51&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStober2008" class="citation news cs1">Stober, Dan (November 20, 2008). <a rel="nofollow" class="external text" href="http://www.eurekalert.org/pub_releases/2008-11/su-sqc112008.php">"Stanford: Quantum computing spins closer"</a>. <i>Eurekalert.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">November 22,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eurekalert.com&rft.atitle=Stanford%3A+Quantum+computing+spins+closer&rft.date=2008-11-20&rft.aulast=Stober&rft.aufirst=Dan&rft_id=http%3A%2F%2Fwww.eurekalert.org%2Fpub_releases%2F2008-11%2Fsu-sqc112008.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarquit2008" class="citation news cs1">Marquit, Miranda (December 5, 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081208091811/http://www.physorg.com/news147698804.html">"Quantum computing: Entanglement may not be necessary"</a>. <i>PhysOrg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news147698804.html">the original</a> on December 8, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 9,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Quantum+computing%3A+Entanglement+may+not+be+necessary&rft.date=2008-12-05&rft.aulast=Marquit&rft.aufirst=Miranda&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews147698804.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20081223060355/http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html">"Dwave System's 128 qubit chip has been made"</a>. <i>Next Big Future</i>. December 19, 2008. Archived from <a rel="nofollow" class="external text" href="http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html">the original</a> on December 23, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">December 20,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Next+Big+Future&rft.atitle=Dwave+System%27s+128+qubit+chip+has+been+made&rft.date=2008-12-19&rft_id=http%3A%2F%2Fnextbigfuture.com%2F2008%2F12%2Fdwave-systems-128-qubit-chip-has-been.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090411055856/http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html">"Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing"</a>. <i>Next Big Future</i>. April 7, 2009. Archived from <a rel="nofollow" class="external text" href="http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html">the original</a> on April 11, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">May 19,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Next+Big+Future&rft.atitle=Three+Times+Higher+Carbon+12+Purity+for+Synthetic+Diamond+Enables+Better+Quantum+Computing&rft.date=2009-04-07&rft_id=http%3A%2F%2Fnextbigfuture.com%2F2009%2F04%2Felement-six-is-global-leader-europe.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreene2009" class="citation news cs1">Greene, Kate (April 23, 2009). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/2009/04/23/213539/extending-the-life-of-quantum-bits/">"Extending the Life of Quantum Bits"</a>. <i>Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 1,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technology+Review&rft.atitle=Extending+the+Life+of+Quantum+Bits&rft.date=2009-04-23&rft.aulast=Greene&rft.aufirst=Kate&rft_id=https%3A%2F%2Fwww.technologyreview.com%2F2009%2F04%2F23%2F213539%2Fextending-the-life-of-quantum-bits%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://archive.today/20130131221049/http://www.physorg.com/news162814379.html">"Researchers make breakthrough in the quantum control of light"</a>. <i>PhysOrg.com</i>. May 29, 2009. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news162814379.html">the original</a> on January 31, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">May 30,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Researchers+make+breakthrough+in+the+quantum+control+of+light&rft.date=2009-05-29&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews162814379.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://archive.today/20130131084441/http://www.physorg.com/news163253992.html">"Physicists demonstrate quantum entanglement in mechanical system"</a>. <i>PhysOrg.com</i>. June 3, 2009. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news163253992.html">the original</a> on January 31, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">June 13,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PhysOrg.com&rft.atitle=Physicists+demonstrate+quantum+entanglement+in+mechanical+system&rft.date=2009-06-03&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews163253992.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoore2009" class="citation news cs1">Moore, Nicole Casai (June 24, 2009). <a rel="nofollow" class="external text" href="http://www.eurekalert.org/pub_releases/2009-06/uom-lcl062309.php">"Lasers can lengthen quantum bit memory by 1,000 times"</a>. <i>Eurekalert.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 27,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eurekalert.com&rft.atitle=Lasers+can+lengthen+quantum+bit+memory+by+1%2C000+times&rft.date=2009-06-24&rft.aulast=Moore&rft.aufirst=Nicole+Casai&rft_id=http%3A%2F%2Fwww.eurekalert.org%2Fpub_releases%2F2009-06%2Fuom-lcl062309.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2009/06/090628171949.htm">"First Electronic Quantum Processor Created"</a>. <i>ScienceDaily</i>. June 29, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">June 29,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceDaily&rft.atitle=First+Electronic+Quantum+Processor+Created&rft.date=2009-06-29&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2009%2F06%2F090628171949.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuGaoGühneZhou2009" class="citation journal cs1">Lu, C. Y.; Gao, W. B.; Gühne, O.; Zhou, X. Q.; Chen, Z. B.; Pan, J. W. (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". <i>Physical Review Letters</i>. <b>102</b> (3): 030502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0710.0278">0710.0278</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.102c0502L">2009PhRvL.102c0502L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.102.030502">10.1103/PhysRevLett.102.030502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19257336">19257336</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11788852">11788852</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Demonstrating+Anyonic+Fractional+Statistics+with+a+Six-Qubit+Quantum+Simulator&rft.volume=102&rft.issue=3&rft.pages=030502&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11788852%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhRvL.102c0502L&rft_id=info%3Aarxiv%2F0710.0278&rft_id=info%3Apmid%2F19257336&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.102.030502&rft.aulast=Lu&rft.aufirst=C.+Y.&rft.au=Gao%2C+W.+B.&rft.au=G%C3%BChne%2C+O.&rft.au=Zhou%2C+X.+Q.&rft.au=Chen%2C+Z.+B.&rft.au=Pan%2C+J.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorghino2009" class="citation news cs1">Borghino, Dario (July 6, 2009). <a rel="nofollow" class="external text" href="http://www.gizmag.com/optical-transistor-made-from-single-molecule/12157/">"Quantum computer closer: Optical transistor made from single molecule"</a>. <i>Gizmag</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 8,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Gizmag&rft.atitle=Quantum+computer+closer%3A+Optical+transistor+made+from+single+molecule&rft.date=2009-07-06&rft.aulast=Borghino&rft.aufirst=Dario&rft_id=http%3A%2F%2Fwww.gizmag.com%2Foptical-transistor-made-from-single-molecule%2F12157%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2009" class="citation news cs1">Johnson, R. Colin (July 8, 2009). <a rel="nofollow" class="external text" href="http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=218401022">"NIST advances quantum computing"</a>. <i>EE Times</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 9,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EE+Times&rft.atitle=NIST+advances+quantum+computing&rft.date=2009-07-08&rft.aulast=Johnson&rft.aufirst=R.+Colin&rft_id=http%3A%2F%2Fwww.eetimes.com%2Fnews%2Flatest%2FshowArticle.jhtml%3FarticleID%3D218401022&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreene2009" class="citation news cs1">Greene, Kate (August 7, 2009). <a rel="nofollow" class="external text" href="http://www.technologyreview.com/computing/23137/">"Scaling Up a Quantum Computer"</a>. <i>Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">August 8,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technology+Review&rft.atitle=Scaling+Up+a+Quantum+Computer&rft.date=2009-08-07&rft.aulast=Greene&rft.aufirst=Kate&rft_id=http%3A%2F%2Fwww.technologyreview.com%2Fcomputing%2F23137%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevittFowlerStephensGreentree2009" class="citation journal cs1">Devitt, S. J.; Fowler, A. G.; Stephens, A. M.; Greentree, A. D.; Hollenberg, L. C. L.; Munro, W. J.; <a href="/wiki/Kae_Nemoto" title="Kae Nemoto">Nemoto, K.</a> (August 11, 2009). "Architectural design for a topological cluster state quantum computer". <i>New Journal of Physics</i>. <b>11</b> (83032): 1221. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0808.1782">0808.1782</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NJPh...11h3032D">2009NJPh...11h3032D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F11%2F8%2F083032">10.1088/1367-2630/11/8/083032</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56195929">56195929</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Journal+of+Physics&rft.atitle=Architectural+design+for+a+topological+cluster+state+quantum+computer&rft.volume=11&rft.issue=83032&rft.pages=1221&rft.date=2009-08-11&rft_id=info%3Aarxiv%2F0808.1782&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56195929%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F11%2F8%2F083032&rft_id=info%3Abibcode%2F2009NJPh...11h3032D&rft.aulast=Devitt&rft.aufirst=S.+J.&rft.au=Fowler%2C+A.+G.&rft.au=Stephens%2C+A.+M.&rft.au=Greentree%2C+A.+D.&rft.au=Hollenberg%2C+L.+C.+L.&rft.au=Munro%2C+W.+J.&rft.au=Nemoto%2C+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHomeHannekeJostAmini2009" class="citation journal cs1">Home, J. P.; Hanneke, D.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (September 4, 2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". <i>Science</i>. <b>325</b> (5945): 1227–1230. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.1865">0907.1865</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Sci...325.1227H">2009Sci...325.1227H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1177077">10.1126/science.1177077</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19661380">19661380</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:24468918">24468918</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Complete+Methods+Set+for+Scalable+Ion+Trap+Quantum+Information+Processing&rft.volume=325&rft.issue=5945&rft.pages=1227-1230&rft.date=2009-09-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A24468918%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009Sci...325.1227H&rft_id=info%3Aarxiv%2F0907.1865&rft_id=info%3Apmid%2F19661380&rft_id=info%3Adoi%2F10.1126%2Fscience.1177077&rft.aulast=Home&rft.aufirst=J.+P.&rft.au=Hanneke%2C+D.&rft.au=Jost%2C+J.+D.&rft.au=Amini%2C+J.+M.&rft.au=Leibfried%2C+D.&rft.au=Wineland%2C+D.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolitiMatthewsO'Brien2009" class="citation journal cs1">Politi, A.; Matthews, J. C.; O'Brien, J. L. (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". <i>Science</i>. <b>325</b> (5945): 1221. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0911.1242">0911.1242</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Sci...325.1221P">2009Sci...325.1221P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1173731">10.1126/science.1173731</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19729649">19729649</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17259222">17259222</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Shor%27s+Quantum+Factoring+Algorithm+on+a+Photonic+Chip&rft.volume=325&rft.issue=5945&rft.pages=1221&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17259222%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009Sci...325.1221P&rft_id=info%3Aarxiv%2F0911.1242&rft_id=info%3Apmid%2F19729649&rft_id=info%3Adoi%2F10.1126%2Fscience.1173731&rft.aulast=Politi&rft.aufirst=A.&rft.au=Matthews%2C+J.+C.&rft.au=O%27Brien%2C+J.+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWesenbergArdavanBriggsMorton2009" class="citation journal cs1">Wesenberg, J. H.; Ardavan, A.; Briggs, G. A. D.; Morton, J. J. L.; Schoelkopf, R. J.; Schuster, D. I.; Mølmer, K. (2009). "Quantum Computing with an Electron Spin Ensemble". <i>Physical Review Letters</i>. <b>103</b> (7): 070502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0903.3506">0903.3506</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.103g0502W">2009PhRvL.103g0502W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.103.070502">10.1103/PhysRevLett.103.070502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19792625">19792625</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6990125">6990125</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Quantum+Computing+with+an+Electron+Spin+Ensemble&rft.volume=103&rft.issue=7&rft.pages=070502&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6990125%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhRvL.103g0502W&rft_id=info%3Aarxiv%2F0903.3506&rft_id=info%3Apmid%2F19792625&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.103.070502&rft.aulast=Wesenberg&rft.aufirst=J.+H.&rft.au=Ardavan%2C+A.&rft.au=Briggs%2C+G.+A.+D.&rft.au=Morton%2C+J.+J.+L.&rft.au=Schoelkopf%2C+R.+J.&rft.au=Schuster%2C+D.+I.&rft.au=M%C3%B8lmer%2C+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarras2009" class="citation news cs1">Barras, Colin (September 25, 2009). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/mg20327275.700-photon-machine-gun-could-power-quantum-computers.html?DCMP=OTC-rss&nsref=online-news">"Photon 'machine gun' could power quantum computers"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 26,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Photon+%27machine+gun%27+could+power+quantum+computers&rft.date=2009-09-25&rft.aulast=Barras&rft.aufirst=Colin&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fmg20327275.700-photon-machine-gun-could-power-quantum-computers.html%3FDCMP%3DOTC-rss%26nsref%3Donline-news&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"> November 15, 2009 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.newscientist.com/article/dn18154-first-universal-programmable-quantum-computer-unveiled.html">"First universal programmable quantum computer unveiled"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i>. November 15, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">November 16,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=First+universal+programmable+quantum+computer+unveiled&rft.date=2009-11-15&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fdn18154-first-universal-programmable-quantum-computer-unveiled.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20091123213145/http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html">"UCSB physicists move 1 step closer to quantum computing"</a>. <i>ScienceBlog</i>. November 20, 2009. Archived from <a rel="nofollow" class="external text" href="http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html">the original</a> on November 23, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">November 23,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceBlog&rft.atitle=UCSB+physicists+move+1+step+closer+to+quantum+computing&rft.date=2009-11-20&rft_id=http%3A%2F%2Fwww.scienceblog.com%2Fcms%2Fucsb-physicists-move-1-step-closer-quantum-computing-27431.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHsu2009" class="citation news cs1">Hsu, Jeremy (December 11, 2009). <a rel="nofollow" class="external text" href="http://www.popsci.com/technology/article/2009-12/google-algorithm-uses-quantum-computing-sort-images-faster-ever">"Google Demonstrates Quantum Algorithm Promising Superfast Search"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">December 14,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Google+Demonstrates+Quantum+Algorithm+Promising+Superfast+Search&rft.date=2009-12-11&rft.aulast=Hsu&rft.aufirst=Jeremy&rft_id=http%3A%2F%2Fwww.popsci.com%2Ftechnology%2Farticle%2F2009-12%2Fgoogle-algorithm-uses-quantum-computing-sort-images-faster-ever&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrisBritoBerkleyJohansson2009" class="citation journal cs1">Harris, R.; Brito, F.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Lanting, T.; Bunyk, P.; Ladizinsky, E.; Bumble, B.; Fung, A.; Kaul, A.; Kleinsasser, A.; Han, S. (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". <i>New Journal of Physics</i>. <b>11</b> (12): 123022. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0903.1884">0903.1884</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NJPh...11l3022H">2009NJPh...11l3022H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F11%2F12%2F123022">10.1088/1367-2630/11/12/123022</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54065717">54065717</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Journal+of+Physics&rft.atitle=Synchronization+of+multiple+coupled+rf-SQUID+flux+qubits&rft.volume=11&rft.issue=12&rft.pages=123022&rft.date=2009&rft_id=info%3Aarxiv%2F0903.1884&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54065717%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F11%2F12%2F123022&rft_id=info%3Abibcode%2F2009NJPh...11l3022H&rft.aulast=Harris&rft.aufirst=R.&rft.au=Brito%2C+F.&rft.au=Berkley%2C+A.+J.&rft.au=Johansson%2C+J.&rft.au=Johnson%2C+M.+W.&rft.au=Lanting%2C+T.&rft.au=Bunyk%2C+P.&rft.au=Ladizinsky%2C+E.&rft.au=Bumble%2C+B.&rft.au=Fung%2C+A.&rft.au=Kaul%2C+A.&rft.au=Kleinsasser%2C+A.&rft.au=Han%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonzKimVillarSchindler2009" class="citation journal cs1">Monz, T.; Kim, K.; Villar, A. S.; Schindler, P.; Chwalla, M.; Riebe, M.; Roos, C. F.; Häffner, H.; Hänsel, W.; Hennrich, M.; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". <i>Physical Review Letters</i>. <b>103</b> (20): 200503. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.3715">0909.3715</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.103t0503M">2009PhRvL.103t0503M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.103.200503">10.1103/PhysRevLett.103.200503</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20365970">20365970</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7632319">7632319</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Realization+of+Universal+Ion+Trap+Quantum+Computation+with+Decoherence+Free+Qubits&rft.volume=103&rft.issue=20&rft.pages=200503&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7632319%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhRvL.103t0503M&rft_id=info%3Aarxiv%2F0909.3715&rft_id=info%3Apmid%2F20365970&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.103.200503&rft.aulast=Monz&rft.aufirst=T.&rft.au=Kim%2C+K.&rft.au=Villar%2C+A.+S.&rft.au=Schindler%2C+P.&rft.au=Chwalla%2C+M.&rft.au=Riebe%2C+M.&rft.au=Roos%2C+C.+F.&rft.au=H%C3%A4ffner%2C+H.&rft.au=H%C3%A4nsel%2C+W.&rft.au=Hennrich%2C+M.&rft.au=Blatt%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physicsworld.com/a/a-decade-of-physics-world-breakthroughs-2009-the-first-quantum-computer/">"A decade of Physics World breakthroughs: 2009 – the first quantum computer"</a>. <i>Physics World</i>. November 29, 2019.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+World&rft.atitle=A+decade+of+Physics+World+breakthroughs%3A+2009+%E2%80%93+the+first+quantum+computer&rft.date=2019-11-29&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fa-decade-of-physics-world-breakthroughs-2009-the-first-quantum-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"> January 20, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFarXiv_blog" class="citation news cs1">arXiv blog. <a rel="nofollow" class="external text" href="http://www.technologyreview.com/blog/arxiv/24685/?nlid=2678">"Making Light of Ion Traps"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 21,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+Light+of+Ion+Traps&rft.au=arXiv+blog&rft_id=http%3A%2F%2Fwww.technologyreview.com%2Fblog%2Farxiv%2F24685%2F%3Fnlid%3D2678&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"> January 28, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharles_Petit2010" class="citation magazine cs1">Charles Petit (January 28, 2010). <a rel="nofollow" class="external text" href="https://www.wired.com/wiredscience/2010/01/quantum-computer-hydrogen-simulation/">"Quantum Computer Simulates Hydrogen Molecule Just Right"</a>. <i>Wired</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 5,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wired&rft.atitle=Quantum+Computer+Simulates+Hydrogen+Molecule+Just+Right&rft.date=2010-01-28&rft.au=Charles+Petit&rft_id=https%3A%2F%2Fwww.wired.com%2Fwiredscience%2F2010%2F01%2Fquantum-computer-hydrogen-simulation%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"> February 4, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarry_Hardesty" class="citation news cs1">Larry Hardesty. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111224181702/http://www.physorg.com/news184493799.html">"First germanium laser brings us closer to 'optical computers'<span class="cs1-kern-right"></span>"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news184493799.html">the original</a> on December 24, 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">February 4,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+germanium+laser+brings+us+closer+to+%27optical+computers%27&rft.au=Larry+Hardesty&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews184493799.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"> February 6, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScience_Daily" class="citation news cs1">Science Daily. <a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2010/02/100205162953.htm">"Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 6,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Computing+Leap+Forward%3A+Altering+a+Lone+Electron+Without+Disturbing+Its+Neighbors&rft.au=Science+Daily&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2010%2F02%2F100205162953.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"> March 18, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJason_Palmer2010" class="citation news cs1">Jason Palmer (March 17, 2010). <a rel="nofollow" class="external text" href="http://news.bbc.co.uk/2/hi/sci/tech/8570836.stm">"Team's quantum object is biggest by factor of billions"</a>. <i>BBC News</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 20,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BBC+News&rft.atitle=Team%27s+quantum+object+is+biggest+by+factor+of+billions&rft.date=2010-03-17&rft.au=Jason+Palmer&rft_id=http%3A%2F%2Fnews.bbc.co.uk%2F2%2Fhi%2Fsci%2Ftech%2F8570836.stm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversity_of_Cambridge" class="citation news cs1">University of Cambridge. <a rel="nofollow" class="external text" href="https://go.gale.com/ps/i.do?id=GALE%7CA221455370&sid=sitemap&v=2.1&it=r&p=EAIM&sw=w&userGroupName=anon%7E3ab19270&aty=open-web-entry">"Cambridge discovery could pave the way for quantum computing"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">March 18,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cambridge+discovery+could+pave+the+way+for+quantum+computing&rft.au=University+of+Cambridge&rft_id=https%3A%2F%2Fgo.gale.com%2Fps%2Fi.do%3Fid%3DGALE%257CA221455370%26sid%3Dsitemap%26v%3D2.1%26it%3Dr%26p%3DEAIM%26sw%3Dw%26userGroupName%3Danon%257E3ab19270%26aty%3Dopen-web-entry&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged June 2016">dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"> April 1, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScienceDaily" class="citation news cs1">ScienceDaily. <a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2010/04/100401130336.htm">"Racetrack Ion Trap Is a Contender in Quantum Computing Quest"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">April 3,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Racetrack+Ion+Trap+Is+a+Contender+in+Quantum+Computing+Quest&rft.au=ScienceDaily&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2010%2F04%2F100401130336.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text">April 21, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRice_University2010" class="citation news cs1">Rice University (April 21, 2010). <a rel="nofollow" class="external text" href="https://phys.org/news/2010-04-bizarre-quantum-odd-electron-fault-tolerant.html">"Bizarre matter could find use in quantum computers"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">August 29,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bizarre+matter+could+find+use+in+quantum+computers&rft.date=2010-04-21&rft.au=Rice+University&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2010-04-bizarre-quantum-odd-electron-fault-tolerant.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"> May 27, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE._Vetsch" class="citation news cs1">E. Vetsch; et al. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111219181729/http://www.physorg.com/news194169329.html">"German physicists develop a quantum interface between light and atoms"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news194169329.html">the original</a> on December 19, 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">April 22,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=German+physicists+develop+a+quantum+interface+between+light+and+atoms&rft.au=E.+Vetsch&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews194169329.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"> June 3, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsabelle_Dumé2010" class="citation news cs1">Isabelle Dumé (June 5, 2010). <a rel="nofollow" class="external text" href="https://physicsworld.com/a/entangling-photons-with-electricity/">"Entangling photons with electricity"</a>. <i>Physics World</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 21,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+World&rft.atitle=Entangling+photons+with+electricity&rft.date=2010-06-05&rft.au=Isabelle+Dum%C3%A9&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fentangling-photons-with-electricity%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"> August 29, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunroHarrisonStephensDevitt2010" class="citation journal cs1">Munro, W. J; Harrison, K. A; Stephens, A. M; Devitt, S. J; <a href="/wiki/Kae_Nemoto" title="Kae Nemoto">Nemoto, K</a> (2010). "From quantum multiplexing to high-performance quantum networking". <i>Nature Photonics</i>. <b>4</b> (11): 792–796. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0910.4038">0910.4038</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010NaPho...4..792M">2010NaPho...4..792M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2010.213">10.1038/nphoton.2010.213</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119243884">119243884</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Photonics&rft.atitle=From+quantum+multiplexing+to+high-performance+quantum+networking&rft.volume=4&rft.issue=11&rft.pages=792-796&rft.date=2010&rft_id=info%3Aarxiv%2F0910.4038&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119243884%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphoton.2010.213&rft_id=info%3Abibcode%2F2010NaPho...4..792M&rft.aulast=Munro&rft.aufirst=W.+J&rft.au=Harrison%2C+K.+A&rft.au=Stephens%2C+A.+M&rft.au=Devitt%2C+S.+J&rft.au=Nemoto%2C+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"> September 17, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurzweil_accelerating_intelligence" class="citation news cs1">Kurzweil accelerating intelligence. <a rel="nofollow" class="external text" href="http://www.kurzweilai.net/two-photon-optical-chip-enables-more-complex-quantum-computing">"Two-photon optical chip enables more complex quantum computing"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 17,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-photon+optical+chip+enables+more+complex+quantum+computing&rft.au=Kurzweil+accelerating+intelligence&rft_id=http%3A%2F%2Fwww.kurzweilai.net%2Ftwo-photon-optical-chip-enables-more-complex-quantum-computing&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2010/05/100526091044.htm">"Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps"</a>. <i>ScienceDaily</i>. May 28, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">September 20,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ScienceDaily&rft.atitle=Toward+a+Useful+Quantum+Computer%3A+Researchers+Design+and+test+Microfabricated+Planar+Ion+Traps&rft.date=2010-05-28&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2010%2F05%2F100526091044.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.gtri.gatech.edu/casestudy/microfabricated-planar-ion-traps">"Quantum Future: Designing and Testing Microfabricated Planar Ion Traps"</a>. <a href="/wiki/Georgia_Tech_Research_Institute" title="Georgia Tech Research Institute">Georgia Tech Research Institute</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 20,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Quantum+Future%3A+Designing+and+Testing+Microfabricated+Planar+Ion+Traps&rft.pub=Georgia+Tech+Research+Institute&rft_id=http%3A%2F%2Fwww.gtri.gatech.edu%2Fcasestudy%2Fmicrofabricated-planar-ion-traps&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronsonArkhipov2011" class="citation conference cs1">Aaronson, Scott; Arkhipov, Alex (2011). "The Computational Complexity of Linear Optics". <i>Proceedings of the 43rd annual ACM symposium on Theory of computing - STOC '11</i>. New York, New York, USA: ACM Press. pp. 333–342. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1011.3245">1011.3245</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1993636.1993682">10.1145/1993636.1993682</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4503-0691-1" title="Special:BookSources/978-1-4503-0691-1"><bdi>978-1-4503-0691-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=The+Computational+Complexity+of+Linear+Optics&rft.btitle=Proceedings+of+the+43rd+annual+ACM+symposium+on+Theory+of+computing+-+STOC+%2711&rft.place=New+York%2C+New+York%2C+USA&rft.pages=333-342&rft.pub=ACM+Press&rft.date=2011&rft_id=info%3Aarxiv%2F1011.3245&rft_id=info%3Adoi%2F10.1145%2F1993636.1993682&rft.isbn=978-1-4503-0691-1&rft.aulast=Aaronson&rft.aufirst=Scott&rft.au=Arkhipov%2C+Alex&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text"> December 23, 2010 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTU_Delft" class="citation news cs1">TU Delft. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101224162118/http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en">"TU scientists in Nature: Better control of building blocks for quantum computer"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en">the original</a> on December 24, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">December 26,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TU+scientists+in+Nature%3A+Better+control+of+building+blocks+for+quantum+computer&rft.au=TU+Delft&rft_id=http%3A%2F%2Fwww.tudelft.nl%2Flive%2Fpagina.jsp%3Fid%3D2136915a-f72a-441a-8783-b0b0e91cb48f%26lang%3Den&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimmonsBrownRiemannAbrosimov2011" class="citation journal cs1">Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". <i>Nature</i>. <b>470</b> (7332): 69–72. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1010.0107">1010.0107</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Natur.470...69S">2011Natur.470...69S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature09696">10.1038/nature09696</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21248751">21248751</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4322097">4322097</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Entanglement+in+a+solid-state+spin+ensemble&rft.volume=470&rft.issue=7332&rft.pages=69-72&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4322097%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011Natur.470...69S&rft_id=info%3Aarxiv%2F1010.0107&rft_id=info%3Apmid%2F21248751&rft_id=info%3Adoi%2F10.1038%2Fnature09696&rft.aulast=Simmons&rft.aufirst=Stephanie&rft.au=Brown%2C+Richard+M&rft.au=Riemann%2C+Helge&rft.au=Abrosimov%2C+Nikolai+V&rft.au=Becker%2C+Peter&rft.au=Pohl%2C+Hans-Joachim&rft.au=Thewalt%2C+Mike+L.+W&rft.au=Itoh%2C+Kohei+M&rft.au=Morton%2C+John+J.+L&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"> February 14, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUC_Santa_Barbara_Office_of_Public_Affairs" class="citation news cs1">UC Santa Barbara Office of Public Affairs. <a rel="nofollow" class="external text" href="http://www.ia.ucsb.edu/pa/display.aspx?pkey=2428">"International Team of Scientists Says It's High 'Noon' for Microwave Photons"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 16,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=International+Team+of+Scientists+Says+It%27s+High+%27Noon%27+for+Microwave+Photons&rft.au=UC+Santa+Barbara+Office+of+Public+Affairs&rft_id=http%3A%2F%2Fwww.ia.ucsb.edu%2Fpa%2Fdisplay.aspx%3Fpkey%3D2428&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"> February 24, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurzweil_Accelerating_Intelligence" class="citation news cs1">Kurzweil Accelerating Intelligence. <a rel="nofollow" class="external text" href="http://www.kurzweilai.net/quantum-antennas-enable-exchange-of-quantum-information-between-two-memory-cells">"<span class="cs1-kern-left"></span>'Quantum antennas' enable exchange of quantum information between two memory cells"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 24,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%27Quantum+antennas%27+enable+exchange+of+quantum+information+between+two+memory+cells&rft.au=Kurzweil+Accelerating+Intelligence&rft_id=http%3A%2F%2Fwww.kurzweilai.net%2Fquantum-antennas-enable-exchange-of-quantum-information-between-two-memory-cells&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeruzzoLaingPolitiRudolph2011" class="citation journal cs1">Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072100">"Multimode quantum interference of photons in multiport integrated devices"</a>. <i>Nature Communications</i>. <b>2</b>: 224. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1007.1372">1007.1372</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011NatCo...2..224P">2011NatCo...2..224P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms1228">10.1038/ncomms1228</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072100">3072100</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21364563">21364563</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Multimode+quantum+interference+of+photons+in+multiport+integrated+devices&rft.volume=2&rft.pages=224&rft.date=2011&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3072100%23id-name%3DPMC&rft_id=info%3Abibcode%2F2011NatCo...2..224P&rft_id=info%3Aarxiv%2F1007.1372&rft_id=info%3Apmid%2F21364563&rft_id=info%3Adoi%2F10.1038%2Fncomms1228&rft.aulast=Peruzzo&rft.aufirst=Alberto&rft.au=Laing%2C+Anthony&rft.au=Politi%2C+Alberto&rft.au=Rudolph%2C+Terry&rft.au=O%27Brien%2C+Jeremy+L&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3072100&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text"> March 7, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKFC" class="citation news cs1">KFC. <a rel="nofollow" class="external text" href="https://www.technologyreview.com/2011/03/07/196521/new-magnetic-resonance-technique-could-revolutionise-quantum-computing/">"New Magnetic Resonance Technique Could Revolutionise Quantum Computing"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 1,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Magnetic+Resonance+Technique+Could+Revolutionise+Quantum+Computing&rft.au=KFC&rft_id=https%3A%2F%2Fwww.technologyreview.com%2F2011%2F03%2F07%2F196521%2Fnew-magnetic-resonance-technique-could-revolutionise-quantum-computing%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"> March 17, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristof_WeitenbergManuel_EndresJacob_F._ShersonMarc_Cheneau" class="citation news cs1">Christof Weitenberg; Manuel Endres; Jacob F. Sherson; Marc Cheneau; Peter Schauß; Takeshi Fukuhara; Immanuel Bloch & Stefan Kuhr. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110318143231/http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html">"A Quantum Pen for Single Atoms"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html">the original</a> on March 18, 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">March 19,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantum+Pen+for+Single+Atoms&rft.au=Christof+Weitenberg&rft.au=Manuel+Endres&rft.au=Jacob+F.+Sherson&rft.au=Marc+Cheneau&rft.au=Peter+Schau%C3%9F&rft.au=Takeshi+Fukuhara&rft.au=Immanuel+Bloch&rft.au=Stefan+Kuhr&rft_id=http%3A%2F%2Fwww.mpq.mpg.de%2Fcms%2Fmpq%2Fen%2Fnews%2Fpress%2F11_03_17.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text">March 21, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCordisnews" class="citation news cs1">Cordisnews. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121011161855/http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212">"German research brings us one step closer to quantum computing"</a>. Archived from <a rel="nofollow" class="external text" href="http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212">the original</a> on October 11, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">March 22,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=German+research+brings+us+one+step+closer+to+quantum+computing&rft.au=Cordisnews&rft_id=http%3A%2F%2Fcordis.europa.eu%2Ffetch%3FCALLER%3DEN_NEWS%26ACTION%3DD%26SESSION%3D%26RCN%3D33212&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonzSchindlerBarreiroChwalla2011" class="citation journal cs1">Monz, T; Schindler, P; Barreiro, J. T; Chwalla, M; Nigg, D; Coish, W. A; Harlander, M; Hänsel, W; Hennrich, M; Blatt, R (2011). "14-Qubit Entanglement: Creation and Coherence". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>106</b> (13): 130506. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1009.6126">1009.6126</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhRvL.106m0506M">2011PhRvL.106m0506M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.106.130506">10.1103/PhysRevLett.106.130506</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21517367">21517367</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8155660">8155660</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=14-Qubit+Entanglement%3A+Creation+and+Coherence&rft.volume=106&rft.issue=13&rft.pages=130506&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8155660%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011PhRvL.106m0506M&rft_id=info%3Aarxiv%2F1009.6126&rft_id=info%3Apmid%2F21517367&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.106.130506&rft.aulast=Monz&rft.aufirst=T&rft.au=Schindler%2C+P&rft.au=Barreiro%2C+J.+T&rft.au=Chwalla%2C+M&rft.au=Nigg%2C+D&rft.au=Coish%2C+W.+A&rft.au=Harlander%2C+M&rft.au=H%C3%A4nsel%2C+W&rft.au=Hennrich%2C+M&rft.au=Blatt%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text">May 12, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhysicsworld.com" class="citation news cs1">Physicsworld.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110515083848/http://physicsworld.com/cws/article/news/45960">"Quantum-computing firm opens the box"</a>. Archived from <a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/news/45960">the original</a> on May 15, 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">May 17,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-computing+firm+opens+the+box&rft.au=Physicsworld.com&rft_id=http%3A%2F%2Fphysicsworld.com%2Fcws%2Farticle%2Fnews%2F45960&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhysorg.com2011" class="citation news cs1">Physorg.com (May 26, 2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120107024333/http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html">"Repetitive error correction demonstrated in a quantum processor"</a>. <i>physorg.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html">the original</a> on January 7, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">May 26,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=physorg.com&rft.atitle=Repetitive+error+correction+demonstrated+in+a+quantum+processor&rft.date=2011-05-26&rft.au=Physorg.com&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews%2F2011-05-quantum-repetitive-error-processor.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text"> June 27, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUC_Santa_Barbara" class="citation news cs1">UC Santa Barbara. <a rel="nofollow" class="external text" href="http://www.ia.ucsb.edu/pa/display.aspx?pkey=2519">"International Team Demonstrates Subatomic Quantum Memory in Diamond"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 29,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=International+Team+Demonstrates+Subatomic+Quantum+Memory+in+Diamond&rft.au=UC+Santa+Barbara&rft_id=http%3A%2F%2Fwww.ia.ucsb.edu%2Fpa%2Fdisplay.aspx%3Fpkey%3D2519&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text"> July 15, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNanowerk_News" class="citation news cs1">Nanowerk News. <a rel="nofollow" class="external text" href="http://www.nanowerk.com/news/newsid=22133.php">"Quantum computing breakthrough in the creation of massive numbers of entangled qubits"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">July 18,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+computing+breakthrough+in+the+creation+of+massive+numbers+of+entangled+qubits&rft.au=Nanowerk+News&rft_id=http%3A%2F%2Fwww.nanowerk.com%2Fnews%2Fnewsid%3D22133.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"> July 20, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNanowerk_News" class="citation news cs1">Nanowerk News. <a rel="nofollow" class="external text" href="http://www.nanowerk.com/news/newsid=22174.php">"Scientists take the next major step toward quantum computing"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">July 20,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scientists+take+the+next+major+step+toward+quantum+computing&rft.au=Nanowerk+News&rft_id=http%3A%2F%2Fwww.nanowerk.com%2Fnews%2Fnewsid%3D22174.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text"> August 2, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFnanowerk" class="citation news cs1">nanowerk. <a rel="nofollow" class="external text" href="http://www.nanowerk.com/news/newsid=22292.php">"Dramatic simplification paves the way for building a quantum computer"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">August 3,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dramatic+simplification+paves+the+way+for+building+a+quantum+computer&rft.au=nanowerk&rft_id=http%3A%2F%2Fwww.nanowerk.com%2Fnews%2Fnewsid%3D22292.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-185">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOspelkausWarringColombeBrown2011" class="citation journal cs1">Ospelkaus, C; Warring, U; Colombe, Y; Brown, K. R; Amini, J. M; Leibfried, D; Wineland, D. J (2011). "Microwave quantum logic gates for trapped ions". <i>Nature</i>. <b>476</b> (7359): 181–184. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1104.3573">1104.3573</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Natur.476..181O">2011Natur.476..181O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature10290">10.1038/nature10290</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21833084">21833084</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2902510">2902510</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Microwave+quantum+logic+gates+for+trapped+ions&rft.volume=476&rft.issue=7359&rft.pages=181-184&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2902510%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011Natur.476..181O&rft_id=info%3Aarxiv%2F1104.3573&rft_id=info%3Apmid%2F21833084&rft_id=info%3Adoi%2F10.1038%2Fnature10290&rft.aulast=Ospelkaus&rft.aufirst=C&rft.au=Warring%2C+U&rft.au=Colombe%2C+Y&rft.au=Brown%2C+K.+R&rft.au=Amini%2C+J.+M&rft.au=Leibfried%2C+D&rft.au=Wineland%2C+D.+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"> August 30, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaura_Ost" class="citation news cs1">Laura Ost. <a rel="nofollow" class="external text" href="https://www.nist.gov/pml/div688/qubit-083011.cfm">"NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 3,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NIST+Achieves+Record-Low+Error+Rate+for+Quantum+Information+Processing+with+One+Qubit&rft.au=Laura+Ost&rft_id=https%3A%2F%2Fwww.nist.gov%2Fpml%2Fdiv688%2Fqubit-083011.cfm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"> September 1, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMariantoniWangYamamotoNeeley2011" class="citation journal cs1">Mariantoni, M; Wang, H; Yamamoto, T; Neeley, M; Bialczak, R. C; Chen, Y; Lenander, M; Lucero, E; O'Connell, A. D; Sank, D; Weides, M; Wenner, J; Yin, Y; Zhao, J; Korotkov, A. N; Cleland, A. N; Martinis, J. M (2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". <i>Science</i>. <b>334</b> (6052): 61–65. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.3743">1109.3743</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...334...61M">2011Sci...334...61M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1208517">10.1126/science.1208517</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21885732">21885732</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11483576">11483576</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Implementing+the+Quantum+von+Neumann+Architecture+with+Superconducting+Circuits&rft.volume=334&rft.issue=6052&rft.pages=61-65&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11483576%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011Sci...334...61M&rft_id=info%3Aarxiv%2F1109.3743&rft_id=info%3Apmid%2F21885732&rft_id=info%3Adoi%2F10.1126%2Fscience.1208517&rft.aulast=Mariantoni&rft.aufirst=M&rft.au=Wang%2C+H&rft.au=Yamamoto%2C+T&rft.au=Neeley%2C+M&rft.au=Bialczak%2C+R.+C&rft.au=Chen%2C+Y&rft.au=Lenander%2C+M&rft.au=Lucero%2C+E&rft.au=O%27Connell%2C+A.+D&rft.au=Sank%2C+D&rft.au=Weides%2C+M&rft.au=Wenner%2C+J&rft.au=Yin%2C+Y&rft.au=Zhao%2C+J&rft.au=Korotkov%2C+A.+N&rft.au=Cleland%2C+A.+N&rft.au=Martinis%2C+J.+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJablonski2011" class="citation news cs1">Jablonski, Chris (October 4, 2011). <a rel="nofollow" class="external text" href="https://www.zdnet.com/article/one-step-closer-to-quantum-computers/">"One step closer to quantum computers"</a>. <i>ZDnet</i><span class="reference-accessdate">. Retrieved <span class="nowrap">August 29,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ZDnet&rft.atitle=One+step+closer+to+quantum+computers&rft.date=2011-10-04&rft.aulast=Jablonski&rft.aufirst=Chris&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fone-step-closer-to-quantum-computers%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"> December 2, 2011 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClara_MoskowitzIan_WalmsleyMichael_Sprague" class="citation news cs1"><a href="/wiki/Clara_Moskowitz" title="Clara Moskowitz">Clara Moskowitz</a>; Ian Walmsley; Michael Sprague. <a rel="nofollow" class="external text" href="http://www.livescience.com/17264-quantum-entanglement-macroscopic-diamonds.html">"Two Diamonds Linked by Strange Quantum Entanglement"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">December 2,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Diamonds+Linked+by+Strange+Quantum+Entanglement&rft.au=Clara+Moskowitz&rft.au=Ian+Walmsley&rft.au=Michael+Sprague&rft_id=http%3A%2F%2Fwww.livescience.com%2F17264-quantum-entanglement-macroscopic-diamonds.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-190">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBianChudakMacReadyClark2013" class="citation journal cs1">Bian, Z; Chudak, F; MacReady, W. G; Clark, L; Gaitan, F (2013). "Experimental determination of Ramsey numbers with quantum annealing". <i>Physical Review Letters</i>. <b>111</b> (13): 130505. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1201.1842">1201.1842</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvL.111m0505B">2013PhRvL.111m0505B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.111.130505">10.1103/PhysRevLett.111.130505</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24116761">24116761</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1303361">1303361</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Experimental+determination+of+Ramsey+numbers+with+quantum+annealing&rft.volume=111&rft.issue=13&rft.pages=130505&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1303361%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013PhRvL.111m0505B&rft_id=info%3Aarxiv%2F1201.1842&rft_id=info%3Apmid%2F24116761&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.111.130505&rft.aulast=Bian&rft.aufirst=Z&rft.au=Chudak%2C+F&rft.au=MacReady%2C+W.+G&rft.au=Clark%2C+L&rft.au=Gaitan%2C+F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuechsleMiwaMahapatraRyu2012" class="citation journal cs1">Fuechsle, M; Miwa, J. A; Mahapatra, S; Ryu, H; Lee, S; Warschkow, O; Hollenberg, L. C; Klimeck, G; Simmons, M. Y (February 19, 2012). "A single-atom transistor". <i>Nature Nanotechnology</i>. <b>7</b> (4): 242–246. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatNa...7..242F">2012NatNa...7..242F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnnano.2012.21">10.1038/nnano.2012.21</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22343383">22343383</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14952278">14952278</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Nanotechnology&rft.atitle=A+single-atom+transistor&rft.volume=7&rft.issue=4&rft.pages=242-246&rft.date=2012-02-19&rft_id=info%3Adoi%2F10.1038%2Fnnano.2012.21&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14952278%23id-name%3DS2CID&rft_id=info%3Apmid%2F22343383&rft_id=info%3Abibcode%2F2012NatNa...7..242F&rft.aulast=Fuechsle&rft.aufirst=M&rft.au=Miwa%2C+J.+A&rft.au=Mahapatra%2C+S&rft.au=Ryu%2C+H&rft.au=Lee%2C+S&rft.au=Warschkow%2C+O&rft.au=Hollenberg%2C+L.+C&rft.au=Klimeck%2C+G&rft.au=Simmons%2C+M.+Y&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-192">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Markoff2012" class="citation news cs1">John Markoff (February 19, 2012). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2012/02/20/science/physicists-create-a-working-transistor-from-a-single-atom.html?partner=rss&emc=rss">"Physicists Create a Working Transistor From a Single Atom"</a>. <i>The New York Times</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 19,</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Physicists+Create+a+Working+Transistor+From+a+Single+Atom&rft.date=2012-02-19&rft.au=John+Markoff&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2012%2F02%2F20%2Fscience%2Fphysicists-create-a-working-transistor-from-a-single-atom.html%3Fpartner%3Drss%26emc%3Drss&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-193">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrotzHaufDankerlNaydenov2012" class="citation journal cs1">Grotz, Bernhard; Hauf, Moritz V; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A (2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316888">"Charge state manipulation of qubits in diamond"</a>. <i>Nature Communications</i>. <b>3</b>: 729. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatCo...3..729G">2012NatCo...3..729G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms1729">10.1038/ncomms1729</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316888">3316888</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22395620">22395620</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Charge+state+manipulation+of+qubits+in+diamond&rft.volume=3&rft.pages=729&rft.date=2012&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3316888%23id-name%3DPMC&rft_id=info%3Apmid%2F22395620&rft_id=info%3Adoi%2F10.1038%2Fncomms1729&rft_id=info%3Abibcode%2F2012NatCo...3..729G&rft.aulast=Grotz&rft.aufirst=Bernhard&rft.au=Hauf%2C+Moritz+V&rft.au=Dankerl%2C+Markus&rft.au=Naydenov%2C+Boris&rft.au=Pezzagna%2C+S%C3%A9bastien&rft.au=Meijer%2C+Jan&rft.au=Jelezko%2C+Fedor&rft.au=Wrachtrup%2C+J%C3%B6rg&rft.au=Stutzmann%2C+Martin&rft.au=Reinhard%2C+Friedemann&rft.au=Garrido%2C+Jose+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3316888&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-194">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrittonSawyerKeithWang2012" class="citation journal cs1">Britton, J. W; Sawyer, B. C; Keith, A. C; Wang, C. C; Freericks, J. K; Uys, H; Biercuk, M. J; Bollinger, J. J (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". <i>Nature</i>. <b>484</b> (7395): 489–492. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1204.5789">1204.5789</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012Natur.484..489B">2012Natur.484..489B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature10981">10.1038/nature10981</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22538611">22538611</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4370334">4370334</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Engineered+two-dimensional+Ising+interactions+in+a+trapped-ion+quantum+simulator+with+hundreds+of+spins&rft.volume=484&rft.issue=7395&rft.pages=489-492&rft.date=2012-04-26&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4370334%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2012Natur.484..489B&rft_id=info%3Aarxiv%2F1204.5789&rft_id=info%3Apmid%2F22538611&rft_id=info%3Adoi%2F10.1038%2Fnature10981&rft.aulast=Britton&rft.aufirst=J.+W&rft.au=Sawyer%2C+B.+C&rft.au=Keith%2C+A.+C&rft.au=Wang%2C+C.+C&rft.au=Freericks%2C+J.+K&rft.au=Uys%2C+H&rft.au=Biercuk%2C+M.+J&rft.au=Bollinger%2C+J.+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLucy_Sherriff" class="citation news cs1">Lucy Sherriff. <a rel="nofollow" class="external text" href="https://www.zdnet.com/article/300-atom-quantum-simulator-smashes-qubit-record/">"300 atom quantum simulator smashes qubit record"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 9,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=300+atom+quantum+simulator+smashes+qubit+record&rft.au=Lucy+Sherriff&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2F300-atom-quantum-simulator-smashes-qubit-record%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYaoWangChenGao2012" class="citation journal cs1">Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". <i>Nature</i>. <b>482</b> (7386): 489–494. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0905.1542">0905.1542</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012Natur.482..489Y">2012Natur.482..489Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature10770">10.1038/nature10770</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22358838">22358838</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4307662">4307662</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Experimental+demonstration+of+topological+error+correction&rft.volume=482&rft.issue=7386&rft.pages=489-494&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4307662%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2012Natur.482..489Y&rft_id=info%3Aarxiv%2F0905.1542&rft_id=info%3Apmid%2F22358838&rft_id=info%3Adoi%2F10.1038%2Fnature10770&rft.aulast=Yao&rft.aufirst=Xing-Can&rft.au=Wang%2C+Tian-Xiong&rft.au=Chen%2C+Hao-Ze&rft.au=Gao%2C+Wei-Bo&rft.au=Fowler%2C+Austin+G&rft.au=Raussendorf%2C+Robert&rft.au=Chen%2C+Zeng-Bing&rft.au=Liu%2C+Nai-Le&rft.au=Lu%2C+Chao-Yang&rft.au=Deng%2C+You-Jin&rft.au=Chen%2C+Yu-Ao&rft.au=Pan%2C+Jian-Wei&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-197">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREF1QBit" class="citation news cs1">1QBit. <a rel="nofollow" class="external text" href="http://www.1qbit.com/">"1QBit Website"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1QBit+Website&rft.au=1QBit&rft_id=http%3A%2F%2Fwww.1qbit.com%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_news" title="Template:Cite news">cite news</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-198"><span class="mw-cite-backlink"><b><a href="#cite_ref-198">^</a></b></span> <span class="reference-text"> October 14, 2012 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunroStephensDevittHarrison2012" class="citation journal cs1">Munro, W. J; Stephens, A. M; Devitt, S. J; Harrison, K. A; <a href="/wiki/Kae_Nemoto" title="Kae Nemoto">Nemoto, K</a> (2012). "Quantum communication without the necessity of quantum memories". <i>Nature Photonics</i>. <b>6</b> (11): 777–781. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1306.4137">1306.4137</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NaPho...6..777M">2012NaPho...6..777M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2012.243">10.1038/nphoton.2012.243</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5056130">5056130</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Photonics&rft.atitle=Quantum+communication+without+the+necessity+of+quantum+memories&rft.volume=6&rft.issue=11&rft.pages=777-781&rft.date=2012&rft_id=info%3Aarxiv%2F1306.4137&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5056130%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphoton.2012.243&rft_id=info%3Abibcode%2F2012NaPho...6..777M&rft.aulast=Munro&rft.aufirst=W.+J&rft.au=Stephens%2C+A.+M&rft.au=Devitt%2C+S.+J&rft.au=Harrison%2C+K.+A&rft.au=Nemoto%2C+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-199">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaurerKucskoLattaJiang2012" class="citation journal cs1">Maurer, P. C; Kucsko, G; Latta, C; Jiang, L; Yao, N. Y; Bennett, S. D; Pastawski, F; Hunger, D; Chisholm, N; Markham, M; Twitchen, D. J; Cirac, J. I; Lukin, M. D (June 8, 2012). <a rel="nofollow" class="external text" href="http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132060">"Room-Temperature Quantum Bit Memory Exceeding One Second"</a>. <i>Science</i> (Submitted manuscript). <b>336</b> (6086): 1283–1286. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012Sci...336.1283M">2012Sci...336.1283M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1220513">10.1126/science.1220513</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22679092">22679092</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2684102">2684102</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Room-Temperature+Quantum+Bit+Memory+Exceeding+One+Second&rft.volume=336&rft.issue=6086&rft.pages=1283-1286&rft.date=2012-06-08&rft_id=info%3Adoi%2F10.1126%2Fscience.1220513&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2684102%23id-name%3DS2CID&rft_id=info%3Apmid%2F22679092&rft_id=info%3Abibcode%2F2012Sci...336.1283M&rft.aulast=Maurer&rft.aufirst=P.+C&rft.au=Kucsko%2C+G&rft.au=Latta%2C+C&rft.au=Jiang%2C+L&rft.au=Yao%2C+N.+Y&rft.au=Bennett%2C+S.+D&rft.au=Pastawski%2C+F&rft.au=Hunger%2C+D&rft.au=Chisholm%2C+N&rft.au=Markham%2C+M&rft.au=Twitchen%2C+D.+J&rft.au=Cirac%2C+J.+I&rft.au=Lukin%2C+M.+D&rft_id=http%3A%2F%2Fnrs.harvard.edu%2Furn-3%3AHUL.InstRepos%3A12132060&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-200">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeckham,_Matt2012" class="citation news cs1">Peckham, Matt (July 6, 2012). <a rel="nofollow" class="external text" href="https://techland.time.com/2012/07/06/quantum-computing-at-room-temperature-now-a-reality/">"Quantum Computing at Room Temperature - Now a Reality"</a>. <i>Magazine/Periodical</i>. Time Magazine (Techland) Time Inc. p. 1<span class="reference-accessdate">. Retrieved <span class="nowrap">August 5,</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Magazine%2FPeriodical&rft.atitle=Quantum+Computing+at+Room+Temperature+-+Now+a+Reality&rft.pages=1&rft.date=2012-07-06&rft.au=Peckham%2C+Matt&rft_id=https%3A%2F%2Ftechland.time.com%2F2012%2F07%2F06%2Fquantum-computing-at-room-temperature-now-a-reality%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-201">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKohHallSetiawanPope2012" class="citation journal cs1">Koh, Dax Enshan; Hall, Michael J. W; Setiawan; Pope, James E; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". <i>Physical Review Letters</i>. <b>109</b> (16): 160404. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1202.3571">1202.3571</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhRvL.109p0404K">2012PhRvL.109p0404K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.109.160404">10.1103/PhysRevLett.109.160404</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23350071">23350071</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18935137">18935137</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Effects+of+Reduced+Measurement+Independence+on+Bell-Based+Randomness+Expansion&rft.volume=109&rft.issue=16&rft.pages=160404&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18935137%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2012PhRvL.109p0404K&rft_id=info%3Aarxiv%2F1202.3571&rft_id=info%3Apmid%2F23350071&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.109.160404&rft.aulast=Koh&rft.aufirst=Dax+Enshan&rft.au=Hall%2C+Michael+J.+W&rft.au=Setiawan&rft.au=Pope%2C+James+E&rft.au=Marletto%2C+Chiara&rft.au=Kay%2C+Alastair&rft.au=Scarani%2C+Valerio&rft.au=Ekert%2C+Artur&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-202">^</a></b></span> <span class="reference-text"> December 7, 2012 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHorsmanFowlerDevittVan_Meter2012" class="citation journal cs1">Horsman, C; Fowler, A. G; Devitt, S. J; Van Meter, R (2012). "Surface code quantum computing by lattice surgery". <i>New J. Phys</i>. <b>14</b> (12): 123011. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1111.4022">1111.4022</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NJPh...14l3011H">2012NJPh...14l3011H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F14%2F12%2F123011">10.1088/1367-2630/14/12/123011</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119212756">119212756</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+J.+Phys.&rft.atitle=Surface+code+quantum+computing+by+lattice+surgery&rft.volume=14&rft.issue=12&rft.pages=123011&rft.date=2012&rft_id=info%3Aarxiv%2F1111.4022&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119212756%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F14%2F12%2F123011&rft_id=info%3Abibcode%2F2012NJPh...14l3011H&rft.aulast=Horsman&rft.aufirst=C&rft.au=Fowler%2C+A.+G&rft.au=Devitt%2C+S.+J&rft.au=Van+Meter%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-39_minutes-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-39_minutes_203-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKastrenakes,_Jacob2013" class="citation web cs1">Kastrenakes, Jacob (November 14, 2013). <a rel="nofollow" class="external text" href="https://www.theverge.com/2013/11/14/5104668/qubits-stored-for-39-minutes-quantum-computer-new-record">"Researchers smash through quantum computer storage record"</a>. <i>Webzine</i>. The Verge<span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Webzine&rft.atitle=Researchers+smash+through+quantum+computer+storage+record&rft.date=2013-11-14&rft.au=Kastrenakes%2C+Jacob&rft_id=https%3A%2F%2Fwww.theverge.com%2F2013%2F11%2F14%2F5104668%2Fqubits-stored-for-39-minutes-quantum-computer-new-record&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-204">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181002141518/http://welldonestuff.com/quantum-computer-breakthrough-2013/">"Quantum Computer Breakthrough 2013"</a>. November 24, 2013. Archived from <a rel="nofollow" class="external text" href="http://welldonestuff.com/quantum-computer-breakthrough-2013/">the original</a> on October 2, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">October 2,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Quantum+Computer+Breakthrough+2013&rft.date=2013-11-24&rft_id=http%3A%2F%2Fwelldonestuff.com%2Fquantum-computer-breakthrough-2013%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"> October 10, 2013 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevittStephensMunroNemoto2013" class="citation journal cs1">Devitt, S. J; Stephens, A. M; Munro, W. J; <a href="/wiki/Kae_Nemoto" title="Kae Nemoto">Nemoto, K</a> (2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". <i>Nature Communications</i>. <b>4</b>: 2524. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1212.4934">1212.4934</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatCo...4.2524D">2013NatCo...4.2524D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms3524">10.1038/ncomms3524</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24088785">24088785</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7229103">7229103</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Requirements+for+fault-tolerant+factoring+on+an+atom-optics+quantum+computer&rft.volume=4&rft.pages=2524&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7229103%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013NatCo...4.2524D&rft_id=info%3Aarxiv%2F1212.4934&rft_id=info%3Apmid%2F24088785&rft_id=info%3Adoi%2F10.1038%2Fncomms3524&rft.aulast=Devitt&rft.aufirst=S.+J&rft.au=Stephens%2C+A.+M&rft.au=Munro%2C+W.+J&rft.au=Nemoto%2C+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-206">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170830105417/https://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/">"Penetrating Hard Targets project"</a>. Archived from <a rel="nofollow" class="external text" href="https://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/">the original</a> on August 30, 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">September 16,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Penetrating+Hard+Targets+project&rft_id=https%3A%2F%2Fapps.washingtonpost.com%2Fg%2Fpage%2Fworld%2Fa-description-of-the-penetrating-hard-targets-project%2F691%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.kurzweilai.net/nsa-seeks-to-develop-quantum-computer-to-crack-nearly-every-kind-of-encryption">"NSA seeks to develop quantum computer to crack nearly every kind of encryption « Kurzweil"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NSA+seeks+to+develop+quantum+computer+to+crack+nearly+every+kind+of+encryption+%C2%AB+Kurzweil&rft_id=https%3A%2F%2Fwww.kurzweilai.net%2Fnsa-seeks-to-develop-quantum-computer-to-crack-nearly-every-kind-of-encryption&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-208">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html">NSA seeks to build quantum computer that could crack most types of encryption – Washington Post</a></span> </li> <li id="cite_note-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-209">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDockterman2014" class="citation magazine cs1">Dockterman, Eliana (January 2, 2014). <a rel="nofollow" class="external text" href="https://nation.time.com/2014/01/02/the-nsa-is-building-a-computer-to-crack-almost-any-code/">"The NSA Is Building a Computer to Crack Almost Any Code"</a>. <i>Time</i> – via nation.time.com.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Time&rft.atitle=The+NSA+Is+Building+a+Computer+to+Crack+Almost+Any+Code&rft.date=2014-01-02&rft.aulast=Dockterman&rft.aufirst=Eliana&rft_id=https%3A%2F%2Fnation.time.com%2F2014%2F01%2F02%2Fthe-nsa-is-building-a-computer-to-crack-almost-any-code%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"> August 4, 2014 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNemotoTrupkeDevittStephens2014" class="citation journal cs1"><a href="/wiki/Kae_Nemoto" title="Kae Nemoto">Nemoto, K.</a>; Trupke, M.; Devitt, S. J; Stephens, A. M; Scharfenberger, B; Buczak, K; Nobauer, T; Everitt, M. S; Schmiedmayer, J; Munro, W. J (2014). "Photonic architecture for scalable quantum information processing in diamond". <i>Physical Review X</i>. <b>4</b> (3): 031022. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1309.4277">1309.4277</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PhRvX...4c1022N">2014PhRvX...4c1022N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.4.031022">10.1103/PhysRevX.4.031022</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118418371">118418371</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+X&rft.atitle=Photonic+architecture+for+scalable+quantum+information+processing+in+diamond&rft.volume=4&rft.issue=3&rft.pages=031022&rft.date=2014&rft_id=info%3Aarxiv%2F1309.4277&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118418371%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevX.4.031022&rft_id=info%3Abibcode%2F2014PhRvX...4c1022N&rft.aulast=Nemoto&rft.aufirst=K.&rft.au=Trupke%2C+M.&rft.au=Devitt%2C+S.+J&rft.au=Stephens%2C+A.+M&rft.au=Scharfenberger%2C+B&rft.au=Buczak%2C+K&rft.au=Nobauer%2C+T&rft.au=Everitt%2C+M.+S&rft.au=Schmiedmayer%2C+J&rft.au=Munro%2C+W.+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-SCI-20140718-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-SCI-20140718_211-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNiggMüllerMartinezSchindler2014" class="citation journal cs1">Nigg, D; Müller, M; Martinez, M. A; Schindler, P; Hennrich, M; Monz, T; Martin-Delgado, M. A; Blatt, R (July 18, 2014). "Quantum computations on a topologically encoded qubit". <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>345</b> (6194): 302–305. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1403.5426">1403.5426</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Sci...345..302N">2014Sci...345..302N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1253742">10.1126/science.1253742</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24925911">24925911</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9677048">9677048</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Quantum+computations+on+a+topologically+encoded+qubit&rft.volume=345&rft.issue=6194&rft.pages=302-305&rft.date=2014-07-18&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9677048%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2014Sci...345..302N&rft_id=info%3Aarxiv%2F1403.5426&rft_id=info%3Apmid%2F24925911&rft_id=info%3Adoi%2F10.1126%2Fscience.1253742&rft.aulast=Nigg&rft.aufirst=D&rft.au=M%C3%BCller%2C+M&rft.au=Martinez%2C+M.+A&rft.au=Schindler%2C+P&rft.au=Hennrich%2C+M&rft.au=Monz%2C+T&rft.au=Martin-Delgado%2C+M.+A&rft.au=Blatt%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20140529-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-NYT-20140529_212-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarkoff2014" class="citation news cs1">Markoff, John (May 29, 2014). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2014/05/30/science/scientists-report-finding-reliable-way-to-teleport-data.html">"Scientists Report Finding Reliable Way to Teleport Data"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 29,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Scientists+Report+Finding+Reliable+Way+to+Teleport+Data&rft.date=2014-05-29&rft.aulast=Markoff&rft.aufirst=John&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2014%2F05%2F30%2Fscience%2Fscientists-report-finding-reliable-way-to-teleport-data.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-SCI-20140529-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-SCI-20140529_213-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPfaffHensenBernienVan_Dam2014" class="citation journal cs1">Pfaff, W; Hensen, B. J; Bernien, H; Van Dam, S. B; Blok, M. S; Taminiau, T. H; Tiggelman, M. J; Schouten, R. N; Markham, M; Twitchen, D. J; Hanson, R (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>345</b> (6196): 532–535. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.4369">1404.4369</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Sci...345..532P">2014Sci...345..532P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1253512">10.1126/science.1253512</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25082696">25082696</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2190249">2190249</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Unconditional+quantum+teleportation+between+distant+solid-state+quantum+bits&rft.volume=345&rft.issue=6196&rft.pages=532-535&rft.date=2014-05-29&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2190249%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2014Sci...345..532P&rft_id=info%3Aarxiv%2F1404.4369&rft_id=info%3Apmid%2F25082696&rft_id=info%3Adoi%2F10.1126%2Fscience.1253512&rft.aulast=Pfaff&rft.aufirst=W&rft.au=Hensen%2C+B.+J&rft.au=Bernien%2C+H&rft.au=Van+Dam%2C+S.+B&rft.au=Blok%2C+M.+S&rft.au=Taminiau%2C+T.+H&rft.au=Tiggelman%2C+M.+J&rft.au=Schouten%2C+R.+N&rft.au=Markham%2C+M&rft.au=Twitchen%2C+D.+J&rft.au=Hanson%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-214">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhongHedgesAhlefeldtBartholomew2015" class="citation journal cs1">Zhong, Manjin; Hedges, Morgan P; Ahlefeldt, Rose L; Bartholomew, John G; Beavan, Sarah E; Wittig, Sven M; Longdell, Jevon J; Sellars, Matthew J (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". <i>Nature</i>. <b>517</b> (7533): 177–180. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015Natur.517..177Z">2015Natur.517..177Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature14025">10.1038/nature14025</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25567283">25567283</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205241727">205241727</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Optically+addressable+nuclear+spins+in+a+solid+with+a+six-hour+coherence+time&rft.volume=517&rft.issue=7533&rft.pages=177-180&rft.date=2015&rft_id=info%3Adoi%2F10.1038%2Fnature14025&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205241727%23id-name%3DS2CID&rft_id=info%3Apmid%2F25567283&rft_id=info%3Abibcode%2F2015Natur.517..177Z&rft.aulast=Zhong&rft.aufirst=Manjin&rft.au=Hedges%2C+Morgan+P&rft.au=Ahlefeldt%2C+Rose+L&rft.au=Bartholomew%2C+John+G&rft.au=Beavan%2C+Sarah+E&rft.au=Wittig%2C+Sven+M&rft.au=Longdell%2C+Jevon+J&rft.au=Sellars%2C+Matthew+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-215">^</a></b></span> <span class="reference-text"> April 13, 2015 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://newsroom.unsw.edu.au/news/science-tech/breakthrough-opens-door-affordable-quantum-computers">"Breakthrough opens door to affordable quantum computers"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">April 16,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breakthrough+opens+door+to+affordable+quantum+computers&rft_id=http%3A%2F%2Fnewsroom.unsw.edu.au%2Fnews%2Fscience-tech%2Fbreakthrough-opens-door-affordable-quantum-computers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-216">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCórcolesMagesanSrinivasanCross2015" class="citation journal cs1">Córcoles, A.D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421819">"Demonstration of a quantum error detection code using a square lattice of four superconducting qubits"</a>. <i>Nature Communications</i>. <b>6</b>: 6979. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.6419">1410.6419</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatCo...6.6979C">2015NatCo...6.6979C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms7979">10.1038/ncomms7979</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421819">4421819</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25923200">25923200</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Demonstration+of+a+quantum+error+detection+code+using+a+square+lattice+of+four+superconducting+qubits&rft.volume=6&rft.pages=6979&rft.date=2015&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4421819%23id-name%3DPMC&rft_id=info%3Abibcode%2F2015NatCo...6.6979C&rft_id=info%3Aarxiv%2F1410.6419&rft_id=info%3Apmid%2F25923200&rft_id=info%3Adoi%2F10.1038%2Fncomms7979&rft.aulast=C%C3%B3rcoles&rft.aufirst=A.D&rft.au=Magesan%2C+Easwar&rft.au=Srinivasan%2C+Srikanth+J&rft.au=Cross%2C+Andrew+W&rft.au=Steffen%2C+M&rft.au=Gambetta%2C+Jay+M&rft.au=Chow%2C+Jerry+M&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4421819&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text">June 22, 2015 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180115184711/https://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier">"D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier">the original</a> on January 15, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">June 22,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-Wave+Systems+Inc.%2C+the+world%27s+first+quantum+computing+company%2C+today+announced+that+it+has+broken+the+1000+qubit+barrier&rft_id=http%3A%2F%2Fwww.dwavesys.com%2Fpress-releases%2Fd-wave-systems-breaks-1000-qubit-quantum-computing-barrier&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"> October 6, 2015 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.newsroom.unsw.edu.au/news/science-tech/crucial-hurdle-overcome-quantum-computing">"Crucial hurdle overcome in quantum computing"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 6,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crucial+hurdle+overcome+in+quantum+computing&rft_id=http%3A%2F%2Fwww.newsroom.unsw.edu.au%2Fnews%2Fscience-tech%2Fcrucial-hurdle-overcome-quantum-computing&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-219">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonzNiggMartinezBrandl2016" class="citation journal cs1">Monz, T; Nigg, D; Martinez, E. A; Brandl, M. F; Schindler, P; Rines, R; Wang, S. X; Chuang, I. L; Blatt, R; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". <i>Science</i>. <b>351</b> (6277): 1068–1070. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1507.08852">1507.08852</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016Sci...351.1068M">2016Sci...351.1068M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aad9480">10.1126/science.aad9480</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26941315">26941315</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17426142">17426142</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Realization+of+a+scalable+Shor+algorithm&rft.volume=351&rft.issue=6277&rft.pages=1068-1070&rft.date=2016-03-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17426142%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2016Sci...351.1068M&rft_id=info%3Aarxiv%2F1507.08852&rft_id=info%3Apmid%2F26941315&rft_id=info%3Adoi%2F10.1126%2Fscience.aad9480&rft.aulast=Monz&rft.aufirst=T&rft.au=Nigg%2C+D&rft.au=Martinez%2C+E.+A&rft.au=Brandl%2C+M.+F&rft.au=Schindler%2C+P&rft.au=Rines%2C+R&rft.au=Wang%2C+S.+X&rft.au=Chuang%2C+I.+L&rft.au=Blatt%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-220">^</a></b></span> <span class="reference-text"> September 29, 2016 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevitt2016" class="citation journal cs1">Devitt, S. J (2016). "Performing quantum computing experiments in the cloud". <i>Physical Review A</i>. <b>94</b> (3): 032329. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.05709">1605.05709</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvA..94c2329D">2016PhRvA..94c2329D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.94.032329">10.1103/PhysRevA.94.032329</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119217150">119217150</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Performing+quantum+computing+experiments+in+the+cloud&rft.volume=94&rft.issue=3&rft.pages=032329&rft.date=2016&rft_id=info%3Aarxiv%2F1605.05709&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119217150%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.94.032329&rft_id=info%3Abibcode%2F2016PhRvA..94c2329D&rft.aulast=Devitt&rft.aufirst=S.+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlsinaLatorre2016" class="citation journal cs1">Alsina, D; Latorre, J. I (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". <i>Physical Review A</i>. <b>94</b> (1): 012314. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.04220">1605.04220</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvA..94a2314A">2016PhRvA..94a2314A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.94.012314">10.1103/PhysRevA.94.012314</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119189277">119189277</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Experimental+test+of+Mermin+inequalities+on+a+five-qubit+quantum+computer&rft.volume=94&rft.issue=1&rft.pages=012314&rft.date=2016&rft_id=info%3Aarxiv%2F1605.04220&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119189277%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.94.012314&rft_id=info%3Abibcode%2F2016PhRvA..94a2314A&rft.aulast=Alsina&rft.aufirst=D&rft.au=Latorre%2C+J.+I&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-222">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFo'MalleyBabbushKivlichanRomero2016" class="citation journal cs1">o'Malley, P. J. J; Babbush, R; Kivlichan, I. D; Romero, J; McClean, J. R; Barends, R; Kelly, J; Roushan, P; Tranter, A; Ding, N; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". <i>Physical Review X</i>. <b>6</b> (3): 031007. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1512.06860">1512.06860</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvX...6c1007O">2016PhRvX...6c1007O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.6.031007">10.1103/PhysRevX.6.031007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4884151">4884151</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+X&rft.atitle=Scalable+Quantum+Simulation+of+Molecular+Energies&rft.volume=6&rft.issue=3&rft.pages=031007&rft.date=2016-07-18&rft_id=info%3Aarxiv%2F1512.06860&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4884151%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevX.6.031007&rft_id=info%3Abibcode%2F2016PhRvX...6c1007O&rft.aulast=o%27Malley&rft.aufirst=P.+J.+J&rft.au=Babbush%2C+R&rft.au=Kivlichan%2C+I.+D&rft.au=Romero%2C+J&rft.au=McClean%2C+J.+R&rft.au=Barends%2C+R&rft.au=Kelly%2C+J&rft.au=Roushan%2C+P&rft.au=Tranter%2C+A&rft.au=Ding%2C+N&rft.au=Campbell%2C+B&rft.au=Chen%2C+Y&rft.au=Chen%2C+Z&rft.au=Chiaro%2C+B&rft.au=Dunsworth%2C+A&rft.au=Fowler%2C+A.+G&rft.au=Jeffrey%2C+E&rft.au=Lucero%2C+E&rft.au=Megrant%2C+A&rft.au=Mutus%2C+J.+Y&rft.au=Neeley%2C+M&rft.au=Neill%2C+C&rft.au=Quintana%2C+C&rft.au=Sank%2C+D&rft.au=Vainsencher%2C+A&rft.au=Wenner%2C+J&rft.au=White%2C+T.+C&rft.au=Coveney%2C+P.+V&rft.au=Love%2C+P.+J&rft.au=Neven%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-223">^</a></b></span> <span class="reference-text"> November 2, 2016 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevittGreentreeStephensVan_Meter2016" class="citation journal cs1">Devitt, S. J; Greentree, A. D; Stephens, A. M; Van Meter, R (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090252">"High-speed quantum networking by ship"</a>. <i>Scientific Reports</i>. <b>6</b>: 36163. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.05709">1605.05709</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatSR...636163D">2016NatSR...636163D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep36163">10.1038/srep36163</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090252">5090252</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27805001">27805001</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=High-speed+quantum+networking+by+ship&rft.volume=6&rft.pages=36163&rft.date=2016&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5090252%23id-name%3DPMC&rft_id=info%3Abibcode%2F2016NatSR...636163D&rft_id=info%3Aarxiv%2F1605.05709&rft_id=info%3Apmid%2F27805001&rft_id=info%3Adoi%2F10.1038%2Fsrep36163&rft.aulast=Devitt&rft.aufirst=S.+J&rft.au=Greentree%2C+A.+D&rft.au=Stephens%2C+A.+M&rft.au=Van+Meter%2C+R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5090252&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-224">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170127044404/http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order">"D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems"</a>. <i>www.dwavesys.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order">the original</a> on January 27, 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">January 26,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.dwavesys.com&rft.atitle=D-Wave+Announces+D-Wave+2000Q+Quantum+Computer+and+First+System+Order+%7C+D-Wave+Systems&rft_id=http%3A%2F%2Fwww.dwavesys.com%2Fpress-releases%2Fd-wave%25C2%25A0announces%25C2%25A0d-wave-2000q-quantum-computer-and-first-system-order&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-225">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLekitschWeidtFowlerMølmer2017" class="citation journal cs1">Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287699">"Blueprint for a microwave trapped ion quantum computer"</a>. <i>Science Advances</i>. <b>3</b> (2): e1601540. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1508.00420">1508.00420</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017SciA....3E1540L">2017SciA....3E1540L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.1601540">10.1126/sciadv.1601540</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287699">5287699</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28164154">28164154</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Blueprint+for+a+microwave+trapped+ion+quantum+computer&rft.volume=3&rft.issue=2&rft.pages=e1601540&rft.date=2017-02-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5287699%23id-name%3DPMC&rft_id=info%3Abibcode%2F2017SciA....3E1540L&rft_id=info%3Aarxiv%2F1508.00420&rft_id=info%3Apmid%2F28164154&rft_id=info%3Adoi%2F10.1126%2Fsciadv.1601540&rft.aulast=Lekitsch&rft.aufirst=B&rft.au=Weidt%2C+S&rft.au=Fowler%2C+A.+G&rft.au=M%C3%B8lmer%2C+K&rft.au=Devitt%2C+S.+J&rft.au=Wunderlich%2C+C&rft.au=Hensinger%2C+W.+K&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5287699&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-226">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeredith_Rutland_Bauer2017" class="citation journal cs1">Meredith Rutland Bauer (May 17, 2017). <a rel="nofollow" class="external text" href="https://motherboard.vice.com/en_us/article/wnwk5w/ibm-17-qubit-quantum-processor-computer-google">"IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet"</a>. <i>Motherboard</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Motherboard&rft.atitle=IBM+Just+Made+a+17+Qubit+Quantum+Processor%2C+Its+Most+Powerful+One+Yet&rft.date=2017-05-17&rft.au=Meredith+Rutland+Bauer&rft_id=https%3A%2F%2Fmotherboard.vice.com%2Fen_us%2Farticle%2Fwnwk5w%2Fibm-17-qubit-quantum-processor-computer-google&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-227">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://spectrum.ieee.org/qudits-the-real-future-of-quantum-computing">"Qudits: The Real Future of Quantum Computing?"</a>. <i>IEEE Spectrum</i>. June 28, 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">June 29,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IEEE+Spectrum&rft.atitle=Qudits%3A+The+Real+Future+of+Quantum+Computing%3F&rft.date=2017-06-28&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fqudits-the-real-future-of-quantum-computing&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://arstechnica.com/gadgets/2017/09/microsoft-quantum-toolkit/">"Microsoft makes play for next wave of computing with quantum computing toolkit"</a>. <i>arstechnica.com</i>. September 25, 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">October 5,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=arstechnica.com&rft.atitle=Microsoft+makes+play+for+next+wave+of+computing+with+quantum+computing+toolkit&rft.date=2017-09-25&rft_id=https%3A%2F%2Farstechnica.com%2Fgadgets%2F2017%2F09%2Fmicrosoft-quantum-toolkit%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/">"IBM Raises the Bar with a 50-Qubit Quantum Computer"</a>. <i>MIT Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 13,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MIT+Technology+Review&rft.atitle=IBM+Raises+the+Bar+with+a+50-Qubit+Quantum+Computer&rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F609451%2Fibm-raises-the-bar-with-a-50-qubit-quantum-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-230">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRenXuYongZhang2017" class="citation journal cs1">Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing (August 9, 2017). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/nature23675/">"Ground-to-satellite quantum teleportation"</a>. <i>Nature</i>. <b>549</b> (7670): 70–73. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1707.00934">1707.00934</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Natur.549...70R">2017Natur.549...70R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature23675">10.1038/nature23675</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28825708">28825708</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4468803">4468803</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Ground-to-satellite+quantum+teleportation&rft.volume=549&rft.issue=7670&rft.pages=70-73&rft.date=2017-08-09&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4468803%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2017Natur.549...70R&rft_id=info%3Aarxiv%2F1707.00934&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fnature23675&rft_id=info%3Apmid%2F28825708&rft.aulast=Ren&rft.aufirst=Ji-Gang&rft.au=Xu%2C+Ping&rft.au=Yong%2C+Hai-Lin&rft.au=Zhang%2C+Liang&rft.au=Liao%2C+Sheng-Kai&rft.au=Yin%2C+Juan&rft.au=Liu%2C+Wei-Yue&rft.au=Cai%2C+Wen-Qi&rft.au=Yang%2C+Meng&rft.au=Li%2C+Li&rft.au=Yang%2C+Kui-Xing&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnature23675%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-231">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill2018" class="citation journal cs1">Preskill, John (August 6, 2018). <a rel="nofollow" class="external text" href="https://quantum-journal.org/papers/q-2018-08-06-79/">"Quantum Computing in the NISQ era and beyond"</a>. <i>Quantum</i>. <b>2</b>: 79. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.00862">1801.00862</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Quant...2...79P">2018Quant...2...79P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2018-08-06-79">10.22331/q-2018-08-06-79</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2521-327X">2521-327X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quantum&rft.atitle=Quantum+Computing+in+the+NISQ+era+and+beyond&rft.volume=2&rft.pages=79&rft.date=2018-08-06&rft_id=info%3Aarxiv%2F1801.00862&rft.issn=2521-327X&rft_id=info%3Adoi%2F10.22331%2Fq-2018-08-06-79&rft_id=info%3Abibcode%2F2018Quant...2...79P&rft.aulast=Preskill&rft.aufirst=John&rft_id=https%3A%2F%2Fquantum-journal.org%2Fpapers%2Fq-2018-08-06-79%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-NW-20180216-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-NW-20180216_232-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHignett2018" class="citation web cs1">Hignett, Katherine (February 16, 2018). <a rel="nofollow" class="external text" href="http://www.newsweek.com/photons-light-physics-808862">"Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution"</a>. <i><a href="/wiki/Newsweek" title="Newsweek">Newsweek</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 17,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Newsweek&rft.atitle=Physics+Creates+New+Form+Of+Light+That+Could+Drive+The+Quantum+Computing+Revolution&rft.date=2018-02-16&rft.aulast=Hignett&rft.aufirst=Katherine&rft_id=http%3A%2F%2Fwww.newsweek.com%2Fphotons-light-physics-808862&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-SCI-20180216-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-SCI-20180216_233-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiangVenkatramaniCantuNicholson2018" class="citation journal cs1">Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467536">"Observation of three-photon bound states in a quantum nonlinear medium"</a>. <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>359</b> (6377): 783–786. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1709.01478">1709.01478</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Sci...359..783L">2018Sci...359..783L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aao7293">10.1126/science.aao7293</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467536">6467536</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29449489">29449489</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Observation+of+three-photon+bound+states+in+a+quantum+nonlinear+medium&rft.volume=359&rft.issue=6377&rft.pages=783-786&rft.date=2018-02-16&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6467536%23id-name%3DPMC&rft_id=info%3Abibcode%2F2018Sci...359..783L&rft_id=info%3Aarxiv%2F1709.01478&rft_id=info%3Apmid%2F29449489&rft_id=info%3Adoi%2F10.1126%2Fscience.aao7293&rft.aulast=Liang&rft.aufirst=Q.+Y&rft.au=Venkatramani%2C+A.+V&rft.au=Cantu%2C+S.+H&rft.au=Nicholson%2C+T.+L&rft.au=Gullans%2C+M.+J&rft.au=Gorshkov%2C+A.+V&rft.au=Thompson%2C+J.+D&rft.au=Chin%2C+C&rft.au=Lukin%2C+M.+D&rft.au=Vuleti%C4%87%2C+V&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6467536&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-234">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html">"Scientists make major quantum computing breakthrough"</a></span>. <i><a href="/wiki/Independent.co.uk" class="mw-redirect" title="Independent.co.uk">Independent.co.uk</a></i>. March 2018. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20220507/https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html">Archived</a> from the original on May 7, 2022.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Independent.co.uk&rft.atitle=Scientists+make+major+quantum+computing+breakthrough&rft.date=2018-03&rft_id=https%3A%2F%2Fwww.independent.co.uk%2Flife-style%2Fgadgets-and-tech%2Fnews%2Fquantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-235">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiles2018" class="citation news cs1">Giles, Martin (February 15, 2018). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/610273/old-fashioned-silicon-might-be-the-key-to-building-ubiquitous-quantum-computers/">"Old-fashioned silicon might be the key to building ubiquitous quantum computers"</a>. <i>MIT Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=MIT+Technology+Review&rft.atitle=Old-fashioned+silicon+might+be+the+key+to+building+ubiquitous+quantum+computers&rft.date=2018-02-15&rft.aulast=Giles&rft.aufirst=Martin&rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F610273%2Fold-fashioned-silicon-might-be-the-key-to-building-ubiquitous-quantum-computers%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-236"><span class="mw-cite-backlink"><b><a href="#cite_ref-236">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmily_Conover2018" class="citation web cs1">Emily Conover (March 5, 2018). <a rel="nofollow" class="external text" href="https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer">"Google moves toward quantum supremacy with 72-qubit computer"</a>. <i>Science News</i><span class="reference-accessdate">. Retrieved <span class="nowrap">August 28,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Science+News&rft.atitle=Google+moves+toward+quantum+supremacy+with+72-qubit+computer&rft.date=2018-03-05&rft.au=Emily+Conover&rft_id=https%3A%2F%2Fwww.sciencenews.org%2Farticle%2Fgoogle-moves-toward-quantum-supremacy-72-qubit-computer&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-237"><span class="mw-cite-backlink"><b><a href="#cite_ref-237">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFForrest2018" class="citation news cs1">Forrest, Conner (June 12, 2018). <a rel="nofollow" class="external text" href="https://www.techrepublic.com/article/why-intels-smallest-spin-qubit-chip-could-be-a-turning-point-in-quantum-computing/">"Why Intel's smallest spin qubit chip could be a turning point in quantum computing"</a>. <i>TechRepublic</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 12,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=TechRepublic&rft.atitle=Why+Intel%27s+smallest+spin+qubit+chip+could+be+a+turning+point+in+quantum+computing&rft.date=2018-06-12&rft.aulast=Forrest&rft.aufirst=Conner&rft_id=https%3A%2F%2Fwww.techrepublic.com%2Farticle%2Fwhy-intels-smallest-spin-qubit-chip-could-be-a-turning-point-in-quantum-computing%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-238"><span class="mw-cite-backlink"><b><a href="#cite_ref-238">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHsu2018" class="citation web cs1">Hsu, Jeremy (January 9, 2018). <a rel="nofollow" class="external text" href="https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy">"CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy"</a>. <a href="/wiki/Institute_of_Electrical_and_Electronics_Engineers" title="Institute of Electrical and Electronics Engineers">Institute of Electrical and Electronics Engineers</a><span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CES+2018%3A+Intel%27s+49-Qubit+Chip+Shoots+for+Quantum+Supremacy&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.date=2018-01-09&rft.aulast=Hsu&rft.aufirst=Jeremy&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fintels-49qubit-chip-aims-for-quantum-supremacy&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-239"><span class="mw-cite-backlink"><b><a href="#cite_ref-239">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNagataKuramitaniSekiguchiKosaka2018" class="citation journal cs1">Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089953">"Universal holonomic quantum gates over geometric spin qubits with polarised microwaves"</a>. <i><a href="/wiki/Nature_Communications" title="Nature Communications">Nature Communications</a></i>. <b>9</b> (3227): 3227. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatCo...9.3227N">2018NatCo...9.3227N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-018-05664-w">10.1038/s41467-018-05664-w</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089953">6089953</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30104616">30104616</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Universal+holonomic+quantum+gates+over+geometric+spin+qubits+with+polarised+microwaves&rft.volume=9&rft.issue=3227&rft.pages=3227&rft.date=2018-08-13&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6089953%23id-name%3DPMC&rft_id=info%3Apmid%2F30104616&rft_id=info%3Adoi%2F10.1038%2Fs41467-018-05664-w&rft_id=info%3Abibcode%2F2018NatCo...9.3227N&rft.aulast=Nagata&rft.aufirst=K&rft.au=Kuramitani%2C+K&rft.au=Sekiguchi%2C+Y&rft.au=Kosaka%2C+H&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6089953&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-240"><span class="mw-cite-backlink"><b><a href="#cite_ref-240">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLenzini2018" class="citation journal cs1">Lenzini, Francesco (December 7, 2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286167">"Integrated photonic platform for quantum information with continuous variables"</a>. <i>Science Advances</i>. <b>4</b> (12): eaat9331. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1804.07435">1804.07435</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018SciA....4.9331L">2018SciA....4.9331L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.aat9331">10.1126/sciadv.aat9331</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286167">6286167</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30539143">30539143</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Integrated+photonic+platform+for+quantum+information+with+continuous+variables&rft.volume=4&rft.issue=12&rft.pages=eaat9331&rft.date=2018-12-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6286167%23id-name%3DPMC&rft_id=info%3Abibcode%2F2018SciA....4.9331L&rft_id=info%3Aarxiv%2F1804.07435&rft_id=info%3Apmid%2F30539143&rft_id=info%3Adoi%2F10.1126%2Fsciadv.aat9331&rft.aulast=Lenzini&rft.aufirst=Francesco&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6286167&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-241"><span class="mw-cite-backlink"><b><a href="#cite_ref-241">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first/">"Ion-based commercial quantum computer is a first"</a>. <i>Physics World</i>. December 17, 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+World&rft.atitle=Ion-based+commercial+quantum+computer+is+a+first&rft.date=2018-12-17&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fion-based-commercial-quantum-computer-is-a-first%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-242"><span class="mw-cite-backlink"><b><a href="#cite_ref-242">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://ionq.com/">"IonQ"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=IonQ&rft_id=https%3A%2F%2Fionq.com%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-govtrack-243"><span class="mw-cite-backlink"><b><a href="#cite_ref-govtrack_243-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREF115th_Congress_(2018)2018" class="citation web cs1">115th Congress (2018) (June 26, 2018). <a rel="nofollow" class="external text" href="https://www.govtrack.us/congress/bills/115/hr6227">"H.R. 6227 (115th)"</a>. <i>Legislation</i>. GovTrack.us<span class="reference-accessdate">. Retrieved <span class="nowrap">February 11,</span> 2019</span>. <q>National Quantum Initiative Act</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Legislation&rft.atitle=H.R.+6227+%28115th%29&rft.date=2018-06-26&rft.au=115th+Congress+%282018%29&rft_id=https%3A%2F%2Fwww.govtrack.us%2Fcongress%2Fbills%2F115%2Fhr6227&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-244"><span class="mw-cite-backlink"><b><a href="#cite_ref-244">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.technologyreview.com/the-download/612679/president-trump-has-signed-a-12-billon-law-to-boost-us-quantum-tech/">"President Trump has signed a $1.2 billon law to boost US quantum tech"</a>. <i>MIT Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 11,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MIT+Technology+Review&rft.atitle=President+Trump+has+signed+a+%241.2+billon+law+to+boost+US+quantum+tech&rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fthe-download%2F612679%2Fpresident-trump-has-signed-a-12-billon-law-to-boost-us-quantum-tech%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-245"><span class="mw-cite-backlink"><b><a href="#cite_ref-245">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://thestack.com/data-centre/2018/12/18/us-national-quantum-initiative-act/">"US National Quantum Initiative Act passed unanimously"</a>. <i>The Stack</i>. December 18, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">February 11,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Stack&rft.atitle=US+National+Quantum+Initiative+Act+passed+unanimously&rft.date=2018-12-18&rft_id=https%3A%2F%2Fthestack.com%2Fdata-centre%2F2018%2F12%2F18%2Fus-national-quantum-initiative-act%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-246"><span class="mw-cite-backlink"><b><a href="#cite_ref-246">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAron2019" class="citation web cs1">Aron, Jacob (January 8, 2019). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/">"IBM unveils its first commercial quantum computer"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">January 8,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=New+Scientist&rft.atitle=IBM+unveils+its+first+commercial+quantum+computer&rft.date=2019-01-08&rft.aulast=Aron&rft.aufirst=Jacob&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2F2189909-ibm-unveils-its-first-commercial-quantum-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-247"><span class="mw-cite-backlink"><b><a href="#cite_ref-247">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://techcrunch.com/2019/01/08/ibm-unveils-its-first-commercial-quantum-computer/">"IBM unveils its first commercial quantum computer"</a>. <i>TechCrunch</i>. January 8, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">February 18,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=TechCrunch&rft.atitle=IBM+unveils+its+first+commercial+quantum+computer&rft.date=2019-01-08&rft_id=https%3A%2F%2Ftechcrunch.com%2F2019%2F01%2F08%2Fibm-unveils-its-first-commercial-quantum-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Nat-20190515-248"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nat-20190515_248-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKokailMaierVan_BijnenBrydges2019" class="citation journal cs1">Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Science</a></i>. <b>569</b> (7756): 355–360. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.03421">1810.03421</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Natur.569..355K">2019Natur.569..355K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-019-1177-4">10.1038/s41586-019-1177-4</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31092942">31092942</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53595106">53595106</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Self-verifying+variational+quantum+simulation+of+lattice+models&rft.volume=569&rft.issue=7756&rft.pages=355-360&rft.date=2019-05-15&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53595106%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2019Natur.569..355K&rft_id=info%3Aarxiv%2F1810.03421&rft_id=info%3Apmid%2F31092942&rft_id=info%3Adoi%2F10.1038%2Fs41586-019-1177-4&rft.aulast=Kokail&rft.aufirst=C&rft.au=Maier%2C+C&rft.au=Van+Bijnen%2C+R&rft.au=Brydges%2C+T&rft.au=Joshi%2C+M.+K&rft.au=Jurcevic%2C+P&rft.au=Muschik%2C+C.+A&rft.au=Silvi%2C+P&rft.au=Blatt%2C+R&rft.au=Roos%2C+C&rft.au=Zoller%2C+P&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-249"><span class="mw-cite-backlink"><b><a href="#cite_ref-249">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUNSW_Media2019" class="citation web cs1">UNSW Media (May 23, 2019). <a rel="nofollow" class="external text" href="https://newsroom.unsw.edu.au/news/science-tech/noise-cancelling-headphones%E2%80%99-quantum-computers-international-collaboration#:~:text=A%20new%20project%20to%20develop,quantum%20building%20blocks%2C%20or%20qubits.&text=Morello%27s%20team%20was%20the%20first,information%20in%20a%20silicon%20chip">"<span class="cs1-kern-left"></span>'Noise-cancelling headphones' for quantum computers: international collaboration launched"</a>. <i>UNSW Newsroom</i>. <a href="/wiki/University_of_New_South_Wales" title="University of New South Wales">University of New South Wales</a><span class="reference-accessdate">. Retrieved <span class="nowrap">April 16,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=UNSW+Newsroom&rft.atitle=%27Noise-cancelling+headphones%27+for+quantum+computers%3A+international+collaboration+launched&rft.date=2019-05-23&rft.au=UNSW+Media&rft_id=https%3A%2F%2Fnewsroom.unsw.edu.au%2Fnews%2Fscience-tech%2Fnoise-cancelling-headphones%25E2%2580%2599-quantum-computers-international-collaboration%23%3A~%3Atext%3DA%2520new%2520project%2520to%2520develop%2Cquantum%2520building%2520blocks%252C%2520or%2520qubits.%26text%3DMorello%2527s%2520team%2520was%2520the%2520first%2Cinformation%2520in%2520a%2520silicon%2520chip&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-250"><span class="mw-cite-backlink"><b><a href="#cite_ref-250">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.uts.edu.au/about/faculty-engineering-and-information-technology/news/cancelling-quantum-noise">"Cancelling quantum noise"</a>. May 23, 2019.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Cancelling+quantum+noise&rft.date=2019-05-23&rft_id=https%3A%2F%2Fwww.uts.edu.au%2Fabout%2Ffaculty-engineering-and-information-technology%2Fnews%2Fcancelling-quantum-noise&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-PRL-20191001-251"><span class="mw-cite-backlink"><b><a href="#cite_ref-PRL-20191001_251-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUndenLouzonZwolakZurek2019" class="citation journal cs1">Unden, T.; Louzon, D.; Zwolak, M.; Zurek, W. H.; Jelezko, F. (October 1, 2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003699">"Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>123</b> (140402): 140402. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1809.10456">1809.10456</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019PhRvL.123n0402U">2019PhRvL.123n0402U</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.123.140402">10.1103/PhysRevLett.123.140402</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003699">7003699</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31702205">31702205</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Revealing+the+Emergence+of+Classicality+Using+Nitrogen-Vacancy+Centers&rft.volume=123&rft.issue=140402&rft.pages=140402&rft.date=2019-10-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7003699%23id-name%3DPMC&rft_id=info%3Abibcode%2F2019PhRvL.123n0402U&rft_id=info%3Aarxiv%2F1809.10456&rft_id=info%3Apmid%2F31702205&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.123.140402&rft.aulast=Unden&rft.aufirst=T.&rft.au=Louzon%2C+D.&rft.au=Zwolak%2C+M.&rft.au=Zurek%2C+W.+H.&rft.au=Jelezko%2C+F.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7003699&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Science-20190913-252"><span class="mw-cite-backlink"><b><a href="#cite_ref-Science-20190913_252-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2019" class="citation journal cs1">Cho, A. (September 13, 2019). "Quantum Darwinism seen in diamond traps". <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>365</b> (6458): 1070. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Sci...365.1070C">2019Sci...365.1070C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.365.6458.1070">10.1126/science.365.6458.1070</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31515367">31515367</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:202567042">202567042</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Quantum+Darwinism+seen+in+diamond+traps&rft.volume=365&rft.issue=6458&rft.pages=1070&rft.date=2019-09-13&rft_id=info%3Adoi%2F10.1126%2Fscience.365.6458.1070&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A202567042%23id-name%3DS2CID&rft_id=info%3Apmid%2F31515367&rft_id=info%3Abibcode%2F2019Sci...365.1070C&rft.aulast=Cho&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-253"><span class="mw-cite-backlink"><b><a href="#cite_ref-253">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.engadget.com/2019/09/23/google-quantum-supremacy/">"Google may have taken a step towards quantum computing 'supremacy' (updated)"</a>. <i>Engadget</i>. September 23, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">September 24,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Engadget&rft.atitle=Google+may+have+taken+a+step+towards+quantum+computing+%27supremacy%27+%28updated%29&rft.date=2019-09-23&rft_id=https%3A%2F%2Fwww.engadget.com%2F2019%2F09%2F23%2Fgoogle-quantum-supremacy%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-254"><span class="mw-cite-backlink"><b><a href="#cite_ref-254">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPorter2019" class="citation web cs1">Porter, Jon (September 23, 2019). <a rel="nofollow" class="external text" href="https://www.theverge.com/2019/9/23/20879485/google-quantum-supremacy-qubits-nasa">"Google may have just ushered in an era of 'quantum supremacy'<span class="cs1-kern-right"></span>"</a>. <i>The Verge</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 24,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Verge&rft.atitle=Google+may+have+just+ushered+in+an+era+of+%27quantum+supremacy%27&rft.date=2019-09-23&rft.aulast=Porter&rft.aufirst=Jon&rft_id=https%3A%2F%2Fwww.theverge.com%2F2019%2F9%2F23%2F20879485%2Fgoogle-quantum-supremacy-qubits-nasa&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-255"><span class="mw-cite-backlink"><b><a href="#cite_ref-255">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurgia,_Waters2019" class="citation web cs1">Murgia, Waters, Madhumita, Richard (September 20, 2019). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17">"Google claims to have reached quantum supremacy"</a></span>. <i>Financial Times</i>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221210/https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17">Archived</a> from the original on December 10, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">September 24,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Financial+Times&rft.atitle=Google+claims+to+have+reached+quantum+supremacy&rft.date=2019-09-20&rft.aulast=Murgia%2C+Waters&rft.aufirst=Madhumita%2C+Richard&rft_id=https%3A%2F%2Fwww.ft.com%2Fcontent%2Fb9bb4e54-dbc1-11e9-8f9b-77216ebe1f17&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-256"><span class="mw-cite-backlink"><b><a href="#cite_ref-256">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://spectrum.ieee.org/google-team-builds-circuit-to-solve-one-of-quantum-computings-biggest-problems">"Google Builds Circuit to Solve One of Quantum Computing's Biggest Problems - IEEE Spectrum"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Google+Builds+Circuit+to+Solve+One+of+Quantum+Computing%27s+Biggest+Problems+-+IEEE+Spectrum&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fgoogle-team-builds-circuit-to-solve-one-of-quantum-computings-biggest-problems&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-257"><span class="mw-cite-backlink"><b><a href="#cite_ref-257">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaristo" class="citation web cs1">Garisto, Daniel. <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/quantum-computer-made-from-photons-achieves-a-new-record/">"Quantum Computer Made from Photons Achieves a New Record"</a>. <i>Scientific American</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 30,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Scientific+American&rft.atitle=Quantum+Computer+Made+from+Photons+Achieves+a+New+Record&rft.aulast=Garisto&rft.aufirst=Daniel&rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Fquantum-computer-made-from-photons-achieves-a-new-record%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-258"><span class="mw-cite-backlink"><b><a href="#cite_ref-258">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://newsroom.unsw.edu.au/news/science-tech/hot-qubits-made-sydney-break-one-biggest-constraints-practical-quantum-computers">"Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers"</a>. April 16, 2020.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Hot+qubits+made+in+Sydney+break+one+of+the+biggest+constraints+to+practical+quantum+computers&rft.date=2020-04-16&rft_id=https%3A%2F%2Fnewsroom.unsw.edu.au%2Fnews%2Fscience-tech%2Fhot-qubits-made-sydney-break-one-biggest-constraints-practical-quantum-computers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-259"><span class="mw-cite-backlink"><b><a href="#cite_ref-259">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://newsroom.unsw.edu.au/news/science-tech/engineers-crack-58-year-old-puzzle-way-quantum-breakthrough">"Engineers crack 58-year-old puzzle on way to quantum breakthrough"</a>. March 12, 2020.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Engineers+crack+58-year-old+puzzle+on+way+to+quantum+breakthrough&rft.date=2020-03-12&rft_id=https%3A%2F%2Fnewsroom.unsw.edu.au%2Fnews%2Fscience-tech%2Fengineers-crack-58-year-old-puzzle-way-quantum-breakthrough&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-260"><span class="mw-cite-backlink"><b><a href="#cite_ref-260">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://eurekalert.org/pub_releases/2020-04/tuos-wtq042320.php">"Wiring the quantum computer of the future: A novel simple build with existing technology"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Wiring+the+quantum+computer+of+the+future%3A+A+novel+simple+build+with+existing+technology&rft_id=https%3A%2F%2Feurekalert.org%2Fpub_releases%2F2020-04%2Ftuos-wtq042320.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-261"><span class="mw-cite-backlink"><b><a href="#cite_ref-261">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-02-quantum-photon.html">"Quantum researchers able to split one photon into three"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 9,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=phys.org&rft.atitle=Quantum+researchers+able+to+split+one+photon+into+three&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-02-quantum-photon.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-262"><span class="mw-cite-backlink"><b><a href="#cite_ref-262">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChangSabínForn-DíazQuijandría2020" class="citation journal cs1">Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (January 16, 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.10.011011">"Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity"</a>. <i>Physical Review X</i>. <b>10</b> (1): 011011. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1907.08692">1907.08692</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvX..10a1011C">2020PhRvX..10a1011C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.10.011011">10.1103/PhysRevX.10.011011</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+X&rft.atitle=Observation+of+Three-Photon+Spontaneous+Parametric+Down-Conversion+in+a+Superconducting+Parametric+Cavity&rft.volume=10&rft.issue=1&rft.pages=011011&rft.date=2020-01-16&rft_id=info%3Aarxiv%2F1907.08692&rft_id=info%3Adoi%2F10.1103%2FPhysRevX.10.011011&rft_id=info%3Abibcode%2F2020PhRvX..10a1011C&rft.aulast=Chang&rft.aufirst=C.+W.+Sandbo&rft.au=Sab%C3%ADn%2C+Carlos&rft.au=Forn-D%C3%ADaz%2C+P.&rft.au=Quijandr%C3%ADa%2C+Fernando&rft.au=Vadiraj%2C+A.+M.&rft.au=Nsanzineza%2C+I.&rft.au=Johansson%2C+G.&rft.au=Wilson%2C+C.+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevX.10.011011&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-263"><span class="mw-cite-backlink"><b><a href="#cite_ref-263">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-02-artificial-atoms-stable-qubits-quantum.html">"Artificial atoms create stable qubits for quantum computing"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 9,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Artificial+atoms+create+stable+qubits+for+quantum+computing&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-02-artificial-atoms-stable-qubits-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-264"><span class="mw-cite-backlink"><b><a href="#cite_ref-264">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonYangHwangLemyre2020" class="citation journal cs1">Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Laucht, A.; Pioro-Ladrière, M.; Saraiva, A.; Dzurak, A. S. (February 11, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012832">"Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot"</a>. <i>Nature Communications</i>. <b>11</b> (1): 797. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1902.01550">1902.01550</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCo..11..797L">2020NatCo..11..797L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-019-14053-w">10.1038/s41467-019-14053-w</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012832">7012832</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32047151">32047151</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Coherent+spin+control+of+s-%2C+p-%2C+d-+and+f-electrons+in+a+silicon+quantum+dot&rft.volume=11&rft.issue=1&rft.pages=797&rft.date=2020-02-11&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7012832%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020NatCo..11..797L&rft_id=info%3Aarxiv%2F1902.01550&rft.issn=2041-1723&rft_id=info%3Adoi%2F10.1038%2Fs41467-019-14053-w&rft_id=info%3Apmid%2F32047151&rft.aulast=Leon&rft.aufirst=R.+C.+C.&rft.au=Yang%2C+C.+H.&rft.au=Hwang%2C+J.+C.+C.&rft.au=Lemyre%2C+J.+Camirand&rft.au=Tanttu%2C+T.&rft.au=Huang%2C+W.&rft.au=Chan%2C+K.+W.&rft.au=Tan%2C+K.+Y.&rft.au=Hudson%2C+F.+E.&rft.au=Itoh%2C+K.+M.&rft.au=Morello%2C+A.&rft.au=Laucht%2C+A.&rft.au=Pioro-Ladri%C3%A8re%2C+M.&rft.au=Saraiva%2C+A.&rft.au=Dzurak%2C+A.+S.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7012832&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-265"><span class="mw-cite-backlink"><b><a href="#cite_ref-265">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-02-photons-stream-electrons.html">"Producing single photons from a stream of single electrons"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 8,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Producing+single+photons+from+a+stream+of+single+electrons&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-02-photons-stream-electrons.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-266"><span class="mw-cite-backlink"><b><a href="#cite_ref-266">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHsiaoRubinoChungSon2020" class="citation journal cs1">Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel; Stanley, Megan J.; Phillips, Richard T.; Mitchell, Thomas A.; Griffiths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Ford, Christopher J. B. (February 14, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021712">"Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode"</a>. <i>Nature Communications</i>. <b>11</b> (1): 917. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1901.03464">1901.03464</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCo..11..917H">2020NatCo..11..917H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-14560-1">10.1038/s41467-020-14560-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021712">7021712</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32060278">32060278</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Single-photon+emission+from+single-electron+transport+in+a+SAW-driven+lateral+light-emitting+diode&rft.volume=11&rft.issue=1&rft.pages=917&rft.date=2020-02-14&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7021712%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020NatCo..11..917H&rft_id=info%3Aarxiv%2F1901.03464&rft.issn=2041-1723&rft_id=info%3Adoi%2F10.1038%2Fs41467-020-14560-1&rft_id=info%3Apmid%2F32060278&rft.aulast=Hsiao&rft.aufirst=Tzu-Kan&rft.au=Rubino%2C+Antonio&rft.au=Chung%2C+Yousun&rft.au=Son%2C+Seok-Kyun&rft.au=Hou%2C+Hangtian&rft.au=Pedr%C3%B3s%2C+Jorge&rft.au=Nasir%2C+Ateeq&rft.au=%C3%89thier-Majcher%2C+Gabriel&rft.au=Stanley%2C+Megan+J.&rft.au=Phillips%2C+Richard+T.&rft.au=Mitchell%2C+Thomas+A.&rft.au=Griffiths%2C+Jonathan+P.&rft.au=Farrer%2C+Ian&rft.au=Ritchie%2C+David+A.&rft.au=Ford%2C+Christopher+J.+B.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7021712&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-267"><span class="mw-cite-backlink"><b><a href="#cite_ref-267">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-02-scientists-quantum.html">"Scientists 'film' a quantum measurement"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 9,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Scientists+%27film%27+a+quantum+measurement&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-02-scientists-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-268"><span class="mw-cite-backlink"><b><a href="#cite_ref-268">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPokornyZhangHigginsCabello2020" class="citation journal cs1">Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (February 25, 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". <i>Physical Review Letters</i>. <b>124</b> (8): 080401. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1903.10398">1903.10398</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvL.124h0401P">2020PhRvL.124h0401P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.124.080401">10.1103/PhysRevLett.124.080401</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32167322">32167322</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:85501331">85501331</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Tracking+the+Dynamics+of+an+Ideal+Quantum+Measurement&rft.volume=124&rft.issue=8&rft.pages=080401&rft.date=2020-02-25&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A85501331%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020PhRvL.124h0401P&rft_id=info%3Aarxiv%2F1903.10398&rft_id=info%3Apmid%2F32167322&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.124.080401&rft.aulast=Pokorny&rft.aufirst=Fabian&rft.au=Zhang%2C+Chi&rft.au=Higgins%2C+Gerard&rft.au=Cabello%2C+Ad%C3%A1n&rft.au=Kleinmann%2C+Matthias&rft.au=Hennrich%2C+Markus&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-269"><span class="mw-cite-backlink"><b><a href="#cite_ref-269">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-03-scientists-electron-qubit-demolishing.html">"Scientists measure electron spin qubit without demolishing it"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">April 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Scientists+measure+electron+spin+qubit+without+demolishing+it&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-03-scientists-electron-qubit-demolishing.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-270"><span class="mw-cite-backlink"><b><a href="#cite_ref-270">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYonedaTakedaNoiriNakajima2020" class="citation journal cs1">Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (March 2, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052195">"Quantum non-demolition readout of an electron spin in silicon"</a>. <i>Nature Communications</i>. <b>11</b> (1): 1144. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.11963">1910.11963</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCo..11.1144Y">2020NatCo..11.1144Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-14818-8">10.1038/s41467-020-14818-8</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052195">7052195</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32123167">32123167</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Quantum+non-demolition+readout+of+an+electron+spin+in+silicon&rft.volume=11&rft.issue=1&rft.pages=1144&rft.date=2020-03-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7052195%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020NatCo..11.1144Y&rft_id=info%3Aarxiv%2F1910.11963&rft.issn=2041-1723&rft_id=info%3Adoi%2F10.1038%2Fs41467-020-14818-8&rft_id=info%3Apmid%2F32123167&rft.aulast=Yoneda&rft.aufirst=J.&rft.au=Takeda%2C+K.&rft.au=Noiri%2C+A.&rft.au=Nakajima%2C+T.&rft.au=Li%2C+S.&rft.au=Kamioka%2C+J.&rft.au=Kodera%2C+T.&rft.au=Tarucha%2C+S.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7052195&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-271"><span class="mw-cite-backlink"><b><a href="#cite_ref-271">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-03-year-old-puzzle-quantum-breakthrough.html">"Engineers crack 58-year-old puzzle on way to quantum breakthrough"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">April 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Engineers+crack+58-year-old+puzzle+on+way+to+quantum+breakthrough&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-03-year-old-puzzle-quantum-breakthrough.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-272"><span class="mw-cite-backlink"><b><a href="#cite_ref-272">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAsaadMourikJoeckerJohnson2020" class="citation journal cs1">Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". <i>Nature</i>. <b>579</b> (7798): 205–209. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1906.01086">1906.01086</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.579..205A">2020Natur.579..205A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2057-7">10.1038/s41586-020-2057-7</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32161384">32161384</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:174797899">174797899</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Coherent+electrical+control+of+a+single+high-spin+nucleus+in+silicon&rft.volume=579&rft.issue=7798&rft.pages=205-209&rft.date=2020-03&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A174797899%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Natur.579..205A&rft_id=info%3Aarxiv%2F1906.01086&rft_id=info%3Apmid%2F32161384&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2057-7&rft.aulast=Asaad&rft.aufirst=Serwan&rft.au=Mourik%2C+Vincent&rft.au=Joecker%2C+Benjamin&rft.au=Johnson%2C+Mark+A.+I.&rft.au=Baczewski%2C+Andrew+D.&rft.au=Firgau%2C+Hannes+R.&rft.au=M%C4%85dzik%2C+Mateusz+T.&rft.au=Schmitt%2C+Vivien&rft.au=Pla%2C+Jarryd+J.&rft.au=Hudson%2C+Fay+E.&rft.au=Itoh%2C+Kohei+M.&rft.au=McCallum%2C+Jeffrey+C.&rft.au=Dzurak%2C+Andrew+S.&rft.au=Laucht%2C+Arne&rft.au=Morello%2C+Andrea&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-2020-03-19_Phys-273"><span class="mw-cite-backlink"><b><a href="#cite_ref-2020-03-19_Phys_273-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaboratory" class="citation web cs1">Laboratory, The Army Research. <a rel="nofollow" class="external text" href="https://phys.org/news/2020-03-scientists-quantum-sensor-entire-radio.html">"Scientists create quantum sensor that covers entire radio frequency spectrum"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">April 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=phys.org&rft.atitle=Scientists+create+quantum+sensor+that+covers+entire+radio+frequency+spectrum&rft.aulast=Laboratory&rft.aufirst=The+Army+Research&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-03-scientists-quantum-sensor-entire-radio.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-274"><span class="mw-cite-backlink"><b><a href="#cite_ref-274">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeyerCastilloCoxKunz2020" class="citation journal cs1">Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (January 10, 2020). "Assessment of Rydberg atoms for wideband electric field sensing". <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i>. <b>53</b> (3): 034001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.00646">1910.00646</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JPhB...53c4001M">2020JPhB...53c4001M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1361-6455%2Fab6051">10.1088/1361-6455/ab6051</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0953-4075">0953-4075</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:203626886">203626886</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+B%3A+Atomic%2C+Molecular+and+Optical+Physics&rft.atitle=Assessment+of+Rydberg+atoms+for+wideband+electric+field+sensing&rft.volume=53&rft.issue=3&rft.pages=034001&rft.date=2020-01-10&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A203626886%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020JPhB...53c4001M&rft_id=info%3Aarxiv%2F1910.00646&rft.issn=0953-4075&rft_id=info%3Adoi%2F10.1088%2F1361-6455%2Fab6051&rft.aulast=Meyer&rft.aufirst=David+H&rft.au=Castillo%2C+Zachary+A&rft.au=Cox%2C+Kevin+C&rft.au=Kunz%2C+Paul+D&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-275"><span class="mw-cite-backlink"><b><a href="#cite_ref-275">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-03-link-quantum-internet.html">"Researchers demonstrate the missing link for a quantum internet"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">April 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Researchers+demonstrate+the+missing+link+for+a+quantum+internet&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-03-link-quantum-internet.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-276"><span class="mw-cite-backlink"><b><a href="#cite_ref-276">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhaskarRiedingerMachielseLevonian2020" class="citation journal cs1">Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D. D.; Lukin, M. D. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". <i>Nature</i>. <b>580</b> (7801): 60–64. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1909.01323">1909.01323</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.580...60B">2020Natur.580...60B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2103-5">10.1038/s41586-020-2103-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32238931">32238931</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:202539813">202539813</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Experimental+demonstration+of+memory-enhanced+quantum+communication&rft.volume=580&rft.issue=7801&rft.pages=60-64&rft.date=2020-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A202539813%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Natur.580...60B&rft_id=info%3Aarxiv%2F1909.01323&rft_id=info%3Apmid%2F32238931&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2103-5&rft.aulast=Bhaskar&rft.aufirst=M.+K.&rft.au=Riedinger%2C+R.&rft.au=Machielse%2C+B.&rft.au=Levonian%2C+D.+S.&rft.au=Nguyen%2C+C.+T.&rft.au=Knall%2C+E.+N.&rft.au=Park%2C+H.&rft.au=Englund%2C+D.&rft.au=Lon%C4%8Dar%2C+M.&rft.au=Sukachev%2C+D.+D.&rft.au=Lukin%2C+M.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-277"><span class="mw-cite-backlink"><b><a href="#cite_ref-277">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDelbert2020" class="citation news cs1">Delbert, Caroline (April 17, 2020). <a rel="nofollow" class="external text" href="https://www.popularmechanics.com/science/a32170397/hot-qubits-quantum-computing-breakthrough/">"Hot Qubits Could Deliver a Quantum Computing Breakthrough"</a>. <i>Popular Mechanics</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 16,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Popular+Mechanics&rft.atitle=Hot+Qubits+Could+Deliver+a+Quantum+Computing+Breakthrough&rft.date=2020-04-17&rft.aulast=Delbert&rft.aufirst=Caroline&rft_id=https%3A%2F%2Fwww.popularmechanics.com%2Fscience%2Fa32170397%2Fhot-qubits-quantum-computing-breakthrough%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-278"><span class="mw-cite-backlink"><b><a href="#cite_ref-278">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.abc.net.au/news/science/2020-04-16/hot-qubits-crack-quantum-computing-temperature-barrier/12132400">"<span class="cs1-kern-left"></span>'Hot' qubits crack quantum computing temperature barrier – ABC News"</a>. <i>www.abc.net.au</i>. April 15, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">May 16,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=www.abc.net.au&rft.atitle=%27Hot%27+qubits+crack+quantum+computing+temperature+barrier+%E2%80%93+ABC+News&rft.date=2020-04-15&rft_id=https%3A%2F%2Fwww.abc.net.au%2Fnews%2Fscience%2F2020-04-16%2Fhot-qubits-crack-quantum-computing-temperature-barrier%2F12132400&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-279"><span class="mw-cite-backlink"><b><a href="#cite_ref-279">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-04-hot-qubits-biggest-constraints-quantum.html">"Hot qubits break one of the biggest constraints to practical quantum computers"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 16,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Hot+qubits+break+one+of+the+biggest+constraints+to+practical+quantum+computers&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-04-hot-qubits-biggest-constraints-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-280"><span class="mw-cite-backlink"><b><a href="#cite_ref-280">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangLeonHwangSaraiva2020" class="citation journal cs1">Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". <i>Nature</i>. <b>580</b> (7803): 350–354. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1902.09126">1902.09126</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.580..350Y">2020Natur.580..350Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2171-6">10.1038/s41586-020-2171-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32296190">32296190</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119520750">119520750</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Operation+of+a+silicon+quantum+processor+unit+cell+above+one+kelvin&rft.volume=580&rft.issue=7803&rft.pages=350-354&rft.date=2020-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119520750%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Natur.580..350Y&rft_id=info%3Aarxiv%2F1902.09126&rft_id=info%3Apmid%2F32296190&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2171-6&rft.aulast=Yang&rft.aufirst=C.+H.&rft.au=Leon%2C+R.+C.+C.&rft.au=Hwang%2C+J.+C.+C.&rft.au=Saraiva%2C+A.&rft.au=Tanttu%2C+T.&rft.au=Huang%2C+W.&rft.au=Camirand+Lemyre%2C+J.&rft.au=Chan%2C+K.+W.&rft.au=Tan%2C+K.+Y.&rft.au=Hudson%2C+F.+E.&rft.au=Itoh%2C+K.+M.&rft.au=Morello%2C+A.&rft.au=Pioro-Ladri%C3%A8re%2C+M.&rft.au=Laucht%2C+A.&rft.au=Dzurak%2C+A.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-281"><span class="mw-cite-backlink"><b><a href="#cite_ref-281">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-04-discovery-long-standing-debate-photovoltaic-materials.html">"New discovery settles long-standing debate about photovoltaic materials"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 17,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=New+discovery+settles+long-standing+debate+about+photovoltaic+materials&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-04-discovery-long-standing-debate-photovoltaic-materials.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-282"><span class="mw-cite-backlink"><b><a href="#cite_ref-282">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuVaswaniYangZhao2020" class="citation journal cs1">Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y.; Luo, L.; Mudiyanselage, D.-H.; Huang, C.; Park, J.-M.; Kim, R. H. J.; Zhao, J.; Yan, Y.; Ho, K.-M.; Wang, J. (April 16, 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.124.157401">"Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathrm {CH} }_{3}{\mathrm {NH} }_{3}{\mathrm {PbI} }_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">H</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">H</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathrm {CH} }_{3}{\mathrm {NH} }_{3}{\mathrm {PbI} }_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93aa13af9ee332887cd511fc7b495a39411f1ed2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.785ex; height:2.509ex;" alt="{\displaystyle {\mathrm {CH} }_{3}{\mathrm {NH} }_{3}{\mathrm {PbI} }_{3}}"></span>"</a>. <i>Physical Review Letters</i>. <b>124</b> (15): 157401. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1905.12373">1905.12373</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.124.157401">10.1103/PhysRevLett.124.157401</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32357060">32357060</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:214606050">214606050</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Ultrafast+Control+of+Excitonic+Rashba+Fine+Structure+by+Phonon+Coherence+in+the+Metal+Halide+Perovskite+MATH+RENDER+ERROR&rft.volume=124&rft.issue=15&rft.pages=157401&rft.date=2020-04-16&rft_id=info%3Aarxiv%2F1905.12373&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A214606050%23id-name%3DS2CID&rft_id=info%3Apmid%2F32357060&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.124.157401&rft.aulast=Liu&rft.aufirst=Z.&rft.au=Vaswani%2C+C.&rft.au=Yang%2C+X.&rft.au=Zhao%2C+X.&rft.au=Yao%2C+Y.&rft.au=Song%2C+Z.&rft.au=Cheng%2C+D.&rft.au=Shi%2C+Y.&rft.au=Luo%2C+L.&rft.au=Mudiyanselage%2C+D.-H.&rft.au=Huang%2C+C.&rft.au=Park%2C+J.-M.&rft.au=Kim%2C+R.+H.+J.&rft.au=Zhao%2C+J.&rft.au=Yan%2C+Y.&rft.au=Ho%2C+K.-M.&rft.au=Wang%2C+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.124.157401&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-283"><span class="mw-cite-backlink"><b><a href="#cite_ref-283">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-05-scientists-quantum-radar-prototype.html">"Scientists demonstrate quantum radar prototype"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 12,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Scientists+demonstrate+quantum+radar+prototype&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-05-scientists-quantum-radar-prototype.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-284"><span class="mw-cite-backlink"><b><a href="#cite_ref-284">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://newatlas.com/physics/quantum-radar-entangled-photons/">"<span class="cs1-kern-left"></span>'Quantum radar' uses entangled photons to detect objects"</a>. <i>New Atlas</i>. May 12, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">June 12,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Atlas&rft.atitle=%27Quantum+radar%27+uses+entangled+photons+to+detect+objects&rft.date=2020-05-12&rft_id=https%3A%2F%2Fnewatlas.com%2Fphysics%2Fquantum-radar-entangled-photons%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-285"><span class="mw-cite-backlink"><b><a href="#cite_ref-285">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarzanjehPirandolaVitaliFink2020" class="citation journal cs1">Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272231">"Microwave quantum illumination using a digital receiver"</a>. <i>Science Advances</i>. <b>6</b> (19): eabb0451. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1908.03058">1908.03058</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020SciA....6..451B">2020SciA....6..451B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.abb0451">10.1126/sciadv.abb0451</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272231">7272231</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32548249">32548249</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Microwave+quantum+illumination+using+a+digital+receiver&rft.volume=6&rft.issue=19&rft.pages=eabb0451&rft.date=2020-05-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7272231%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020SciA....6..451B&rft_id=info%3Aarxiv%2F1908.03058&rft_id=info%3Apmid%2F32548249&rft_id=info%3Adoi%2F10.1126%2Fsciadv.abb0451&rft.aulast=Barzanjeh&rft.aufirst=S.&rft.au=Pirandola%2C+S.&rft.au=Vitali%2C+D.&rft.au=Fink%2C+J.+M.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7272231&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-286"><span class="mw-cite-backlink"><b><a href="#cite_ref-286">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-05-scientists-link-quantum-material-orbital.html">"Scientists break the link between a quantum material's spin and orbital states"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 12,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Scientists+break+the+link+between+a+quantum+material%27s+spin+and+orbital+states&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-05-scientists-link-quantum-material-orbital.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-287"><span class="mw-cite-backlink"><b><a href="#cite_ref-287">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShenMackDakovskiCoslovich2020" class="citation journal cs1">Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D.; Johnson, J. A.; Lieu, S.; Zohar, S.; Ford, C.; Kozina, M.; Schlotter, W.; Minitti, M. P.; Fujioka, J.; Moore, R.; Lee, W-S.; Hussain, Z.; Tokura, Y.; Littlewood, P.; Turner, J. J. (May 12, 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.101.201103">"Decoupling spin–orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation"</a>. <i>Physical Review B</i>. <b>101</b> (20): 201103. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1912.10234">1912.10234</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvB.101t1103S">2020PhRvB.101t1103S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.101.201103">10.1103/PhysRevB.101.201103</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Decoupling+spin%E2%80%93orbital+correlations+in+a+layered+manganite+amidst+ultrafast+hybridized+charge-transfer+band+excitation&rft.volume=101&rft.issue=20&rft.pages=201103&rft.date=2020-05-12&rft_id=info%3Aarxiv%2F1912.10234&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.101.201103&rft_id=info%3Abibcode%2F2020PhRvB.101t1103S&rft.aulast=Shen&rft.aufirst=L.&rft.au=Mack%2C+S.+A.&rft.au=Dakovski%2C+G.&rft.au=Coslovich%2C+G.&rft.au=Krupin%2C+O.&rft.au=Hoffmann%2C+M.&rft.au=Huang%2C+S.-W.&rft.au=Chuang%2C+Y-D.&rft.au=Johnson%2C+J.+A.&rft.au=Lieu%2C+S.&rft.au=Zohar%2C+S.&rft.au=Ford%2C+C.&rft.au=Kozina%2C+M.&rft.au=Schlotter%2C+W.&rft.au=Minitti%2C+M.+P.&rft.au=Fujioka%2C+J.&rft.au=Moore%2C+R.&rft.au=Lee%2C+W-S.&rft.au=Hussain%2C+Z.&rft.au=Tokura%2C+Y.&rft.au=Littlewood%2C+P.&rft.au=Turner%2C+J.+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevB.101.201103&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-288"><span class="mw-cite-backlink"><b><a href="#cite_ref-288">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-05-photon-discovery-major-large-scale-quantum.html">"Photon discovery is a major step toward large-scale quantum technologies"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Photon+discovery+is+a+major+step+toward+large-scale+quantum+technologies&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-05-photon-discovery-major-large-scale-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-289"><span class="mw-cite-backlink"><b><a href="#cite_ref-289">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://optics.org/news/11/5/44">"Physicists develop integrated photon source for macro quantum-photonics"</a>. <i>optics.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=optics.org&rft.atitle=Physicists+develop+integrated+photon+source+for+macro+quantum-photonics&rft_id=https%3A%2F%2Foptics.org%2Fnews%2F11%2F5%2F44&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-290"><span class="mw-cite-backlink"><b><a href="#cite_ref-290">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaesaniBorghiSignoriniMaïnos2020" class="citation journal cs1">Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (May 19, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237445">"Near-ideal spontaneous photon sources in silicon quantum photonics"</a>. <i>Nature Communications</i>. <b>11</b> (1): 2505. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.09579">2005.09579</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCo..11.2505P">2020NatCo..11.2505P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-16187-8">10.1038/s41467-020-16187-8</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237445">7237445</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32427911">32427911</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Near-ideal+spontaneous+photon+sources+in+silicon+quantum+photonics&rft.volume=11&rft.issue=1&rft.pages=2505&rft.date=2020-05-19&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7237445%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020NatCo..11.2505P&rft_id=info%3Aarxiv%2F2005.09579&rft_id=info%3Apmid%2F32427911&rft_id=info%3Adoi%2F10.1038%2Fs41467-020-16187-8&rft.aulast=Paesani&rft.aufirst=S.&rft.au=Borghi%2C+M.&rft.au=Signorini%2C+S.&rft.au=Ma%C3%AFnos%2C+A.&rft.au=Pavesi%2C+L.&rft.au=Laing%2C+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7237445&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-cal-iss-291"><span class="mw-cite-backlink"><b><a href="#cite_ref-cal-iss_291-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLachmannRasel2020" class="citation journal cs1">Lachmann, Maike D.; Rasel, Ernst M. (June 11, 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-020-01653-6">"Quantum matter orbits Earth"</a>. <i>Nature</i>. <b>582</b> (7811): 186–187. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.582..186L">2020Natur.582..186L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-020-01653-6">10.1038/d41586-020-01653-6</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32528088">32528088</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Quantum+matter+orbits+Earth&rft.volume=582&rft.issue=7811&rft.pages=186-187&rft.date=2020-06-11&rft_id=info%3Apmid%2F32528088&rft_id=info%3Adoi%2F10.1038%2Fd41586-020-01653-6&rft_id=info%3Abibcode%2F2020Natur.582..186L&rft.aulast=Lachmann&rft.aufirst=Maike+D.&rft.au=Rasel%2C+Ernst+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fd41586-020-01653-6&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-292"><span class="mw-cite-backlink"><b><a href="#cite_ref-292">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-06-quantum-state-space.html">"Quantum 'fifth state of matter' observed in space for first time"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 4,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Quantum+%27fifth+state+of+matter%27+observed+in+space+for+first+time&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-06-quantum-state-space.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-293"><span class="mw-cite-backlink"><b><a href="#cite_ref-293">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAvelineWilliamsElliottDutenhoffer2020" class="citation journal cs1">Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal; Shotwell, Robert F.; Yu, Nan; Thompson, Robert J. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". <i>Nature</i>. <b>582</b> (7811): 193–197. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.582..193A">2020Natur.582..193A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2346-1">10.1038/s41586-020-2346-1</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32528092">32528092</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219568565">219568565</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Observation+of+Bose%E2%80%93Einstein+condensates+in+an+Earth-orbiting+research+lab&rft.volume=582&rft.issue=7811&rft.pages=193-197&rft.date=2020-06&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2346-1&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219568565%23id-name%3DS2CID&rft_id=info%3Apmid%2F32528092&rft_id=info%3Abibcode%2F2020Natur.582..193A&rft.aulast=Aveline&rft.aufirst=David+C.&rft.au=Williams%2C+Jason+R.&rft.au=Elliott%2C+Ethan+R.&rft.au=Dutenhoffer%2C+Chelsea&rft.au=Kellogg%2C+James+R.&rft.au=Kohel%2C+James+M.&rft.au=Lay%2C+Norman+E.&rft.au=Oudrhiri%2C+Kamal&rft.au=Shotwell%2C+Robert+F.&rft.au=Yu%2C+Nan&rft.au=Thompson%2C+Robert+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-294"><span class="mw-cite-backlink"><b><a href="#cite_ref-294">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-06-smallest-motor-world.html">"The smallest motor in the world"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 4,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=The+smallest+motor+in+the+world&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-06-smallest-motor-world.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-295"><span class="mw-cite-backlink"><b><a href="#cite_ref-295">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://newatlas.com/physics/nano-motor-quantum-physics/">"Nano-motor of just 16 atoms runs at the boundary of quantum physics"</a>. <i>New Atlas</i>. June 17, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">July 4,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Atlas&rft.atitle=Nano-motor+of+just+16+atoms+runs+at+the+boundary+of+quantum+physics&rft.date=2020-06-17&rft_id=https%3A%2F%2Fnewatlas.com%2Fphysics%2Fnano-motor-quantum-physics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-296"><span class="mw-cite-backlink"><b><a href="#cite_ref-296">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStolzGröningPrinzBrune2020" class="citation journal cs1">Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (June 15, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334648">"Molecular motor crossing the frontier of classical to quantum tunneling motion"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>117</b> (26): 14838–14842. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PNAS..11714838S">2020PNAS..11714838S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1918654117">10.1073/pnas.1918654117</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334648">7334648</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32541061">32541061</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&rft.atitle=Molecular+motor+crossing+the+frontier+of+classical+to+quantum+tunneling+motion&rft.volume=117&rft.issue=26&rft.pages=14838-14842&rft.date=2020-06-15&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7334648%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020PNAS..11714838S&rft_id=info%3Apmid%2F32541061&rft_id=info%3Adoi%2F10.1073%2Fpnas.1918654117&rft.issn=0027-8424&rft.aulast=Stolz&rft.aufirst=Samuel&rft.au=Gr%C3%B6ning%2C+Oliver&rft.au=Prinz%2C+Jan&rft.au=Brune%2C+Harald&rft.au=Widmer%2C+Roland&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7334648&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-297"><span class="mw-cite-backlink"><b><a href="#cite_ref-297">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-06-techniques-quantum-entangle-phonons.html">"New techniques improve quantum communication, entangle phonons"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=New+techniques+improve+quantum+communication%2C+entangle+phonons&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-06-techniques-quantum-entangle-phonons.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-298"><span class="mw-cite-backlink"><b><a href="#cite_ref-298">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchirber2020" class="citation news cs1">Schirber, Michael (June 12, 2020). <a rel="nofollow" class="external text" href="https://physics.aps.org/articles/v13/95">"Quantum Erasing with Phonons"</a>. <i>Physics</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics&rft.atitle=Quantum+Erasing+with+Phonons&rft.date=2020-06-12&rft.aulast=Schirber&rft.aufirst=Michael&rft_id=https%3A%2F%2Fphysics.aps.org%2Farticles%2Fv13%2F95&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-299"><span class="mw-cite-backlink"><b><a href="#cite_ref-299">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChangZhongBienfaitChou2020" class="citation journal cs1">Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 17, 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". <i>Physical Review Letters</i>. <b>124</b> (24): 240502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.12334">2005.12334</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvL.124x0502C">2020PhRvL.124x0502C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.124.240502">10.1103/PhysRevLett.124.240502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32639797">32639797</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:218889298">218889298</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Remote+Entanglement+via+Adiabatic+Passage+Using+a+Tunably+Dissipative+Quantum+Communication+System&rft.volume=124&rft.issue=24&rft.pages=240502&rft.date=2020-06-17&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A218889298%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020PhRvL.124x0502C&rft_id=info%3Aarxiv%2F2005.12334&rft_id=info%3Apmid%2F32639797&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.124.240502&rft.aulast=Chang&rft.aufirst=H.-S.&rft.au=Zhong%2C+Y.+P.&rft.au=Bienfait%2C+A.&rft.au=Chou%2C+M.-H.&rft.au=Conner%2C+C.+R.&rft.au=Dumur%2C+%C3%89.&rft.au=Grebel%2C+J.&rft.au=Peairs%2C+G.+A.&rft.au=Povey%2C+R.+G.&rft.au=Satzinger%2C+K.+J.&rft.au=Cleland%2C+A.+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-300"><span class="mw-cite-backlink"><b><a href="#cite_ref-300">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBienfaitZhongChangChou2020" class="citation journal cs1">Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 12, 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.10.021055">"Quantum Erasure Using Entangled Surface Acoustic Phonons"</a>. <i>Physical Review X</i>. <b>10</b> (2): 021055. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.09311">2005.09311</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvX..10b1055B">2020PhRvX..10b1055B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.10.021055">10.1103/PhysRevX.10.021055</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+X&rft.atitle=Quantum+Erasure+Using+Entangled+Surface+Acoustic+Phonons&rft.volume=10&rft.issue=2&rft.pages=021055&rft.date=2020-06-12&rft_id=info%3Aarxiv%2F2005.09311&rft_id=info%3Adoi%2F10.1103%2FPhysRevX.10.021055&rft_id=info%3Abibcode%2F2020PhRvX..10b1055B&rft.aulast=Bienfait&rft.aufirst=A.&rft.au=Zhong%2C+Y.+P.&rft.au=Chang%2C+H.-S.&rft.au=Chou%2C+M.-H.&rft.au=Conner%2C+C.+R.&rft.au=Dumur%2C+%C3%89.&rft.au=Grebel%2C+J.&rft.au=Peairs%2C+G.+A.&rft.au=Povey%2C+R.+G.&rft.au=Satzinger%2C+K.+J.&rft.au=Cleland%2C+A.+N.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevX.10.021055&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-301"><span class="mw-cite-backlink"><b><a href="#cite_ref-301">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/honeywell-claims-to-have-worlds-highest-performing-quantum-computer-according-to-ibms-benchmark/?_amp_linker=1%2a1ms9d9v%2aid%2aVUpFdHE1cVlKZ2pMd0ZBaWNVVlgwSkFIODZKRFlianMwVEwzRVdRMFF4Z1N1cHlfRVZvXzQzbk1Wc1JLODMwZw..#ftag=CAD-00-10aag7e">"Honeywell claims to have world's highest performing quantum computer according to IBM's benchmark"</a>. <i><a href="/wiki/ZDNet" class="mw-redirect" title="ZDNet">ZDNet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZDNet&rft.atitle=Honeywell+claims+to+have+world%27s+highest+performing+quantum+computer+according+to+IBM%27s+benchmark&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fhoneywell-claims-to-have-worlds-highest-performing-quantum-computer-according-to-ibms-benchmark%2F%3F_amp_linker%3D1%252a1ms9d9v%252aid%252aVUpFdHE1cVlKZ2pMd0ZBaWNVVlgwSkFIODZKRFlianMwVEwzRVdRMFF4Z1N1cHlfRVZvXzQzbk1Wc1JLODMwZw..%23ftag%3DCAD-00-10aag7e&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-302"><span class="mw-cite-backlink"><b><a href="#cite_ref-302">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.anl.gov/article/uchicago-scientists-discover-way-to-make-quantum-states-last-10000-times-longer">"UChicago scientists discover way to make quantum states last 10,000 times longer"</a>. <i>Argonne National Laboratory</i>. August 13, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">August 14,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Argonne+National+Laboratory&rft.atitle=UChicago+scientists+discover+way+to+make+quantum+states+last+10%2C000+times+longer&rft.date=2020-08-13&rft_id=https%3A%2F%2Fwww.anl.gov%2Farticle%2Fuchicago-scientists-discover-way-to-make-quantum-states-last-10000-times-longer&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-Miao_Blanton_Anderson_Bourassa_2020-303"><span class="mw-cite-backlink"><b><a href="#cite_ref-Miao_Blanton_Anderson_Bourassa_2020_303-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiaoBlantonAndersonBourassa2020" class="citation journal cs1">Miao, Kevin C.; Blanton, Joseph P.; Anderson, Christopher P.; Bourassa, Alexandre; Crook, Alexander L.; Wolfowicz, Gary; Abe, Hiroshi; Ohshima, Takeshi; Awschalom, David D. (May 12, 2020). "Universal coherence protection in a solid-state spin qubit". <i>Science</i>. <b>369</b> (6510): 1493–1497. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.06082v1">2005.06082v1</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Sci...369.1493M">2020Sci...369.1493M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abc5186">10.1126/science.abc5186</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32792463">32792463</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:218613907">218613907</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Universal+coherence+protection+in+a+solid-state+spin+qubit&rft.volume=369&rft.issue=6510&rft.pages=1493-1497&rft.date=2020-05-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A218613907%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Sci...369.1493M&rft_id=info%3Aarxiv%2F2005.06082v1&rft_id=info%3Apmid%2F32792463&rft_id=info%3Adoi%2F10.1126%2Fscience.abc5186&rft.aulast=Miao&rft.aufirst=Kevin+C.&rft.au=Blanton%2C+Joseph+P.&rft.au=Anderson%2C+Christopher+P.&rft.au=Bourassa%2C+Alexandre&rft.au=Crook%2C+Alexander+L.&rft.au=Wolfowicz%2C+Gary&rft.au=Abe%2C+Hiroshi&rft.au=Ohshima%2C+Takeshi&rft.au=Awschalom%2C+David+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-304"><span class="mw-cite-backlink"><b><a href="#cite_ref-304">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.newscientist.com/article/2252933-quantum-computers-may-be-destroyed-by-high-energy-particles-from-space/">"Quantum computers may be destroyed by high-energy particles from space"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Quantum+computers+may+be+destroyed+by+high-energy+particles+from+space&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2F2252933-quantum-computers-may-be-destroyed-by-high-energy-particles-from-space%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-305"><span class="mw-cite-backlink"><b><a href="#cite_ref-305">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-08-cosmic-rays-stymie-quantum.html">"Cosmic rays may soon stymie quantum computing"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Cosmic+rays+may+soon+stymie+quantum+computing&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-08-cosmic-rays-stymie-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-306"><span class="mw-cite-backlink"><b><a href="#cite_ref-306">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVepsäläinenKaramlouOrrellDogra2020" class="citation journal cs1">Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41586-020-2619-8">"Impact of ionizing radiation on superconducting qubit coherence"</a>. <i>Nature</i>. <b>584</b> (7822): 551–556. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2001.09190">2001.09190</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.584..551V">2020Natur.584..551V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2619-8">10.1038/s41586-020-2619-8</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32848227">32848227</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:210920566">210920566</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Impact+of+ionizing+radiation+on+superconducting+qubit+coherence&rft.volume=584&rft.issue=7822&rft.pages=551-556&rft.date=2020-08&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A210920566%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Natur.584..551V&rft_id=info%3Aarxiv%2F2001.09190&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2619-8&rft_id=info%3Apmid%2F32848227&rft.aulast=Veps%C3%A4l%C3%A4inen&rft.aufirst=Antti+P.&rft.au=Karamlou%2C+Amir+H.&rft.au=Orrell%2C+John+L.&rft.au=Dogra%2C+Akshunna+S.&rft.au=Loer%2C+Ben&rft.au=Vasconcelos%2C+Francisca&rft.au=Kim%2C+David+K.&rft.au=Melville%2C+Alexander+J.&rft.au=Niedzielski%2C+Bethany+M.&rft.au=Yoder%2C+Jonilyn+L.&rft.au=Gustavsson%2C+Simon&rft.au=Formaggio%2C+Joseph+A.&rft.au=VanDevender%2C+Brent+A.&rft.au=Oliver%2C+William+D.&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-2619-8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-307"><span class="mw-cite-backlink"><b><a href="#cite_ref-307">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html">"Google conducts largest chemical simulation on a quantum computer to date"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Google+conducts+largest+chemical+simulation+on+a+quantum+computer+to+date&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-08-google-largest-chemical-simulation-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-308"><span class="mw-cite-backlink"><b><a href="#cite_ref-308">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavage" class="citation news cs1">Savage, Neil. <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/googles-quantum-computer-achieves-chemistry-milestone/">"Google's Quantum Computer Achieves Chemistry Milestone"</a>. <i>Scientific American</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+American&rft.atitle=Google%27s+Quantum+Computer+Achieves+Chemistry+Milestone&rft.aulast=Savage&rft.aufirst=Neil&rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Fgoogles-quantum-computer-achieves-chemistry-milestone%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-309"><span class="mw-cite-backlink"><b><a href="#cite_ref-309">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArute2020" class="citation journal cs1">Arute, Frank; et al. (Google AI Quantum Collaborators) (August 28, 2020). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.abb9811">"Hartree–Fock on a superconducting qubit quantum computer"</a>. <i>Science</i>. <b>369</b> (6507): 1084–1089. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2004.04174">2004.04174</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Sci...369.1084.">2020Sci...369.1084.</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abb9811">10.1126/science.abb9811</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32855334">32855334</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:215548188">215548188</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Hartree%E2%80%93Fock+on+a+superconducting+qubit+quantum+computer&rft.volume=369&rft.issue=6507&rft.pages=1084-1089&rft.date=2020-08-28&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A215548188%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Sci...369.1084.&rft_id=info%3Aarxiv%2F2004.04174&rft.issn=0036-8075&rft_id=info%3Adoi%2F10.1126%2Fscience.abb9811&rft_id=info%3Apmid%2F32855334&rft.aulast=Arute&rft.aufirst=Frank&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.abb9811&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-310"><span class="mw-cite-backlink"><b><a href="#cite_ref-310">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://physicsworld.com/a/multi-user-communication-network-paves-the-way-towards-the-quantum-internet/">"Multi-user communication network paves the way towards the quantum internet"</a>. <i>Physics World</i>. September 8, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">October 8,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+World&rft.atitle=Multi-user+communication+network+paves+the+way+towards+the+quantum+internet&rft.date=2020-09-08&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fmulti-user-communication-network-paves-the-way-towards-the-quantum-internet%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-311"><span class="mw-cite-backlink"><b><a href="#cite_ref-311">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoshiAktasWengerowskyLončarić2020" class="citation journal cs1">Joshi, Siddarth Koduru; Aktas, Djeylan; Wengerowsky, Sören; Lončarić, Martin; Neumann, Sebastian Philipp; Liu, Bo; Scheidl, Thomas; Lorenzo, Guillermo Currás; Samec, Željko; Kling, Laurent; Qiu, Alex; Razavi, Mohsen; Stipčević, Mario; Rarity, John G.; Ursin, Rupert (September 1, 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467697">"A trusted node–free eight-user metropolitan quantum communication network"</a>. <i>Science Advances</i>. <b>6</b> (36): eaba0959. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1907.08229">1907.08229</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020SciA....6..959J">2020SciA....6..959J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.aba0959">10.1126/sciadv.aba0959</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2375-2548">2375-2548</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467697">7467697</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32917585">32917585</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=A+trusted+node%E2%80%93free+eight-user+metropolitan+quantum+communication+network&rft.volume=6&rft.issue=36&rft.pages=eaba0959&rft.date=2020-09-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7467697%23id-name%3DPMC&rft_id=info%3Abibcode%2F2020SciA....6..959J&rft_id=info%3Aarxiv%2F1907.08229&rft.issn=2375-2548&rft_id=info%3Adoi%2F10.1126%2Fsciadv.aba0959&rft_id=info%3Apmid%2F32917585&rft.aulast=Joshi&rft.aufirst=Siddarth+Koduru&rft.au=Aktas%2C+Djeylan&rft.au=Wengerowsky%2C+S%C3%B6ren&rft.au=Lon%C4%8Dari%C4%87%2C+Martin&rft.au=Neumann%2C+Sebastian+Philipp&rft.au=Liu%2C+Bo&rft.au=Scheidl%2C+Thomas&rft.au=Lorenzo%2C+Guillermo+Curr%C3%A1s&rft.au=Samec%2C+%C5%BDeljko&rft.au=Kling%2C+Laurent&rft.au=Qiu%2C+Alex&rft.au=Razavi%2C+Mohsen&rft.au=Stip%C4%8Devi%C4%87%2C+Mario&rft.au=Rarity%2C+John+G.&rft.au=Ursin%2C+Rupert&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7467697&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Text and images are available under a <a href="//creativecommons.org/licenses/by/4.0/" class="extiw" title="creativecommons:by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-312"><span class="mw-cite-backlink"><b><a href="#cite_ref-312">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://spectrum.ieee.org/photonic-quantum">"First Photonic Quantum Computer on the Cloud – IEEE Spectrum"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=First+Photonic+Quantum+Computer+on+the+Cloud+%E2%80%93+IEEE+Spectrum&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fphotonic-quantum&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-313"><span class="mw-cite-backlink"><b><a href="#cite_ref-313">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-09-quantum-entanglement-distant-large.html">"Quantum entanglement realized between distant large objects"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">October 9,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Quantum+entanglement+realized+between+distant+large+objects&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-09-quantum-entanglement-distant-large.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-314"><span class="mw-cite-backlink"><b><a href="#cite_ref-314">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasParniakØstfeldtMøller2020" class="citation journal cs1">Thomas, Rodrigo A.; Parniak, Michał; Østfeldt, Christoffer; Møller, Christoffer B.; Bærentsen, Christian; Tsaturyan, Yeghishe; Schliesser, Albert; Appel, Jürgen; Zeuthen, Emil; Polzik, Eugene S. (September 21, 2020). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41567-020-1031-5">"Entanglement between distant macroscopic mechanical and spin systems"</a>. <i>Nature Physics</i>. <b>17</b> (2): 228–233. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.11310">2003.11310</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-020-1031-5">10.1038/s41567-020-1031-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1745-2481">1745-2481</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:214641162">214641162</a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 9,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Physics&rft.atitle=Entanglement+between+distant+macroscopic+mechanical+and+spin+systems&rft.volume=17&rft.issue=2&rft.pages=228-233&rft.date=2020-09-21&rft_id=info%3Aarxiv%2F2003.11310&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A214641162%23id-name%3DS2CID&rft.issn=1745-2481&rft_id=info%3Adoi%2F10.1038%2Fs41567-020-1031-5&rft.aulast=Thomas&rft.aufirst=Rodrigo+A.&rft.au=Parniak%2C+Micha%C5%82&rft.au=%C3%98stfeldt%2C+Christoffer&rft.au=M%C3%B8ller%2C+Christoffer+B.&rft.au=B%C3%A6rentsen%2C+Christian&rft.au=Tsaturyan%2C+Yeghishe&rft.au=Schliesser%2C+Albert&rft.au=Appel%2C+J%C3%BCrgen&rft.au=Zeuthen%2C+Emil&rft.au=Polzik%2C+Eugene+S.&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41567-020-1031-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-315"><span class="mw-cite-backlink"><b><a href="#cite_ref-315">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://global.chinadaily.com.cn/a/202012/04/WS5fc96deba31024ad0ba99abf.html">"Chinese team unveils exceedingly fast quantum computer"</a>. <i>China Daily</i>. December 4, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">December 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=China+Daily&rft.atitle=Chinese+team+unveils+exceedingly+fast+quantum+computer&rft.date=2020-12-04&rft_id=http%3A%2F%2Fglobal.chinadaily.com.cn%2Fa%2F202012%2F04%2FWS5fc96deba31024ad0ba99abf.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-316"><span class="mw-cite-backlink"><b><a href="#cite_ref-316">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="https://www.wired.com/story/china-stakes-claim-quantum-supremacy/">"China Stakes Its Claim to Quantum Supremacy"</a>. <i>Wired</i>. December 3, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">December 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wired&rft.atitle=China+Stakes+Its+Claim+to+Quantum+Supremacy&rft.date=2020-12-03&rft_id=https%3A%2F%2Fwww.wired.com%2Fstory%2Fchina-stakes-claim-quantum-supremacy%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-317"><span class="mw-cite-backlink"><b><a href="#cite_ref-317">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhongWangDengChen2020" class="citation journal cs1">Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng; Yang, Xiao-Yan; Zhang, Wei-Jun; Li, Hao; Li, Yuxuan; Jiang, Xiao; Gan, Lin; Yang, Guangwen; You, Lixing; Wang, Zhen; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei (December 18, 2020). <a rel="nofollow" class="external text" href="https://www.science.org/doi/full/10.1126/science.abe8770">"Quantum computational advantage using photons"</a>. <i>Science</i>. <b>370</b> (6523): 1460–1463. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.01625">2012.01625</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Sci...370.1460Z">2020Sci...370.1460Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abe8770">10.1126/science.abe8770</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33273064">33273064</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:227254333">227254333</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 22,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Quantum+computational+advantage+using+photons&rft.volume=370&rft.issue=6523&rft.pages=1460-1463&rft.date=2020-12-18&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A227254333%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Sci...370.1460Z&rft_id=info%3Aarxiv%2F2012.01625&rft.issn=0036-8075&rft_id=info%3Adoi%2F10.1126%2Fscience.abe8770&rft_id=info%3Apmid%2F33273064&rft.aulast=Zhong&rft.aufirst=Han-Sen&rft.au=Wang%2C+Hui&rft.au=Deng%2C+Yu-Hao&rft.au=Chen%2C+Ming-Cheng&rft.au=Peng%2C+Li-Chao&rft.au=Luo%2C+Yi-Han&rft.au=Qin%2C+Jian&rft.au=Wu%2C+Dian&rft.au=Ding%2C+Xing&rft.au=Hu%2C+Yi&rft.au=Hu%2C+Peng&rft.au=Yang%2C+Xiao-Yan&rft.au=Zhang%2C+Wei-Jun&rft.au=Li%2C+Hao&rft.au=Li%2C+Yuxuan&rft.au=Jiang%2C+Xiao&rft.au=Gan%2C+Lin&rft.au=Yang%2C+Guangwen&rft.au=You%2C+Lixing&rft.au=Wang%2C+Zhen&rft.au=Li%2C+Li&rft.au=Liu%2C+Nai-Le&rft.au=Lu%2C+Chao-Yang&rft.au=Pan%2C+Jian-Wei&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2Ffull%2F10.1126%2Fscience.abe8770&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-318"><span class="mw-cite-backlink"><b><a href="#cite_ref-318">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/honeywell-introduces-quantum-computing-as-a-service-with-subscription-offering/#ftag=CAD-00-10aag7e">"Honeywell introduces quantum computing as a service with subscription offering"</a>. <i><a href="/wiki/ZDNet" class="mw-redirect" title="ZDNet">ZDNet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZDNet&rft.atitle=Honeywell+introduces+quantum+computing+as+a+service+with+subscription+offering&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fhoneywell-introduces-quantum-computing-as-a-service-with-subscription-offering%2F%23ftag%3DCAD-00-10aag7e&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-319"><span class="mw-cite-backlink"><b><a href="#cite_ref-319">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://spectrum.ieee.org/three-super-cold-devices-quantum-computers">"Three Frosty Innovations for Better Quantum Computers – IEEE Spectrum"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Three+Frosty+Innovations+for+Better+Quantum+Computers+%E2%80%93+IEEE+Spectrum&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fthree-super-cold-devices-quantum-computers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-320"><span class="mw-cite-backlink"><b><a href="#cite_ref-320">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://futurism.com/scientists-achieve-direct-counterfactual-quantum-communication-for-the-first-time">"Scientists Achieve Direct Counterfactual Quantum Communication For The First Time"</a>. <i>Futurism</i><span class="reference-accessdate">. Retrieved <span class="nowrap">January 16,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Futurism&rft.atitle=Scientists+Achieve+Direct+Counterfactual+Quantum+Communication+For+The+First+Time&rft_id=https%3A%2F%2Ffuturism.com%2Fscientists-achieve-direct-counterfactual-quantum-communication-for-the-first-time&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-321"><span class="mw-cite-backlink"><b><a href="#cite_ref-321">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2020-12-elementary-particles-ways-properties.html">"Elementary particles part ways with their properties"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">January 16,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Elementary+particles+part+ways+with+their+properties&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2020-12-elementary-particles-ways-properties.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-322"><span class="mw-cite-backlink"><b><a href="#cite_ref-322">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcRae" class="citation news cs1">McRae, Mike. <a rel="nofollow" class="external text" href="https://www.sciencealert.com/schrodinger-s-cat-gets-a-cheshire-grin-in-a-mind-bending-quantum-physics-analysis">"In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin"</a>. <i>ScienceAlert</i><span class="reference-accessdate">. Retrieved <span class="nowrap">January 16,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ScienceAlert&rft.atitle=In+a+Mind-Bending+New+Paper%2C+Physicists+Give+Schrodinger%27s+Cat+a+Cheshire+Grin&rft.aulast=McRae&rft.aufirst=Mike&rft_id=https%3A%2F%2Fwww.sciencealert.com%2Fschrodinger-s-cat-gets-a-cheshire-grin-in-a-mind-bending-quantum-physics-analysis&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-323"><span class="mw-cite-backlink"><b><a href="#cite_ref-323">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAharonovRohrlich2020" class="citation journal cs1">Aharonov, Yakir; Rohrlich, Daniel (December 21, 2020). <a rel="nofollow" class="external text" href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.260401">"What Is Nonlocal in Counterfactual Quantum Communication?"</a>. <i>Physical Review Letters</i>. <b>125</b> (26): 260401. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2011.11667">2011.11667</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvL.125z0401A">2020PhRvL.125z0401A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.125.260401">10.1103/PhysRevLett.125.260401</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33449741">33449741</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145994494">145994494</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 16,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=What+Is+Nonlocal+in+Counterfactual+Quantum+Communication%3F&rft.volume=125&rft.issue=26&rft.pages=260401&rft.date=2020-12-21&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145994494%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020PhRvL.125z0401A&rft_id=info%3Aarxiv%2F2011.11667&rft_id=info%3Apmid%2F33449741&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.125.260401&rft.aulast=Aharonov&rft.aufirst=Yakir&rft.au=Rohrlich%2C+Daniel&rft_id=https%3A%2F%2Fjournals.aps.org%2Fprl%2Fabstract%2F10.1103%2FPhysRevLett.125.260401&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Available under <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0</a>.</span> </li> <li id="cite_note-324"><span class="mw-cite-backlink"><b><a href="#cite_ref-324">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-01-world-quantum-network.html">"The world's first integrated quantum communication network"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 11,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=The+world%27s+first+integrated+quantum+communication+network&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-01-world-quantum-network.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-325"><span class="mw-cite-backlink"><b><a href="#cite_ref-325">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenZhangChenCai2021" class="citation journal cs1">Chen, Yu-Ao; Zhang, Qiang; Chen, Teng-Yun; Cai, Wen-Qi; Liao, Sheng-Kai; Zhang, Jun; Chen, Kai; Yin, Juan; Ren, Ji-Gang; Chen, Zhu; Han, Sheng-Long; Yu, Qing; Liang, Ken; Zhou, Fei; Yuan, Xiao; Zhao, Mei-Sheng; Wang, Tian-Yin; Jiang, Xiao; Zhang, Liang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Lu, Chao-Yang; Shu, Rong; Wang, Jian-Yu; Li, Li; Liu, Nai-Le; Xu, Feihu; Wang, Xiang-Bin; Peng, Cheng-Zhi; Pan, Jian-Wei (January 2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41586-020-03093-8">"An integrated space-to-ground quantum communication network over 4,600 kilometres"</a>. <i>Nature</i>. <b>589</b> (7841): 214–219. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Natur.589..214C">2021Natur.589..214C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-03093-8">10.1038/s41586-020-03093-8</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33408416">33408416</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:230812317">230812317</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 11,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=An+integrated+space-to-ground+quantum+communication+network+over+4%2C600+kilometres&rft.volume=589&rft.issue=7841&rft.pages=214-219&rft.date=2021-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A230812317%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Natur.589..214C&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-03093-8&rft_id=info%3Apmid%2F33408416&rft.aulast=Chen&rft.aufirst=Yu-Ao&rft.au=Zhang%2C+Qiang&rft.au=Chen%2C+Teng-Yun&rft.au=Cai%2C+Wen-Qi&rft.au=Liao%2C+Sheng-Kai&rft.au=Zhang%2C+Jun&rft.au=Chen%2C+Kai&rft.au=Yin%2C+Juan&rft.au=Ren%2C+Ji-Gang&rft.au=Chen%2C+Zhu&rft.au=Han%2C+Sheng-Long&rft.au=Yu%2C+Qing&rft.au=Liang%2C+Ken&rft.au=Zhou%2C+Fei&rft.au=Yuan%2C+Xiao&rft.au=Zhao%2C+Mei-Sheng&rft.au=Wang%2C+Tian-Yin&rft.au=Jiang%2C+Xiao&rft.au=Zhang%2C+Liang&rft.au=Liu%2C+Wei-Yue&rft.au=Li%2C+Yang&rft.au=Shen%2C+Qi&rft.au=Cao%2C+Yuan&rft.au=Lu%2C+Chao-Yang&rft.au=Shu%2C+Rong&rft.au=Wang%2C+Jian-Yu&rft.au=Li%2C+Li&rft.au=Liu%2C+Nai-Le&rft.au=Xu%2C+Feihu&rft.au=Wang%2C+Xiang-Bin&rft.au=Peng%2C+Cheng-Zhi&rft.au=Pan%2C+Jian-Wei&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-03093-8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-326"><span class="mw-cite-backlink"><b><a href="#cite_ref-326">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-01-error-protected-quantum-bits-entangled.html">"Error-protected quantum bits entangled for the first time"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">August 30,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Error-protected+quantum+bits+entangled+for+the+first+time&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-01-error-protected-quantum-bits-entangled.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-327"><span class="mw-cite-backlink"><b><a href="#cite_ref-327">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErhardPoulsen_NautrupMethPostler2021" class="citation journal cs1">Erhard, Alexander; Poulsen Nautrup, Hendrik; Meth, Michael; Postler, Lukas; Stricker, Roman; Stadler, Martin; Negnevitsky, Vlad; Ringbauer, Martin; Schindler, Philipp; Briegel, Hans J.; Blatt, Rainer; Friis, Nicolai; Monz, Thomas (January 2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41586-020-03079-6">"Entangling logical qubits with lattice surgery"</a>. <i>Nature</i>. <b>589</b> (7841): 220–224. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2006.03071">2006.03071</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Natur.589..220E">2021Natur.589..220E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-03079-6">10.1038/s41586-020-03079-6</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33442044">33442044</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219401398">219401398</a><span class="reference-accessdate">. Retrieved <span class="nowrap">August 30,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Entangling+logical+qubits+with+lattice+surgery&rft.volume=589&rft.issue=7841&rft.pages=220-224&rft.date=2021-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219401398%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Natur.589..220E&rft_id=info%3Aarxiv%2F2006.03071&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-03079-6&rft_id=info%3Apmid%2F33442044&rft.aulast=Erhard&rft.aufirst=Alexander&rft.au=Poulsen+Nautrup%2C+Hendrik&rft.au=Meth%2C+Michael&rft.au=Postler%2C+Lukas&rft.au=Stricker%2C+Roman&rft.au=Stadler%2C+Martin&rft.au=Negnevitsky%2C+Vlad&rft.au=Ringbauer%2C+Martin&rft.au=Schindler%2C+Philipp&rft.au=Briegel%2C+Hans+J.&rft.au=Blatt%2C+Rainer&rft.au=Friis%2C+Nicolai&rft.au=Monz%2C+Thomas&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-03079-6&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-328"><span class="mw-cite-backlink"><b><a href="#cite_ref-328">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-01-drones-local-quantum-networks.html">"Using drones to create local quantum networks"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Using+drones+to+create+local+quantum+networks&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-01-drones-local-quantum-networks.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-329"><span class="mw-cite-backlink"><b><a href="#cite_ref-329">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuTianGuFan2021" class="citation journal cs1">Liu, Hua-Ying; Tian, Xiao-Hui; Gu, Changsheng; Fan, Pengfei; Ni, Xin; Yang, Ran; Zhang, Ji-Ning; Hu, Mingzhe; Guo, Jian; Cao, Xun; Hu, Xiaopeng; Zhao, Gang; Lu, Yan-Qing; Gong, Yan-Xiao; Xie, Zhenda; Zhu, Shi-Ning (January 15, 2021). <a rel="nofollow" class="external text" href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.020503">"Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes"</a>. <i>Physical Review Letters</i>. <b>126</b> (2): 020503. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021PhRvL.126b0503L">2021PhRvL.126b0503L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.126.020503">10.1103/PhysRevLett.126.020503</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33512193">33512193</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231761406">231761406</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Optical-Relayed+Entanglement+Distribution+Using+Drones+as+Mobile+Nodes&rft.volume=126&rft.issue=2&rft.pages=020503&rft.date=2021-01-15&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.126.020503&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231761406%23id-name%3DS2CID&rft_id=info%3Apmid%2F33512193&rft_id=info%3Abibcode%2F2021PhRvL.126b0503L&rft.aulast=Liu&rft.aufirst=Hua-Ying&rft.au=Tian%2C+Xiao-Hui&rft.au=Gu%2C+Changsheng&rft.au=Fan%2C+Pengfei&rft.au=Ni%2C+Xin&rft.au=Yang%2C+Ran&rft.au=Zhang%2C+Ji-Ning&rft.au=Hu%2C+Mingzhe&rft.au=Guo%2C+Jian&rft.au=Cao%2C+Xun&rft.au=Hu%2C+Xiaopeng&rft.au=Zhao%2C+Gang&rft.au=Lu%2C+Yan-Qing&rft.au=Gong%2C+Yan-Xiao&rft.au=Xie%2C+Zhenda&rft.au=Zhu%2C+Shi-Ning&rft_id=https%3A%2F%2Fjournals.aps.org%2Fprl%2Fabstract%2F10.1103%2FPhysRevLett.126.020503&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-330"><span class="mw-cite-backlink"><b><a href="#cite_ref-330">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/bmw-explores-quantum-computing-to-boost-supply-chain-efficiencies/#ftag=CAD-00-10aag7e">"BMW explores quantum computing to boost supply chain efficiencies"</a>. <i><a href="/wiki/ZDNet" class="mw-redirect" title="ZDNet">ZDNet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZDNet&rft.atitle=BMW+explores+quantum+computing+to+boost+supply+chain+efficiencies&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fbmw-explores-quantum-computing-to-boost-supply-chain-efficiencies%2F%23ftag%3DCAD-00-10aag7e&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-331"><span class="mw-cite-backlink"><b><a href="#cite_ref-331">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-01-physicists-record-breaking-source-photons.html">"Physicists develop record-breaking source for single photons"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Physicists+develop+record-breaking+source+for+single+photons&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-01-physicists-record-breaking-source-photons.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-332"><span class="mw-cite-backlink"><b><a href="#cite_ref-332">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTommJavadiAntoniadisNajer2021" class="citation journal cs1">Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (January 28, 2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41565-020-00831-x">"A bright and fast source of coherent single photons"</a>. <i>Nature Nanotechnology</i>. <b>16</b> (4): 399–403. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2007.12654">2007.12654</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatNa..16..399T">2021NatNa..16..399T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41565-020-00831-x">10.1038/s41565-020-00831-x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1748-3395">1748-3395</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33510454">33510454</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220769410">220769410</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Nanotechnology&rft.atitle=A+bright+and+fast+source+of+coherent+single+photons&rft.volume=16&rft.issue=4&rft.pages=399-403&rft.date=2021-01-28&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220769410%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021NatNa..16..399T&rft_id=info%3Aarxiv%2F2007.12654&rft.issn=1748-3395&rft_id=info%3Adoi%2F10.1038%2Fs41565-020-00831-x&rft_id=info%3Apmid%2F33510454&rft.aulast=Tomm&rft.aufirst=Natasha&rft.au=Javadi%2C+Alisa&rft.au=Antoniadis%2C+Nadia+Olympia&rft.au=Najer%2C+Daniel&rft.au=L%C3%B6bl%2C+Matthias+Christian&rft.au=Korsch%2C+Alexander+Rolf&rft.au=Schott%2C+R%C3%BCdiger&rft.au=Valentin%2C+Sascha+Ren%C3%A9&rft.au=Wieck%2C+Andreas+Dirk&rft.au=Ludwig%2C+Arne&rft.au=Warburton%2C+Richard+John&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41565-020-00831-x&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-333"><span class="mw-cite-backlink"><b><a href="#cite_ref-333">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cnet.com/tech/computing/microsoft-opens-its-azure-quantum-computer-cloud-service-to-the-public/">"You can now try out a quantum computer with Microsoft's Azure cloud service"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=You+can+now+try+out+a+quantum+computer+with+Microsoft%27s+Azure+cloud+service&rft_id=https%3A%2F%2Fwww.cnet.com%2Ftech%2Fcomputing%2Fmicrosoft-opens-its-azure-quantum-computer-cloud-service-to-the-public%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-334"><span class="mw-cite-backlink"><b><a href="#cite_ref-334">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-02-quantum-joint.html">"Quantum systems learn joint computing"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 7,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Quantum+systems+learn+joint+computing&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-02-quantum-joint.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-335"><span class="mw-cite-backlink"><b><a href="#cite_ref-335">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaissLangenfeldWelteDistante2021" class="citation journal cs1">Daiss, Severin; Langenfeld, Stefan; Welte, Stephan; Distante, Emanuele; Thomas, Philip; Hartung, Lukas; Morin, Olivier; Rempe, Gerhard (February 5, 2021). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.abe3150">"A quantum-logic gate between distant quantum-network modules"</a>. <i>Science</i>. <b>371</b> (6529): 614–617. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.13095">2103.13095</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Sci...371..614D">2021Sci...371..614D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abe3150">10.1126/science.abe3150</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33542133">33542133</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231808141">231808141</a><span class="reference-accessdate">. Retrieved <span class="nowrap">March 7,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=A+quantum-logic+gate+between+distant+quantum-network+modules&rft.volume=371&rft.issue=6529&rft.pages=614-617&rft.date=2021-02-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231808141%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Sci...371..614D&rft_id=info%3Aarxiv%2F2103.13095&rft.issn=0036-8075&rft_id=info%3Adoi%2F10.1126%2Fscience.abe3150&rft_id=info%3Apmid%2F33542133&rft.aulast=Daiss&rft.aufirst=Severin&rft.au=Langenfeld%2C+Stefan&rft.au=Welte%2C+Stephan&rft.au=Distante%2C+Emanuele&rft.au=Thomas%2C+Philip&rft.au=Hartung%2C+Lukas&rft.au=Morin%2C+Olivier&rft.au=Rempe%2C+Gerhard&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.abe3150&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-336"><span class="mw-cite-backlink"><b><a href="#cite_ref-336">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/quantum-computing-honeywell-just-quadrupled-the-power-of-its-computer/">"Quantum computing: Honeywell just quadrupled the power of its computer"</a>. <i><a href="/wiki/ZDNet" class="mw-redirect" title="ZDNet">ZDNet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZDNet&rft.atitle=Quantum+computing%3A+Honeywell+just+quadrupled+the+power+of+its+computer&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fquantum-computing-honeywell-just-quadrupled-the-power-of-its-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-337"><span class="mw-cite-backlink"><b><a href="#cite_ref-337">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-04-alien-civilizations-interstellar-quantum.html">"We could detect alien civilizations through their interstellar quantum communication"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 9,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=We+could+detect+alien+civilizations+through+their+interstellar+quantum+communication&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-04-alien-civilizations-interstellar-quantum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-338"><span class="mw-cite-backlink"><b><a href="#cite_ref-338">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHippke2021" class="citation journal cs1">Hippke, Michael (April 13, 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fabf7b7">"Searching for Interstellar Quantum Communications"</a>. <i>The Astronomical Journal</i>. <b>162</b> (1): 1. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2104.06446">2104.06446</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021AJ....162....1H">2021AJ....162....1H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F1538-3881%2Fabf7b7">10.3847/1538-3881/abf7b7</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233231350">233231350</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astronomical+Journal&rft.atitle=Searching+for+Interstellar+Quantum+Communications&rft.volume=162&rft.issue=1&rft.pages=1&rft.date=2021-04-13&rft_id=info%3Aarxiv%2F2104.06446&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233231350%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3847%2F1538-3881%2Fabf7b7&rft_id=info%3Abibcode%2F2021AJ....162....1H&rft.aulast=Hippke&rft.aufirst=Michael&rft_id=https%3A%2F%2Fdoi.org%2F10.3847%252F1538-3881%252Fabf7b7&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-339"><span class="mw-cite-backlink"><b><a href="#cite_ref-339">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://physicsworld.com/a/vibrating-drumheads-are-entangled-quantum-mechanically/">"Vibrating drumheads are entangled quantum mechanically"</a>. <i>Physics World</i>. May 17, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+World&rft.atitle=Vibrating+drumheads+are+entangled+quantum+mechanically&rft.date=2021-05-17&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fvibrating-drumheads-are-entangled-quantum-mechanically%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-340"><span class="mw-cite-backlink"><b><a href="#cite_ref-340">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLépinayOckeloen-KorppiWoolleySillanpää2021" class="citation journal cs1">Lépinay, Laure Mercier de; Ockeloen-Korppi, Caspar F.; Woolley, Matthew J.; Sillanpää, Mika A. (May 7, 2021). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.abf5389">"Quantum mechanics–free subsystem with mechanical oscillators"</a>. <i>Science</i>. <b>372</b> (6542): 625–629. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2009.12902">2009.12902</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Sci...372..625M">2021Sci...372..625M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abf5389">10.1126/science.abf5389</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33958476">33958476</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:221971015">221971015</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Quantum+mechanics%E2%80%93free+subsystem+with+mechanical+oscillators&rft.volume=372&rft.issue=6542&rft.pages=625-629&rft.date=2021-05-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A221971015%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Sci...372..625M&rft_id=info%3Aarxiv%2F2009.12902&rft.issn=0036-8075&rft_id=info%3Adoi%2F10.1126%2Fscience.abf5389&rft_id=info%3Apmid%2F33958476&rft.aulast=L%C3%A9pinay&rft.aufirst=Laure+Mercier+de&rft.au=Ockeloen-Korppi%2C+Caspar+F.&rft.au=Woolley%2C+Matthew+J.&rft.au=Sillanp%C3%A4%C3%A4%2C+Mika+A.&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.abf5389&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-341"><span class="mw-cite-backlink"><b><a href="#cite_ref-341">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKotlerPetersonShojaeeLecocq2021" class="citation journal cs1">Kotler, Shlomi; Peterson, Gabriel A.; Shojaee, Ezad; Lecocq, Florent; Cicak, Katarina; Kwiatkowski, Alex; Geller, Shawn; Glancy, Scott; Knill, Emanuel; Simmonds, Raymond W.; Aumentado, José; Teufel, John D. (May 7, 2021). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.abf2998">"Direct observation of deterministic macroscopic entanglement"</a>. <i>Science</i>. <b>372</b> (6542): 622–625. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2004.05515">2004.05515</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Sci...372..622K">2021Sci...372..622K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abf2998">10.1126/science.abf2998</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33958475">33958475</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233872863">233872863</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Direct+observation+of+deterministic+macroscopic+entanglement&rft.volume=372&rft.issue=6542&rft.pages=622-625&rft.date=2021-05-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233872863%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Sci...372..622K&rft_id=info%3Aarxiv%2F2004.05515&rft.issn=0036-8075&rft_id=info%3Adoi%2F10.1126%2Fscience.abf2998&rft_id=info%3Apmid%2F33958475&rft.aulast=Kotler&rft.aufirst=Shlomi&rft.au=Peterson%2C+Gabriel+A.&rft.au=Shojaee%2C+Ezad&rft.au=Lecocq%2C+Florent&rft.au=Cicak%2C+Katarina&rft.au=Kwiatkowski%2C+Alex&rft.au=Geller%2C+Shawn&rft.au=Glancy%2C+Scott&rft.au=Knill%2C+Emanuel&rft.au=Simmonds%2C+Raymond+W.&rft.au=Aumentado%2C+Jos%C3%A9&rft.au=Teufel%2C+John+D.&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.abf2998&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-342"><span class="mw-cite-backlink"><b><a href="#cite_ref-342">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/toshiba-announces-breakthrough-in-long-distance-quantum-communication">"TOSHIBA ANNOUNCES BREAKTHROUGH IN LONG DISTANCE QUANTUM COMMUNICATION"</a>. <i>Toshiba</i>. June 12, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">June 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Toshiba&rft.atitle=TOSHIBA+ANNOUNCES+BREAKTHROUGH+IN+LONG+DISTANCE+QUANTUM+COMMUNICATION&rft.date=2021-06-12&rft_id=https%3A%2F%2Fwww.toshiba.eu%2Fpages%2Feu%2FCambridge-Research-Laboratory%2Ftoshiba-announces-breakthrough-in-long-distance-quantum-communication&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-343"><span class="mw-cite-backlink"><b><a href="#cite_ref-343">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/">"Researchers create an 'un-hackable' quantum network over hundreds of kilometers using optical fiber"</a>. <i>ZDNet</i>. June 8, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">June 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ZDNet&rft.atitle=Researchers+create+an+%27un-hackable%27+quantum+network+over+hundreds+of+kilometers+using+optical+fiber&rft.date=2021-06-08&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fresearchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-344"><span class="mw-cite-backlink"><b><a href="#cite_ref-344">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPittalugaMinderLucamariniSanzaro2021" class="citation journal cs1">Pittaluga, Mirko; Minder, Mariella; Lucamarini, Marco; Sanzaro, Mirko; Woodward, Robert I.; Li, Ming-Jun; Yuan, Zhiliang; Shields, Andrew J. (July 2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41566-021-00811-0">"600-km repeater-like quantum communications with dual-band stabilization"</a>. <i>Nature Photonics</i>. <b>15</b> (7): 530–535. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.15099">2012.15099</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NaPho..15..530P">2021NaPho..15..530P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41566-021-00811-0">10.1038/s41566-021-00811-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1749-4893">1749-4893</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:229923162">229923162</a><span class="reference-accessdate">. Retrieved <span class="nowrap">July 19,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Photonics&rft.atitle=600-km+repeater-like+quantum+communications+with+dual-band+stabilization&rft.volume=15&rft.issue=7&rft.pages=530-535&rft.date=2021-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A229923162%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021NaPho..15..530P&rft_id=info%3Aarxiv%2F2012.15099&rft.issn=1749-4893&rft_id=info%3Adoi%2F10.1038%2Fs41566-021-00811-0&rft.aulast=Pittaluga&rft.aufirst=Mirko&rft.au=Minder%2C+Mariella&rft.au=Lucamarini%2C+Marco&rft.au=Sanzaro%2C+Mirko&rft.au=Woodward%2C+Robert+I.&rft.au=Li%2C+Ming-Jun&rft.au=Yuan%2C+Zhiliang&rft.au=Shields%2C+Andrew+J.&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41566-021-00811-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-345"><span class="mw-cite-backlink"><b><a href="#cite_ref-345">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://physicsworld.com/a/quantum-computer-is-smallest-ever-claim-physicists/">"Quantum computer is smallest ever, claim physicists"</a>. <i>Physics World</i>. July 7, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">July 11,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+World&rft.atitle=Quantum+computer+is+smallest+ever%2C+claim+physicists&rft.date=2021-07-07&rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fquantum-computer-is-smallest-ever-claim-physicists%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-10.1103/PRXQuantum.2.020343-346"><span class="mw-cite-backlink"><b><a href="#cite_ref-10.1103/PRXQuantum.2.020343_346-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPogorelovFeldkerMarciniakPostler2021" class="citation journal cs1">Pogorelov, I.; Feldker, T.; Marciniak, Ch. D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; Höfer, B.; Wächter, C.; Lakhmanskiy, K.; Blatt, R.; Schindler, P.; Monz, T. (June 17, 2021). <a rel="nofollow" class="external text" href="https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020343">"Compact Ion-Trap Quantum Computing Demonstrator"</a>. <i>PRX Quantum</i>. <b>2</b> (2): 020343. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2101.11390">2101.11390</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021PRXQ....2b0343P">2021PRXQ....2b0343P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPRXQuantum.2.020343">10.1103/PRXQuantum.2.020343</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231719119">231719119</a><span class="reference-accessdate">. Retrieved <span class="nowrap">July 11,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PRX+Quantum&rft.atitle=Compact+Ion-Trap+Quantum+Computing+Demonstrator&rft.volume=2&rft.issue=2&rft.pages=020343&rft.date=2021-06-17&rft_id=info%3Aarxiv%2F2101.11390&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231719119%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPRXQuantum.2.020343&rft_id=info%3Abibcode%2F2021PRXQ....2b0343P&rft.aulast=Pogorelov&rft.aufirst=I.&rft.au=Feldker%2C+T.&rft.au=Marciniak%2C+Ch.+D.&rft.au=Postler%2C+L.&rft.au=Jacob%2C+G.&rft.au=Krieglsteiner%2C+O.&rft.au=Podlesnic%2C+V.&rft.au=Meth%2C+M.&rft.au=Negnevitsky%2C+V.&rft.au=Stadler%2C+M.&rft.au=H%C3%B6fer%2C+B.&rft.au=W%C3%A4chter%2C+C.&rft.au=Lakhmanskiy%2C+K.&rft.au=Blatt%2C+R.&rft.au=Schindler%2C+P.&rft.au=Monz%2C+T.&rft_id=https%3A%2F%2Fjournals.aps.org%2Fprxquantum%2Fabstract%2F10.1103%2FPRXQuantum.2.020343&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-347"><span class="mw-cite-backlink"><b><a href="#cite_ref-347">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/ibm-researchers-demonstrate-the-advantage-that-quantum-computers-have-over-classical-computers/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a">"IBM researchers demonstrate the advantage that quantum computers have over classical computers"</a>. <i><a href="/wiki/ZDNet" class="mw-redirect" title="ZDNet">ZDNet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZDNet&rft.atitle=IBM+researchers+demonstrate+the+advantage+that+quantum+computers+have+over+classical+computers&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fibm-researchers-demonstrate-the-advantage-that-quantum-computers-have-over-classical-computers%2F%3Fftag%3DTRE-03-10aaa6b%26bhid%3D28974009886604832149562936007498%26mid%3D13420444%26cid%3D2193388821%26eh%3D70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-348"><span class="mw-cite-backlink"><b><a href="#cite_ref-348">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/quantum-computing-this-new-approach-could-be-the-fastest-path-to-real-applications/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a">"Bigger quantum computers, faster: This new idea could be the quickest route to real world apps"</a>. <i><a href="/wiki/ZDNet" class="mw-redirect" title="ZDNet">ZDNet</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZDNet&rft.atitle=Bigger+quantum+computers%2C+faster%3A+This+new+idea+could+be+the+quickest+route+to+real+world+apps&rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fquantum-computing-this-new-approach-could-be-the-fastest-path-to-real-applications%2F%3Fftag%3DTRE-03-10aaa6b%26bhid%3D28974009886604832149562936007498%26mid%3D13420444%26cid%3D2193388821%26eh%3D70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-349"><span class="mw-cite-backlink"><b><a href="#cite_ref-349">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://scienmag.com/harvard-led-physicists-take-big-step-in-race-to-quantum-computing/">"Harvard-led physicists take big step in race to quantum computing"</a>. <i>Scienmag: Latest Science and Health News</i>. July 9, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">August 14,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scienmag%3A+Latest+Science+and+Health+News&rft.atitle=Harvard-led+physicists+take+big+step+in+race+to+quantum+computing&rft.date=2021-07-09&rft_id=https%3A%2F%2Fscienmag.com%2Fharvard-led-physicists-take-big-step-in-race-to-quantum-computing%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-350"><span class="mw-cite-backlink"><b><a href="#cite_ref-350">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEbadiWangLevineKeesling2021" class="citation journal cs1">Ebadi, Sepehr; Wang, Tout T.; Levine, Harry; Keesling, Alexander; Semeghini, Giulia; Omran, Ahmed; Bluvstein, Dolev; Samajdar, Rhine; Pichler, Hannes; Ho, Wen Wei; Choi, Soonwon; Sachdev, Subir; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (July 2021). "Quantum phases of matter on a 256-atom programmable quantum simulator". <i>Nature</i>. <b>595</b> (7866): 227–232. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.12281">2012.12281</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Natur.595..227E">2021Natur.595..227E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-021-03582-4">10.1038/s41586-021-03582-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34234334">34234334</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:229363764">229363764</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Quantum+phases+of+matter+on+a+256-atom+programmable+quantum+simulator&rft.volume=595&rft.issue=7866&rft.pages=227-232&rft.date=2021-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A229363764%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Natur.595..227E&rft_id=info%3Aarxiv%2F2012.12281&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-021-03582-4&rft_id=info%3Apmid%2F34234334&rft.aulast=Ebadi&rft.aufirst=Sepehr&rft.au=Wang%2C+Tout+T.&rft.au=Levine%2C+Harry&rft.au=Keesling%2C+Alexander&rft.au=Semeghini%2C+Giulia&rft.au=Omran%2C+Ahmed&rft.au=Bluvstein%2C+Dolev&rft.au=Samajdar%2C+Rhine&rft.au=Pichler%2C+Hannes&rft.au=Ho%2C+Wen+Wei&rft.au=Choi%2C+Soonwon&rft.au=Sachdev%2C+Subir&rft.au=Greiner%2C+Markus&rft.au=Vuleti%C4%87%2C+Vladan&rft.au=Lukin%2C+Mikhail+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-351"><span class="mw-cite-backlink"><b><a href="#cite_ref-351">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchollSchulerWilliamsEberharter2021" class="citation journal cs1">Scholl, Pascal; Schuler, Michael; Williams, Hannah J.; Eberharter, Alexander A.; Barredo, Daniel; Schymik, Kai-Niklas; Lienhard, Vincent; Henry, Louis-Paul; Lang, Thomas C.; Lahaye, Thierry; Läuchli, Andreas M. (July 7, 2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41586-021-03585-1">"Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms"</a>. <i>Nature</i>. <b>595</b> (7866): 233–238. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.12268">2012.12268</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Natur.595..233S">2021Natur.595..233S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-021-03585-1">10.1038/s41586-021-03585-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34234335">34234335</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:229363462">229363462</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Quantum+simulation+of+2D+antiferromagnets+with+hundreds+of+Rydberg+atoms&rft.volume=595&rft.issue=7866&rft.pages=233-238&rft.date=2021-07-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A229363462%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021Natur.595..233S&rft_id=info%3Aarxiv%2F2012.12268&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-021-03585-1&rft_id=info%3Apmid%2F34234335&rft.aulast=Scholl&rft.aufirst=Pascal&rft.au=Schuler%2C+Michael&rft.au=Williams%2C+Hannah+J.&rft.au=Eberharter%2C+Alexander+A.&rft.au=Barredo%2C+Daniel&rft.au=Schymik%2C+Kai-Niklas&rft.au=Lienhard%2C+Vincent&rft.au=Henry%2C+Louis-Paul&rft.au=Lang%2C+Thomas+C.&rft.au=Lahaye%2C+Thierry&rft.au=L%C3%A4uchli%2C+Andreas+M.&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-021-03585-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-352"><span class="mw-cite-backlink"><b><a href="#cite_ref-352">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://techhq.com/2021/10/china-has-quantum-computers-that-are-a-million-times-more-powerful-than-googles/">"China quantum computers are 1 million times more powerful Google's"</a>. <i>TechHQ</i>. October 28, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">November 16,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=TechHQ&rft.atitle=China+quantum+computers+are+1+million+times+more+powerful+Google%27s&rft.date=2021-10-28&rft_id=https%3A%2F%2Ftechhq.com%2F2021%2F10%2Fchina-has-quantum-computers-that-are-a-million-times-more-powerful-than-googles%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-353"><span class="mw-cite-backlink"><b><a href="#cite_ref-353">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://techwireasia.com/2021/11/chinas-quantum-computing-efforts-surpasses-the-wests-yet-again/">"China's quantum computing efforts surpasses the West's again"</a>. <i>Tech Wire Asia</i>. November 3, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">November 16,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Tech+Wire+Asia&rft.atitle=China%27s+quantum+computing+efforts+surpasses+the+West%27s+again&rft.date=2021-11-03&rft_id=https%3A%2F%2Ftechwireasia.com%2F2021%2F11%2Fchinas-quantum-computing-efforts-surpasses-the-wests-yet-again%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-354"><span class="mw-cite-backlink"><b><a href="#cite_ref-354">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://uwaterloo.ca/news/media/canadian-researchers-achieve-first-quantum-simulation">"Canadian researchers achieve first quantum simulation of baryons"</a>. <i><a href="/wiki/University_of_Waterloo" title="University of Waterloo">University of Waterloo</a></i>. November 11, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">November 12,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=University+of+Waterloo&rft.atitle=Canadian+researchers+achieve+first+quantum+simulation+of+baryons&rft.date=2021-11-11&rft_id=https%3A%2F%2Fuwaterloo.ca%2Fnews%2Fmedia%2Fcanadian-researchers-achieve-first-quantum-simulation&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-355"><span class="mw-cite-backlink"><b><a href="#cite_ref-355">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtasZhangLewisJahanpour2021" class="citation journal cs1">Atas, Yasar Y.; Zhang, Jinglei; Lewis, Randy; Jahanpour, Amin; Haase, Jan F.; Muschik, Christine A. (November 11, 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586147">"SU(2) hadrons on a quantum computer via a variational approach"</a>. <i>Nature Communications</i>. <b>12</b> (1): 6499. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatCo..12.6499A">2021NatCo..12.6499A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-021-26825-4">10.1038/s41467-021-26825-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586147">8586147</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34764262">34764262</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=SU%282%29+hadrons+on+a+quantum+computer+via+a+variational+approach&rft.volume=12&rft.issue=1&rft.pages=6499&rft.date=2021-11-11&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8586147%23id-name%3DPMC&rft_id=info%3Abibcode%2F2021NatCo..12.6499A&rft_id=info%3Apmid%2F34764262&rft_id=info%3Adoi%2F10.1038%2Fs41467-021-26825-4&rft.issn=2041-1723&rft.aulast=Atas&rft.aufirst=Yasar+Y.&rft.au=Zhang%2C+Jinglei&rft.au=Lewis%2C+Randy&rft.au=Jahanpour%2C+Amin&rft.au=Haase%2C+Jan+F.&rft.au=Muschik%2C+Christine+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8586147&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-356"><span class="mw-cite-backlink"><b><a href="#cite_ref-356">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.newscientist.com/article/2297583-ibm-creates-largest-ever-superconducting-quantum-computer/">"IBM creates largest ever superconducting quantum computer"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 12,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=IBM+creates+largest+ever+superconducting+quantum+computer&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2F2297583-ibm-creates-largest-ever-superconducting-quantum-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-357"><span class="mw-cite-backlink"><b><a href="#cite_ref-357">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor">"IBM Unveils Breakthrough 127-Qubit Quantum Processor"</a>. <i>IBM Newsroom</i><span class="reference-accessdate">. Retrieved <span class="nowrap">January 12,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IBM+Newsroom&rft.atitle=IBM+Unveils+Breakthrough+127-Qubit+Quantum+Processor&rft_id=https%3A%2F%2Fnewsroom.ibm.com%2F2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-358"><span class="mw-cite-backlink"><b><a href="#cite_ref-358">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich/">"Europe's First Quantum Computer with More Than 5K Qubits Launched at Jülich"</a>. <i>HPC Wire</i>. January 18, 2022. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220120070625/https://www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich/">Archived</a> from the original on January 20, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">January 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=HPC+Wire&rft.atitle=Europe%27s+First+Quantum+Computer+with+More+Than+5K+Qubits+Launched+at+J%C3%BClich&rft.date=2022-01-18&rft_id=https%3A%2F%2Fwww.hpcwire.com%2Foff-the-wire%2Feuropes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-359"><span class="mw-cite-backlink"><b><a href="#cite_ref-359">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2022-03-artificial-neurons-quantum-photonic-circuits.html">"Artificial neurons go quantum with photonic circuits"</a>. <i><a href="/wiki/University_of_Vienna" title="University of Vienna">University of Vienna</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">April 19,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=University+of+Vienna&rft.atitle=Artificial+neurons+go+quantum+with+photonic+circuits&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-03-artificial-neurons-quantum-photonic-circuits.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-360"><span class="mw-cite-backlink"><b><a href="#cite_ref-360">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpagnoloMorrisPiacentiniAntesberger2022" class="citation journal cs1">Spagnolo, Michele; Morris, Joshua; Piacentini, Simone; Antesberger, Michael; Massa, Francesco; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Walther, Philip (April 2022). "Experimental photonic quantum memristor". <i>Nature Photonics</i>. <b>16</b> (4): 318–323. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2105.04867">2105.04867</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022NaPho..16..318S">2022NaPho..16..318S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41566-022-00973-5">10.1038/s41566-022-00973-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1749-4893">1749-4893</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234358015">234358015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Photonics&rft.atitle=Experimental+photonic+quantum+memristor&rft.volume=16&rft.issue=4&rft.pages=318-323&rft.date=2022-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234358015%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2022NaPho..16..318S&rft_id=info%3Aarxiv%2F2105.04867&rft.issn=1749-4893&rft_id=info%3Adoi%2F10.1038%2Fs41566-022-00973-5&rft.aulast=Spagnolo&rft.aufirst=Michele&rft.au=Morris%2C+Joshua&rft.au=Piacentini%2C+Simone&rft.au=Antesberger%2C+Michael&rft.au=Massa%2C+Francesco&rft.au=Crespi%2C+Andrea&rft.au=Ceccarelli%2C+Francesco&rft.au=Osellame%2C+Roberto&rft.au=Walther%2C+Philip&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-361"><span class="mw-cite-backlink"><b><a href="#cite_ref-361">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.quantinuum.com/pressrelease/quantinuum-announces-quantum-volume-4096-achievement">"Quantinuum Announces Quantum Volume 4096 Achievement"</a>. <i>www.quantinuum.com</i>. April 14, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">May 2,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.quantinuum.com&rft.atitle=Quantinuum+Announces+Quantum+Volume+4096+Achievement&rft.date=2022-04-14&rft_id=https%3A%2F%2Fwww.quantinuum.com%2Fpressrelease%2Fquantinuum-announces-quantum-volume-4096-achievement&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-362"><span class="mw-cite-backlink"><b><a href="#cite_ref-362">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversität_Innsbruck2022" class="citation web cs1">Universität Innsbruck (May 27, 2022). <a rel="nofollow" class="external text" href="https://www.uibk.ac.at/en/newsroom/2022/error-free-quantum-computing-gets-real/">"Error-Free Quantum Computing Gets Real"</a>. <i>www.uibk.ac.at</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 13,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.uibk.ac.at&rft.atitle=Error-Free+Quantum+Computing+Gets+Real&rft.date=2022-05-27&rft.au=Universit%C3%A4t+Innsbruck&rft_id=https%3A%2F%2Fwww.uibk.ac.at%2Fen%2Fnewsroom%2F2022%2Ferror-free-quantum-computing-gets-real%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-363"><span class="mw-cite-backlink"><b><a href="#cite_ref-363">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.sciencealert.com/a-huge-step-forward-in-quantum-computing-was-just-announced-the-first-ever-quantum-circuit">"A Huge Step Forward in Quantum Computing Was Just Announced: The First-Ever Quantum Circuit"</a>. <i>Science Alert</i>. June 22, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">June 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Science+Alert&rft.atitle=A+Huge+Step+Forward+in+Quantum+Computing+Was+Just+Announced%3A+The+First-Ever+Quantum+Circuit&rft.date=2022-06-22&rft_id=https%3A%2F%2Fwww.sciencealert.com%2Fa-huge-step-forward-in-quantum-computing-was-just-announced-the-first-ever-quantum-circuit&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-364"><span class="mw-cite-backlink"><b><a href="#cite_ref-364">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKiczynskiGormanGengDonnelly2022" class="citation journal cs1">Kiczynski, M.; Gorman, S. K.; Geng, H.; Donnelly, M. B.; Chung, Y.; He, Y.; Keizer, J. G.; Simmons, M. Y. (June 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217742">"Engineering topological states in atom-based semiconductor quantum dots"</a>. <i>Nature</i>. <b>606</b> (7915): 694–699. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Natur.606..694K">2022Natur.606..694K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-022-04706-0">10.1038/s41586-022-04706-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217742">9217742</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35732762">35732762</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Engineering+topological+states+in+atom-based+semiconductor+quantum+dots&rft.volume=606&rft.issue=7915&rft.pages=694-699&rft.date=2022-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9217742%23id-name%3DPMC&rft_id=info%3Abibcode%2F2022Natur.606..694K&rft_id=info%3Apmid%2F35732762&rft_id=info%3Adoi%2F10.1038%2Fs41586-022-04706-0&rft.issn=1476-4687&rft.aulast=Kiczynski&rft.aufirst=M.&rft.au=Gorman%2C+S.+K.&rft.au=Geng%2C+H.&rft.au=Donnelly%2C+M.+B.&rft.au=Chung%2C+Y.&rft.au=He%2C+Y.&rft.au=Keizer%2C+J.+G.&rft.au=Simmons%2C+M.+Y.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9217742&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span> <ul><li>Press release: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://newsroom.unsw.edu.au/news/science-tech/unsw-quantum-scientists-deliver-world%E2%80%99s-first-integrated-circuit-atomic-scale">"UNSW quantum scientists deliver world's first integrated circuit at the atomic scale"</a>. <i><a href="/wiki/University_of_New_South_Wales" title="University of New South Wales">University of New South Wales</a></i>. June 23, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">June 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=University+of+New+South+Wales&rft.atitle=UNSW+quantum+scientists+deliver+world%27s+first+integrated+circuit+at+the+atomic+scale&rft.date=2022-06-23&rft_id=https%3A%2F%2Fnewsroom.unsw.edu.au%2Fnews%2Fscience-tech%2Funsw-quantum-scientists-deliver-world%25E2%2580%2599s-first-integrated-circuit-atomic-scale&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-365"><span class="mw-cite-backlink"><b><a href="#cite_ref-365">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConover2022" class="citation news cs1">Conover, Emily (July 5, 2022). <a rel="nofollow" class="external text" href="https://www.sciencenews.org/article/alien-quantum-communication-extraterrestrial-communication-signal">"Aliens could send quantum messages to Earth, calculations suggest"</a>. <i>Science News</i><span class="reference-accessdate">. Retrieved <span class="nowrap">July 13,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+News&rft.atitle=Aliens+could+send+quantum+messages+to+Earth%2C+calculations+suggest&rft.date=2022-07-05&rft.aulast=Conover&rft.aufirst=Emily&rft_id=https%3A%2F%2Fwww.sciencenews.org%2Farticle%2Falien-quantum-communication-extraterrestrial-communication-signal&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-366"><span class="mw-cite-backlink"><b><a href="#cite_ref-366">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBereraCalderón-Figueroa2022" class="citation journal cs1">Berera, Arjun; Calderón-Figueroa, Jaime (June 28, 2022). "Viability of quantum communication across interstellar distances". <i>Physical Review D</i>. <b>105</b> (12): 123033. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2205.11816">2205.11816</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvD.105l3033B">2022PhRvD.105l3033B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.105.123033">10.1103/PhysRevD.105.123033</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249017926">249017926</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Viability+of+quantum+communication+across+interstellar+distances&rft.volume=105&rft.issue=12&rft.pages=123033&rft.date=2022-06-28&rft_id=info%3Aarxiv%2F2205.11816&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249017926%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.105.123033&rft_id=info%3Abibcode%2F2022PhRvD.105l3033B&rft.aulast=Berera&rft.aufirst=Arjun&rft.au=Calder%C3%B3n-Figueroa%2C+Jaime&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-367"><span class="mw-cite-backlink"><b><a href="#cite_ref-367">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversität_Innsbruck2022" class="citation web cs1">Universität Innsbruck (July 21, 2022). <a rel="nofollow" class="external text" href="https://www.uibk.ac.at/en/newsroom/2022/quantum-computer-works-with-more-than-zero-and-one/">"Quantum computer works with more than zero and one"</a>. <i>www.uibk.ac.at</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 13,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.uibk.ac.at&rft.atitle=Quantum+computer+works+with+more+than+zero+and+one&rft.date=2022-07-21&rft.au=Universit%C3%A4t+Innsbruck&rft_id=https%3A%2F%2Fwww.uibk.ac.at%2Fen%2Fnewsroom%2F2022%2Fquantum-computer-works-with-more-than-zero-and-one%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-368"><span class="mw-cite-backlink"><b><a href="#cite_ref-368">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPurdue_University2022" class="citation web cs1"><a href="/wiki/Purdue_University" title="Purdue University">Purdue University</a> (August 15, 2022). <a rel="nofollow" class="external text" href="https://phys.org/news/2022-08-2d-array-electron-nuclear-qubits.amp">"2D array of electron and nuclear spin qubits opens new frontier in quantum science"</a>. <a href="/wiki/Phys.org" title="Phys.org">Phys.org</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=2D+array+of+electron+and+nuclear+spin+qubits+opens+new+frontier+in+quantum+science&rft.pub=Phys.org&rft.date=2022-08-15&rft.au=Purdue+University&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-08-2d-array-electron-nuclear-qubits.amp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-369"><span class="mw-cite-backlink"><b><a href="#cite_ref-369">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMax_Planck_Society2022" class="citation journal cs1"><a href="/wiki/Max_Planck_Society" title="Max Planck Society">Max Planck Society</a> (August 24, 2022). <a rel="nofollow" class="external text" href="https://phys.org/news/2022-08-physicists-entangle-dozen-photons-efficiently.amp">"Physicists entangle more than a dozen photons efficiently"</a>. <i>Nature</i>. <b>608</b> (7924). <a href="/wiki/Phys.org" title="Phys.org">Phys.org</a>: 677–681. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-022-04987-5">10.1038/s41586-022-04987-5</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402438">9402438</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36002484">36002484</a><span class="reference-accessdate">. Retrieved <span class="nowrap">August 25,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Physicists+entangle+more+than+a+dozen+photons+efficiently&rft.volume=608&rft.issue=7924&rft.pages=677-681&rft.date=2022-08-24&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9402438%23id-name%3DPMC&rft_id=info%3Apmid%2F36002484&rft_id=info%3Adoi%2F10.1038%2Fs41586-022-04987-5&rft.au=Max+Planck+Society&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-08-physicists-entangle-dozen-photons-efficiently.amp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-370"><span class="mw-cite-backlink"><b><a href="#cite_ref-370">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRitterMax_Planck_Society" class="citation web cs1">Ritter, Florian; <a href="/wiki/Max_Planck_Society" title="Max Planck Society">Max Planck Society</a>. <a rel="nofollow" class="external text" href="https://phys.org/news/2022-08-metasurfaces-possibilities-quantum.amp">"Metasurfaces offer new possibilities for quantum research"</a>. <a href="/wiki/Phys.org" title="Phys.org">Phys.org</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Metasurfaces+offer+new+possibilities+for+quantum+research&rft.pub=Phys.org&rft.aulast=Ritter&rft.aufirst=Florian&rft.au=Max+Planck+Society&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-08-metasurfaces-possibilities-quantum.amp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-371"><span class="mw-cite-backlink"><b><a href="#cite_ref-371">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcRae2022" class="citation web cs1">McRae, Mike (August 31, 2022). <a rel="nofollow" class="external text" href="https://www.sciencealert.com/quantum-physicists-set-new-record-for-entangling-photons-together">"Quantum Physicists Set New Record For Entangling Photons Together"</a>. <i>Science Alert</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Science+Alert&rft.atitle=Quantum+Physicists+Set+New+Record+For+Entangling+Photons+Together&rft.date=2022-08-31&rft.aulast=McRae&rft.aufirst=Mike&rft_id=https%3A%2F%2Fwww.sciencealert.com%2Fquantum-physicists-set-new-record-for-entangling-photons-together&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-372"><span class="mw-cite-backlink"><b><a href="#cite_ref-372">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNational_Institute_of_Information_and_Communications_Technology2022" class="citation web cs1"><a href="/wiki/National_Institute_of_Information_and_Communications_Technology" title="National Institute of Information and Communications Technology">National Institute of Information and Communications Technology</a> (September 2, 2022). <a rel="nofollow" class="external text" href="https://archive.today/20220904164853/https://phys.org/news/2022-09-method-systematically-optimal-quantum-sequences.amp">"New method to systematically find optimal quantum operation sequences for quantum computers"</a>. <a href="/wiki/Phys.org" title="Phys.org">Phys.org</a>. Archived from the original on September 4, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">September 8,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+method+to+systematically+find+optimal+quantum+operation+sequences+for+quantum+computers&rft.pub=Phys.org&rft.date=2022-09-02&rft.au=National+Institute+of+Information+and+Communications+Technology&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-09-method-systematically-optimal-quantum-sequences.amp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-373"><span class="mw-cite-backlink"><b><a href="#cite_ref-373">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversity_of_New_South_Wales2022" class="citation journal cs1">University of New South Wales (September 30, 2022). <a rel="nofollow" class="external text" href="https://archive.today/20221001222634/https://phys.org/news/2022-09-longest-quantum-standard-silicon-chip.amp">"For the longest time: Quantum computing engineers set new standard in silicon chip performance"</a>. <i>Science Advances</i>. <b>7</b> (33). <a href="/wiki/Phys.org" title="Phys.org">Phys.org</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.abg9158">10.1126/sciadv.abg9158</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363148">8363148</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34389538">34389538</a>. Archived from the original on October 1, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">September 8,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=For+the+longest+time%3A+Quantum+computing+engineers+set+new+standard+in+silicon+chip+performance&rft.volume=7&rft.issue=33&rft.date=2022-09-30&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8363148%23id-name%3DPMC&rft_id=info%3Apmid%2F34389538&rft_id=info%3Adoi%2F10.1126%2Fsciadv.abg9158&rft.au=University+of+New+South+Wales&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-09-longest-quantum-standard-silicon-chip.amp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-374"><span class="mw-cite-backlink"><b><a href="#cite_ref-374">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two">"IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two"</a>. <i>IBM</i>. November 9, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 10,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IBM&rft.atitle=IBM+Unveils+400+Qubit-Plus+Quantum+Processor+and+Next-Generation+IBM+Quantum+System+Two&rft.date=2022-11-09&rft_id=https%3A%2F%2Fnewsroom.ibm.com%2F2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-375"><span class="mw-cite-backlink"><b><a href="#cite_ref-375">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://techcrunch.com/2022/11/09/ibm-unveils-its-433-qubit-osprey-quantum-computer/">"IBM unveils its 433 qubit Osprey quantum computer"</a>. <i>Tech Crunch</i>. November 9, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 10,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Tech+Crunch&rft.atitle=IBM+unveils+its+433+qubit+Osprey+quantum+computer&rft.date=2022-11-09&rft_id=https%3A%2F%2Ftechcrunch.com%2F2022%2F11%2F09%2Fibm-unveils-its-433-qubit-osprey-quantum-computer%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-376"><span class="mw-cite-backlink"><b><a href="#cite_ref-376">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.tomshardware.com/news/spinq-introduces-trio-of-portable-quantum-computers">"SpinQ Introduces Trio of Portable Quantum Computers"</a>. December 15, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">December 15,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=SpinQ+Introduces+Trio+of+Portable+Quantum+Computers&rft.date=2022-12-15&rft_id=https%3A%2F%2Fwww.tomshardware.com%2Fnews%2Fspinq-introduces-trio-of-portable-quantum-computers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-377"><span class="mw-cite-backlink"><b><a href="#cite_ref-377">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://tech.news.am/eng/news/510/worlds-first-portable-quantum-computers-on-sale-in-japan-prices-start-at-$8700.html">"World's first portable quantum computers on sale in Japan: Prices start at $8,700"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=World%27s+first+portable+quantum+computers+on+sale+in+Japan%3A+Prices+start+at+%248%2C700&rft_id=https%3A%2F%2Ftech.news.am%2Feng%2Fnews%2F510%2Fworlds-first-portable-quantum-computers-on-sale-in-japan-prices-start-at-%248700.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-378"><span class="mw-cite-backlink"><b><a href="#cite_ref-378">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1 cs1-prop-foreign-lang-source"><a rel="nofollow" class="external text" href="https://translate.google.com/translate?sl=it&tl=en&hl=it&u=https://www.futuroprossimo.it/2023/05/il-futuro-e-ora-i-primi-computer-quantistici-portatili-in-vendita-in-giappone/amp/&client=webapp">"Il futuro è ora: I primi computer quantistici portatili arrivano sul mercato"</a> [The future is now: The first portable quantum computers hit the market] (in Italian). May 19, 2023.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Il+futuro+%C3%A8+ora%3A+I+primi+computer+quantistici+portatili+arrivano+sul+mercato&rft.date=2023-05-19&rft_id=https%3A%2F%2Ftranslate.google.com%2Ftranslate%3Fsl%3Dit%26tl%3Den%26hl%3Dit%26u%3Dhttps%3A%2F%2Fwww.futuroprossimo.it%2F2023%2F05%2Fil-futuro-e-ora-i-primi-computer-quantistici-portatili-in-vendita-in-giappone%2Famp%2F%26client%3Dwebapp&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-379"><span class="mw-cite-backlink"><b><a href="#cite_ref-379">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversität_Innsbruck2023" class="citation web cs1">Universität Innsbruck (February 3, 2023). <a rel="nofollow" class="external text" href="https://www.uibk.ac.at/en/newsroom/2023/entangled-atoms-across-the-innsbruck-quantum-network/">"Entangled atoms across the Innsbruck quantum network"</a>. <i>www.uibk.ac.at</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 13,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.uibk.ac.at&rft.atitle=Entangled+atoms+across+the+Innsbruck+quantum+network&rft.date=2023-02-03&rft.au=Universit%C3%A4t+Innsbruck&rft_id=https%3A%2F%2Fwww.uibk.ac.at%2Fen%2Fnewsroom%2F2023%2Fentangled-atoms-across-the-innsbruck-quantum-network%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-380"><span class="mw-cite-backlink"><b><a href="#cite_ref-380">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAQT2023" class="citation web cs1">AQT (February 8, 2023). <a rel="nofollow" class="external text" href="https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/">"State of Quantum Computing in Europe: AQT pushing performance with a Quantum Volume of 128"</a>. <i>AQT | ALPINE QUANTUM TECHNOLOGIES</i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 13,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=AQT+%7C+ALPINE+QUANTUM+TECHNOLOGIES&rft.atitle=State+of+Quantum+Computing+in+Europe%3A+AQT+pushing+performance+with+a+Quantum+Volume+of+128&rft.date=2023-02-08&rft.au=AQT&rft_id=https%3A%2F%2Fwww.aqt.eu%2Faqt-pushing-performance-with-a-quantum-volume-of-128%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-381"><span class="mw-cite-backlink"><b><a href="#cite_ref-381">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartolucciBirchallBombínCable2023" class="citation journal cs1">Bartolucci, Sara; Birchall, Patrick; Bombín, Hector; Cable, Hugo; Dawson, Chris; Gimeno-Segovia, Mercedes; Johnston, Eric; Kieling, Konrad; Nickerson, Naomi; Pant, Mihir; Pastawski, Fernando; Rudolph, Terry; Sparrow, Chris (February 17, 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938229">"Fusion-based quantum computation"</a>. <i>Nature Communications</i>. <b>14</b> (1): 912. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023NatCo..14..912B">2023NatCo..14..912B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-023-36493-1">10.1038/s41467-023-36493-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938229">9938229</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36805650">36805650</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Fusion-based+quantum+computation&rft.volume=14&rft.issue=1&rft.pages=912&rft.date=2023-02-17&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9938229%23id-name%3DPMC&rft_id=info%3Abibcode%2F2023NatCo..14..912B&rft_id=info%3Apmid%2F36805650&rft_id=info%3Adoi%2F10.1038%2Fs41467-023-36493-1&rft.issn=2041-1723&rft.aulast=Bartolucci&rft.aufirst=Sara&rft.au=Birchall%2C+Patrick&rft.au=Bomb%C3%ADn%2C+Hector&rft.au=Cable%2C+Hugo&rft.au=Dawson%2C+Chris&rft.au=Gimeno-Segovia%2C+Mercedes&rft.au=Johnston%2C+Eric&rft.au=Kieling%2C+Konrad&rft.au=Nickerson%2C+Naomi&rft.au=Pant%2C+Mihir&rft.au=Pastawski%2C+Fernando&rft.au=Rudolph%2C+Terry&rft.au=Sparrow%2C+Chris&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9938229&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-382"><span class="mw-cite-backlink"><b><a href="#cite_ref-382">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://economictimes.indiatimes.com/industry/telecom/telecom-news/indias-first-quantum-computing-based-telecom-network-link-now-operational-ashwini-vaishnaw/articleshow/99026697.cms">"India's first quantum computing-based telecom network link now operational: Ashwini Vaishnaw"</a>. <i>The Economic Times</i>. March 27, 2023.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Economic+Times&rft.atitle=India%27s+first+quantum+computing-based+telecom+network+link+now+operational%3A+Ashwini+Vaishnaw&rft.date=2023-03-27&rft_id=https%3A%2F%2Feconomictimes.indiatimes.com%2Findustry%2Ftelecom%2Ftelecom-news%2Findias-first-quantum-computing-based-telecom-network-link-now-operational-ashwini-vaishnaw%2Farticleshow%2F99026697.cms&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20230614-383"><span class="mw-cite-backlink"><b><a href="#cite_ref-NYT-20230614_383-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChang2023" class="citation news cs1">Chang, Kenneth (June 14, 2023). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html">"Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://archive.today/20230614151835/https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html">Archived</a> from the original on June 14, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">June 15,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Quantum+Computing+Advance+Begins+New+Era%2C+IBM+Says+%E2%80%93+A+quantum+computer+came+up+with+better+answers+to+a+physics+problem+than+a+conventional+supercomputer.&rft.date=2023-06-14&rft.aulast=Chang&rft.aufirst=Kenneth&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2023%2F06%2F14%2Fscience%2Fibm-quantum-computing.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-NAT-20230614-384"><span class="mw-cite-backlink"><b><a href="#cite_ref-NAT-20230614_384-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKim,_Youngseok2023" class="citation journal cs1">Kim, Youngseok; et al. (June 14, 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266970">"Evidence for the utility of quantum computing before fault tolerance"</a>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>618</b> (7965): 500–505. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023Natur.618..500K">2023Natur.618..500K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-023-06096-3">10.1038/s41586-023-06096-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266970">10266970</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37316724">37316724</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Evidence+for+the+utility+of+quantum+computing+before+fault+tolerance&rft.volume=618&rft.issue=7965&rft.pages=500-505&rft.date=2023-06-14&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10266970%23id-name%3DPMC&rft_id=info%3Apmid%2F37316724&rft_id=info%3Adoi%2F10.1038%2Fs41586-023-06096-3&rft_id=info%3Abibcode%2F2023Natur.618..500K&rft.au=Kim%2C+Youngseok&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10266970&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-385"><span class="mw-cite-backlink"><b><a href="#cite_ref-385">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLardinois2023" class="citation web cs1">Lardinois, Frederic (June 21, 2023). <a rel="nofollow" class="external text" href="https://techcrunch.com/2023/06/21/microsoft-expects-to-build-a-quantum-supercomputer-within-10-years/?guccounter=1&guce_referrer=aHR0cHM6Ly9lZGdlOS5od3VwZ3JhZGUuaXQv&guce_referrer_sig=AQAAACXAB0qvUPp2WTkuGfdLz7J6WL84C0dFSnA7-JlfcbG-NlUc5Wr_rDCfeBFqRnEGLozBpwYqrxqWUim6CgPzx5HnmrvLTOgBuO9C3fptgIUZ2JvHF1205F6FgMmcC-qSSHXDFx_aNts3TXoSyHy7ovW9ixtgT47y8ID7RHz8bMUj">"Microsoft expects to build a quantum supercomputer within 10 years"</a>. Tech Crunch.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Microsoft+expects+to+build+a+quantum+supercomputer+within+10+years&rft.pub=Tech+Crunch&rft.date=2023-06-21&rft.aulast=Lardinois&rft.aufirst=Frederic&rft_id=https%3A%2F%2Ftechcrunch.com%2F2023%2F06%2F21%2Fmicrosoft-expects-to-build-a-quantum-supercomputer-within-10-years%2F%3Fguccounter%3D1%26guce_referrer%3DaHR0cHM6Ly9lZGdlOS5od3VwZ3JhZGUuaXQv%26guce_referrer_sig%3DAQAAACXAB0qvUPp2WTkuGfdLz7J6WL84C0dFSnA7-JlfcbG-NlUc5Wr_rDCfeBFqRnEGLozBpwYqrxqWUim6CgPzx5HnmrvLTOgBuO9C3fptgIUZ2JvHF1205F6FgMmcC-qSSHXDFx_aNts3TXoSyHy7ovW9ixtgT47y8ID7RHz8bMUj&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-386"><span class="mw-cite-backlink"><b><a href="#cite_ref-386">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBluvsteinEveredGeimLi2024" class="citation journal cs1">Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422">"Logical quantum processor based on reconfigurable atom arrays"</a>. <i>Nature</i>. <b>626</b> (7997): 58–65. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2312.03982">2312.03982</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024Natur.626...58B">2024Natur.626...58B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-023-06927-3">10.1038/s41586-023-06927-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422">10830422</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/38056497">38056497</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Logical+quantum+processor+based+on+reconfigurable+atom+arrays&rft.volume=626&rft.issue=7997&rft.pages=58-65&rft.date=2024&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10830422%23id-name%3DPMC&rft_id=info%3Abibcode%2F2024Natur.626...58B&rft_id=info%3Aarxiv%2F2312.03982&rft_id=info%3Apmid%2F38056497&rft_id=info%3Adoi%2F10.1038%2Fs41586-023-06927-3&rft.aulast=Bluvstein&rft.aufirst=Dolev&rft.au=Evered%2C+Simon+J.&rft.au=Geim%2C+Alexandra+A.&rft.au=Li%2C+Sophie+H.&rft.au=Zhou%2C+Hengyun&rft.au=Manovitz%2C+Tom&rft.au=Ebadi%2C+Sepehr&rft.au=Cain%2C+Madelyn&rft.au=Kalinowski%2C+Marcin&rft.au=Hangleiter%2C+Dominik&rft.au=Bonilla+Ataides%2C+J.+Pablo&rft.au=Maskara%2C+Nishad&rft.au=Cong%2C+Iris&rft.au=Gao%2C+Xun&rft.au=Sales+Rodriguez%2C+Pedro&rft.au=Karolyshyn%2C+Thomas&rft.au=Semeghini%2C+Giulia&rft.au=Gullans%2C+Michael+J.&rft.au=Greiner%2C+Markus&rft.au=Vuleti%C4%87%2C+Vladan&rft.au=Lukin%2C+Mikhail+D.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10830422&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-387"><span class="mw-cite-backlink"><b><a href="#cite_ref-387">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPauseSturmMittenbühlerAmann2024" class="citation journal cs1">Pause, L.; Sturm, L.; Mittenbühler, M.; Amann, S.; Preuschoff, T.; Schäffner, D.; Schlosser, S.; Birkl, G. (2024). <a rel="nofollow" class="external text" href="https://opg.optica.org/optica/abstract.cfm?URI=optica-11-2-222">"Supercharged two-dimensional tweezer array with more than 1000 atomic qubits"</a>. <i>Optica</i>. <b>11</b> (2): 222–226. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2310.09191">2310.09191</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024Optic..11..222P">2024Optic..11..222P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOPTICA.513551">10.1364/OPTICA.513551</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optica&rft.atitle=Supercharged+two-dimensional+tweezer+array+with+more+than+1000+atomic+qubits&rft.volume=11&rft.issue=2&rft.pages=222-226&rft.date=2024&rft_id=info%3Aarxiv%2F2310.09191&rft_id=info%3Adoi%2F10.1364%2FOPTICA.513551&rft_id=info%3Abibcode%2F2024Optic..11..222P&rft.aulast=Pause&rft.aufirst=L.&rft.au=Sturm%2C+L.&rft.au=Mittenb%C3%BChler%2C+M.&rft.au=Amann%2C+S.&rft.au=Preuschoff%2C+T.&rft.au=Sch%C3%A4ffner%2C+D.&rft.au=Schlosser%2C+S.&rft.au=Birkl%2C+G.&rft_id=https%3A%2F%2Fopg.optica.org%2Foptica%2Fabstract.cfm%3FURI%3Doptica-11-2-222&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-388"><span class="mw-cite-backlink"><b><a href="#cite_ref-388">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumkeVolkMütherBuchkremer2002" class="citation journal cs1">Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.89.097903">"Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits"</a>. <i>Physical Review Letters</i>. <b>89</b> (9): 097903. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0110140">quant-ph/0110140</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhRvL..89i7903D">2002PhRvL..89i7903D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.89.097903">10.1103/PhysRevLett.89.097903</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12190441">12190441</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Micro-optical+Realization+of+Arrays+of+Selectively+Addressable+Dipole+Traps%3A+A+Scalable+Configuration+for+Quantum+Computation+with+Atomic+Qubits&rft.volume=89&rft.issue=9&rft.pages=097903&rft.date=2002-08-08&rft_id=info%3Aarxiv%2Fquant-ph%2F0110140&rft_id=info%3Apmid%2F12190441&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.89.097903&rft_id=info%3Abibcode%2F2002PhRvL..89i7903D&rft.aulast=Dumke&rft.aufirst=R.&rft.au=Volk%2C+M.&rft.au=M%C3%BCther%2C+T.&rft.au=Buchkremer%2C+F.+B.+J.&rft.au=Birkl%2C+G.&rft.au=Ertmer%2C+W.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.89.097903&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-389"><span class="mw-cite-backlink"><b><a href="#cite_ref-389">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/">"Quantum startup Atom Computing first to exceed 1,000 qubits"</a>. Boulder, CO. October 24, 2023.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Quantum+startup+Atom+Computing+first+to+exceed+1%2C000+qubits&rft.place=Boulder%2C+CO&rft.date=2023-10-24&rft_id=https%3A%2F%2Fatom-computing.com%2Fquantum-startup-atom-computing-first-to-exceed-1000-qubits%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-390"><span class="mw-cite-backlink"><b><a href="#cite_ref-390">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussell2023" class="citation web cs1">Russell, John (October 24, 2023). <a rel="nofollow" class="external text" href="https://www.hpcwire.com/2023/10/24/atom-computing-wins-the-race-to-1000-qubits/">"Atom Computing Wins the Race to 1000 Qubits"</a>. HPC Wire.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Atom+Computing+Wins+the+Race+to+1000+Qubits&rft.pub=HPC+Wire&rft.date=2023-10-24&rft.aulast=Russell&rft.aufirst=John&rft_id=https%3A%2F%2Fwww.hpcwire.com%2F2023%2F10%2F24%2Fatom-computing-wins-the-race-to-1000-qubits%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-391"><span class="mw-cite-backlink"><b><a href="#cite_ref-391">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcDowell" class="citation web cs1">McDowell, Steve. <a rel="nofollow" class="external text" href="https://www.forbes.com/sites/stevemcdowell/2023/12/05/ibm-advances-quantum-computing-with-new-processors--platforms/">"IBM Advances Quantum Computing with New Processors & Platforms"</a>. <i>Forbes</i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 27,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Forbes&rft.atitle=IBM+Advances+Quantum+Computing+with+New+Processors+%26+Platforms&rft.aulast=McDowell&rft.aufirst=Steve&rft_id=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fstevemcdowell%2F2023%2F12%2F05%2Fibm-advances-quantum-computing-with-new-processors--platforms%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-392"><span class="mw-cite-backlink"><b><a href="#cite_ref-392">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ibm.com/quantum/blog/quantum-roadmap-2033">"IBM Quantum Computing Blog | The hardware and software for the era of quantum utility is here"</a>. <i>www.ibm.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 27,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.ibm.com&rft.atitle=IBM+Quantum+Computing+Blog+%7C+The+hardware+and+software+for+the+era+of+quantum+utility+is+here&rft_id=https%3A%2F%2Fwww.ibm.com%2Fquantum%2Fblog%2Fquantum-roadmap-2033&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-393"><span class="mw-cite-backlink"><b><a href="#cite_ref-393">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://research.ibm.com/blog/ibm-quantum-roadmap">"IBM's roadmap for scaling quantum technology"</a>. <i>IBM Research Blog</i>. February 9, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">December 27,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IBM+Research+Blog&rft.atitle=IBM%27s+roadmap+for+scaling+quantum+technology&rft.date=2021-02-09&rft_id=https%3A%2F%2Fresearch.ibm.com%2Fblog%2Fibm-quantum-roadmap&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-394"><span class="mw-cite-backlink"><b><a href="#cite_ref-394">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBluvsteinEveredGeimLi2024" class="citation journal cs1">Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422">"Logical quantum processor based on reconfigurable atom arrays"</a>. <i>Nature</i>. <b>626</b> (7997): 58–65. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2312.03982">2312.03982</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024Natur.626...58B">2024Natur.626...58B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-023-06927-3">10.1038/s41586-023-06927-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422">10830422</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/38056497">38056497</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Logical+quantum+processor+based+on+reconfigurable+atom+arrays&rft.volume=626&rft.issue=7997&rft.pages=58-65&rft.date=2024&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10830422%23id-name%3DPMC&rft_id=info%3Abibcode%2F2024Natur.626...58B&rft_id=info%3Aarxiv%2F2312.03982&rft_id=info%3Apmid%2F38056497&rft_id=info%3Adoi%2F10.1038%2Fs41586-023-06927-3&rft.aulast=Bluvstein&rft.aufirst=Dolev&rft.au=Evered%2C+Simon+J.&rft.au=Geim%2C+Alexandra+A.&rft.au=Li%2C+Sophie+H.&rft.au=Zhou%2C+Hengyun&rft.au=Manovitz%2C+Tom&rft.au=Ebadi%2C+Sepehr&rft.au=Cain%2C+Madelyn&rft.au=Kalinowski%2C+Marcin&rft.au=Hangleiter%2C+Dominik&rft.au=Bonilla+Ataides%2C+J.+Pablo&rft.au=Maskara%2C+Nishad&rft.au=Cong%2C+Iris&rft.au=Gao%2C+Xun&rft.au=Sales+Rodriguez%2C+Pedro&rft.au=Karolyshyn%2C+Thomas&rft.au=Semeghini%2C+Giulia&rft.au=Gullans%2C+Michael+J.&rft.au=Greiner%2C+Markus&rft.au=Vuleti%C4%87%2C+Vladan&rft.au=Lukin%2C+Mikhail+D.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10830422&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-395"><span class="mw-cite-backlink"><b><a href="#cite_ref-395">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasRuscioMorinRempe2024" class="citation journal cs1">Thomas, Philip; Ruscio, Leonardo; Morin, Olivier; Rempe, Gerhard (May 16, 2024). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096110">"Fusion of deterministically generated photonic graph states"</a>. <i>Nature</i>. <b>629</b> (8012): 567–572. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2403.11950">2403.11950</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024Natur.629..567T">2024Natur.629..567T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-024-07357-5">10.1038/s41586-024-07357-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096110">11096110</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/38720079">38720079</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Fusion+of+deterministically+generated+photonic+graph+states&rft.volume=629&rft.issue=8012&rft.pages=567-572&rft.date=2024-05-16&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC11096110%23id-name%3DPMC&rft_id=info%3Abibcode%2F2024Natur.629..567T&rft_id=info%3Aarxiv%2F2403.11950&rft.issn=0028-0836&rft_id=info%3Adoi%2F10.1038%2Fs41586-024-07357-5&rft_id=info%3Apmid%2F38720079&rft.aulast=Thomas&rft.aufirst=Philip&rft.au=Ruscio%2C+Leonardo&rft.au=Morin%2C+Olivier&rft.au=Rempe%2C+Gerhard&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC11096110&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> <li id="cite_note-396"><span class="mw-cite-backlink"><b><a href="#cite_ref-396">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1">[hhttps://quantumcomputingreport.com/photonic-inc-demonstrates-distributed-entanglement-between-two-modules-separated-by-40-meters-of-fiber/ "Photonic Inc. Demonstrates Distributed Entanglement Between Two Modules Separated by 40 Meters of Fiber"]. <i>www.quantumcomputingreport.com</i>. May 30, 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">September 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.quantumcomputingreport.com&rft.atitle=Photonic+Inc.+Demonstrates+Distributed+Entanglement+Between+Two+Modules+Separated+by+40+Meters+of+Fiber&rft.date=2024-05-30&rft_id=hhttps%3A%2F%2Fquantumcomputingreport.com%2Fphotonic-inc-demonstrates-distributed-entanglement-between-two-modules-separated-by-40-meters-of-fiber%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+computing+and+communication" class="Z3988"></span></span> </li> </ol></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="History_of_physics_(timeline)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_physics" title="Template:History of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_physics" title="Template talk:History of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_physics" title="Special:EditPage/Template:History of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_physics_(timeline)" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_physics" title="History of physics">History of physics</a> (<a href="/wiki/Timeline_of_fundamental_physics_discoveries" title="Timeline of fundamental physics discoveries">timeline</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Classical_physics" title="Classical physics">Classical physics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_astronomy" title="History of astronomy">Astronomy</a> <ul><li><a href="/wiki/Timeline_of_astronomy" title="Timeline of astronomy">timeline</a></li></ul></li> <li><a href="/wiki/History_of_electromagnetic_theory" title="History of electromagnetic theory">Electromagnetism</a> <ul><li><a href="/wiki/Timeline_of_electromagnetism_and_classical_optics" title="Timeline of electromagnetism and classical optics">timeline</a></li> <li><a href="/wiki/History_of_electrical_engineering" title="History of electrical engineering">Electrical engineering</a></li> <li><a href="/wiki/History_of_Maxwell%27s_equations" title="History of Maxwell's equations">Maxwell's equations</a></li></ul></li> <li><a href="/wiki/History_of_fluid_mechanics" title="History of fluid mechanics">Fluid mechanics</a> <ul><li><a href="/wiki/Timeline_of_fluid_and_continuum_mechanics" title="Timeline of fluid and continuum mechanics">timeline</a></li> <li><a href="/wiki/History_of_aerodynamics" title="History of aerodynamics">Aerodynamics</a></li></ul></li> <li><a href="/wiki/History_of_classical_field_theory" title="History of classical field theory">Field theory</a></li> <li><a href="/wiki/History_of_gravitational_theory" title="History of gravitational theory">Gravitational theory</a> <ul><li><a href="/wiki/Timeline_of_gravitational_physics_and_relativity" title="Timeline of gravitational physics and relativity">timeline</a></li></ul></li> <li><a href="/wiki/History_of_materials_science" title="History of materials science">Material science</a> <ul><li><a href="/wiki/Timeline_of_materials_technology" title="Timeline of materials technology">timeline</a></li> <li><a href="/wiki/History_of_metamaterials" title="History of metamaterials">Metamaterials</a></li></ul></li> <li><a href="/wiki/History_of_classical_mechanics" title="History of classical mechanics">Mechanics</a> <ul><li><a href="/wiki/Timeline_of_classical_mechanics" title="Timeline of classical mechanics">timeline</a></li> <li><a href="/wiki/History_of_variational_principles_in_physics" title="History of variational principles in physics">Variational principles</a></li></ul></li> <li><a href="/wiki/History_of_optics" title="History of optics">Optics</a> <ul><li><a href="/wiki/History_of_spectroscopy" title="History of spectroscopy">Spectroscopy</a></li></ul></li> <li><a href="/wiki/History_of_thermodynamics" title="History of thermodynamics">Thermodynamics</a> <ul><li><a href="/wiki/Timeline_of_thermodynamics" title="Timeline of thermodynamics">timeline</a></li> <li><a href="/wiki/History_of_energy" title="History of energy">Energy</a></li> <li><a href="/wiki/History_of_entropy" title="History of entropy">Entropy</a></li> <li><a href="/wiki/History_of_perpetual_motion_machines" title="History of perpetual motion machines">Perpetual motion</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Modern_physics" title="Modern physics">Modern physics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Computational physics <ul><li><a href="/wiki/Timeline_of_computational_physics" title="Timeline of computational physics">timeline</a></li></ul></li> <li>Condensed matter <ul><li><a href="/wiki/Timeline_of_condensed_matter_physics" title="Timeline of condensed matter physics">timeline</a></li> <li><a href="/wiki/History_of_superconductivity" title="History of superconductivity">Superconductivity</a></li></ul></li> <li>Cosmology <ul><li><a href="/wiki/Timeline_of_cosmological_theories" title="Timeline of cosmological theories">timeline</a></li> <li><a href="/wiki/History_of_the_Big_Bang_theory" title="History of the Big Bang theory">Big Bang theory</a></li></ul></li> <li><a href="/wiki/History_of_general_relativity" title="History of general relativity">General relativity</a> <ul><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">tests</a></li></ul></li> <li><a href="/wiki/History_of_geophysics" title="History of geophysics">Geophysics</a></li> <li>Nuclear physics <ul><li><a href="/wiki/Discovery_of_nuclear_fission" title="Discovery of nuclear fission">Fission</a></li> <li><a href="/wiki/History_of_nuclear_fusion" title="History of nuclear fusion">Fusion</a></li> <li><a href="/wiki/History_of_nuclear_power" title="History of nuclear power">Power</a></li> <li><a href="/wiki/History_of_nuclear_weapons" title="History of nuclear weapons">Weapons</a></li></ul></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">Quantum mechanics</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">timeline</a></li> <li><a href="/wiki/History_of_atomic_theory" title="History of atomic theory">Atoms</a></li> <li><a href="/wiki/History_of_molecular_theory" title="History of molecular theory">Molecules</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">Quantum field theory</a></li></ul></li> <li><a href="/wiki/History_of_subatomic_physics" title="History of subatomic physics">Subatomic physics</a> <ul><li><a href="/wiki/Timeline_of_atomic_and_subatomic_physics" title="Timeline of atomic and subatomic physics">timeline</a></li></ul></li> <li><a href="/wiki/History_of_special_relativity" title="History of special relativity">Special relativity</a> <ul><li><a href="/wiki/Timeline_of_special_relativity_and_the_speed_of_light" title="Timeline of special relativity and the speed of light">timeline</a></li> <li><a href="/wiki/History_of_Lorentz_transformations" title="History of Lorentz transformations">Lorentz transformations</a></li> <li><a href="/wiki/Tests_of_special_relativity" title="Tests of special relativity">tests</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Recent developments</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Quantum information <ul><li><a class="mw-selflink selflink">timeline</a></li></ul></li> <li><a href="/wiki/History_of_loop_quantum_gravity" title="History of loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/History_of_nanotechnology" title="History of nanotechnology">Nanotechnology</a></li> <li><a href="/wiki/History_of_string_theory" title="History of string theory">String theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">On specific discoveries</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discovery_of_cosmic_microwave_background_radiation" title="Discovery of cosmic microwave background radiation">Cosmic microwave background</a></li> <li><a href="/wiki/Discovery_of_graphene" title="Discovery of graphene">Graphene</a></li> <li><a href="/wiki/First_observation_of_gravitational_waves" title="First observation of gravitational waves">Gravitational waves</a></li> <li>Subatomic particles <ul><li><a href="/wiki/Timeline_of_particle_discoveries" title="Timeline of particle discoveries">timeline</a></li> <li><a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">Higgs boson</a></li> <li><a href="/wiki/Discovery_of_the_neutron" title="Discovery of the neutron">Neutron</a></li></ul></li> <li><a href="/wiki/R%C3%B8mer%27s_determination_of_the_speed_of_light" title="Rømer's determination of the speed of light">Speed of light</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By periods</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Copernican_Revolution" title="Copernican Revolution">Copernican Revolution</a></li> <li><a href="/wiki/Golden_age_of_physics" title="Golden age of physics">Golden age of physics</a></li> <li><a href="/wiki/Golden_age_of_cosmology" title="Golden age of cosmology">Golden age of cosmology</a></li> <li><a href="/wiki/Physics_in_the_medieval_Islamic_world" title="Physics in the medieval Islamic world">Medieval Islamic world</a> <ul><li><a href="/wiki/Astronomy_in_the_medieval_Islamic_world" title="Astronomy in the medieval Islamic world">Astronomy</a></li></ul></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">Noisy intermediate-scale quantum era</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By groups</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Harvard_Computers" title="Harvard Computers">Harvard Computers</a></li> <li><a href="/wiki/The_Martians_(scientists)" title="The Martians (scientists)">The Martians</a></li> <li><a href="/wiki/Oxford_Calculators" title="Oxford Calculators">Oxford Calculators</a></li> <li><a href="/wiki/Via_Panisperna_boys" title="Via Panisperna boys">Via Panisperna boys</a></li> <li><a href="/wiki/Women_in_physics" title="Women in physics">Women in physics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scientific disputes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bohr%E2%80%93Einstein_debates" title="Bohr–Einstein debates">Bohr–Einstein</a></li> <li><a href="/wiki/Chandrasekhar%E2%80%93Eddington_dispute" title="Chandrasekhar–Eddington dispute">Chandrasekhar–Eddington</a></li> <li><a href="/wiki/Galileo_affair" title="Galileo affair">Galileo affair</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton</a></li> <li><a href="/wiki/Mechanical_equivalent_of_heat" title="Mechanical equivalent of heat">Joule–von Mayer</a></li> <li><a href="/wiki/Great_Debate_(astronomy)" title="Great Debate (astronomy)">Shapley–Curtis</a></li> <li>Relativity priority <ul><li><a href="/wiki/Relativity_priority_dispute" title="Relativity priority dispute">Special relativity</a></li> <li><a href="/wiki/General_relativity_priority_dispute" title="General relativity priority dispute">General relativity</a></li></ul></li> <li><a href="/wiki/Transfermium_Wars" title="Transfermium Wars">Transfermium Wars</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_physics" title="Category:History of physics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_information_science" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_information" title="Template:Quantum information"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_information" title="Template talk:Quantum information"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_information" title="Special:EditPage/Template:Quantum information"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_information_science" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo's criteria">DiVincenzo's criteria</a></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ era</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a class="mw-selflink selflink">timeline</a></li></ul></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulation</a></li> <li><a href="/wiki/Qubit" title="Qubit">Qubit</a> <ul><li><a href="/wiki/Physical_and_logical_qubits" title="Physical and logical qubits">physical vs. logical</a></li></ul></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">Quantum processors</a> <ul><li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">cloud-based</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell%27s_theorem" title="Bell's theorem">Bell's</a></li> <li><a href="/wiki/Eastin%E2%80%93Knill_theorem" title="Eastin–Knill theorem">Eastin–Knill</a></li> <li><a href="/wiki/Gleason%27s_theorem" title="Gleason's theorem">Gleason's</a></li> <li><a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill</a></li> <li><a href="/wiki/Holevo%27s_theorem" title="Holevo's theorem">Holevo's</a></li> <li><a href="/wiki/No-broadcasting_theorem" title="No-broadcasting theorem">No-broadcasting</a></li> <li><a href="/wiki/No-cloning_theorem" title="No-cloning theorem">No-cloning</a></li> <li><a href="/wiki/No-communication_theorem" title="No-communication theorem">No-communication</a></li> <li><a href="/wiki/No-deleting_theorem" title="No-deleting theorem">No-deleting</a></li> <li><a href="/wiki/No-hiding_theorem" title="No-hiding theorem">No-hiding</a></li> <li><a href="/wiki/No-teleportation_theorem" title="No-teleportation theorem">No-teleportation</a></li> <li><a href="/wiki/PBR_theorem" class="mw-redirect" title="PBR theorem">PBR</a></li> <li><a href="/wiki/Quantum_speed_limit_theorems" class="mw-redirect" title="Quantum speed limit theorems">Quantum speed limit</a></li> <li><a href="/wiki/Threshold_theorem" title="Threshold theorem">Threshold</a></li> <li><a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem" title="Schrödinger–HJW theorem">Purification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br />communication</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_capacity" title="Classical capacity">Classical capacity</a> <ul><li><a href="/wiki/Entanglement-assisted_classical_capacity" title="Entanglement-assisted classical capacity">entanglement-assisted</a></li> <li><a href="/wiki/Quantum_capacity" title="Quantum capacity">quantum capacity</a></li></ul></li> <li><a href="/wiki/Entanglement_distillation" title="Entanglement distillation">Entanglement distillation</a></li> <li><a href="/wiki/Monogamy_of_entanglement" title="Monogamy of entanglement">Monogamy of entanglement</a></li> <li><a href="/wiki/LOCC" title="LOCC">LOCC</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a> <ul><li><a href="/wiki/Quantum_network" title="Quantum network">quantum network</a></li></ul></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a> <ul><li><a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a></li></ul></li> <li><a href="/wiki/Superdense_coding" title="Superdense coding">Superdense coding</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Quantum_cryptography" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></li> <li><a href="/wiki/Quantum_coin_flipping" title="Quantum coin flipping">Quantum coin flipping</a></li> <li><a href="/wiki/Quantum_money" title="Quantum money">Quantum money</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a> <ul><li><a href="/wiki/BB84" title="BB84">BB84</a></li> <li><a href="/wiki/SARG04" title="SARG04">SARG04</a></li> <li><a href="/wiki/List_of_quantum_key_distribution_protocols" title="List of quantum key distribution protocols">other protocols</a></li></ul></li> <li><a href="/wiki/Quantum_secret_sharing" title="Quantum secret sharing">Quantum secret sharing</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amplitude_amplification" title="Amplitude amplification">Amplitude amplification</a></li> <li><a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani</a></li> <li><a href="/wiki/BHT_algorithm" title="BHT algorithm">BHT</a></li> <li><a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a></li> <li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa</a></li> <li><a href="/wiki/Grover%27s_algorithm" title="Grover's algorithm">Grover's</a></li> <li><a href="/wiki/HHL_algorithm" title="HHL algorithm">HHL</a></li> <li><a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">Hidden subgroup</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">Quantum counting</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quantum_optimization_algorithms" title="Quantum optimization algorithms">Quantum optimization</a></li> <li><a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">Quantum phase estimation</a></li> <li><a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Shor's</a></li> <li><a href="/wiki/Simon%27s_problem" title="Simon's problem">Simon's</a></li> <li><a href="/wiki/Variational_quantum_eigensolver" title="Variational quantum eigensolver">VQE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum<br />complexity theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Exact_quantum_polynomial_time" title="Exact quantum polynomial time">EQP</a></li> <li><a href="/wiki/QIP_(complexity)" title="QIP (complexity)">QIP</a></li> <li><a href="/wiki/QMA" title="QMA">QMA</a></li> <li><a href="/wiki/PostBQP" title="PostBQP">PostBQP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum <br /> processor benchmarks</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_supremacy" title="Quantum supremacy">Quantum supremacy</a></li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a></li> <li><a href="/wiki/Randomized_benchmarking" title="Randomized benchmarking">Randomized benchmarking</a> <ul><li><a href="/wiki/Cross-entropy_benchmarking" title="Cross-entropy benchmarking">XEB</a></li></ul></li> <li><a href="/wiki/Relaxation_(NMR)" title="Relaxation (NMR)">Relaxation times</a> <ul><li><a href="/wiki/Spin%E2%80%93lattice_relaxation" title="Spin–lattice relaxation"><i>T</i><sub>1</sub></a></li> <li><a href="/wiki/Spin%E2%80%93spin_relaxation" title="Spin–spin relaxation"><i>T</i><sub>2</sub></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br /><a href="/wiki/Model_of_computation" title="Model of computation">computing models</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/Continuous-variable_quantum_information" title="Continuous-variable quantum information">Continuous-variable quantum information</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a> <ul><li><a href="/wiki/Cluster_state" title="Cluster state">cluster state</a></li></ul></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a> <ul><li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">quantum logic gate</a></li></ul></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a> <ul><li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a></li></ul></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum Turing machine</a></li> <li><a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">Topological quantum computer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum<br />error correction</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Codes <ul><li><a href="/wiki/CSS_code" title="CSS code">CSS</a></li> <li><a href="/wiki/Quantum_convolutional_code" title="Quantum convolutional code">quantum convolutional</a></li> <li><a href="/wiki/Stabilizer_code" title="Stabilizer code">stabilizer</a></li> <li><a href="/wiki/Shor_code" class="mw-redirect" title="Shor code">Shor</a></li> <li><a href="/wiki/Bacon%E2%80%93Shor_code" title="Bacon–Shor code">Bacon–Shor</a></li> <li><a href="/wiki/Steane_code" title="Steane code">Steane</a></li> <li><a href="/wiki/Toric_code" title="Toric code">Toric</a></li> <li><a href="/wiki/Gnu_code" title="Gnu code"><i>gnu</i></a></li></ul></li> <li><a href="/wiki/Entanglement-assisted_stabilizer_formalism" title="Entanglement-assisted stabilizer formalism">Entanglement-assisted</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physical<br />implementations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cavity_quantum_electrodynamics" title="Cavity quantum electrodynamics">Cavity QED</a></li> <li><a href="/wiki/Circuit_quantum_electrodynamics" title="Circuit quantum electrodynamics">Circuit QED</a></li> <li><a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">Linear optical QC</a></li> <li><a href="/wiki/KLM_protocol" title="KLM protocol">KLM protocol</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ultracold_atom" title="Ultracold atom">Ultracold atoms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutral_atom_quantum_computer" title="Neutral atom quantum computer">Neutral atom QC</a></li> <li><a href="/wiki/Trapped-ion_quantum_computer" title="Trapped-ion quantum computer">Trapped-ion QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a>-based</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane QC</a></li> <li><a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">Spin qubit QC</a></li> <li><a href="/wiki/Nitrogen-vacancy_center" title="Nitrogen-vacancy center">NV center</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_quantum_computer" title="Nuclear magnetic resonance quantum computer">NMR QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Charge_qubit" title="Charge qubit">Charge qubit</a></li> <li><a href="/wiki/Flux_qubit" title="Flux qubit">Flux qubit</a></li> <li><a href="/wiki/Phase_qubit" title="Phase qubit">Phase qubit</a></li> <li><a href="/wiki/Transmon" title="Transmon">Transmon</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum<br />programming</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/OpenQASM" title="OpenQASM">OpenQASM</a>–<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>–<a href="/wiki/IBM_Quantum_Experience" class="mw-redirect" title="IBM Quantum Experience">IBM QX</a></li> <li><a href="/wiki/Quil_(instruction_set_architecture)" title="Quil (instruction set architecture)">Quil</a>–<a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Forest/Rigetti QCS</a></li> <li><a href="/wiki/Cirq" title="Cirq">Cirq</a></li> <li><a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a></li> <li><a href="/wiki/Libquantum" title="Libquantum">libquantum</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">many others...</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Quantum mechanics topics</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics_topics" title="Template talk:Quantum mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics_topics" title="Special:EditPage/Template:Quantum mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">Timeline</a></li></ul></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamentals</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li> <li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)"> Complementarity</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a> <ul><li><a href="/wiki/Ground_state" title="Ground state">Ground state</a></li> <li><a href="/wiki/Excited_state" title="Excited state">Excited state</a></li> <li><a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">Degenerate levels</a></li> <li><a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a></li></ul></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">Quantum state</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry in quantum mechanics</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formulations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Formulations</a></li> <li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Equations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Weyl_equation" title="Weyl equation">Weyl</a></li> <li><a href="/wiki/Majorana_equation" title="Majorana equation">Majorana</a></li> <li><a href="/wiki/Rarita%E2%80%93Schwinger_equation" title="Rarita–Schwinger equation">Rarita–Schwinger</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell test</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice quantum eraser</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder interferometer</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper's experiment">Popper</a></li> <li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler's delayed-choice experiment">Wheeler's delayed choice</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_nanoscience" class="mw-redirect" title="Quantum nanoscience">Science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Quantum_differential_calculus" title="Quantum differential calculus">Quantum differential calculus</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Measurement_problem" title="Measurement problem">Quantum measurement problem</a></li> <li><a href="/wiki/Quantum_mind" title="Quantum mind">Quantum mind</a></li> <li><a href="/wiki/Quantum_stochastic_calculus" title="Quantum stochastic calculus">Quantum stochastic calculus</a></li> <li><a href="/wiki/Quantum_spacetime" title="Quantum spacetime">Quantum spacetime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">Quantum amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automata</a> <ul><li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automata</a></li></ul></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a class="mw-selflink selflink">Timeline</a></li></ul></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">Quantum electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum error correction</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">Quantum imaging</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">Quantum image processing</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum logic gates</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">Quantum machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">Quantum metamaterial</a></li> <li><a href="/wiki/Quantum_metrology" title="Quantum metrology">Quantum metrology</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">Quantum sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Extensions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuation</a></li> <li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <ul><li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat_in_popular_culture" title="Schrödinger's cat in popular culture">in popular culture</a></li></ul></li> <li><a href="/wiki/Wigner%27s_friend" title="Wigner's friend">Wigner's friend</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Quantum_mysticism" title="Quantum mysticism">Quantum mysticism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Timelines_of_computing" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Timelines_of_computing" title="Template:Timelines of computing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Timelines_of_computing" title="Template talk:Timelines of computing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Timelines_of_computing" title="Special:EditPage/Template:Timelines of computing"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Timelines_of_computing" style="font-size:114%;margin:0 4em"><a href="/wiki/Category:Computing_timelines" title="Category:Computing timelines">Timelines of computing</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Timeline_of_computing" title="Timeline of computing">Computing</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_computing_hardware_before_1950" title="Timeline of computing hardware before 1950">Before 1950</a></li> <li><a href="/wiki/Timeline_of_computing_1950%E2%80%931979" title="Timeline of computing 1950–1979">1950–1979</a></li> <li><a href="/wiki/Timeline_of_computing_1980%E2%80%931989" title="Timeline of computing 1980–1989">1980s</a></li> <li><a href="/wiki/Timeline_of_computing_1990%E2%80%931999" title="Timeline of computing 1990–1999">1990s</a></li> <li><a href="/wiki/Timeline_of_computing_2000%E2%80%932009" title="Timeline of computing 2000–2009">2000s</a></li> <li><a href="/wiki/Timeline_of_computing_2010%E2%80%932019" title="Timeline of computing 2010–2019">2010s</a></li> <li><a href="/wiki/Timeline_of_computing_2020%E2%80%93present" title="Timeline of computing 2020–present">2020s</a></li> <li><a href="/wiki/Timeline_of_scientific_computing" title="Timeline of scientific computing">Scientific</a></li> <li><a href="/wiki/Timeline_of_women_in_computing" title="Timeline of women in computing">Women in computing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computer_science" title="Computer science">Computer science</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_algorithms" title="Timeline of algorithms">Algorithms</a></li> <li><a href="/wiki/Timeline_of_artificial_intelligence" title="Timeline of artificial intelligence">Artificial intelligence</a></li> <li><a href="/wiki/Timeline_of_binary_prefixes" title="Timeline of binary prefixes">Binary prefixes</a></li> <li><a href="/wiki/Timeline_of_cryptography" title="Timeline of cryptography">Cryptography</a></li> <li><a href="/wiki/Timeline_of_machine_learning" title="Timeline of machine learning">Machine learning</a></li> <li><a class="mw-selflink selflink">Quantum computing and communication</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Software" title="Software">Software</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_free_and_open-source_software" title="Timeline of free and open-source software">Free and open-source software</a></li> <li><a href="/wiki/Timeline_of_hypertext_technology" title="Timeline of hypertext technology">Hypertext technology</a></li> <li><a href="/wiki/Timeline_of_operating_systems" title="Timeline of operating systems">Operating systems</a> <ul><li><a href="/wiki/Timeline_of_DOS_operating_systems" title="Timeline of DOS operating systems">DOS family</a></li> <li><a href="/wiki/Timeline_of_Microsoft_Windows" class="mw-redirect" title="Timeline of Microsoft Windows">Windows</a></li> <li><a href="/wiki/Linux_kernel_version_history" title="Linux kernel version history">Linux</a></li></ul></li> <li><a href="/wiki/Timeline_of_programming_languages" title="Timeline of programming languages">Programming languages</a></li> <li><a href="/wiki/Timeline_of_virtualization_development" class="mw-redirect" title="Timeline of virtualization development">Virtualization development</a></li> <li><a href="/wiki/Timeline_of_computer_viruses_and_worms" title="Timeline of computer viruses and worms">Malware</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Internet" title="Internet">Internet</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_Internet_conflicts" title="Timeline of Internet conflicts">Internet conflicts</a></li> <li><a href="/wiki/Timeline_of_web_browsers" title="Timeline of web browsers">Web browsers</a></li> <li><a href="/wiki/Timeline_of_web_search_engines" title="Timeline of web search engines">Web search engines</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable people</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kathleen_Antonelli" title="Kathleen Antonelli">Kathleen Antonelli</a></li> <li><a href="/wiki/John_Vincent_Atanasoff" title="John Vincent Atanasoff">John Vincent Atanasoff</a></li> <li><a href="/wiki/Charles_Babbage" title="Charles Babbage">Charles Babbage</a></li> <li><a href="/wiki/John_Backus" title="John Backus">John Backus</a></li> <li><a href="/wiki/Jean_Bartik" title="Jean Bartik">Jean Bartik</a></li> <li><a href="/wiki/George_Boole" title="George Boole">George Boole</a></li> <li><a href="/wiki/Vint_Cerf" title="Vint Cerf">Vint Cerf</a></li> <li><a href="/wiki/John_Cocke_(computer_scientist)" title="John Cocke (computer scientist)">John Cocke</a></li> <li><a href="/wiki/Stephen_Cook" title="Stephen Cook">Stephen Cook</a></li> <li><a href="/wiki/Edsger_W._Dijkstra" title="Edsger W. Dijkstra">Edsger W. Dijkstra</a></li> <li><a href="/wiki/J._Presper_Eckert" title="J. Presper Eckert">J. Presper Eckert</a></li> <li><a href="/wiki/Adele_Goldstine" title="Adele Goldstine">Adele Goldstine</a></li> <li><a href="/wiki/Lois_Haibt" title="Lois Haibt">Lois Haibt</a></li> <li><a href="/wiki/Betty_Holberton" title="Betty Holberton">Betty Holberton</a></li> <li><a href="/wiki/Margaret_Hamilton_(software_engineer)" title="Margaret Hamilton (software engineer)">Margaret Hamilton</a></li> <li><a href="/wiki/Grace_Hopper" title="Grace Hopper">Grace Hopper</a></li> <li><a href="/wiki/David_A._Huffman" title="David A. Huffman">David A. Huffman</a></li> <li><a href="/wiki/Robert_Kahn_(computer_scientist)" title="Robert Kahn (computer scientist)">Bob Kahn</a></li> <li><a href="/wiki/Brian_Kernighan" title="Brian Kernighan">Brian Kernighan</a></li> <li><a href="/wiki/Andrew_Koenig_(programmer)" title="Andrew Koenig (programmer)">Andrew Koenig</a></li> <li><a href="/wiki/Semyon_Korsakov" title="Semyon Korsakov">Semyon Korsakov</a></li> <li><a href="/wiki/Nancy_Leveson" title="Nancy Leveson">Nancy Leveson</a></li> <li><a href="/wiki/Ada_Lovelace" title="Ada Lovelace">Ada Lovelace</a></li> <li><a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a></li> <li><a href="/wiki/Joseph_Kruskal" title="Joseph Kruskal">Joseph Kruskal</a></li> <li><a href="/wiki/Douglas_McIlroy" title="Douglas McIlroy">Douglas McIlroy</a></li> <li><a href="/wiki/Marlyn_Meltzer" title="Marlyn Meltzer">Marlyn Meltzer</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a></li> <li><a href="/wiki/Kl%C3%A1ra_D%C3%A1n_von_Neumann" title="Klára Dán von Neumann">Klára Dán von Neumann</a></li> <li><a href="/wiki/Dennis_Ritchie" title="Dennis Ritchie">Dennis Ritchie</a></li> <li><a href="/wiki/Guido_van_Rossum" title="Guido van Rossum">Guido van Rossum</a></li> <li><a href="/wiki/Claude_Shannon" title="Claude Shannon">Claude Shannon</a></li> <li><a href="/wiki/Frances_Spence" title="Frances Spence">Frances Spence</a></li> <li><a href="/wiki/Bjarne_Stroustrup" title="Bjarne Stroustrup">Bjarne Stroustrup</a></li> <li><a href="/wiki/Ruth_Teitelbaum" title="Ruth Teitelbaum">Ruth Teitelbaum</a></li> <li><a href="/wiki/Ken_Thompson" title="Ken Thompson">Ken Thompson</a></li> <li><a href="/wiki/Linus_Torvalds" title="Linus Torvalds">Linus Torvalds</a></li> <li><a href="/wiki/Alan_Turing" title="Alan Turing">Alan Turing</a></li> <li><a href="/wiki/Paul_Vixie" title="Paul Vixie">Paul Vixie</a></li> <li><a href="/wiki/Larry_Wall" title="Larry Wall">Larry Wall</a></li> <li><a href="/wiki/Stephen_Wolfram" title="Stephen Wolfram">Stephen Wolfram</a></li> <li><a href="/wiki/Niklaus_Wirth" title="Niklaus Wirth">Niklaus Wirth</a></li> <li><a href="/wiki/Steve_Wozniak" title="Steve Wozniak">Steve Wozniak</a></li> <li><a href="/wiki/Konrad_Zuse" title="Konrad Zuse">Konrad Zuse</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐ftkqq Cached time: 20241122140524 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 3.339 seconds Real time usage: 3.625 seconds Preprocessor visited node count: 22835/1000000 Post‐expand include size: 1012799/2097152 bytes Template argument size: 1974/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 1554596/5000000 bytes Lua time usage: 2.210/10.000 seconds Lua memory usage: 9308970/52428800 bytes Lua Profile: MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 400 ms 18.2% dataWrapper <mw.lua:672> 300 ms 13.6% ? 220 ms 10.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 140 ms 6.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 120 ms 5.5% recursiveClone <mwInit.lua:45> 100 ms 4.5% makeMessage <mw.message.lua:76> 80 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 80 ms 3.6% is_generic <Module:Citation/CS1:1497> 60 ms 2.7% (for generator) <mw.lua:684> 60 ms 2.7% [others] 640 ms 29.1% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 3100.158 1 -total 79.89% 2476.705 1 Template:Reflist 37.48% 1161.937 145 Template:Cite_journal 20.57% 637.681 164 Template:Cite_news 9.25% 286.700 75 Template:Cite_web 4.03% 124.815 1 Template:History_of_computing 3.59% 111.141 1 Template:Sidebar 2.78% 86.070 1 Template:Short_description 2.19% 67.779 6 Template:Navbox 1.80% 55.755 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:191911-0!canonical and timestamp 20241122140524 and revision id 1258802618. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Timeline_of_quantum_computing_and_communication&oldid=1258802618">https://en.wikipedia.org/w/index.php?title=Timeline_of_quantum_computing_and_communication&oldid=1258802618</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Quantum_computing" title="Category:Quantum computing">Quantum computing</a></li><li><a href="/wiki/Category:Computing_timelines" title="Category:Computing timelines">Computing timelines</a></li><li><a href="/wiki/Category:Physics_timelines" title="Category:Physics timelines">Physics timelines</a></li><li><a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_Russian-language_sources_(ru)" title="Category:CS1 Russian-language sources (ru)">CS1 Russian-language sources (ru)</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_June_2016" title="Category:Articles with dead external links from June 2016">Articles with dead external links from June 2016</a></li><li><a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">CS1 maint: numeric names: authors list</a></li><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">CS1 maint: bot: original URL status unknown</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_with_empty_Wikidata_description" title="Category:Short description with empty Wikidata description">Short description with empty Wikidata description</a></li><li><a href="/wiki/Category:Incomplete_lists_from_July_2021" title="Category:Incomplete lists from July 2021">Incomplete lists from July 2021</a></li><li><a href="/wiki/Category:Use_mdy_dates_from_April_2020" title="Category:Use mdy dates from April 2020">Use mdy dates from April 2020</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2022" title="Category:Articles with unsourced statements from May 2022">Articles with unsourced statements from May 2022</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 18:33<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Timeline_of_quantum_computing_and_communication&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-fb9fb","wgBackendResponseTime":175,"wgPageParseReport":{"limitreport":{"cputime":"3.339","walltime":"3.625","ppvisitednodes":{"value":22835,"limit":1000000},"postexpandincludesize":{"value":1012799,"limit":2097152},"templateargumentsize":{"value":1974,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":1554596,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 3100.158 1 -total"," 79.89% 2476.705 1 Template:Reflist"," 37.48% 1161.937 145 Template:Cite_journal"," 20.57% 637.681 164 Template:Cite_news"," 9.25% 286.700 75 Template:Cite_web"," 4.03% 124.815 1 Template:History_of_computing"," 3.59% 111.141 1 Template:Sidebar"," 2.78% 86.070 1 Template:Short_description"," 2.19% 67.779 6 Template:Navbox"," 1.80% 55.755 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"2.210","limit":"10.000"},"limitreport-memusage":{"value":9308970,"limit":52428800},"limitreport-profile":[["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","400","18.2"],["dataWrapper \u003Cmw.lua:672\u003E","300","13.6"],["?","220","10.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","140","6.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","120","5.5"],["recursiveClone \u003CmwInit.lua:45\u003E","100","4.5"],["makeMessage \u003Cmw.message.lua:76\u003E","80","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","80","3.6"],["is_generic \u003CModule:Citation/CS1:1497\u003E","60","2.7"],["(for generator) \u003Cmw.lua:684\u003E","60","2.7"],["[others]","640","29.1"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-ftkqq","timestamp":"20241122140524","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Timeline of quantum computing and communication","url":"https:\/\/en.wikipedia.org\/wiki\/Timeline_of_quantum_computing_and_communication","sameAs":"http:\/\/www.wikidata.org\/entity\/Q4302108","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q4302108","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-03-05T00:30:43Z","dateModified":"2024-11-21T18:33:37Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d3\/Glen_Beck_and_Betty_Snyder_program_the_ENIAC_in_building_328_at_the_Ballistic_Research_Laboratory.jpg"}</script> </body> </html>