CINXE.COM

Search results for: salt water dip wheel test

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: salt water dip wheel test</title> <meta name="description" content="Search results for: salt water dip wheel test"> <meta name="keywords" content="salt water dip wheel test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="salt water dip wheel test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="salt water dip wheel test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17452</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: salt water dip wheel test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17452</span> Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kaewchanthuek">P. Kaewchanthuek</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rawonghad"> R. Rawonghad</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Marungsri"> B. Marungsri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20spacer" title="cable spacer">cable spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE" title=" HDPE"> HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=ageing%20of%20cable%20spacer" title=" ageing of cable spacer"> ageing of cable spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test" title=" salt water dip wheel test"> salt water dip wheel test</a> </p> <a href="https://publications.waset.org/abstracts/9661/ageing-deterioration-of-high-density-polyethylene-cable-spacer-under-salt-water-dip-wheel-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17451</span> The Effect of Surface Conditions on Wear of a Railway Wheel and Rail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iwnicki"> S. Iwnicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20wheel%2Frail%20wear" title="railway wheel/rail wear">railway wheel/rail wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20conditions" title=" surface conditions"> surface conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20disc%20test%20rig" title=" twin disc test rig"> twin disc test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=replica%20material" title=" replica material"> replica material</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona%20profilometer" title=" Alicona profilometer"> Alicona profilometer</a> </p> <a href="https://publications.waset.org/abstracts/47795/the-effect-of-surface-conditions-on-wear-of-a-railway-wheel-and-rail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17450</span> Strengthening National Salt Industry through Cultivation Upgrading and Product Diversification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etty%20Soesilowati">Etty Soesilowati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was intended to: (1) designing production systems that produce high quality salt and (2) diversification of salt products. This research used qualitative and quantitative approaches which Garam Mas Ltd. as the research site. The data were analyzed interactively and subjected to laboratory tests. The analyses showed that salt production system using HDPE geomembranes produced whiter and cleaner salts than those produced by conventional methods without HDPE geomembranes. High quality consumption salt contained 97% NaCl and a maximum of 0.05% water, in the form of white minute crystals and usually used for table salt of food and snack seasoning, souses and cheese and vegetable oil industries. Medium grade salt contained 94.7%-97% NaCl and 3%-7% water and usually used for kitchen salt, soy sauce, tofu industries and cattle feeding. Low quality salt contained 90%-94.7% NaCl and 5%-10% water, with dull white color and usually used for fish preservation and agriculture. The quality and quantity of salts production were influenced by temperatures, weather, water concentrations used during production processes and the discipline of salt farmers itself. The use of water temperature less than 23 °Be during the production processes produced low quality salts. Optimizing cultivation of the production process from raw material to end product (consumption salt) should be attempted to produce quality salt that fulfills the Indonesian National Standard. Therefore, the integrated policies among stakeholders are really needed to build strong institutional base at salt farmer level. This might be achieved through the establishment of specific region for salt production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultivation%20system" title="cultivation system">cultivation system</a>, <a href="https://publications.waset.org/abstracts/search?q=diversification" title=" diversification"> diversification</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20products" title=" salt products"> salt products</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20quality%20salt" title=" high quality salt"> high quality salt</a> </p> <a href="https://publications.waset.org/abstracts/8095/strengthening-national-salt-industry-through-cultivation-upgrading-and-product-diversification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17449</span> Evaluation of Salt Content in Bread and the Amount Intake by Hypertensive Patients in the Algiers Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.lanasri">S.lanasri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Boudjerrane"> A.Boudjerrane</a>, <a href="https://publications.waset.org/abstracts/search?q=R.Belgherbi"> R.Belgherbi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.Hadjoudj"> O.Hadjoudj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Bread is the most popular food in Algeria. The aim of this study was to examine the consumption of salt from bread by hypertensive patients. Materials and methods: sixty breads were collected from different artisans Algiers bakeries, each sample was mixed in harm distilled water until homogeneous and filtered. Analysis of the salt content was carried out according to the Mohr method titration. We calculated the amount of salt in bread consumed by 100 hypertensive patients using a questionnaire about the average amount of bread per day. Results: The salt content values from bread were 3.4g ± 0.37 NaCl / 100g.The average amount of salt consumed per day by patients from only bread was 3.82 g ± 3.8 with a maximum of 17 g per day. Only 38.18% of patients consume bread without salt even then 95% knew that excess salt intake can complicate hypertension. Conclusion: This study showed that bread is a major contributor to salt intake by Algerian hypertensive patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=bread" title=" bread"> bread</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertensive%20patients" title=" hypertensive patients"> hypertensive patients</a>, <a href="https://publications.waset.org/abstracts/search?q=Algiers" title=" Algiers"> Algiers</a> </p> <a href="https://publications.waset.org/abstracts/117913/evaluation-of-salt-content-in-bread-and-the-amount-intake-by-hypertensive-patients-in-the-algiers-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17448</span> Potato Production under Brakish Water and Compost Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samih%20Abubaker">Samih Abubaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Abuserhan"> Amjad Abuserhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghandi%20Anfoka"> Ghandi Anfoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title="brackish water">brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20accumulation" title=" salt accumulation "> salt accumulation </a> </p> <a href="https://publications.waset.org/abstracts/27857/potato-production-under-brakish-water-and-compost-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17447</span> Antioxidant Defence Systems, Lipid Peroxidation, and Photosynthetic Variables in Salt-Sensitive and Salt-Tolerant Soybean Genotypes in Response to Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faheema%20Khan">Faheema Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the effects of salt stress on the stability of plant growth, water relations, photosynthetic variables, lipid peroxidation and antioxidant system in salt-tolerant (PK-327) and salt-sensitive (PK-471) soybean genotypes. Ten-day-old salt-tolerant and salt-sensitive soybean plants were subjected to 0-150 mM NaCl for 15 days. While the growth of genotype PK-327 was not affected significantly up to 75 mM NaCl treatment, the growth of the PK-471 was reduced significantly beyond 25 mM NaCl treatments. Salt stress caused severe impairments in photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, being more pronounced in salt-sensitive genotype than in salt-tolerant.The activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) were higher in PK-327 than in PK-471 at various levels of salt treatments.It is concluded that tolerance capacity of PK-327 against salinity can be associated with the ability of this genotype in keeping an active photosynthetic system and strong antioxidant defence system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title="salt stress">salt stress</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a> </p> <a href="https://publications.waset.org/abstracts/16638/antioxidant-defence-systems-lipid-peroxidation-and-photosynthetic-variables-in-salt-sensitive-and-salt-tolerant-soybean-genotypes-in-response-to-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17446</span> The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Bednarska">Dalia Bednarska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Koniorczyk"> Marcin Koniorczyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20clay%20brick" title=" red clay brick"> red clay brick</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20sulfate" title=" sodium sulfate"> sodium sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity%20coefficient" title=" thermal conductivity coefficient"> thermal conductivity coefficient</a> </p> <a href="https://publications.waset.org/abstracts/67724/the-influence-of-water-and-salt-crystals-content-on-thermal-conductivity-coefficient-of-red-clay-brick" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17445</span> A Numerical and Experimental Analysis of the Performance of a Combined Solar Unit for Air Conditioning and Water Desalination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zied%20Guidara">Zied Guidara</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Morgenstern"> Alexander Morgenstern</a>, <a href="https://publications.waset.org/abstracts/search?q=Aref%20Younes%20Maalej"> Aref Younes Maalej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=desiccant%20wheel" title=" desiccant wheel"> desiccant wheel</a> </p> <a href="https://publications.waset.org/abstracts/36174/a-numerical-and-experimental-analysis-of-the-performance-of-a-combined-solar-unit-for-air-conditioning-and-water-desalination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17444</span> The Wellness Wheel: A Tool to Reimagine Schooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20F.%20Moore">Jennifer F. Moore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wellness wheel as a tool for school growth and change is currently being piloted by a startup school in Chicago, IL. In this case study, members of the school community engaged in the appreciative inquiry process to plan their organizational development around the wellness wheel. The wellness wheel (comprised of physical, emotional, social, spiritual, environmental, cognitive, and financial wellness) is used as a planning tool by teachers, students, parents, and administrators. Through the appreciative inquiry method of change, the community is reflecting on their individual level of wellness and developing organizational structures to ensure the well being of children and adults. The goal of the case study is to test the appropriateness of the use of appreciative inquiry (as a method) and the wellness wheel (as a tool) for school growth and development. Findings of the case study will be realized by the conference. The research is in process now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=schools" title=" schools"> schools</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20being" title=" well being"> well being</a>, <a href="https://publications.waset.org/abstracts/search?q=wellness" title=" wellness"> wellness</a> </p> <a href="https://publications.waset.org/abstracts/91419/the-wellness-wheel-a-tool-to-reimagine-schooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17443</span> Boiling Effect of Momordica charantia with Salt to the Antihiperglicemia Effectiveness of Diabetes Mellitus Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfa%20D.%20Putri">Zulfa D. Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jumayanti%20Jumayanti"> Jumayanti Jumayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatiefah%20T.%20I.%20Melati"> Hatiefah T. I. Melati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiki%20Indriati"> Kiki Indriati</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20U.%20Mauhibah"> Farah U. Mauhibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Momordica charantia is a food that is often used for nutrition therapy for patients with Diabetes Mellitus (DM) because of its effect as antihiperglicemia. However, the bitter taste of Momordica charantia may be an obstacle to consume. Some people remove the bitter taste of this by boiling it with salt water. The purpose of this study was to determine the effect of Momordica charantia boiling with salt water in lowering blood glucose levels. This study is a quasi-experimental study with pre-post test with control group design. The research sample consisted of 25 rats Sprague-Dawley were divided into 5 groups: Control group of healthy, control group of DM, control group of DM with the addition of Momordica charantia are boiled by salt for 3 minutes, 6 minutes, and 9 minutes. Blood glucose levels were measured after 4 weeks using a spectrophotometer. These results indicate that there is the effect of bitter taste from Momordica charantia in lowering blood glucose levels in rats significantly. The conclusion of this study is giving a Momordica charantia juice in Sprague-Dawley rats that induced by alloxan has meaningful statistically proven by One Way ANOVA test (p = 0.00) in lowering blood glucose levels of rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antihiperglicemia" title="antihiperglicemia">antihiperglicemia</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=momordica%20charantia" title=" momordica charantia"> momordica charantia</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a> </p> <a href="https://publications.waset.org/abstracts/54488/boiling-effect-of-momordica-charantia-with-salt-to-the-antihiperglicemia-effectiveness-of-diabetes-mellitus-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17442</span> Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Paudel">Milan Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fook%20Fah%20Yap"> Fook Fah Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Bastola"> Anil K. Bastola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20wheel%20bicycle" title="big wheel bicycle">big wheel bicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20approach" title=" design approach"> design approach</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%20requirements" title=" ISO requirements"> ISO requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20wheel%20bicycle" title=" small wheel bicycle"> small wheel bicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20and%20performance" title=" stability and performance"> stability and performance</a> </p> <a href="https://publications.waset.org/abstracts/86408/dynamic-stability-assessment-of-different-wheel-sized-bicycles-based-on-current-frame-design-practice-with-iso-requirement-for-bicycle-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17441</span> Effect of Wettability Alteration in Low Salt Water Injection Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Vahdani">H. Vahdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20salt%20water%20injection" title="low salt water injection">low salt water injection</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability%20alteration" title=" wettability alteration"> wettability alteration</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a> </p> <a href="https://publications.waset.org/abstracts/33827/effect-of-wettability-alteration-in-low-salt-water-injection-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17440</span> 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dachuan%20Shi">Dachuan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hecht"> M. Hecht</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ye"> Y. Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20flat" title=" wheel flat"> wheel flat</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/102932/1-d-convolutional-neural-network-approach-for-wheel-flat-detection-for-freight-wagons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17439</span> New Desiccant Solar Unit for Air Conditioning and Desalination: Study of the Compartments of Desalination and Water Condensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zied%20Guidara">Zied Guidara</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Morgenstern"> Alexander Morgenstern</a>, <a href="https://publications.waset.org/abstracts/search?q=Aref%20Maalej"> Aref Maalej </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of the desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=desiccant%20wheel" title=" desiccant wheel"> desiccant wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20investigation" title=" experimental investigation "> experimental investigation </a> </p> <a href="https://publications.waset.org/abstracts/35570/new-desiccant-solar-unit-for-air-conditioning-and-desalination-study-of-the-compartments-of-desalination-and-water-condensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17438</span> Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Naeimi">Meysam Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zili%20Li"> Zili Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolf%20Dollevoet"> Rolf Dollevoet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheel-rail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20test%20rig" title="new test rig">new test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact%20fatigue" title=" rolling contact fatigue"> rolling contact fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20scale" title=" small scale"> small scale</a> </p> <a href="https://publications.waset.org/abstracts/18987/scaling-strategy-of-a-new-experimental-rig-for-wheel-rail-contact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17437</span> Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azim%20Hilmy%20Mohamad%20Yusof">Azim Hilmy Mohamad Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Iqbal%20Mubarak%20Faharul%20Azman"> Muhamad Iqbal Mubarak Faharul Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azwin%20Ismail"> Nur Azwin Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Noer%20El%20Hidayah%20Ismail"> Noer El Hidayah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20resistivity%20imaging" title="2-D resistivity imaging">2-D resistivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microcline%20granite" title=" microcline granite"> microcline granite</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water%20intrusion" title=" salt water intrusion"> salt water intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20infiltration" title=" water infiltration"> water infiltration</a> </p> <a href="https://publications.waset.org/abstracts/62800/determining-water-infiltration-zone-using-2-d-resistivity-imaging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17436</span> Dilution of Saline Irrigation Based on Plant&#039;s Physiological Responses to Salt Stress Following by Re-Watering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qaiser%20Javed">Qaiser Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Azeem"> Ahmad Azeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity and water scarcity are major environmental problems which are limiting the agricultural production. This research was conducted to construct a model to find out appropriate regime to dilute saline water based on physiological and electrophysiological properties of Brassica napus L., and Orychophragmus violaceus (L.). Plants were treated under salt-stressed concentrations of NaCl (NL₁: 2.5, NL₂: 5, NL₃: 10; gL⁻¹), Na₂SO₄ (NO₁: 2.5, NO₂: 5, NO₃: 10; gL⁻¹), and mixed salt concentration (MX₁: NL₁+ NO₃; MX₂: NL₃+ NO₁; MX₃: NL₂+ NO₂; gL⁻¹) and 0 as control, followed by re-watering. Growth, physiological and electrophysiology traits were highly restricted under high salt concentration levels at NL₃, NO₃, MX₁, and MX₂, respectively. However, during the rewatering phase, growth, electrophysiological, and physiological parameters were recovered well. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively in Orychophragmus violaceus (L.) and 44.94%, 53.45%, and 63.04%, respectively were found in Brassica napus L. According to the results, the best dilution point was 5–2.5% for NaCl and Na₂SO₄ alternatively, whereas it was 10–0.0% for the mixture of salts. Therefore, the effect of salinity in O. violaceus and B. napus may also be reduced effectively by dilution of saline irrigation. It would be a better approach to utilize dilute saline water for irrigation instead of applies direct saline water to plant. This study provides new insight in the field of agricultural engineering to plan irrigation scheduling considering the crop ability to salt tolerance and irrigation water use efficiency by apply specific quantity of irrigation calculated based on the salt dilution point. It would be helpful to balance between irrigation amount and optimum crop water consumption in salt-affected regions and to utilize saline water in order to safe freshwater resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilution%20model" title="dilution model">dilution model</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits" title=" plant growth traits"> plant growth traits</a>, <a href="https://publications.waset.org/abstracts/search?q=re-watering" title=" re-watering"> re-watering</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title=" salt stress"> salt stress</a> </p> <a href="https://publications.waset.org/abstracts/92614/dilution-of-saline-irrigation-based-on-plants-physiological-responses-to-salt-stress-following-by-re-watering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17435</span> Factors Controlling Durability of Some Egyptian Non-Stylolitic Marbleized Limestone to Salt Weathering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20El%20Shayab">H. El Shayab</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Kamh"> G. M. Kamh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Abdel%20Ghafour"> N. G. Abdel Ghafour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Abdel%20Latif"> M. L. Abdel Latif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, marbleized limestone becomes one of the most important sources of the mineral wealth in Egypt as they have beautiful colors (white, grey, rose, yellow and creamy, etc.) make it very suitable for decoration purposes. Non-styolitic marbleized limestone which not contains styolitic surfaces. The current study aims to study different factors controlling durability of non-styolitic marbleized limestone against salt crystallization weathering. The achievement aim of the research was required nine representative samples were collected from the studied areas. Three samples from each of the studied areas. The studied samples was characterized by various instrumental methods before salt weathering, to determine its mineralogical composition, chemical composition and pore physical properties respectively. The obtained results revealed that both of Duwi and Delga studied samples nearly have the same average ∆M% 1.63 and 1.51 respectively and consequently A.I. stage of deformation. On the other hand, average ∆M% of Wata studied samples is 0.29 i.e. lower than two other studied areas. Wata studied samples are more durable against salt crystallization test than Duwi and Delga. The difference in salt crystallization durability may be resulted from one of the following factors: Microscopic textural effect as both of micrite and skeletal percent are in directly proportional to durability of stones to salt weathering. Dolomite mineral present as a secondary are in indirectly proportional to durability of stones to salt weathering. Increase in MgO% also associated with decrease the durability of studied samples against salt crystallization test. Finally, all factors affecting positively against salt crystallization test presents in Wadi Wata studied samples rather than others two areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marbleized%20limestone" title="marbleized limestone">marbleized limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20weathering" title=" salt weathering"> salt weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=Wata" title=" Wata"> Wata</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20weathering" title=" salt weathering"> salt weathering</a> </p> <a href="https://publications.waset.org/abstracts/11044/factors-controlling-durability-of-some-egyptian-non-stylolitic-marbleized-limestone-to-salt-weathering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17434</span> Test Bench Development and Functional Analysis of a Reaction Wheel for an Attitude Determination and Control System Prototype</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Raul%20Yanyachi">Pablo Raul Yanyachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Mamani%20Saico"> Alfredo Mamani Saico</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorch%20Mendoza"> Jorch Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xinsheng"> Wang Xinsheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Attitude Determination and Control System (ADCS) plays a pivotal role in the operation of nanosatellites such as Cubesats, managing orientation and stability during space missions. Within the ADCS, Reaction Wheels (RW) are electromechanical devices responsible for adjusting and maintaining satellite orientation through the application of kinetic moments. This study focuses on the characterization and analysis of a specific Reaction Wheel integrated into an ADCS prototype developed at the National University of San Agust´ın, Arequipa (UNSA). To achieve this, a single-axis Test Bench was constructed, where the reaction wheel consists of a brushless motor and an inertia flywheel driven by an Electronic Speed Controller (ESC). The research encompasses RW characterization, energy consumption evaluation, dynamic modeling, and control. The results have allowed us to ensure the maneuverability of ADCS prototypes while maintaining energy consumption within acceptable limits. The characterization and linearity analysis provides valuable insights for sizing and optimizing future reaction wheel prototypes for nanosatellites. This contributes to the ongoing development of aerospace technology within the scientific community at UNSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20bench" title="test bench">test bench</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosatellite" title=" nanosatellite"> nanosatellite</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20wheel" title=" reaction wheel"> reaction wheel</a> </p> <a href="https://publications.waset.org/abstracts/182959/test-bench-development-and-functional-analysis-of-a-reaction-wheel-for-an-attitude-determination-and-control-system-prototype" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17433</span> The Investigation of Precipitation Conditions of Chevreul’s Salt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban">Turan Çalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Sevim"> Fatih Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Oral%20La%C3%A7in"> Oral Laçin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the precipitation conditions of Chevreul&rsquo;s salt were evaluated. The structure of Chevreul&rsquo;s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul&rsquo;s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul&rsquo;s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul&rsquo;s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul&rsquo;s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul&rsquo;s salt must be less than 8.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevreul%27s%20salt" title="Chevreul&#039;s salt">Chevreul&#039;s salt</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20sulfites" title=" copper sulfites"> copper sulfites</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20compound" title=" copper compound"> copper compound</a> </p> <a href="https://publications.waset.org/abstracts/52071/the-investigation-of-precipitation-conditions-of-chevreuls-salt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17432</span> An Investigation of Passivation Technology in Stainless Steel Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Tsai%20Weng">Feng-Tsai Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rick%20Wang"> Rick Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Cong%20Liao"> Yan-Cong Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passivation is a kind of surface treatment for material to reinforce the corrosion resistance specially the stainless alloy. Passive film, is to getting more potential compared to their status before passivation. An oxidation film can be formed on the surface of stainless steel, which has a strong corrosion resistance ability after passivation treatment. In this research, a new passivation technology is proposed for a special stainless alloy which contains a 12-14% Chromium. This method includes the A-A-A (alkaline-acid-alkaline) process basically, which was developed by Carpenter that can neutralize trapped acid. Besides, a corrosion resistant coating layer was obtained by immersing the parts in a water bath of mineral oil at high temperature. Salt spray test ASTM B368 was conducted to investigated performance of corrosion resistant of the passivated stainless steel alloy parts. Results show much better corrosion resistant that followed a coating process after A-A-A Passivation process, than only using A-A-A process. The passivation time is with more than 380 hours of salt spray test ASTM B368, which is equal to 3000 hours of Salt spray test ASTM B117. Proposed passivation method of stainless steel can be completed in about 3 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passivation" title="passivation">passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline-acid-alkaline" title=" alkaline-acid-alkaline"> alkaline-acid-alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20spray%20test" title=" salt spray test"> salt spray test</a> </p> <a href="https://publications.waset.org/abstracts/73718/an-investigation-of-passivation-technology-in-stainless-steel-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17431</span> Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bourayou">N. Bourayou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20-H.%20Meniai"> A. -H. Meniai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gouaoura"> A. Gouaoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20coefficient" title="activity coefficient">activity coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisen-Joffe" title=" Eisen-Joffe"> Eisen-Joffe</a>, <a href="https://publications.waset.org/abstracts/search?q=NRTL%20model" title=" NRTL model"> NRTL model</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20chloride" title=" sodium chloride"> sodium chloride</a> </p> <a href="https://publications.waset.org/abstracts/33804/salting-effect-in-partially-miscible-systems-of-wateracetic-acid1-butanol-at-29815k-experimental-study-and-estimation-of-new-solvent-solvent-and-salt-solvent-binary-interaction-parameters-for-nrtl-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17430</span> Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amitabh%20Das">Amitabh Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Yash%20Jain"> Yash Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rafiq%20B.%20Agrewale"> Mohammad Rafiq B. Agrewale</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Vora"> K. C. Vora </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheel-housing" title="wheel-housing">wheel-housing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption "> energy consumption </a> </p> <a href="https://publications.waset.org/abstracts/108694/impact-of-wheel-housing-on-aerodynamic-drag-and-effect-on-energy-consumption-on-an-bus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17429</span> A Review on the Use of Salt in Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Pungercar">Vesna Pungercar</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Musso"> Florian Musso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20material" title=" building material"> building material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20properties" title=" hygrothermal properties"> hygrothermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/131197/a-review-on-the-use-of-salt-in-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17428</span> Exogenous Ascorbic Acid Increases Resistance to Salt of Carthamus tinctorius </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Banu%20Ayt%C3%BCl%20Ekmek%C3%A7i">Banu Aytül Ekmekçi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity stress has negative effects on agricultural yield throughout the world, affecting production whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) NaCl + water on carthamus tinctorius plants. The results show that 10% of salt water exhibited insignificant changes, while the higher levels impaired growth by reducing seed germination, dry weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, carotenoids, endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in combination with 30% NaCl water increased the intensity of protein bands as well as synthesized additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase tolerance mechanisms of treated plants towards water salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20c" title=" vitamin c"> vitamin c</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=NaCl" title=" NaCl"> NaCl</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a> </p> <a href="https://publications.waset.org/abstracts/30836/exogenous-ascorbic-acid-increases-resistance-to-salt-of-carthamus-tinctorius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17427</span> Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waqar%20Ashraf">Muhammad Waqar Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20treatment" title="magnetic treatment">magnetic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20water" title=" saline water"> saline water</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20of%20water" title=" hardness of water"> hardness of water</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20salinity" title=" removal of salinity"> removal of salinity</a> </p> <a href="https://publications.waset.org/abstracts/18133/magnetic-treatment-of-irrigation-water-and-its-effect-on-water-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17426</span> Salt Scarcity and Crisis Solution in Islam Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taufik%20Nugroho">Taufik Nugroho</a>, <a href="https://publications.waset.org/abstracts/search?q=Firsty%20Dzainuurahmana"> Firsty Dzainuurahmana</a>, <a href="https://publications.waset.org/abstracts/search?q=Tika%20Widiastuti"> Tika Widiastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polemic about the salt crisis re-emerged, this is a classic problem in Indonesia and is still a homework that is not finished yet. This salt crisis occurs due to low productivity of salt commodities that have not been able to meet domestic demand and lack of salt productivity caused by several factors. One of the biggest factors of the crisis is the weather anomaly that disrupts salt production, less supportive technology and price stability. This study will try to discuss the salt scarcity and crisis solution in Islamic view. As for the conclusion of this study is the need for equilibrium or balancing between demand and supply, need to optimize the role of the government as Hisbah to maintain the balance of market mechanisms and prepare the stock system of salt stock by buying farmers products at reasonable prices then storing them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis" title="crisis">crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20solution" title=" Islamic solution"> Islamic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity" title=" scarcity"> scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a> </p> <a href="https://publications.waset.org/abstracts/85939/salt-scarcity-and-crisis-solution-in-islam-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17425</span> The Influence of Moisture Conditioning on Hamburg Wheel Tracking Test Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Al-Baghli">Hussain Al-Baghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Hamburg Wheel Tracking Test (HWTT) was conducted to evaluate the resistance to moisture damage of two asphalt mixtures: an optimized rubberized asphalt mixture and an HMA mix with anti-stripping additives. The mixtures were subjected to varying numbers of moisture conditioning cycles and then tested for rutting depth. The results showed that the optimized rubberized asphalt mixture met the requirements for medium to heavy traffic in accordance with Kuwait's Ministry of Public Works specification. The number of moisture conditioning cycles did not significantly impact rutting development for the rubberized asphalt. The HMA asphalt samples showed a significant reduction in strength and did not satisfy the HWTT criteria after the moisture conditioning cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubberized%20asphalt" title="rubberized asphalt">rubberized asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamburg%20wheel%20tracking" title=" Hamburg wheel tracking"> Hamburg wheel tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=antistripping" title=" antistripping"> antistripping</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20conditioning" title=" moisture conditioning"> moisture conditioning</a> </p> <a href="https://publications.waset.org/abstracts/177075/the-influence-of-moisture-conditioning-on-hamburg-wheel-tracking-test-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17424</span> Solar Pond: Some Issues in Their Management and Mathematical Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abdullah">A. A. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Lindsay"> K. A. Lindsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20sodium%20chloride" title="aqueous sodium chloride">aqueous sodium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20expression" title=" constitutive expression"> constitutive expression</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20pond" title=" solar pond"> solar pond</a>, <a href="https://publications.waset.org/abstracts/search?q=salt-gradient" title=" salt-gradient"> salt-gradient</a> </p> <a href="https://publications.waset.org/abstracts/42081/solar-pond-some-issues-in-their-management-and-mathematical-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17423</span> Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ale%20M.%20O.">Ale M. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuwa%20S.%20I."> Manuwa S. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20O.%20J."> Olukunle O. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewetumo%20T."> Ewetumo T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five varying speeds of 1.5, 1.8, 2.1, 2.3, and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under the pneumatic wheel and rigid wheel usage on a well prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught, in which draught ranging between 24.91 and 744.44N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments, with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with less value of draught requires less energy required for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cassava%20planter" title="Cassava planter">Cassava planter</a>, <a href="https://publications.waset.org/abstracts/search?q=planting" title=" planting"> planting</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20speed" title=" forward speed"> forward speed</a>, <a href="https://publications.waset.org/abstracts/search?q=draught" title=" draught"> draught</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20type" title=" wheel type"> wheel type</a> </p> <a href="https://publications.waset.org/abstracts/156326/forward-speed-and-draught-requirement-of-a-semi-automatic-cassava-planter-under-different-wheel-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=581">581</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=582">582</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10