CINXE.COM

Search results for: SERCA pump

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SERCA pump</title> <meta name="description" content="Search results for: SERCA pump"> <meta name="keywords" content="SERCA pump"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SERCA pump" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SERCA pump"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 398</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SERCA pump</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansha%20Kotwani">Mansha Kotwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffers" title="buffers">buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=IP3R" title=" IP3R"> IP3R</a>, <a href="https://publications.waset.org/abstracts/search?q=ER%20flux" title=" ER flux"> ER flux</a>, <a href="https://publications.waset.org/abstracts/search?q=SERCA%20pump" title=" SERCA pump"> SERCA pump</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20amplitude" title=" source amplitude"> source amplitude</a> </p> <a href="https://publications.waset.org/abstracts/19236/two-dimensional-finite-element-model-to-study-calcium-dynamics-in-fibroblast-cell-with-excess-buffer-approximation-involving-er-flux-and-serca-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Towards the Integration of a Micro Pump in μTAS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Haik">Y. Haik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT&trade; microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crescent%20micropumps" title="crescent micropumps">crescent micropumps</a>, <a href="https://publications.waset.org/abstracts/search?q=microanalysis" title=" microanalysis"> microanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a> </p> <a href="https://publications.waset.org/abstracts/85432/towards-the-integration-of-a-micro-pump-in-mtas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi">Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Chavoshi"> Ashkan Chavoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheyda%20Almasi"> Sheyda Almasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Almasi"> Shima Almasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title="centrifugal pump">centrifugal pump</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=trim" title=" trim"> trim</a> </p> <a href="https://publications.waset.org/abstracts/24849/numerical-and-experimental-investigation-of-impeller-trimming-on-fluid-flow-inside-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Klas">Roman Klas</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Pochyl%C3%BD"> František Pochylý</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Rudolf"> Pavel Rudolf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=radiaxial%20pump" title=" radiaxial pump"> radiaxial pump</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20case" title=" spiral case"> spiral case</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/22872/the-modification-of-the-mixed-flow-pump-with-respect-to-stability-of-the-head-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Reliability Verification of the Performance Evaluation of Multiphase Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joon-Hyung%20Kim">Joon-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Him-Chan%20Lee"> Him-Chan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyuk%20Kim"> Jin-Hyuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Kab%20Lee"> Yong-Kab Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Seok%20Choi"> Young-Seok Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiphase%20pump" title="multiphase pump">multiphase pump</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20verification" title=" reliability verification"> reliability verification</a> </p> <a href="https://publications.waset.org/abstracts/11645/reliability-verification-of-the-performance-evaluation-of-multiphase-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Numerical Simulation of Erosion Control in Slurry Pump Casing by Geometrical Flow Pattern Modification Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Momeninezhad">A. R. Momeninezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erosion of Slurry Pumps in Related Industries, is one of the major costs in their production process. Many factories in extractive industries try to find ways to diminish this cost. In this paper, we consider the flow pattern modifications by geometric variations made of numerical simulation of flow inside pump casing, which is one of the most important parts analyzed for erosion. The mentioned pump is a cyclone centrifugal slurry pump, which is operating in Sarcheshmeh Copper Industries in Kerman-Iran, named and tagged as HM600 cyclone pump. Simulation shows many improvements in local wear information and situations for better and more qualified design of casing shape and impeller position, before and after geometric corrections. By theory of liquid-solid two-phase flow, the local wear defeats are analyzed and omitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20pattern" title="flow pattern">flow pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20pump" title=" slurry pump"> slurry pump</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/24651/numerical-simulation-of-erosion-control-in-slurry-pump-casing-by-geometrical-flow-pattern-modification-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Performance of the Hybrid Loop Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandy%20Putra">Nandy Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Imansyah%20Ibnu%20Hakim"> Imansyah Ibnu Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwan%20Setyawan"> Iwan Setyawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zayd%20A.I"> Muhammad Zayd A.I</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-phase cooling technology of passive system sometimes can no longer meet the cooling needs of an increasingly challenging due to the inherent limitations of the capillary pumping for example in terms of the heat flux that can lead to dry out. In this study, intended to overcome the dry out with the addition of a diaphragm, they pump to accelerate the fluid transportation from the condenser to the evaporator. Diaphragm pump installed on the bypass line. When it did not happen dry out then the hybrid loop heat pipe will be work passively using a capillary pressure of wick. Meanwhile, when necessary, hybrid loop heat pipe will be work actively, using diaphragm pump with temperature control installed on the evaporator. From the results, it can be said that the pump has been successfully overcome dry out and can distribute working fluid from the condenser to the evaporator and reduce the temperature of the evaporator from 143°C to 100°C as a temperature controlled where the pump start actively at set point 100°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid" title="hybrid">hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title=" heat pipe"> heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20out" title=" dry out"> dry out</a>, <a href="https://publications.waset.org/abstracts/search?q=assisted" title=" assisted"> assisted</a>, <a href="https://publications.waset.org/abstracts/search?q=pump" title=" pump "> pump </a> </p> <a href="https://publications.waset.org/abstracts/32171/performance-of-the-hybrid-loop-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Simulation of Internal Flow Field of Pitot-Tube Jet Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Noor">Iqra Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20circulation" title=" flow circulation"> flow circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20pump" title=" high pressure pump"> high pressure pump</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20flow" title=" internal flow"> internal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20tube%20pump" title=" pickup tube pump"> pickup tube pump</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangle%20channels" title=" rectangle channels"> rectangle channels</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20casing" title=" rotating casing"> rotating casing</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/132118/simulation-of-internal-flow-field-of-pitot-tube-jet-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Measuring Investigation and Computational Simulation of Cavitation Phenomenon Effects on the Industrial Centrifugal Pump Vibration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Hamzehei">Mahdi Hamzehei</a>, <a href="https://publications.waset.org/abstracts/search?q=Homan%20Alimoradzadeh"> Homan Alimoradzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shahriyari"> Mahdi Shahriyari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, vibration of the industrial centrifugal pumps studied by measuring analysis and computational simulation. Effects of different parameters on pump vibration were investigated. Also, simulation of cavitation in the centrifugal pump was down. First, via CF-TURBO software, the pump impeller and the fluid passing through the pump is modelled and finally, the phenomenon of cavitation in the impeller has been modelled by Ansys software. Also, the effects of changes in the amount of NPSH and bubbles generation in the pump impeller were investigated. By simulation of piping with pipe flow software, effect of fluid velocity and pressure on hydraulics and vibration were studied computationally by applying Computational Fluid Dynamic (CFD) techniques, fluent software and experimentally. Furthermore, this comparison showed that the model can predict hydraulics and vibration behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20curves" title=" performance curves"> performance curves</a>, <a href="https://publications.waset.org/abstracts/search?q=NPSH" title=" NPSH"> NPSH</a> </p> <a href="https://publications.waset.org/abstracts/5866/measuring-investigation-and-computational-simulation-of-cavitation-phenomenon-effects-on-the-industrial-centrifugal-pump-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Weijie">Zhao Weijie</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Xinjian"> Lin Xinjian</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xiaojuan"> Liu Xiaojuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lihua"> Li Lihua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-impedance" title="bio-impedance">bio-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20Howland%20current%20pump" title=" improved Howland current pump"> improved Howland current pump</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20characteristics" title=" load characteristics"> load characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioengineering" title=" bioengineering"> bioengineering</a> </p> <a href="https://publications.waset.org/abstracts/3294/load-characteristics-of-improved-howland-current-pump-for-bio-impedance-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Design of Low-Maintenance Sewer Pump Stations with High-Security Measures for Municipal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Smit">H. V. Smit</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20H.%20J.%20de%20Wet"> V. H. J. de Wet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> South African municipalities are dealing with aging and dilapidated infrastructure while faced with challenges in the form of expanding informal settlements, vandalism, theft, and a lack of maintenance which place even more pressure on existing infrastructure. The existing infrastructure was never designed to cater to these challenges, and this becomes evident when evaluating the current state of many municipal sewer pump stations. A need has thus arisen to develop a sewer pump station design concept that will address these challenges and allow for a long-term sustainable solution. This article deals with the design concepts which have been developed for sewer pump stations for an effective reduction in maintenance, improved grit handling, improvement to the operation and maintenance working conditions, and the adoption of high-security design philosophy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20security" title="high security">high security</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20maintenance" title=" low maintenance"> low maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20application" title=" municipal application"> municipal application</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20pump%20station" title=" sewer pump station"> sewer pump station</a> </p> <a href="https://publications.waset.org/abstracts/153369/design-of-low-maintenance-sewer-pump-stations-with-high-security-measures-for-municipal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dumitru">N. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dumitru"> S. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Copilusi"> C. Copilusi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ploscaru"> N. Ploscaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20dynamic%20analysis" title="modal dynamic analysis">modal dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pump" title=" oil pump"> oil pump</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20elements" title=" flexible elements"> flexible elements</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a> </p> <a href="https://publications.waset.org/abstracts/47941/modal-dynamic-analysis-of-a-mechanism-with-deformable-elements-from-an-oil-pump-unit-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Zaheer">Qasim Zaheer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehanzeb%20Masud"> Jehanzeb Masud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20Helmholtz%20instability" title="Kelvin Helmholtz instability">Kelvin Helmholtz instability</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20LES" title=" embedded LES"> embedded LES</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20flow%20field" title=" complex flow field"> complex flow field</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector%20pump" title=" ejector pump"> ejector pump</a> </p> <a href="https://publications.waset.org/abstracts/65909/flow-field-analysis-of-a-liquid-ejector-pump-using-embedded-large-eddy-simulation-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Numerical Investigation of Flow Characteristics inside the External Gear Pump Using Urea Liquid Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In selective catalytic reduction (SCR) unit, the injection system is provided with unique dosing pump to govern the urea injection phenomenon. The urea based operating liquid from the AdBlue tank links up directly with the dosing pump unit to furnish appropriate high pressure for examining the flow characteristics inside the liquid pump. This work aims in demonstrating the importance of external gear pump to provide pertinent high pressure and respective mass flow rate for each rotation. Numerical simulations are conducted using immersed solid method technique for better understanding of unsteady flow characteristics within the pump. Parametric analyses have been carried out for the gear speed and mass flow rate to find the behavior of pressure fluctuations. In the simulation results, the outlet pressure achieves maximum magnitude with the increase in rotational speed and the fluctuations grow higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AdBlue%20tank" title="AdBlue tank">AdBlue tank</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20gear%20pump" title=" external gear pump"> external gear pump</a>, <a href="https://publications.waset.org/abstracts/search?q=immersed%20solid%20method" title=" immersed solid method"> immersed solid method</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a> </p> <a href="https://publications.waset.org/abstracts/69334/numerical-investigation-of-flow-characteristics-inside-the-external-gear-pump-using-urea-liquid-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> An Excel-Based Educational Platform for Design Analyses of Pump-Pipe Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El-Awad">Mohamed M. El-Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an educational platform for design analyses of pump-pipe systems by using Microsoft Excel, its Solver add-in, and the associated VBA programming language. The paper demonstrates the capabilities of the Excel-based platform that suits the iterative nature of the design process better than the use of design charts and data tables. While VBA is used for the development of a user-defined function for determining the standard pipe diameter, Solver is used for optimising the pipe diameter of the pipeline and for determining the operating point of the selected pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20analyses" title="design analyses">design analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=pump-pipe%20systems" title=" pump-pipe systems"> pump-pipe systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Excel" title=" Excel"> Excel</a>, <a href="https://publications.waset.org/abstracts/search?q=solver" title=" solver"> solver</a>, <a href="https://publications.waset.org/abstracts/search?q=VBA" title=" VBA"> VBA</a> </p> <a href="https://publications.waset.org/abstracts/149433/an-excel-based-educational-platform-for-design-analyses-of-pump-pipe-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Roller Pump-Induced Tubing Rupture during Cardiopulmonary Bypass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20G.%20Kim">W. G. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Jo"> C. H. Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyzed the effects of variations in the diameter of silicone rubber and polyvinyl chloride (PVC) tubings on the likelihood of tubing rupture during modeling of accidental arterial line clamping in cardiopulmonary bypass with a roller pump. A closed CPB circuit constructed with a roller pump was tested with both PVC and silicone rubber tubings of 1/2, 3/8, and 1/4 inch internal diameter. Arterial line pressure was monitored, and an occlusive clamp was placed across the tubing distal to the pressure monitor site to model an accidental arterial line occlusion. A CCD camera with 512(H) x 492(V) pixels was installed above the roller pump to measure tubing diameters at pump outlet, where the maximum deformations (distension) of the tubings occurred. Quantitative measurement of the changes of tubing diameters with the change of arterial line pressure was performed using computerized image processing techniques. A visible change of tubing diameter was generally noticeable by around 250 psi of arterial line pressure, which was already very high. By 1500 psi, the PVC tubings showed an increase of diameter of between 5-10 %, while the silicone rubber tubings showed an increase between 20-25 %. Silicone rubber tubings of all sizes showed greater distensibility than PVC tubings of equivalent size. In conclusion, although roller-pump induced tubing rupture remains a theoretical problem during cardiopulmonary bypass in terms of the inherent mechanism of the pump, in reality such an occurrence is impossible in real clinical conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller%20pump" title="roller pump">roller pump</a>, <a href="https://publications.waset.org/abstracts/search?q=tubing%20rupture" title=" tubing rupture"> tubing rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiopulmonary%20bypass" title=" cardiopulmonary bypass"> cardiopulmonary bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20line" title=" arterial line"> arterial line</a> </p> <a href="https://publications.waset.org/abstracts/9927/roller-pump-induced-tubing-rupture-during-cardiopulmonary-bypass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Study of a Photovoltaic System Using MPPT Buck-Boost Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouchakour">A. Bouchakour</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zaghba"> L. Zaghba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Brahami"> M. Brahami</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Borni"> A. Borni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20generator" title="photovoltaic generator">photovoltaic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=chopper" title=" chopper"> chopper</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20motor" title=" electrical motor"> electrical motor</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title=" centrifugal pump"> centrifugal pump</a> </p> <a href="https://publications.waset.org/abstracts/5816/study-of-a-photovoltaic-system-using-mppt-buck-boost-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Very First Synthesis of Carbazole Conjugates with Efflux Pump Inhibitor as Dual Action Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazala%20Yaqub">Ghazala Yaqub</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubi%20Sadiq"> Zubi Sadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Almas%20Hamid"> Almas Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Saira%20Iqbal"> Saira Iqbal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is the very first report of three dual action hybrids synthesized by covalent linkage of carbazole based novel antibacterial compounds with efflux pump inhibitors i.e., indole acetic acid/gallic acid. Novel carbazole based antibacterial compounds were prepared first and then these were covalently linked with efflux pump inhibitors which leads to the successful formation of hybrids. All prepared compounds were evaluated for their bacterial cell killing capability against Escherichia coli, Staphylococcus aureus, Pasteurella multocida and Bacillus subtilis. Compound were effective against all tested bacterial strains at different concentrations. But when these compounds were linked with efflux pump inhibitors they showed dramatic enhancement in their bacterial cell killing potential and minimum inhibitory concentration of all hybrids ranges from 7.250 µg/mL to 0.0283 µg/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay" title="antimicrobial assay">antimicrobial assay</a>, <a href="https://publications.waset.org/abstracts/search?q=carbazole" title=" carbazole"> carbazole</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20action%20hybrids" title=" dual action hybrids"> dual action hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=efflux%20pump%20inhibitors" title=" efflux pump inhibitors"> efflux pump inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/11746/very-first-synthesis-of-carbazole-conjugates-with-efflux-pump-inhibitor-as-dual-action-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Grinis">L. Grinis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lubashevsky"> N. Lubashevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ostrovski"> Y. Ostrovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In waste water treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the waste water. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in waste water treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20pump" title="jet pump">jet pump</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20bubbles%20size" title=" air bubbles size"> air bubbles size</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20time" title=" retention time"> retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/23907/influence-of-the-flow-rate-ratio-in-a-jet-pump-on-the-size-of-air-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Investigating Constructions and Operation of Internal Combustion Engine Water Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20G%C4%99ca">Michał Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Bara%C5%84ski"> Grzegorz Barański</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title="aircraft engine">aircraft engine</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pump" title=" water pump"> water pump</a> </p> <a href="https://publications.waset.org/abstracts/81471/investigating-constructions-and-operation-of-internal-combustion-engine-water-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Making Heat Pumps More Compatible with Environmental and Climatic Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erol%20Sahin">Erol Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20Adiguzel"> Nesrin Adiguzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of air temperature and relative humidity on the operation of the heat pump were examined experimentally. The results were analyzed in an energy and exergetic way. Two heat pumps were used in the experimental system established for experimental analysis. With the first heat pump, the relative humidity and temperature of atmospheric air are reduced. The air at low humidity and temperature is given heat and water vapor to the desired extent on the channel that reaches the other heat pump. Effects of the air reaching the desired humidity and temperature in the 2nd heat pump; temperature, humidity, pressure, flow, and current are detected by meters. The measured values and the exergy yield and thermodynamic favor ratios of the system and its components were determined. In this way, the effects of temperature and relative humidity change in the heat pump and components were tried to be revealed. Relative humidity in the air caused a significant increase in the loss of exergy in the evaporator. This has shown that cooling machines experience greater exergy in areas with high relative humidity. The highest COPSM values were determined to be at 30% and 40%, which is the least relative humidity values. The results showed that heat pump exergy efficiency was affected by increased temperature and relative humidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title="relative humidity">relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=effects%20of%20relative%20humidity%20on%20heat%20pumps" title=" effects of relative humidity on heat pumps"> effects of relative humidity on heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis%20in%20heat%20pumps" title=" exergy analysis in heat pumps"> exergy analysis in heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/164432/making-heat-pumps-more-compatible-with-environmental-and-climatic-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Lee">Sang-Wook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=So-Yeon%20Jeon"> So-Yeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Gi%20Cho"> Min-Gi Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Young%20Shin"> Dae-Young Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ho%20Hwang"> Sung-Ho Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20mode%20changing" title="continuous mode changing">continuous mode changing</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20fuel%20consumption" title=" engine fuel consumption"> engine fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=excavator" title=" excavator"> excavator</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20efficiency" title=" fuel efficiency"> fuel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=IMV" title=" IMV"> IMV</a> </p> <a href="https://publications.waset.org/abstracts/89388/energy-efficiency-improvement-of-excavator-with-independent-metering-valve-by-continuous-mode-changing-considering-engine-fuel-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Beating Heart Coronary Artery Bypass Grafting on Intermittent Pump Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar%20Singh">Sushil Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Tewarson"> Vivek Tewarson</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvesh%20Kumar"> Sarvesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shobhit%20Kumar"> Shobhit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: ‘Beating Heart coronary artery bypass grafting on Intermittent Pump Support’ is a more reliable method of coronary revascularization that takes advantage of off and on-pump CABG while eliminating the disadvantage of both techniques. Methods: From January 2015 to December 2021, a new technique, “Intermittent On pump beating heart CABG” using a suction stabilizer was used by putting aortic and venous cannulas electively in all the patients. Patients were supported by a pump intermittently, as and when required (Group 1, n=254). Retrospective data were collected from our record of the patients who underwent off-pump CABG electively by the same surgeon and team (Group 2, n=254). Results: Significant advantage was noted in Group 1 patients in terms of the number of grafts (3.31 ± 1.16 vs. 2.30 ±0.66), grafting of lateral vessels (316 vs.202), mean operating time (1.37 ± 0.23 hrs vs. 2.22 ± 0.45 hrs) and postoperative blood loss (406.30 ± 257.90 ml vs. 567.41 ± 265.20 ml).CPB support time was less than 15 minutes in the majority of patients (n=179, 70.37 %), with a mean of 16.81 minutes. It was required, particularly during the grafting of lateral vessels. A rise in enzymes level (CRP, CKMB, Trop I, and NTPro BNP) was noted in Group 1 patients. But, these did not affect the postoperative course in patients. There was no mortality in Group 1 patients, while four patients in Group 2 died. Coclusions: Intermittent on-pump CABG technique is a promising method of surgical revascularization for all patients requiring CABG. It has shown its superiority in terms of safety, the number of grafts, operating time, and better perioperative course. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiopulmonary%20bypass" title="cardiopulmonary bypass">cardiopulmonary bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=CABG" title=" CABG"> CABG</a>, <a href="https://publications.waset.org/abstracts/search?q=beating%20heart%20CABG" title=" beating heart CABG"> beating heart CABG</a>, <a href="https://publications.waset.org/abstracts/search?q=on-pump%20CABG" title=" on-pump CABG"> on-pump CABG</a> </p> <a href="https://publications.waset.org/abstracts/153762/beating-heart-coronary-artery-bypass-grafting-on-intermittent-pump-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Design Considerations for Solar Energy Application to Fish Pond Recirculating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Ogunlela">A. O. Ogunlela</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Ayodele"> T. O. Ayodele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fish pond recirculating system was designed and constructed. The system consists of three plastic culture tanks (1000 litres each, filled up to 850 litres). It also consists of a sedimentation tank where the water filtration was carried out and a pump tank where the treated water partially settled before being pumped to the culture tanks. A pump of ½ hp capacity was selected to pump water round the system to enhance water recirculation. Following the design of the solar array that was done, a grid support of tilt angle 36.640 was constructed to offer the system an optimum, all-year-round, intense solar energy reception, which is specific to the location of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20pond" title=" fish pond"> fish pond</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation%20system" title=" recirculation system"> recirculation system</a>, <a href="https://publications.waset.org/abstracts/search?q=pump%20tank" title=" pump tank"> pump tank</a> </p> <a href="https://publications.waset.org/abstracts/14105/design-considerations-for-solar-energy-application-to-fish-pond-recirculating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osung%20Im">Osung Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Yadav"> Neha Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui%20Hoon%20Lee"> Eui Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joong%20Hoon%20Kim"> Joong Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20inflow" title=" reservoir inflow"> reservoir inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20depth" title=" sewer depth"> sewer depth</a> </p> <a href="https://publications.waset.org/abstracts/58382/reservoir-inflow-prediction-for-pump-station-using-upstream-sewer-depth-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bensreti">Ahmed Bensreti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gouarsha"> Mohamed Gouarsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20vessel%20design" title=" surge vessel design"> surge vessel design</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20surge%20analysis" title=" transient surge analysis"> transient surge analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pipe%20hydraulics" title=" water pipe hydraulics"> water pipe hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/168694/pressure-surge-analysis-for-al-gardabiya-pump-station-phase-iii-of-the-man-made-river-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Rizzuto">Francesco Rizzuto</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Stickland"> Matthew Stickland</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Hannot"> Stephan Hannot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=DVCM" title=" DVCM"> DVCM</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=MUSCL" title=" MUSCL"> MUSCL</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20displacement%20pump" title=" positive displacement pump"> positive displacement pump</a> </p> <a href="https://publications.waset.org/abstracts/98062/one-dimension-model-for-positive-displacement-pump-with-cavitation-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Grinis">L. Grinis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lubashevsky"> N. Lubashevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ostrovski"> Y. Ostrovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector&#39;s motivator is of a gaseous nature, usually steam or air, while the educator&#39;s motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 60<sup>0</sup> and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20bubbles" title="air bubbles">air bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20pump" title=" jet pump"> jet pump</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/51362/experimental-and-cfd-simulation-of-the-jet-pump-for-air-bubbles-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Experimental Investigation on Activated Carbon Based Cryosorption Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Vinay">K. B. Vinay</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Vismay"> K. G. Vismay</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kasturirengan"> S. Kasturirengan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Vivek"> G. A. Vivek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryosorption pumps are considered to be safe, quiet and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump which is the modern ultra-high vacuum pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=cryopanel" title=" cryopanel"> cryopanel</a>, <a href="https://publications.waset.org/abstracts/search?q=granules" title=" granules"> granules</a>, <a href="https://publications.waset.org/abstracts/search?q=pellets" title=" pellets"> pellets</a> </p> <a href="https://publications.waset.org/abstracts/33971/experimental-investigation-on-activated-carbon-based-cryosorption-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via &chi;(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only &chi;(2)-nonlinearity, where sum-frequency generation in the &chi;(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=periodically-poled%20LiNbO%E2%82%83" title=" periodically-poled LiNbO₃"> periodically-poled LiNbO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=sum-frequency%20generation" title=" sum-frequency generation"> sum-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=third-harmonic%20generation" title=" third-harmonic generation"> third-harmonic generation</a> </p> <a href="https://publications.waset.org/abstracts/77505/cavity-type-periodically-poled-linbo3-device-for-highly-efficient-third-harmonic-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SERCA%20pump&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10