CINXE.COM
Search results for: internal flow
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: internal flow</title> <meta name="description" content="Search results for: internal flow"> <meta name="keywords" content="internal flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="internal flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="internal flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7003</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: internal flow</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7003</span> Simulation of Internal Flow Field of Pitot-Tube Jet Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Noor">Iqra Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20circulation" title=" flow circulation"> flow circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20pump" title=" high pressure pump"> high pressure pump</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20flow" title=" internal flow"> internal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20tube%20pump" title=" pickup tube pump"> pickup tube pump</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangle%20channels" title=" rectangle channels"> rectangle channels</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20casing" title=" rotating casing"> rotating casing</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/132118/simulation-of-internal-flow-field-of-pitot-tube-jet-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7002</span> Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjanna%20Matta">Anjanna Matta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20L.%20Narayana"> P. A. L. Narayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20stability%20analysis" title="linear stability analysis">linear stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow" title=" mass flow"> mass flow</a> </p> <a href="https://publications.waset.org/abstracts/25283/influence-of-internal-heat-source-on-thermal-instability-in-a-horizontal-porous-layer-with-mass-flow-and-inclined-temperature-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7001</span> Internal Capital Market Efficiency Study Based on Improved Cash Flow Sensitivity Coefficient - Take Tomorrow Group as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Lu">Peng Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ting"> Liu Ting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the difficulty of financing from the external capital market, the reorganization and merger of private enterprises have formed a family group, seeking the help of the internal capital market to alleviate the capital demand. However, the inefficiency of the internal capital market can damage the effect it should have played, and even hinder the development of enterprises. This paper takes the "Tomorrow Group" as the research object to carry on the case analysis. After using the improved cash flow sensitivity coefficient to measure the efficiency of the internal capital market of Tomorrow Group, the inefficiency phenomenon is found. Then the analysis reveals that the reasons for its inefficiency include that the pyramidal equity structure is conducive to control, the separation of cash flow rights and control rights, the concentration of equity leads to poor balance, the abandonment of real industries and information asymmetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomorrow%20group" title="tomorrow group">tomorrow group</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20capital%20market" title=" internal capital market"> internal capital market</a>, <a href="https://publications.waset.org/abstracts/search?q=related-party%20transactions" title=" related-party transactions"> related-party transactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Baotou%20tomorrow%20technology%20Co." title=" Baotou tomorrow technology Co."> Baotou tomorrow technology Co.</a>, <a href="https://publications.waset.org/abstracts/search?q=LTD" title=" LTD"> LTD</a> </p> <a href="https://publications.waset.org/abstracts/116397/internal-capital-market-efficiency-study-based-on-improved-cash-flow-sensitivity-coefficient-take-tomorrow-group-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7000</span> Comprehensive Ultrasonography During Low-flow Bypass in Patients with Symptomatic Internal Carotid Artery (ICA) Occlusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Guseynova">G. K. Guseynova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Krylov"> V. V. Krylov</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20T.%20Khamidova"> L. T. Khamidova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Polunina"> N. A. Polunina</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Lukyanchikov"> V. A. Lukyanchikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The report presents complex ultrasound diagnostics in patients with symptomatic steno-occlusive lesions of extra- and intracranial branches of brachiocephalic arteries (BCA). The tasks and possibilities of ultrasound diagnostics at different stages of treatment of patients with symptomatic occlusion of internal carotid artery (ICA) are covered in detail; qualitative and quantitative characteristics of blood flow; parameters of the wall and lumen of the main arteries of the head; methods of ultrasound examination of indirect assessment of the functional status are presented. Special attention is paid to the description of indicators that are predictors of the consistency of formed extra-intracranial low-flow shunts, examples of functioning and failed anastomoses are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBF" title="CBF">CBF</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20blood%20flow%3B%20CTA" title=" cerebral blood flow; CTA"> cerebral blood flow; CTA</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20carotid%20artery%3B%20ICA" title=" external carotid artery; ICA"> external carotid artery; ICA</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20carotid%20artery%3B%20MCA" title=" internal carotid artery; MCA"> internal carotid artery; MCA</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20cerebral%20artery%3B%20MRA" title=" middle cerebral artery; MRA"> middle cerebral artery; MRA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20angiography%3B%20OEF" title=" magnetic resonance angiography; OEF"> magnetic resonance angiography; OEF</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20extraction%20fraction%3B%20TIA" title=" oxygen extraction fraction; TIA"> oxygen extraction fraction; TIA</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20ischaemic%20attack" title=" transient ischaemic attack"> transient ischaemic attack</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=low-flow%20bypass" title=" low-flow bypass"> low-flow bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=anastomoses" title=" anastomoses"> anastomoses</a> </p> <a href="https://publications.waset.org/abstracts/186846/comprehensive-ultrasonography-during-low-flow-bypass-in-patients-with-symptomatic-internal-carotid-artery-ica-occlusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6999</span> PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marlon%20M.%20Hern%C3%A1ndez%20Cely">Marlon M. Hernández Cely</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20E.%20C.%20Baptistella"> Victor E. C. Baptistella</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20M.%20H.%20Rodr%C3%ADguez"> Oscar M. H. Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PIV" title="PIV">PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20duct" title=" annular duct"> annular duct</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar" title=" laminar"> laminar</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profile" title=" velocity profile"> velocity profile</a> </p> <a href="https://publications.waset.org/abstracts/61021/piv-measurements-of-the-instantaneous-velocities-for-single-and-two-phase-flows-in-an-annular-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6998</span> Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Lanzerstorfer">C. Lanzerstorfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20flow%20nozzles" title=" dual flow nozzles"> dual flow nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20equation" title=" flow equation"> flow equation</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20data" title=" operation data"> operation data</a> </p> <a href="https://publications.waset.org/abstracts/60820/condition-monitoring-for-twin-fluid-nozzles-with-internal-mixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6997</span> Application of Co-Flow Jet Concept to Aircraft Lift Increase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Likitha%20Siddanathi">Sai Likitha Siddanathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present project is aimed at increasing the amount of lift produced by typical airfoil. This is achieved by its modification into the co-flow jet structure where a new internal flow is created inside the airfoil from well-designed apertures on its surface. The limit where produced excess lift overcomes the weight of pumping system inserted in airfoil upper portion, and drag force is converted into thrust is discussed in terms of airfoil velocity and angle of attack. Two normal and co-flow jet models are numerically designed and experimental results for both fabricated normal airfoil and CFJ model have been tested in low subsonic wind tunnel. Application has been made to subsonic NACA 652-415 airfoil. Produced lift in CFJ airfoil indicates a maximum value up to a factor of 5 above normal airfoil nearby flow separation ie in relatively weak flow distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20Jet" title="flow Jet">flow Jet</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20coefficient" title=" lift coefficient"> lift coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil%20performance" title=" airfoil performance"> airfoil performance</a> </p> <a href="https://publications.waset.org/abstracts/42591/application-of-co-flow-jet-concept-to-aircraft-lift-increase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6996</span> High Viscous Oil–Water Flow: Experiments and CFD Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Archibong-Eso">A. Archibong-Eso</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shi"> J. Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20Baba"> Y Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alagbe"> S. Alagbe</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Yan"> W. Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yeung"> H. Yeung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents over 100 experiments conducted in a 25.4 mm internal diameter (ID) horizontal pipeline. Oil viscosity ranging from 3.5 Pa.s–5.0 Pa.s are used with superficial velocities of oil and water ranging from 0.06 to 0.55 m/s and 0.01 m/s to 1.0 m/s, respectively. Pressure gradient measurements and flow pattern observations are discussed. Numerical simulation of some flow conditions is performed using the commercial CFD code ANSYS Fluent® and the simulation results are compared with experimental results. Results indicate that CFD numerical simulation performed moderately well in predicting the flow configurations observed in this study while discrepancies were observed in the pressure gradient predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title="flow patterns">flow patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=plug" title="plug">plug</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title=" pressure gradient"> pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=rivulet" title=" rivulet"> rivulet</a> </p> <a href="https://publications.waset.org/abstracts/34208/high-viscous-oil-water-flow-experiments-and-cfd-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6995</span> Literature Review and Evaluation of the Internal Marketing Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao%20Hsun%20Yuan">Hsiao Hsun Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal marketing was proposed in 1970s. The theory of the concept has continually changed over the past forty years. This study discussed the following themes: the definition and implication of internal marketing, the progress of its development, and the evolution of its theoretical model. Moreover, the study systematically organized the strategies of the internal marketing theory adopted on enterprise and how they were put into practice. It also compared the empirical studies focusing on how the existent theories influenced the important variables of internal marketing. The results of this study are expected to serve as references for future exploration of the boundary and studies aiming at how internal marketing is applied to different types of enterprises. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20responsibility" title="corporate responsibility">corporate responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=employee%20organizational%20performance" title=" employee organizational performance"> employee organizational performance</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20marketing" title=" internal marketing"> internal marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20customer" title=" internal customer"> internal customer</a> </p> <a href="https://publications.waset.org/abstracts/52645/literature-review-and-evaluation-of-the-internal-marketing-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6994</span> Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavesh%20N.%20Bhatt">Bhavesh N. Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Zozimus%20D.%20Labana"> Zozimus D. Labana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=NASA%20C3X%20Blade" title=" NASA C3X Blade"> NASA C3X Blade</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20film%20cooling%20channel" title=" circular film cooling channel"> circular film cooling channel</a> </p> <a href="https://publications.waset.org/abstracts/87587/numerical-analysis-of-internal-cooled-turbine-blade-using-conjugate-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6993</span> Internal Financing Constraints and Corporate Investment: Evidence from Indian Manufacturing Firms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Gupta">Gaurav Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Mahakud"> Jitendra Mahakud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the significance of internal financing constraints on the determination of corporate fixed investments in the case of Indian manufacturing companies. Financing constraints companies which have less internal fund or retained earnings face more transaction and borrowing costs due to imperfections in the capital market. The period of study is 1999-2000 to 2013-2014 and we consider 618 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test, and Hausman test results conclude the suitability of the fixed effect model for the estimation. The cash flow and liquidity of the company have been used as the proxies for the internal financial constraints. In accordance with various theories of corporate investments, we consider other firm specific variable like firm age, firm size, profitability, sales and leverage as the control variables in the model. From the econometric analysis, we find internal cash flow and liquidity have the significant and positive impact on the corporate investments. The variables like cost of capital, sales growth and growth opportunities are found to be significantly determining the corporate investments in India, which is consistent with the neoclassical, accelerator and Tobin’s q theory of corporate investment. To check the robustness of results, we divided the sample on the basis of cash flow and liquidity. Firms having cash flow greater than zero are put under one group, and firms with cash flow less than zero are put under another group. Also, the firms are divided on the basis of liquidity following the same approach. We find that the results are robust to both types of companies having positive and negative cash flow and liquidity. The results for other variables are also in the same line as we find for the whole sample. These findings confirm that internal financing constraints play a significant role for determination of corporate investment in India. The findings of this study have the implications for the corporate managers to focus on the projects having higher expected cash inflows to avoid the financing constraints. Apart from that, they should also maintain adequate liquidity to minimize the external financing costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cash%20flow" title="cash flow">cash flow</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20investment" title=" corporate investment"> corporate investment</a>, <a href="https://publications.waset.org/abstracts/search?q=financing%20constraints" title=" financing constraints"> financing constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data%20method" title=" panel data method"> panel data method</a> </p> <a href="https://publications.waset.org/abstracts/54360/internal-financing-constraints-and-corporate-investment-evidence-from-indian-manufacturing-firms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6992</span> Analysis of Gas Disturbance Characteristics in Lunar Sample Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng">Lv Shizeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao"> Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yi"> Zhang Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Wenjing"> Ding Wenjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20samples" title="lunar samples">lunar samples</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20disturbance" title=" gas disturbance"> gas disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20device" title=" storage device"> storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20analysis" title=" characteristic analysis"> characteristic analysis</a> </p> <a href="https://publications.waset.org/abstracts/69595/analysis-of-gas-disturbance-characteristics-in-lunar-sample-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6991</span> Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veena%20Chaudhary">Veena Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20P.%20Gakkhar"> Rakesh P. Gakkhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20destruction" title=" exergy destruction"> exergy destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/51552/determination-of-optimum-torque-of-an-internal-combustion-engine-by-exergy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6990</span> A Qualitative Assessment of the Internal Communication of the College of Comunication: Basis for a Strategic Communication Plan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edna%20T.%20Bernabe">Edna T. Bernabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Bilolo"> Joshua Bilolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheila%20Mae%20Artillero"> Sheila Mae Artillero</a>, <a href="https://publications.waset.org/abstracts/search?q=Catlicia%20Joy%20Caseda"> Catlicia Joy Caseda</a>, <a href="https://publications.waset.org/abstracts/search?q=Liezel%20Once"> Liezel Once</a>, <a href="https://publications.waset.org/abstracts/search?q=Donne%20Ynah%20Grace%20Quirante"> Donne Ynah Grace Quirante</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal communication is significant for an organization to function to its full extent. A strategic communication plan builds an organization’s structure and makes it more systematic. Information is a vital part of communication inside the organization as this lays every possible outcome—be it positive or negative. It is, therefore, imperative to assess the communication structure of a particular organization to secure a better and harmonious communication environment in any organization. Thus, this research was intended to identify the internal communication channels used in Polytechnic University of the Philippines-College of Communication (PUP-COC) as an organization, to identify the flow of information specifically in downward, upward, and horizontal communication, to assess the accuracy, consistency, and timeliness of its internal communication channels; and to come up with a proposed strategic communication plan of information dissemination to improve the existing communication flow in the college. The researchers formulated a framework from Input-Throughout-Output-Feedback-Goal of General System Theory and gathered data to assess the PUP-COC’s internal communication. The communication model links the objectives of the study to know the internal organization of the college. The qualitative approach and case study as the tradition of inquiry were used to gather deeper understanding of the internal organizational communication in PUP-COC, using Interview, as the primary methods for the study. This was supported with a quantitative data which were gathered through survey from the students of the college. The researchers interviewed 17 participants: the College dean, the 4 chairpersons of the college departments, the 11 faculty members and staff, and the acting Student Council president. An interview guide and a standardized questionnaire were formulated as instruments to generate the data. After a thorough analysis of the study, it was found out that two-way communication flow exists in PUP-COC. The type of communication channel the internal stakeholders use varies as to whom a particular person is communicating with. The members of the PUP-COC community also use different types of communication channels depending on the flow of communication being used. Moreover, the most common types of internal communication are the letters and memoranda for downward communication, while letters, text messages, and interpersonal communication are often used in upward communication. Various forms of social media have been found out to be of use in horizontal communication. Accuracy, consistency, and timeliness play a significant role in information dissemination within the college. However, some problems have also been found out in the communication system. The most common problem are the delay in the dissemination of memoranda and letters and the uneven distribution of information and instruction to faculty, staff, and students. This has led the researchers to formulate a strategic communication plan which aims to propose strategies that will solve the communication problems that are being experienced by the internal stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20plan" title="communication plan">communication plan</a>, <a href="https://publications.waset.org/abstracts/search?q=downward%20communication" title=" downward communication"> downward communication</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20communication" title=" internal communication"> internal communication</a>, <a href="https://publications.waset.org/abstracts/search?q=upward%20communication" title=" upward communication "> upward communication </a> </p> <a href="https://publications.waset.org/abstracts/48001/a-qualitative-assessment-of-the-internal-communication-of-the-college-of-comunication-basis-for-a-strategic-communication-plan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6989</span> Investigating Constructions and Operation of Internal Combustion Engine Water Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20G%C4%99ca">Michał Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Bara%C5%84ski"> Grzegorz Barański</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title="aircraft engine">aircraft engine</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pump" title=" water pump"> water pump</a> </p> <a href="https://publications.waset.org/abstracts/81471/investigating-constructions-and-operation-of-internal-combustion-engine-water-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6988</span> Anatomical Features of Internal Pudendal Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Yasky">Adel Yasky</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Al-Talalwah"> Waseem Al-Talalwah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shorok%20Al%20Dorazi"> Shorok Al Dorazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Soames"> Roger Soames</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The internal pudendal artery is a standard branch of the anterior division of the internal iliac artery. The current study includes 41 cadavers to investigate the origin and branches of the internal pudendal artery and its clinical significances. The internal pudendal artery arose directly from the anterior division of the internal iliac artery in 48.3% while it arose indirectly in 48.5%. However, the internal pudendal artery arose from the posterior division of internal iliac artery in 1.6%. Moreover, it arose internal iliac artery bifurcation site in 1.6%. Further, the internal pudendal artery supplied the urinary bladder in 17.1%. Also, the internal pudendal artery supplied the rectum 33.5% respectively. It gave uterine and vaginal arteries in 9.4% and 7.8% respectively. Finally, it supplied the sciatic nerve via giving lateral sacral branch in 1.6%. Internists, surgeons and radiologists have to be aware of the variability to decrease iatrogenic injury. Therefore, unnecessary proximal ligation should be avoided at the site of indirect origin of the internal pudendal artery to prevent sciatic neuropathy. Further, intrapelvic bleeding as result of laceration of internal pudendal branches during hysterectomy, prostatectomy or proctectomy should be expected. Therefore, this study increases the awareness of surgeons leading to minimize iatrogenic faults, <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20pudendal%20artery" title="internal pudendal artery">internal pudendal artery</a>, <a href="https://publications.waset.org/abstracts/search?q=inferior%20gluteal%20artery" title=" inferior gluteal artery"> inferior gluteal artery</a>, <a href="https://publications.waset.org/abstracts/search?q=superior%20gluteal%20artery" title=" superior gluteal artery"> superior gluteal artery</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20iliac%20artery" title=" internal iliac artery"> internal iliac artery</a>, <a href="https://publications.waset.org/abstracts/search?q=impotence" title=" impotence"> impotence</a>, <a href="https://publications.waset.org/abstracts/search?q=decreased%20libido" title=" decreased libido"> decreased libido</a> </p> <a href="https://publications.waset.org/abstracts/30963/anatomical-features-of-internal-pudendal-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6987</span> Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi">Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Chavoshi"> Ashkan Chavoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheyda%20Almasi"> Sheyda Almasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Almasi"> Shima Almasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title="centrifugal pump">centrifugal pump</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=trim" title=" trim"> trim</a> </p> <a href="https://publications.waset.org/abstracts/24849/numerical-and-experimental-investigation-of-impeller-trimming-on-fluid-flow-inside-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6986</span> The Impacts of Internal Employees on Brand Building: A Case Study of Cell Phone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Gohar">Adnan Gohar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work aims the importance of internal employees in the making of a brand (cell phone) through customer satisfaction which basically explains the connection of internal employees with external customers. This research is designed to measure the satisfaction level of internal employees which further connects to the product evolution as a brand leaving a brand image in the eye of the external customer. The main focus is that internal employees are as important as external customers for the uplift of the product resulting in the brand. Internal employees are individual organization employees, vendors, departments, and distributors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brand%20building" title="brand building">brand building</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title=" customer satisfaction"> customer satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20employees" title=" internal employees"> internal employees</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20franchise" title=" mobile franchise"> mobile franchise</a> </p> <a href="https://publications.waset.org/abstracts/76889/the-impacts-of-internal-employees-on-brand-building-a-case-study-of-cell-phone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6985</span> Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tania%20Sharmin%20Khaleque">Tania Sharmin Khaleque</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ferdows"> Mohammad Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection" title="free convection">free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20generation" title=" heat generation"> heat generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20viscosity" title=" variable viscosity"> variable viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57379/effect-of-internal-heat-generation-on-free-convective-power-law-variable-temperature-past-vertical-plate-considering-exponential-variable-viscosity-and-thermal-diffusivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6984</span> The Effect of Internal Auditing Function on the Quality of Financial Reporting: A Theoretical Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hani%20Albogami">Hani Albogami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The internal audit function is considered as one of the internal corporate governance mechanisms that may have an impact on improving earnings quality by constraining earnings management. The internal audit function is also a unique corporate governance mechanism because internal auditors have more involvement with the day-to-day operations comparing to the audit committee, and also internal auditors audit their companies the whole year compared to the external auditor who audits only a certain time of the year. The relationships between internal audit function and earnings management can be understood by some theories. Therefore, this paper provides a theoretical background of the influence of the quality of internal audit function on earnings management. In particular, the agency theory, institutional theory, singling theory, and resource dependency theory are adapted by this paper to provide some understanding and analyses that can be a basis for future research to contribute to the corporate governance academic studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20audit" title="internal audit">internal audit</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20governance" title=" corporate governance"> corporate governance</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20management" title=" earnings management"> earnings management</a>, <a href="https://publications.waset.org/abstracts/search?q=accounting" title=" accounting"> accounting</a> </p> <a href="https://publications.waset.org/abstracts/135376/the-effect-of-internal-auditing-function-on-the-quality-of-financial-reporting-a-theoretical-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6983</span> Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik">Milan Uhríčik</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Soviarov%C3%A1"> Andrea Soviarová</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Dresslerov%C3%A1"> Zuzana Dresslerová</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Pal%C4%8Dek"> Peter Palček</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko"> Alan Vaško</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title="internal friction">internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title=" resonant frequency"> resonant frequency</a> </p> <a href="https://publications.waset.org/abstracts/20361/change-of-internal-friction-on-magnesium-alloy-with-548-al-dependence-on-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">701</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6982</span> Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20DaqiqShirazi">Mohammadreza DaqiqShirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi"> Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Riasi"> Alireza Riasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nourbakhsh"> Ahmad Nourbakhsh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title="numerical study">numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=disk%20friction%20loss" title=" disk friction loss"> disk friction loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sidewall%20gap" title=" sidewall gap"> sidewall gap</a> </p> <a href="https://publications.waset.org/abstracts/15309/investigation-of-the-flow-in-impeller-sidewall-gap-of-a-centrifugal-pump-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6981</span> Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Gbadeyan">J. A. Gbadeyan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Kareem"> R. A. Kareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unsteady" title="unsteady">unsteady</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive" title=" reactive"> reactive</a>, <a href="https://publications.waset.org/abstracts/search?q=hydromagnetic" title=" hydromagnetic"> hydromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=couette%20%0D%0Aow" title=" couette ow"> couette ow</a>, <a href="https://publications.waset.org/abstracts/search?q=exothermi%20creactio" title=" exothermi creactio"> exothermi creactio</a> </p> <a href="https://publications.waset.org/abstracts/28748/unsteady-reactive-hydromagnetic-fluid-flow-of-a-two-step-exothermic-chemical-reaction-through-a-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6980</span> Fluid Flow in Roughened Square Tube for Internal Blade Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Alhajeri">M. H. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20M.%20Alhajeri"> Hamad M. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi"> A. H. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Almutairi"> Abdulrahman Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayedh%20Alajmi"> Ayedh Alajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational investigation has been undertaken to study fluid flow through roughened tube with turbulators. Such flows are of particular interest in cooling internally high pressure turbine blades. Turbulators are fixed in each side of the passage (tube) to promote turbulence and enhance heat transfer. The tube had an aspect ratio of 1 and the position of the ribs closest to the bend are at 0.45d from the entrance and exit of the bend. The aim of this study is to examine the tube roughened by turbulator by studying some flow parameters upstream and downstream of the turbulator. It is cleared that the eddies sizes are decreased downstream in the first two turbulators and increased after the turbulators increases the turbulence in the tube and enhanced the heat transfer in the blade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title="fluid flow">fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulator" title=" turbulator"> turbulator</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=blade" title=" blade"> blade</a> </p> <a href="https://publications.waset.org/abstracts/74458/fluid-flow-in-roughened-square-tube-for-internal-blade-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6979</span> Numerical Study of a 6080HP Open Drip Proof (ODP) Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Hisang%20Lai">Feng-Hisang Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFD(Computational Fluid Dynamics) is conducted to numerically study the flow and heat transfer features of a two-pole, 6,080HP, 60Hz, 3,150V open drip-proof (ODP) motor. The stator and rotor cores in this high voltage induction motor are segmented with the use of spacers for cooling purposes, which leads to difficulties in meshing when the entire system is to be simulated. The system is divided into 4 parts, meshed separately and then combined using interfaces. The deviation between the CFD and experimental results in temperature and flow rate is less than 10%. The internal flow is further examined and a final design is proposed to reduce the winding temperature by 10 degrees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20drip%20proof" title=" open drip proof"> open drip proof</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a> </p> <a href="https://publications.waset.org/abstracts/142026/numerical-study-of-a-6080hp-open-drip-proof-odp-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6978</span> Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Javaid">Ali Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Latif"> Rizwan Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan%20Qasim"> Syed Adnan Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Shafi"> Imran Shafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=HEM%20model" title=" HEM model"> HEM model</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20flow" title=" nozzle flow"> nozzle flow</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20foam" title=" open foam"> open foam</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/75407/modeling-and-simulation-of-turbulence-induced-in-nozzle-cavitation-and-its-effects-on-internal-flow-in-a-high-torque-low-speed-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6977</span> Internal Audit and the Effectiveness and Efficiency of Operations in Hospitals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naziru%20Suleiman">Naziru Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever increasing cases of financial frauds and corporate accounting scandals in recent years have raised more concern on the operation of internal control mechanisms and performance of the internal audit departments in organizations. In most cases the seeming presence of both the internal control system and internal audit in organizations do not prove useful as frauds errors and irregularities are being perpetuated. The aim of this study, therefore, is to assess the role of internal audit in achieving the objectives of internal control system of federal hospitals in Kano State from the perception of the respondents. The study used survey research design and generated data from primary source by means of questionnaire. A total number of 100 copies of questionnaire were administered out of which 68 were duly completed and returned. Cronbach’s alpha was used to test the internal validity of the various items in the constructs. Descriptive statistics, chi-square test, Mann Whitney U test and Kruskal Wallis ANOVA were employed for the analysis of data. The study finds that from the perception of the respondents, internal audit departments in Federal Hospitals in Kano State are effective and that they contribute positively to the overall attainment of the objectives of internal control system of these hospitals. There is no significant difference found on the views of the respondents from the three hospitals. Hence, the study concludes that strong and functional internal audit department is a basic requirement for effectiveness of operations of the internal control system. In the light of the findings, it is recommended that internal audit should continue to ensure that the objectives of internal control system of these hospitals are achieved through proper and adequate evaluation and review of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20audit" title="internal audit">internal audit</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20control" title=" internal control"> internal control</a>, <a href="https://publications.waset.org/abstracts/search?q=federal%20hospitals" title=" federal hospitals"> federal hospitals</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20frauds" title=" financial frauds"> financial frauds</a> </p> <a href="https://publications.waset.org/abstracts/7110/internal-audit-and-the-effectiveness-and-efficiency-of-operations-in-hospitals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6976</span> An Investigation on the Internal Quality Assurance System of Higher Education in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andi%20Mursidi">Andi Mursidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate why the internal quality assurance system as the basis for the assessment of external quality assurance systems is not well developed at universities in Indonesia. To answer this problem, technical analysis used single instrumental case study with the respondents from ten universities. The findings of this study are the internal quality assurance system that is applied so far (1) only to gain accreditation; and (2) considered as a liability rather than as a necessity to meet the demands of quality standards. It needs strong commitment from internal stakeholders at the college/university to establish internal quality assurance systems that exceed the national standards of higher education. A high quality college/ university will have a good accreditation rank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20stakeholders" title="internal stakeholders">internal stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20quality%20assurance%20system" title=" internal quality assurance system"> internal quality assurance system</a>, <a href="https://publications.waset.org/abstracts/search?q=commitment" title=" commitment"> commitment</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a> </p> <a href="https://publications.waset.org/abstracts/60318/an-investigation-on-the-internal-quality-assurance-system-of-higher-education-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6975</span> Design of Lead-Lag Based Internal Model Controller for Binary Distillation Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar%20Mishra">Rakesh Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarun%20Kumar%20Dan"> Tarun Kumar Dan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-Lag based Internal Model Control method is proposed based on Internal Model Control (IMC) strategy. In this paper, we have designed the Lead-Lag based Internal Model Control for binary distillation column for SISO process (considering only bottom product). The transfer function has been taken from Wood and Berry model. We have find the composition control and disturbance rejection using Lead-Lag based IMC and comparing with the response of simple Internal Model Controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SISO" title="SISO">SISO</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-lag" title=" lead-lag"> lead-lag</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20model%20control" title=" internal model control"> internal model control</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20and%20berry" title=" wood and berry"> wood and berry</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation%20column" title=" distillation column "> distillation column </a> </p> <a href="https://publications.waset.org/abstracts/20701/design-of-lead-lag-based-internal-model-controller-for-binary-distillation-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6974</span> Motivational Qualities of and Flow State Responses to Participant-Selected Music and Researcher-Selected Music</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20A.%20Hamzah">Nurul A. Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Morris"> Tony Morris</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Van%20Der%20Westhuizen"> Dan Van Der Westhuizen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Music listening can potentially promote the achievement of flow state during exercise. Selecting music for exercise should consider the motivational factors-internal factors (music tempo and musicality) and external factors (cultural impact and association). This study was a cross-over study which was designed to examine the motivational qualities of music (participant-selected music and researcher-selected music) and flow state responses during exercise accompanying with music. 17 healthy participants (M=30.2, SD=6.3 years old) were among low physical activity individuals. Participants completed two separate sessions of 30 minutes of moderate intensity exercise (40-60% of Heart Rate Reserve) while listening to music. Half the participants at random were assigned to exercise with participant-selected music first, and half were assigned to exercise with researcher-selected music first. Parameters including flow state responses (Flow State Scale-2) and motivational music rating (Brunel Music Rating Inventory-2) were administered immediately after the exercise. Results from this study showed that there were no significant differences for both flow state t(32)=0.00, p>0.05 and motivational music rating t(32)= .393, p>0.05 between exercise with participant-selected music and exercise with researcher-selected music. Listening to music either participant or researcher selected music could promote flow experience during exercise when music is perceived as motivational. Music tempo and music preference are factors that could influence individuals to enjoy exercise and improve the exercise performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motivational%20music" title="motivational music">motivational music</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20state" title=" flow state"> flow state</a>, <a href="https://publications.waset.org/abstracts/search?q=researcher-selected%20music" title=" researcher-selected music"> researcher-selected music</a>, <a href="https://publications.waset.org/abstracts/search?q=participant-selected%20music" title=" participant-selected music"> participant-selected music</a> </p> <a href="https://publications.waset.org/abstracts/50776/motivational-qualities-of-and-flow-state-responses-to-participant-selected-music-and-researcher-selected-music" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=233">233</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=234">234</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=internal%20flow&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>