CINXE.COM

Search results for: frequency modulated continuous wave radar

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: frequency modulated continuous wave radar</title> <meta name="description" content="Search results for: frequency modulated continuous wave radar"> <meta name="keywords" content="frequency modulated continuous wave radar"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="frequency modulated continuous wave radar" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="frequency modulated continuous wave radar"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7561</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: frequency modulated continuous wave radar</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7561</span> A Mini Radar System for Low Altitude Targets Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kangkang%20Wu">Kangkang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaizhi%20Wang"> Kaizhi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Yuan"> Zhijun Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title="unmanned aerial vehicle (UAV)">unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=Block%20Least%20Mean%20Square%20%28Block%20LMS%29%20Algorithm" title=" Block Least Mean Square (Block LMS) Algorithm"> Block Least Mean Square (Block LMS) Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Frequency%20Modulated%20Continuous%20Wave%20%28FMCW%29" title=" Frequency Modulated Continuous Wave (FMCW)"> Frequency Modulated Continuous Wave (FMCW)</a> </p> <a href="https://publications.waset.org/abstracts/71341/a-mini-radar-system-for-low-altitude-targets-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7560</span> Impairments Correction of Six-Port Based Millimeter-Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ohev%20Zion">Dan Ohev Zion</a>, <a href="https://publications.waset.org/abstracts/search?q=Alon%20Cohen"> Alon Cohen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=FMCW%20Radar" title=" FMCW Radar"> FMCW Radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IQ%20mismatch" title=" IQ mismatch"> IQ mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20port" title=" six port"> six port</a> </p> <a href="https://publications.waset.org/abstracts/117510/impairments-correction-of-six-port-based-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7559</span> An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yang">Lu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiyang%20Song"> Meiyang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Yu"> Xiang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhao%20Zhou"> Wenhao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuntao%20Feng"> Chuntao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar" title="frequency modulated continuous wave radar">frequency modulated continuous wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=ICEEMDAN" title=" ICEEMDAN"> ICEEMDAN</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20neural%20network" title=" BP neural network"> BP neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20signs%20signal" title=" vital signs signal"> vital signs signal</a> </p> <a href="https://publications.waset.org/abstracts/150638/an-effective-noise-resistant-frequency-modulation-continuous-wave-radar-vital-sign-signal-detection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7558</span> Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Jeong%20Jin">Ho Jeong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Won%20Seo"> Chang Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Sik%20Cho"> Choon Sik Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20Yong%20Choi"> Bong Yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Kyun%20Na"> Kwang Kyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Rok%20Lee"> Sang Rok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title="compressive sensing">compressive sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=LFM-FSK%20radar" title=" LFM-FSK radar"> LFM-FSK radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20signal%20processing" title=" radar signal processing"> radar signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20algorithm" title=" sparse algorithm"> sparse algorithm</a> </p> <a href="https://publications.waset.org/abstracts/51309/linear-frequency-modulation-frequency-shift-keying-radar-with-compressive-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7557</span> Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Mayr">C. Mayr</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Periya"> J. Periya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kariminezhad"> A. Kariminezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a> </p> <a href="https://publications.waset.org/abstracts/139166/radar-based-classification-of-pedestrian-and-dog-using-high-resolution-raw-range-doppler-signatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7556</span> Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Yu">Xiang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuntao%20Feng"> Chuntao Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yang"> Lu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiyang%20Song"> Meiyang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhao%20Zhou"> Wenhao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FMCW%20radar" title="FMCW radar">FMCW radar</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20detection" title=" fall detection"> fall detection</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20CNN" title=" 3D CNN"> 3D CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20range-doppler%20features" title=" time-varying range-doppler features"> time-varying range-doppler features</a> </p> <a href="https://publications.waset.org/abstracts/150637/frequency-modulation-continuous-wave-radar-human-fall-detection-based-on-time-varying-range-doppler-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7555</span> Coherent Ku-Band Radar for Monitoring Ocean Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Mitchell">Richard Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mitchell"> Robert Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20Duong"> Thai Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungbin%20Bae"> Kyungbin Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegon%20Kim"> Daegon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngsub%20Lee"> Youngsub Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Kim"> Inho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Park"> Inho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungseok%20Lee"> Hyungseok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although X-band radar is commonly used to measure the properties of ocean waves, the use of a higher frequency has several advantages, such as increased backscatter coefficient, better Doppler sensitivity, lower power, and a smaller package. A low-power Ku-band radar system was developed to demonstrate these advantages. It is fully coherent, and it interleaves short and long pulses to achieve a transmit duty ratio of 25%, which makes the best use of solid-state amplifiers. The range scales are 2 km, 4 km, and 8 km. The minimum range is 100 m, 200 m, and 400 m for the three range scales, and the range resolution is 4 m, 8 m, and 16 m for the three range scales. Measurements of the significant wave height, wavelength, wave period, and wave direction have been made using traditional 3D-FFT methods. Radar and ultrasonic sensor results collected over an extended period of time at a coastal site in South Korea are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=measurement%20of%20ocean%20wave%20parameters" title="measurement of ocean wave parameters">measurement of ocean wave parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku-band%20radar" title=" Ku-band radar"> Ku-band radar</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20radar" title=" coherent radar"> coherent radar</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20radar" title=" compact radar"> compact radar</a> </p> <a href="https://publications.waset.org/abstracts/146057/coherent-ku-band-radar-for-monitoring-ocean-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7554</span> Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp" title="chirp">chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=linewidth" title=" linewidth"> linewidth</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/79640/influence-of-strong-optical-feedback-on-frequency-chirp-and-lineshape-broadening-in-high-speed-semiconductor-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7553</span> The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zongmin%20Ma">Zongmin Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaowen%20Zhang"> Shaowen Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueping%20Fu"> Yueping Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Tang"> Jun Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunbo%20Shi"> Yunbo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Liu"> Jun Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen-vacancy%20%28NV%29%20centers" title="nitrogen-vacancy (NV) centers">nitrogen-vacancy (NV) centers</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-modulated%20microwaves" title=" frequency-modulated microwaves"> frequency-modulated microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20sensitivity" title=" magnetic field sensitivity"> magnetic field sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20density" title=" noise density"> noise density</a> </p> <a href="https://publications.waset.org/abstracts/74495/the-high-precision-of-magnetic-detection-with-microwave-modulation-in-solid-spin-assembly-of-nv-centres-in-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7552</span> Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Singh">Monika Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmons" title="surface plasmons">surface plasmons</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20radiation" title=" THz radiation"> THz radiation</a> </p> <a href="https://publications.waset.org/abstracts/65604/terahertz-surface-plasmon-in-carbon-nanotube-dielectric-interface-via-amplitude-modulated-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7551</span> Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Wang">Chao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuxue%20Xia"> Zuxue Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhai%20Xia"> Wenhai Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang"> Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiayuan%20Hu"> Jiayuan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Cheng"> Rui Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20radar" title=" millimeter wave radar"> millimeter wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IWR1443%20sensor" title=" IWR1443 sensor"> IWR1443 sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud%20imaging" title=" point cloud imaging"> point cloud imaging</a> </p> <a href="https://publications.waset.org/abstracts/155483/three-dimensional-positioning-method-of-indoor-personnel-based-on-millimeter-wave-radar-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7550</span> Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bakry"> Ahmed Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title="semiconductor laser">semiconductor laser</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation" title=" modulation"> modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20distortion" title=" harmonic distortion"> harmonic distortion</a> </p> <a href="https://publications.waset.org/abstracts/10588/application-of-strong-optical-feedback-to-enhance-the-modulation-bandwidth-of-semiconductor-lasers-to-the-millimeter-wave-band" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">747</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7549</span> THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaolin%20Allen%20Liao">Shaolin Allen Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hual-Te%20Chien"> Hual-Te Chien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation" title=" modulation"> modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20phase" title=" THz phase"> THz phase</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20interferometry%20doppler%20radar" title=" THz interferometry doppler radar"> THz interferometry doppler radar</a> </p> <a href="https://publications.waset.org/abstracts/48964/thz-phase-extraction-algorithms-for-a-thz-modulating-interferometric-doppler-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7548</span> Vibration Absorption Strategy for Multi-Frequency Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Der%20Chyan%20Lin">Der Chyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessel%20function" title="Bessel function">Bessel function</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20excitation" title=" frequency modulated excitation"> frequency modulated excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorber" title=" vibration absorber"> vibration absorber</a> </p> <a href="https://publications.waset.org/abstracts/132303/vibration-absorption-strategy-for-multi-frequency-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7547</span> Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingtao%20Yu">Qingtao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guojia%20Ma"> Guojia Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface" title="frequency selective surface">frequency selective surface</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared-radar%20compatible" title=" infrared-radar compatible"> infrared-radar compatible</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20infrared%20emissivity" title=" low infrared emissivity"> low infrared emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radar-absorbing%20material" title=" radar-absorbing material"> radar-absorbing material</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/115550/fabricating-an-infrared-radar-compatible-stealth-surface-with-frequency-selective-surface-and-structured-radar-absorbing-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7546</span> Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gigih%20Priyandoko">Gigih Priyandoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fairusham%20Ghazali"> Mohd Fairusham Ghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Siew%20Fun"> Tan Siew Fun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20pipe" title="plastic pipe">plastic pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20acoustic%20modulation" title=" nonlinear acoustic modulation"> nonlinear acoustic modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a> </p> <a href="https://publications.waset.org/abstracts/16837/plastic-pipe-defect-detection-using-nonlinear-acoustic-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7545</span> Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokihiko%20Akita">Tokihiko Akita</a>, <a href="https://publications.waset.org/abstracts/search?q=Seiichi%20Mita"> Seiichi Mita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave%20radar" title="millimeter-wave radar">millimeter-wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20classification" title=" object classification"> object classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a> </p> <a href="https://publications.waset.org/abstracts/164634/accuracy-improvement-of-traffic-participant-classification-using-millimeter-wave-radar-by-leveraging-simulator-based-on-domain-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7544</span> Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subal%20Kar">Subal Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuja%20Ghosh"> Madhuja Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumik%20Das"> Soumik Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Antara%20Saha"> Antara Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FM%20sideband%20injection%20locking" title="FM sideband injection locking">FM sideband injection locking</a>, <a href="https://publications.waset.org/abstracts/search?q=master-slave%20injection%20locking" title=" master-slave injection locking"> master-slave injection locking</a>, <a href="https://publications.waset.org/abstracts/search?q=millimetre-wave%20signal%20generation" title=" millimetre-wave signal generation"> millimetre-wave signal generation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20heterodyning" title=" optical heterodyning"> optical heterodyning</a> </p> <a href="https://publications.waset.org/abstracts/9221/optical-heterodyning-of-injection-locked-laser-sources-a-novel-technique-for-millimeter-wave-signal-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7543</span> FMCW Doppler Radar Measurements with Microstrip Tx-Rx Antennas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ula%C5%9F%20Kabuk%C3%A7u">Yusuf Ulaş Kabukçu</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%CC%87nan%20%C3%87eli%CC%87k"> Si̇nan Çeli̇k</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Salan"> Onur Salan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%CC%87de%20Altunta%C5%9F"> Mai̇de Altuntaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Mert%20Can%20Dalkiran"> Mert Can Dalkiran</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6kseni%CC%87n%20Bozda%C4%9F"> Gökseni̇n Bozdağ</a>, <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Bulut"> Metehan Bulut</a>, <a href="https://publications.waset.org/abstracts/search?q=Fati%CC%87h%20Yaman"> Fati̇h Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a more compact implementation of the 2.4GHz MIT Coffee Can Doppler Radar for 2.6GHz operating frequency. The main difference of our prototype depends on the use of microstrip antennas which makes it possible to transport with a small robotic vehicle. We have designed our radar system with two different channels: Tx and Rx. The system mainly consists of Voltage Controlled Oscillator (VCO) source, low noise amplifiers, microstrip antennas, splitter, mixer, low pass filter, and necessary RF connectors with cables. The two microstrip antennas, one is element for transmitter and the other one is array for receiver channel, was designed, fabricated and verified by experiments. The system has two operation modes: speed detection and range detection. If the switch of the operation mode is ‘Off’, only CW signal transmitted for speed measurement. When the switch is ‘On’, CW is frequency-modulated and range detection is possible. In speed detection mode, high frequency (2.6 GHz) is generated by a VCO, and then amplified to reach a reasonable level of transmit power. Before transmitting the amplified signal through a microstrip patch antenna, a splitter used in order to compare the frequencies of transmitted and received signals. Half of amplified signal (LO) is forwarded to a mixer, which helps us to compare the frequencies of transmitted and received (RF) and has the IF output, or in other words information of Doppler frequency. Then, IF output is filtered and amplified to process the signal digitally. Filtered and amplified signal showing Doppler frequency is used as an input of audio input of a computer. After getting this data Doppler frequency is shown as a speed change on a figure via Matlab script. According to experimental field measurements the accuracy of speed measurement is approximately %90. In range detection mode, a chirp signal is used to form a FM chirp. This FM chirp helps to determine the range of the target since only Doppler frequency measured with CW is not enough for range detection. Such a FMCW Doppler radar may be used in border security of the countries since it is capable of both speed and range detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doppler%20radar" title="doppler radar">doppler radar</a>, <a href="https://publications.waset.org/abstracts/search?q=FMCW" title=" FMCW"> FMCW</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20detection" title=" range detection"> range detection</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20detection" title=" speed detection"> speed detection</a> </p> <a href="https://publications.waset.org/abstracts/49523/fmcw-doppler-radar-measurements-with-microstrip-tx-rx-antennas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7542</span> Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Omri">Asma Omri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iheb%20Sifaoui"> Iheb Sifaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Sayahi"> Sofiane Sayahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Besbes"> Hichem Besbes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistocardiogram" title="ballistocardiogram">ballistocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=FMCW%20Radar" title=" FMCW Radar"> FMCW Radar</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20sign%20monitoring" title=" vital sign monitoring"> vital sign monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a> </p> <a href="https://publications.waset.org/abstracts/175052/contactless-heart-rate-measurement-system-based-on-fmcw-radar-and-lstm-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7541</span> A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Jaysaval">Vinod Kumar Jaysaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Agarwal"> Prateek Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title="airborne radar">airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20zone" title=" blind zone"> blind zone</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a> </p> <a href="https://publications.waset.org/abstracts/13998/a-generalized-model-for-performance-analysis-of-airborne-radar-in-clutter-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7540</span> RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zixian%20Zhang">Zixian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanliang%20Yao"> Shanliang Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zile%20Huang"> Zile Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaodong%20Wu"> Zhaodong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Zhu"> Xiaohui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yue"> Yong Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieming%20Ma"> Jieming Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inland%20waterways" title="inland waterways">inland waterways</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLO" title=" YOLO"> YOLO</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=self-attention" title=" self-attention"> self-attention</a> </p> <a href="https://publications.waset.org/abstracts/164399/rv-yolox-object-detection-on-inland-waterways-based-on-optimized-yolox-through-fusion-of-vision-and-31d-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7539</span> Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Abata">Maryam Abata</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulhime%20El%20Bekkali"> Moulhime El Bekkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mazer"> Said Mazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Algani"> Catherine Algani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Mehdi"> Mahmoud Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15μm pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mm-wave%20band" title="Mm-wave band">Mm-wave band</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20oscillator" title=" local oscillator"> local oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrupler" title=" frequency quadrupler"> frequency quadrupler</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20amplifier" title=" buffer amplifier"> buffer amplifier</a> </p> <a href="https://publications.waset.org/abstracts/26079/design-of-a-phemt-buffer-amplifier-in-mm-wave-band-around-60-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7538</span> Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Ren">Lei Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Hartnett"> Michael Hartnett</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Nash"> Stephen Nash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title="data assimilation">data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=CODAR" title=" CODAR"> CODAR</a>, <a href="https://publications.waset.org/abstracts/search?q=HF%20radar" title=" HF radar"> HF radar</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20current" title=" surface current"> surface current</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20insertion" title=" direct insertion"> direct insertion</a> </p> <a href="https://publications.waset.org/abstracts/14355/sequential-data-assimilation-with-high-frequency-hf-radar-surface-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7537</span> OFDM Radar for High Accuracy Target Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahbube%20Eghtesad">Mahbube Eghtesad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a number of years, the problem of simultaneous detection and tracking of a target has been one of the most relevant and challenging issues in a wide variety of military and civilian systems. We develop methods for detecting and tracking a target using an orthogonal frequency division multiplexing (OFDM) based radar. As a preliminary step we introduce the target trajectory and Gaussian noise model in discrete time form. Then resorting to match filter and Kalman filter we derive a detector and target tracker. After that we propose an OFDM radar in order to achieve further improvement in tracking performance. The motivation for employing multiple frequencies is that the different scattering centers of a target resonate differently at each frequency. Numerical examples illustrate our analytical results, demonstrating the achieved performance improvement due to the OFDM signaling method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matched%20filter" title="matched filter">matched filter</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20trashing" title=" target trashing"> target trashing</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM%20radar" title=" OFDM radar"> OFDM radar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/8926/ofdm-radar-for-high-accuracy-target-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7536</span> System Identification of Building Structures with Continuous Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruichong%20Zhang">Ruichong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Sawaged"> Fadi Sawaged</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Gargab"> Lotfi Gargab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave-based%20approach" title="wave-based approach">wave-based approach</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20responses%20of%20buildings" title=" seismic responses of buildings"> seismic responses of buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation%20in%20structures" title=" wave propagation in structures"> wave propagation in structures</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a> </p> <a href="https://publications.waset.org/abstracts/4908/system-identification-of-building-structures-with-continuous-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7535</span> Sidelobe Free Inverse Synthetic Aperture Radar Imaging of Non Cooperative Moving Targets Using WiFi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiamin%20Huang">Jiamin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuliang%20Gui"> Shuliang Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Zengshan%20Tian"> Zengshan Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Yan"> Fei Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Wu"> Xiaodong Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, with the rapid development of radio frequency technology, the differences between radar sensing and wireless communication in terms of receiving and sending channels, signal processing, data management and control are gradually shrinking. There has been a trend of integrated communication radar sensing. However, most of the existing radar imaging technologies based on communication signals are combined with synthetic aperture radar (SAR) imaging, which does not conform to the practical application case of the integration of communication and radar. Therefore, in this paper proposes a high-precision imaging method using communication signals based on the imaging mechanism of inverse synthetic aperture radar (ISAR) imaging. This method makes full use of the structural characteristics of the orthogonal frequency division multiplexing (OFDM) signal, so the sidelobe effect in distance compression is removed and combines radon transform and Fractional Fourier Transform (FrFT) parameter estimation methods to achieve ISAR imaging of non-cooperative targets. The simulation experiment and measured results verify the feasibility and effectiveness of the method, and prove its broad application prospects in the field of intelligent transportation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integration%20of%20communication%20and%20radar" title="integration of communication and radar">integration of communication and radar</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=radon" title=" radon"> radon</a>, <a href="https://publications.waset.org/abstracts/search?q=FrFT" title=" FrFT"> FrFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ISAR" title=" ISAR"> ISAR</a> </p> <a href="https://publications.waset.org/abstracts/155640/sidelobe-free-inverse-synthetic-aperture-radar-imaging-of-non-cooperative-moving-targets-using-wifi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7534</span> Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Emami">M. Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tarighi"> R. Tarighi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Goodarzi"> R. Goodarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (&epsilon;<sub>r</sub>&#39; and &epsilon;<sub>r</sub>&quot;) and permeability (&micro;<sub>r</sub>&#39; and &micro;<sub>r</sub>&quot;) were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbing" title="absorbing">absorbing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nickel" title=" carbon nickel"> carbon nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=thicknesses" title=" thicknesses"> thicknesses</a> </p> <a href="https://publications.waset.org/abstracts/80056/simulation-of-reflection-loss-for-carbon-and-nickel-carbon-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7533</span> Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Sharma">Swati Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20wind" title="solar wind">solar wind</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersive%20alfven%20wave" title=" dispersive alfven wave"> dispersive alfven wave</a> </p> <a href="https://publications.waset.org/abstracts/14764/solar-wind-turbulence-and-the-role-of-circularly-polarized-dispersive-alfven-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7532</span> Turbulence Modeling and Wave-Current Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Bennis">A. C. Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dumas"> F. Dumas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ardhuin"> F. Ardhuin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Blanke"> B. Blanke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-current%20interactions" title=" wave-current interactions"> wave-current interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rip%20currents" title=" rip currents "> rip currents </a> </p> <a href="https://publications.waset.org/abstracts/20848/turbulence-modeling-and-wave-current-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=252">252</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=253">253</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20continuous%20wave%20radar&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10