CINXE.COM

Search results for: LSTM

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: LSTM</title> <meta name="description" content="Search results for: LSTM"> <meta name="keywords" content="LSTM"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="LSTM" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="LSTM"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 134</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: LSTM</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20Rihane">Ramzi Rihane</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Benayed"> Yassine Benayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title="electroencephalogram">electroencephalogram</a>, <a href="https://publications.waset.org/abstracts/search?q=epileptic%20seizure" title=" epileptic seizure"> epileptic seizure</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=BI-LSTM" title=" BI-LSTM"> BI-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure%20detection" title=" seizure detection"> seizure detection</a> </p> <a href="https://publications.waset.org/abstracts/193110/deep-learning-approaches-for-accurate-detection-of-epileptic-seizures-from-electroencephalogram-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zhao">Lu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Farhi"> Nadir Farhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeltsin%20Valero"> Yeltsin Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoi%20Christoforou"> Zoi Christoforou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Haddadou"> Nadia Haddadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20modeling" title="traffic modeling">traffic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following" title=" car-following"> car-following</a>, <a href="https://publications.waset.org/abstracts/search?q=lane-change" title=" lane-change"> lane-change</a> </p> <a href="https://publications.waset.org/abstracts/139730/long-short-time-memory-neural-networks-for-human-driving-behavior-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suriya">Suriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=AOD" title=" AOD"> AOD</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulaanbaatar" title=" Ulaanbaatar"> Ulaanbaatar</a> </p> <a href="https://publications.waset.org/abstracts/185289/prediction-of-pm25-concentration-in-ulaanbaatar-with-deep-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shibo%20Wei">Shibo Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Jiang"> Ting Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional-recurrent%20neural%20networks" title="convolutional-recurrent neural networks">convolutional-recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20enhancement" title=" speech enhancement"> speech enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20LSTM" title=" residual LSTM"> residual LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=SI-SNR" title=" SI-SNR"> SI-SNR</a> </p> <a href="https://publications.waset.org/abstracts/141010/the-convolution-recurrent-network-of-using-residual-lstm-to-process-the-output-of-the-downsampling-for-monaural-speech-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswathi%20Thrivikraman">Aswathi Thrivikraman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Advaith"> S. Advaith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSTM" title="LSTM">LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=autoencoder" title=" autoencoder"> autoencoder</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=seq2seq%20model" title=" seq2seq model"> seq2seq model</a> </p> <a href="https://publications.waset.org/abstracts/157449/performance-evaluation-of-the-classic-seq2seq-model-versus-a-proposed-semi-supervised-long-short-term-memory-autoencoder-for-time-series-data-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Image Captioning with Vision-Language Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Promise%20Ekpo%20Osaine">Promise Ekpo Osaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Melesse"> Daniel Melesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-modal%20AI%20systems" title="multi-modal AI systems">multi-modal AI systems</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20captioning" title=" image captioning"> image captioning</a>, <a href="https://publications.waset.org/abstracts/search?q=encoder" title=" encoder"> encoder</a>, <a href="https://publications.waset.org/abstracts/search?q=decoder" title=" decoder"> decoder</a>, <a href="https://publications.waset.org/abstracts/search?q=BLUE%20score" title=" BLUE score"> BLUE score</a> </p> <a href="https://publications.waset.org/abstracts/181849/image-captioning-with-vision-language-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingkun%20Huang">Yingkun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guo"> Li Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekang%20Lan"> Zekang Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Tian"> Kai Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HDD%20replacement" title="HDD replacement">HDD replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN-LSTM" title=" CNN-LSTM"> CNN-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=oversampling" title=" oversampling"> oversampling</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/160810/hard-disk-failure-predictions-in-supercomputing-system-based-on-cnn-lstm-and-oversampling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jiaqiao">Xu Jiaqiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20microblog%20comments" title=" Chinese microblog comments"> Chinese microblog comments</a> </p> <a href="https://publications.waset.org/abstracts/154733/sentiment-analysis-of-chinese-microblog-comments-comparison-between-support-vector-machine-and-long-short-term-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Mao">Rui Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Heming%20Ji"> Heming Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Wang"> Xiaoyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keystroke%20dynamics" title="keystroke dynamics">keystroke dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=identity%20authentication" title=" identity authentication"> identity authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a> </p> <a href="https://publications.waset.org/abstracts/146753/acbm-attention-based-cnn-and-bi-lstm-model-for-continuous-identity-authentication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20U.%20Dampage">E. U. Dampage</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovindi%20D.%20Bandara"> Ovindi D. Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinushi%20S.%20Waraketiya"> Vinushi S. Waraketiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Samitha%20S.%20R.%20De%20Silva"> Samitha S. R. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasiru%20S.%20Gunarathne"> Yasiru S. Gunarathne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=inflow" title=" inflow"> inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP" title=" MLP"> MLP</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/126767/artificial-neural-network-for-forecasting-of-daily-reservoir-inflow-case-study-of-the-kotmale-reservoir-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaima%20Babi">Chaima Babi</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Gadri"> Said Gadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language" title=" natural language"> natural language</a>, <a href="https://publications.waset.org/abstracts/search?q=fake%20news" title=" fake news"> fake news</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-LSTM" title=" Bi-LSTM"> Bi-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=multiclass%20classification" title=" multiclass classification"> multiclass classification</a> </p> <a href="https://publications.waset.org/abstracts/176098/efficient-fake-news-detection-using-machine-learning-and-deep-learning-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Mahadi%20Hasan%20Sany">Md. Mahadi Hasan Sany</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumenunnessa%20Keya"> Mumenunnessa Keya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharun%09Khushbu"> Sharun Khushbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Abujar"> Sheikh Abujar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFR" title="RFR">RFR</a>, <a href="https://publications.waset.org/abstracts/search?q=China-U.S.%20trade%20war" title=" China-U.S. trade war"> China-U.S. trade war</a>, <a href="https://publications.waset.org/abstracts/search?q=SVR" title=" SVR"> SVR</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title=" Covid-19"> Covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=export%20value" title=" export value"> export value</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a> </p> <a href="https://publications.waset.org/abstracts/142542/time-series-analysis-the-case-of-china-and-usa-trade-examining-during-covid-19-trade-enormity-of-abnormal-pricing-with-the-exchange-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Research on Air pollution Spatiotemporal Forecast Model Based on LSTM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JingWei%20Yu">JingWei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yang%20Yu"> Hong Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSTM" title="LSTM">LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20prediction" title=" spatio-temporal prediction"> spatio-temporal prediction</a> </p> <a href="https://publications.waset.org/abstracts/147644/research-on-air-pollution-spatiotemporal-forecast-model-based-on-lstm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Prediction on Housing Price Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Yu">Li Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenlu%20Jiao"> Chenlu Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongrun%20Xin"> Hongrun Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiyang%20Wang"> Kaiyang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20prediction" title=" housing prediction"> housing prediction</a> </p> <a href="https://publications.waset.org/abstracts/84747/prediction-on-housing-price-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Detecting Covid-19 Fake News Using Deep Learning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=AnjalI%20A.%20Prasad">AnjalI A. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BERT" title="BERT">BERT</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=RNN" title=" RNN"> RNN</a> </p> <a href="https://publications.waset.org/abstracts/135210/detecting-covid-19-fake-news-using-deep-learning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhang">Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20He"> Jian He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi-LSTM" title="Bi-LSTM">Bi-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CHD" title=" CHD"> CHD</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%C2%A0window" title=" sliding window"> sliding window</a> </p> <a href="https://publications.waset.org/abstracts/165165/an-auxiliary-technique-for-coronary-heart-disease-prediction-by-analyzing-electrocardiogram-based-on-resnet-and-bi-long-short-term-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yujiang%20Wu">Yujiang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20machine" title=" electrical machine"> electrical machine</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20safety" title=" functional safety"> functional safety</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory%20networks%20%28LSTM%29" title=" long short-term memory networks (LSTM)"> long short-term memory networks (LSTM)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20prediction" title=" time series prediction"> time series prediction</a> </p> <a href="https://publications.waset.org/abstracts/170991/electrical-machine-winding-temperature-estimation-using-stateful-long-short-term-memory-networks-lstm-and-truncated-backpropagation-through-time-tbptt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Hate Speech Detection in Tunisian Dialect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helmi%20Baazaoui">Helmi Baazaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Zrigui"> Mounir Zrigui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hate%20speech%20detection" title="hate speech detection">hate speech detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisian%20Arabic" title=" Tunisian Arabic"> Tunisian Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=AraBERT" title=" AraBERT"> AraBERT</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-LSTM" title=" Bi-LSTM"> Bi-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=Gemini%20annotation%20tool" title=" Gemini annotation tool"> Gemini annotation tool</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media%20moderation" title=" social media moderation"> social media moderation</a> </p> <a href="https://publications.waset.org/abstracts/193877/hate-speech-detection-in-tunisian-dialect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abu-Shaira">Mohammad Abu-Shaira</a>, <a href="https://publications.waset.org/abstracts/search?q=Weishi%20Shi"> Weishi Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20drift%20detection%20and%20adaptation" title="automated drift detection and adaptation">automated drift detection and adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20drift" title=" concept drift"> concept drift</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters%20optimization" title=" hyperparameters optimization"> hyperparameters optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20and%20adaptive%20learning" title=" online and adaptive learning"> online and adaptive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/193474/long-short-term-memory-stream-cruise-control-method-for-automated-drift-detection-and-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faz%C4%B1l%20G%C3%B6kg%C3%B6z">Fazıl Gökgöz</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahrettin%20Filiz"> Fahrettin Filiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short%20term%20memory" title=" long short term memory"> long short term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20load%20forecasting" title=" renewable energy load forecasting"> renewable energy load forecasting</a> </p> <a href="https://publications.waset.org/abstracts/91058/deep-learning-for-renewable-power-forecasting-an-approach-using-lstm-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Improving Forecasting Demand for Maintenance Spare Parts: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Afandi">Abdulaziz Afandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP" title=" MLP"> MLP</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20demand" title=" forecasting demand"> forecasting demand</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a> </p> <a href="https://publications.waset.org/abstracts/148574/improving-forecasting-demand-for-maintenance-spare-parts-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Li">Zhe Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Cai"> Aihua Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=track%20initiation" title="track initiation">track initiation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-algorithm%20fusion" title=" multi-algorithm fusion"> multi-algorithm fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=1DCNN" title=" 1DCNN"> 1DCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-LSTM" title=" Bi-LSTM"> Bi-LSTM</a> </p> <a href="https://publications.waset.org/abstracts/173764/track-initiation-method-based-on-multi-algorithm-fusion-learning-of-1dcnn-and-bi-lstm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Market Index Trend Prediction using Deep Learning and Risk Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Alaei">Shervin Alaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Moradi"> Reza Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20prediction" title=" trend prediction"> trend prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a> </p> <a href="https://publications.waset.org/abstracts/148318/market-index-trend-prediction-using-deep-learning-and-risk-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amartya%20Hatua">Amartya Hatua</a>, <a href="https://publications.waset.org/abstracts/search?q=Trung%20Nguyen"> Trung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Sung"> Andrew Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title="ARIMA">ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=DTW" title=" DTW"> DTW</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20diffusion" title=" information diffusion"> information diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=RNN" title=" RNN"> RNN</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20clustering" title=" time series clustering"> time series clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20forecasting" title=" time series forecasting"> time series forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a> </p> <a href="https://publications.waset.org/abstracts/80797/an-approach-for-pattern-recognition-and-prediction-of-information-diffusion-model-on-twitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Yildirim">Mahmut Yildirim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20long%20short-term%20memory" title="bidirectional long short-term memory">bidirectional long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM%20with%20all%20index%20modulation" title=" OFDM with all index modulation"> OFDM with all index modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20detection" title=" signal detection"> signal detection</a> </p> <a href="https://publications.waset.org/abstracts/183512/bidirectional-long-short-term-memory-based-signal-detection-for-orthogonal-frequency-division-multiplexing-with-all-index-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> The Impact of Artificial Intelligence on Spare Parts Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Andria%20Gad%20Shehata">Amir Andria Gad Shehata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spare%20part" title="spare part">spare part</a>, <a href="https://publications.waset.org/abstracts/search?q=spare%20part%20inventory" title=" spare part inventory"> spare part inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20model" title=" inventory model"> inventory model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenanceneural%20network" title=" maintenanceneural network"> maintenanceneural network</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP" title=" MLP"> MLP</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20demand" title=" forecasting demand"> forecasting demand</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a> </p> <a href="https://publications.waset.org/abstracts/184674/the-impact-of-artificial-intelligence-on-spare-parts-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Perez-Gamboa">Sonia Perez-Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingquan%20Sun"> Qingquan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Zhang"> Yan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title=" human activity recognition"> human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20sensor" title=" inertial sensor"> inertial sensor</a> </p> <a href="https://publications.waset.org/abstracts/131782/lightweight-hybrid-convolutional-and-recurrent-neural-networks-for-wearable-sensor-based-human-activity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grienggrai%20Rajchakit">Grienggrai Rajchakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=coronavirus" title=" coronavirus"> coronavirus</a>, <a href="https://publications.waset.org/abstracts/search?q=KAGGLE" title=" KAGGLE"> KAGGLE</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM%20neural%20network" title=" LSTM neural network"> LSTM neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/143094/analysis-and-prediction-of-covid-19-by-using-recurrent-lstm-neural-network-model-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20L%C3%B3pez">Danilo López</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Vera"> Nelson Vera</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Pedraza"> Luis Pedraza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neuronal%20network" title=" recurrent neuronal network"> recurrent neuronal network</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20analysis" title=" mathematical analysis"> mathematical analysis</a> </p> <a href="https://publications.waset.org/abstracts/63507/analysis-of-multilayer-neural-network-modeling-and-long-short-term-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Sadat%20Sadati%20Rostami">Anita Sadat Sadati Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Almasi%20Ghaleh"> Reza Almasi Ghaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20electromyography" title="surface electromyography">surface electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM-transformer" title=" LSTM-transformer"> LSTM-transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=spiking%20neural%20networks" title=" spiking neural networks"> spiking neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20kinematics" title=" hand kinematics"> hand kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=leaky%20integrate-and-fire%20neuron" title=" leaky integrate-and-fire neuron"> leaky integrate-and-fire neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=band-pass%20filtering" title=" band-pass filtering"> band-pass filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20activity%20decoding" title=" muscle activity decoding"> muscle activity decoding</a> </p> <a href="https://publications.waset.org/abstracts/194648/regression-of-hand-kinematics-from-surface-electromyography-data-using-an-long-short-term-memory-transformer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LSTM&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LSTM&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LSTM&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LSTM&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LSTM&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10