CINXE.COM

William Patterson | University of Saskatchewan - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>William Patterson | University of Saskatchewan - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="3FRtKoQBiRe4BlORJGOAYiY5-G-dvkk951inXsMpKyhFiWAMvae8WwU3DhhxvChAHLNYNN66NRDIsF7Z1WiGvw" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-d1941ab08e91e29ee143084c4749da4aaffa350a2ac6eec2306b1d7a352d911a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="william patterson" /> <meta name="description" content="Bill grew up in Youngstown Ohio and spent a year and a half in Bountiful Utah. He attended Youngstown State University while working afternoon and midnight…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b092bf3a3df71cf13feee7c143e83a57eb6b94fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14029,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":283059219,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739859130000); window.Aedu.timeDifference = new Date().getTime() - 1739859130000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://usask.academia.edu/WilliamPatterson" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson","photo":"https://0.academia-photos.com/32573/10547/9932/s65_william.patterson.jpg","has_photo":true,"department":{"id":22305,"name":"Geological Sciences","url":"https://usask.academia.edu/Departments/Geological_Sciences/Documents","university":{"id":853,"name":"University of Saskatchewan","url":"https://usask.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":true,"interests":[{"id":3407,"name":"Environmental Studies","url":"https://www.academia.edu/Documents/in/Environmental_Studies"},{"id":7870,"name":"Medieval Archaeology","url":"https://www.academia.edu/Documents/in/Medieval_Archaeology"},{"id":1446,"name":"Medieval History","url":"https://www.academia.edu/Documents/in/Medieval_History"},{"id":130,"name":"Ancient History","url":"https://www.academia.edu/Documents/in/Ancient_History"},{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":392,"name":"Archaeology","url":"https://www.academia.edu/Documents/in/Archaeology"},{"id":399,"name":"Prehistoric Archaeology","url":"https://www.academia.edu/Documents/in/Prehistoric_Archaeology"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":767,"name":"Anthropology","url":"https://www.academia.edu/Documents/in/Anthropology"},{"id":1041,"name":"Forestry","url":"https://www.academia.edu/Documents/in/Forestry"},{"id":1372,"name":"Architecture","url":"https://www.academia.edu/Documents/in/Architecture"},{"id":1392,"name":"Celtic Studies","url":"https://www.academia.edu/Documents/in/Celtic_Studies"},{"id":1393,"name":"Irish (early and modern)","url":"https://www.academia.edu/Documents/in/Irish_early_and_modern_"},{"id":1396,"name":"Welsh","url":"https://www.academia.edu/Documents/in/Welsh"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":1624,"name":"Zooarchaeology","url":"https://www.academia.edu/Documents/in/Zooarchaeology"},{"id":1703,"name":"Stable Isotope Analysis","url":"https://www.academia.edu/Documents/in/Stable_Isotope_Analysis"},{"id":1723,"name":"Palaeoenvironment","url":"https://www.academia.edu/Documents/in/Palaeoenvironment"},{"id":1914,"name":"Wilderness (Environment)","url":"https://www.academia.edu/Documents/in/Wilderness_Environment_"},{"id":1999,"name":"Limnology","url":"https://www.academia.edu/Documents/in/Limnology"},{"id":2395,"name":"Mexican Studies","url":"https://www.academia.edu/Documents/in/Mexican_Studies"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":2844,"name":"Arctic Social Science","url":"https://www.academia.edu/Documents/in/Arctic_Social_Science"},{"id":2864,"name":"U.S. history","url":"https://www.academia.edu/Documents/in/U.S._history"},{"id":2939,"name":"Fish Remains (Zooarchaeology)","url":"https://www.academia.edu/Documents/in/Fish_Remains_Zooarchaeology_"},{"id":3528,"name":"Agroecology","url":"https://www.academia.edu/Documents/in/Agroecology"},{"id":3531,"name":"Traditional and subsistence agriculture","url":"https://www.academia.edu/Documents/in/Traditional_and_subsistence_agriculture"},{"id":25663,"name":"Aegean Archaeology","url":"https://www.academia.edu/Documents/in/Aegean_Archaeology"},{"id":1729,"name":"German History","url":"https://www.academia.edu/Documents/in/German_History"},{"id":4037,"name":"Environmetal Earth Science","url":"https://www.academia.edu/Documents/in/Environmetal_Earth_Science"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":4816,"name":"Tropical Ecology","url":"https://www.academia.edu/Documents/in/Tropical_Ecology"},{"id":5053,"name":"North American (Archaeology)","url":"https://www.academia.edu/Documents/in/North_American_Archaeology_"},{"id":5095,"name":"Aztecs","url":"https://www.academia.edu/Documents/in/Aztecs"},{"id":5231,"name":"Eighteenth Century History","url":"https://www.academia.edu/Documents/in/Eighteenth_Century_History"},{"id":5305,"name":"Scottish Studies","url":"https://www.academia.edu/Documents/in/Scottish_Studies"},{"id":5440,"name":"Midden analysis","url":"https://www.academia.edu/Documents/in/Midden_analysis"},{"id":6225,"name":"Civil War","url":"https://www.academia.edu/Documents/in/Civil_War"},{"id":6232,"name":"Climatic Changes","url":"https://www.academia.edu/Documents/in/Climatic_Changes"},{"id":15263,"name":"First World War","url":"https://www.academia.edu/Documents/in/First_World_War"},{"id":6326,"name":"Central European history","url":"https://www.academia.edu/Documents/in/Central_European_history"},{"id":6541,"name":"World History","url":"https://www.academia.edu/Documents/in/World_History"},{"id":6556,"name":"Colonialism","url":"https://www.academia.edu/Documents/in/Colonialism"},{"id":6577,"name":"Climate Change In Aquatic Systems","url":"https://www.academia.edu/Documents/in/Climate_Change_In_Aquatic_Systems"},{"id":6697,"name":"Australia","url":"https://www.academia.edu/Documents/in/Australia"},{"id":6902,"name":"Witch Hunt Studies","url":"https://www.academia.edu/Documents/in/Witch_Hunt_Studies"},{"id":7051,"name":"Invertebrates","url":"https://www.academia.edu/Documents/in/Invertebrates"},{"id":7080,"name":"Freshwater Biology","url":"https://www.academia.edu/Documents/in/Freshwater_Biology"},{"id":7381,"name":"Arid Land Ecology","url":"https://www.academia.edu/Documents/in/Arid_Land_Ecology"},{"id":7421,"name":"Tropical Meteorology","url":"https://www.academia.edu/Documents/in/Tropical_Meteorology"},{"id":7460,"name":"Weather Risks","url":"https://www.academia.edu/Documents/in/Weather_Risks"},{"id":7617,"name":"Medieval Church History","url":"https://www.academia.edu/Documents/in/Medieval_Church_History"},{"id":7629,"name":"Early Medieval History","url":"https://www.academia.edu/Documents/in/Early_Medieval_History"},{"id":7637,"name":"Paleography","url":"https://www.academia.edu/Documents/in/Paleography"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":7941,"name":"Stable Isotopes","url":"https://www.academia.edu/Documents/in/Stable_Isotopes"},{"id":131,"name":"European History","url":"https://www.academia.edu/Documents/in/European_History"},{"id":3754,"name":"Climatology","url":"https://www.academia.edu/Documents/in/Climatology"},{"id":410,"name":"Glaciology","url":"https://www.academia.edu/Documents/in/Glaciology"},{"id":2259,"name":"Paleoceanography","url":"https://www.academia.edu/Documents/in/Paleoceanography"},{"id":17825,"name":"Biodiversity","url":"https://www.academia.edu/Documents/in/Biodiversity"},{"id":6215,"name":"Biomineralisation","url":"https://www.academia.edu/Documents/in/Biomineralisation"},{"id":7807,"name":"Coral Reefs","url":"https://www.academia.edu/Documents/in/Coral_Reefs"},{"id":2118,"name":"Atmospheric Chemistry","url":"https://www.academia.edu/Documents/in/Atmospheric_Chemistry"},{"id":4548,"name":"Palaeolithic Archaeology","url":"https://www.academia.edu/Documents/in/Palaeolithic_Archaeology"},{"id":5214,"name":"Cold War","url":"https://www.academia.edu/Documents/in/Cold_War"},{"id":16213,"name":"Folk Music","url":"https://www.academia.edu/Documents/in/Folk_Music"},{"id":17823,"name":"Biogeography","url":"https://www.academia.edu/Documents/in/Biogeography"},{"id":2324,"name":"British History","url":"https://www.academia.edu/Documents/in/British_History"},{"id":5634,"name":"Scottish History","url":"https://www.academia.edu/Documents/in/Scottish_History"},{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":3755,"name":"Meteorology","url":"https://www.academia.edu/Documents/in/Meteorology"},{"id":787,"name":"Folklore","url":"https://www.academia.edu/Documents/in/Folklore"},{"id":10225,"name":"Agriculture","url":"https://www.academia.edu/Documents/in/Agriculture"},{"id":386,"name":"Irish Studies","url":"https://www.academia.edu/Documents/in/Irish_Studies"},{"id":3722,"name":"Environmental History","url":"https://www.academia.edu/Documents/in/Environmental_History"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":2258,"name":"Paleoclimatology","url":"https://www.academia.edu/Documents/in/Paleoclimatology"},{"id":108587,"name":"Carbonate Dissolution","url":"https://www.academia.edu/Documents/in/Carbonate_Dissolution"},{"id":18845,"name":"Environmental Sustainability","url":"https://www.academia.edu/Documents/in/Environmental_Sustainability"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":68030,"link":"http://geochemistry.usask.ca/bill.html","name":"Homepage","link_domain":"geochemistry.usask.ca","icon":"//www.google.com/s2/u/0/favicons?domain=geochemistry.usask.ca"},{"id":68031,"link":"http://geochemistry.usask.ca/bill.html","name":"Bill's website","link_domain":"geochemistry.usask.ca","icon":"//www.google.com/s2/u/0/favicons?domain=geochemistry.usask.ca"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://usask.academia.edu/WilliamPatterson&quot;,&quot;location&quot;:&quot;/WilliamPatterson&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;usask.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/WilliamPatterson&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c2c41f2e-34bb-49dc-a75f-20d21de3830c"></div> <div id="ProfileCheckPaperUpdate-react-component-c2c41f2e-34bb-49dc-a75f-20d21de3830c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="William Patterson" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/32573/10547/9932/s200_william.patterson.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">William Patterson</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://usask.academia.edu/">University of Saskatchewan</a>, <a class="u-tcGrayDarker" href="https://usask.academia.edu/Departments/Geological_Sciences/Documents">Geological Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="William" data-follow-user-id="32573" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32573"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">431</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">46</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">16</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/WilliamPatterson/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><a href="https://usask.academia.edu/WilliamPatterson/Analytics"><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></a></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Bill grew up in Youngstown Ohio and spent a year and a half in Bountiful Utah. He attended Youngstown State University while working afternoon and midnight turn shifts at Syro Steel in Girard Ohio. <br />After receiving his B.S. degree in Geology and Biology, he worked as a geologist and materials inspector in St. Louis Missouri before starting graduate school at Washington University in St. Louis. He transferred to the University of Michigan when his M.S. thesis advisor took a faculty position there.<br />Bill obtained a M.S. in aqueous geochemistry and oceanography with advisor Lynn Walter and then went on to finish a PhD with Gerald Smith and Kyger Lohmann. Hired directly out of grad school, Bill was a professor at Syracuse university 2 days after defending his PhD. <br />At Syracuse, Bill designed and built the Syracuse Stable Isotope Laboratory. After being promoted to Associate Professor at Syracuse, Bill was offered a position as Co-Director of the much larger Saskatchewan Isotope Laboratory in Saskatoon Saskatchewan.<br />In Saskatchewan, Bill continued to develop new analytical tools and techniques. The lab now houses 8 mass spectrometers and is capable of performing a tremendous variety of analytical procedures.<br />Today, Bill conducts research on all seven continents and works with National Geographic in the Arctic and Antarctic as a naturalist. He enjoys music, motorcycles, photography, art, language, culture, and many other interests.<br /><span class="u-fw700">Phone:&nbsp;</span>1-306-966-5691<br /><b>Address:&nbsp;</b>Saskatchewan Isotope Laboratory<br />114 Science Place<br />Saskatoon SK S7N5E2<br />Canada<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unine.academia.edu/HoneggerMatthieu"><img class="profile-avatar u-positionAbsolute" alt="Honegger Matthieu" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2824925/1687515/2026890/s200_honegger.matthieu.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unine.academia.edu/HoneggerMatthieu">Honegger Matthieu</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Neuchâtel</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://imep-cnrs.academia.edu/AlessandraVaralli"><img class="profile-avatar u-positionAbsolute" alt="Alessandra Varalli" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/325442/136062/3149280/s200_alessandra.varalli.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://imep-cnrs.academia.edu/AlessandraVaralli">Alessandra Varalli</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Université d&#39;Aix-Marseille / CNRS</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unige.academia.edu/MireilleDavid"><img class="profile-avatar u-positionAbsolute" alt="Mireille David-Elbiali" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2621620/1014737/1268648/s200_mireille.david.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unige.academia.edu/MireilleDavid">Mireille David-Elbiali</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Université de Genève</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unige.academia.edu/MarieBesse"><img class="profile-avatar u-positionAbsolute" alt="Marie Besse" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/8646342/2878863/74775857/s200_marie.besse.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unige.academia.edu/MarieBesse">Marie Besse</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Université de Genève</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ugent.academia.edu/KoenDeforce"><img class="profile-avatar u-positionAbsolute" alt="Koen Deforce" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2344500/756403/51216990/s200_koen.deforce.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ugent.academia.edu/KoenDeforce">Koen Deforce</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Ghent University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://durham.academia.edu/MikeJChurch"><img class="profile-avatar u-positionAbsolute" alt="Mike Church" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/273411/56696/57967/s200_mike.church.273411" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://durham.academia.edu/MikeJChurch">Mike Church</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Durham University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PhilippeCromb%C3%A9"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PhilippeCromb%C3%A9">Philippe Crombé</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/Kvavadze"><img class="profile-avatar u-positionAbsolute" alt="Eliso Kvavadze" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/262525180/114223390/103500319/s200_eliso.kvavadze.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/Kvavadze">Eliso Kvavadze</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unibuc.academia.edu/AnaGarc%C3%ADaV%C3%A1zquez"><img class="profile-avatar u-positionAbsolute" alt="Ana García-Vázquez" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/298886/73747/80545/s200_ana.garc_a-v_zquez.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unibuc.academia.edu/AnaGarc%C3%ADaV%C3%A1zquez">Ana García-Vázquez</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Bucharest</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://naturalsciences-be.academia.edu/WimVanNeer"><img class="profile-avatar u-positionAbsolute" alt="Wim Van Neer" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2712072/872291/29763136/s200_wim.van_neer.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://naturalsciences-be.academia.edu/WimVanNeer">Wim Van Neer</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Royal Belgian Institute of Natural Sciences</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="32573">View All (82)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32573" href="https://www.academia.edu/Documents/in/Environmental_Studies"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://usask.academia.edu/WilliamPatterson&quot;,&quot;location&quot;:&quot;/WilliamPatterson&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;usask.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/WilliamPatterson&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Environmental Studies&quot;]}" data-trace="false" data-dom-id="Pill-react-component-77ff2caa-d945-48b9-981a-cbc206156d28"></div> <div id="Pill-react-component-77ff2caa-d945-48b9-981a-cbc206156d28"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32573" href="https://www.academia.edu/Documents/in/Medieval_Archaeology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Medieval Archaeology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a0b2c384-d8ca-4cc7-b9ff-01ccaaf1374b"></div> <div id="Pill-react-component-a0b2c384-d8ca-4cc7-b9ff-01ccaaf1374b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32573" href="https://www.academia.edu/Documents/in/Medieval_History"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Medieval History&quot;]}" data-trace="false" data-dom-id="Pill-react-component-398900e1-fd9b-448d-877f-789ddbc95d14"></div> <div id="Pill-react-component-398900e1-fd9b-448d-877f-789ddbc95d14"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32573" href="https://www.academia.edu/Documents/in/Ancient_History"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Ancient History&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d9be582a-02c2-487c-87c2-e76d9a7dd5d6"></div> <div id="Pill-react-component-d9be582a-02c2-487c-87c2-e76d9a7dd5d6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32573" href="https://www.academia.edu/Documents/in/Botany"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Botany&quot;]}" data-trace="false" data-dom-id="Pill-react-component-deb734c0-a4cb-4ed3-85be-ba5db38edc3a"></div> <div id="Pill-react-component-deb734c0-a4cb-4ed3-85be-ba5db38edc3a"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="left-most js-UserInfo-social-cv" data-broccoli-component="user-info.cv-button" data-click-track="profile-user-info-cv" data-cv-filename="Curriculum_Vitae_New.doc" data-placement="top" data-toggle="tooltip" href="/WilliamPatterson/CurriculumVitae"><button class="ds2-5-text-link ds2-5-text-link--small" style="font-size: 20px; letter-spacing: 0.8px"><span class="ds2-5-text-link__content">CV</span></button></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by William Patterson</h3></div><div class="js-work-strip profile--work_container" data-work-id="108960265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108960265/Gron_K_J_Gr%C3%B6cke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_"><img alt="Research paper thumbnail of Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)" class="work-thumbnail" src="https://attachments.academia-assets.com/107215362/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108960265/Gron_K_J_Gr%C3%B6cke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_">Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://naturalsciences-be.academia.edu/WimVanNeer">Wim Van Neer</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://usask.academia.edu/WilliamPatterson">William Patterson</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 20...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh &amp; N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8e56982e84fe2fe9e4e600e312a1c07c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:107215362,&quot;asset_id&quot;:108960265,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/107215362/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108960265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108960265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108960265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108960265]").text(description); $(".js-view-count[data-work-id=108960265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108960265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108960265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8e56982e84fe2fe9e4e600e312a1c07c" } } $('.js-work-strip[data-work-id=108960265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108960265,"title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)","translated_title":"","metadata":{"abstract":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh \u0026 N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.","ai_title_tag":"Isotopic Analysis of Agriculture in Swifterbant Period"},"translated_abstract":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh \u0026 N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.","internal_url":"https://www.academia.edu/108960265/Gron_K_J_Gr%C3%B6cke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_","translated_internal_url":"","created_at":"2023-11-07T07:44:35.011-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2712072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":40516972,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":333909,"co_author_invite_id":null,"email":"h***n@hotmail.co.uk","affiliation":"University of York","display_order":1,"name":"Harry K Robson","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516973,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":32573,"co_author_invite_id":null,"email":"B***n@usask.ca","affiliation":"University of Saskatchewan","display_order":2,"name":"William Patterson","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516974,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":41073294,"co_author_invite_id":null,"email":"p***y@durham.ac.uk","affiliation":"Durham University","display_order":3,"name":"Peter Rowley-Conwy","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516975,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":null,"co_author_invite_id":6794333,"email":"k***n@durham.ac.uk","display_order":4,"name":"Kurt Gron","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516976,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":856422,"co_author_invite_id":null,"email":"d***e@durham.ac.uk","affiliation":"Durham University","display_order":5,"name":"Darren Gröcke","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516977,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":273411,"co_author_invite_id":null,"email":"m***h@durham.ac.uk","affiliation":"Durham University","display_order":6,"name":"Mike Church","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"}],"downloadable_attachments":[{"id":107215362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107215362/thumbnails/1.jpg","file_name":"Gron_2023_SW_stable_isotopes.pdf","download_url":"https://www.academia.edu/attachments/107215362/download_file","bulk_download_file_name":"Gron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107215362/Gron_2023_SW_stable_isotopes-libre.pdf?1699373341=\u0026response-content-disposition=attachment%3B+filename%3DGron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf\u0026Expires=1738736188\u0026Signature=DIfB5Sja0GKYsxV-M~gpxuloa94WCfI8kjoqR2qq1oH7PV1~KZtsPhMZ1Ljs2-Mgs5RRz2ydDtNJxhKE8T7zl1ZZoeldxR3qvS0O0E-BdbMo5JLkLiunPfE6BL6pkTCyH6J6IXfRr8gSoTDsf-gQ5xnl-bTs9NCpakF~6r6uZwr6duDMMi4Aj2jXSDHGgBOpyDXJh3yimghZ-WnOG0LbToTCe2bStB9~GCuJ-LKvrShZXw0mzII4URGfMNHlikkGsQEe0RIXbnQUxwsT~9TGkMLOv1FX0wxhWgZVQZ8pkpgRKfXCYnLk6lpJCfebdsut7qamy-ECCIGMUJyRecC4gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gron_K_J_Gröcke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh \u0026 N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.","owner":{"id":2712072,"first_name":"Wim","middle_initials":"","last_name":"Van Neer","page_name":"WimVanNeer","domain_name":"naturalsciences-be","created_at":"2012-11-01T02:19:16.095-07:00","display_name":"Wim Van Neer","url":"https://naturalsciences-be.academia.edu/WimVanNeer"},"attachments":[{"id":107215362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107215362/thumbnails/1.jpg","file_name":"Gron_2023_SW_stable_isotopes.pdf","download_url":"https://www.academia.edu/attachments/107215362/download_file","bulk_download_file_name":"Gron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107215362/Gron_2023_SW_stable_isotopes-libre.pdf?1699373341=\u0026response-content-disposition=attachment%3B+filename%3DGron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf\u0026Expires=1738736188\u0026Signature=DIfB5Sja0GKYsxV-M~gpxuloa94WCfI8kjoqR2qq1oH7PV1~KZtsPhMZ1Ljs2-Mgs5RRz2ydDtNJxhKE8T7zl1ZZoeldxR3qvS0O0E-BdbMo5JLkLiunPfE6BL6pkTCyH6J6IXfRr8gSoTDsf-gQ5xnl-bTs9NCpakF~6r6uZwr6duDMMi4Aj2jXSDHGgBOpyDXJh3yimghZ-WnOG0LbToTCe2bStB9~GCuJ-LKvrShZXw0mzII4URGfMNHlikkGsQEe0RIXbnQUxwsT~9TGkMLOv1FX0wxhWgZVQZ8pkpgRKfXCYnLk6lpJCfebdsut7qamy-ECCIGMUJyRecC4gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="105364944"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105364944/Estimates_of_Arctic_land_surface_temperatures_during_the_early_Pliocene_from_two_novel_proxies"><img alt="Research paper thumbnail of Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies" class="work-thumbnail" src="https://attachments.academia-assets.com/104838558/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105364944/Estimates_of_Arctic_land_surface_temperatures_during_the_early_Pliocene_from_two_novel_proxies">Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">During the Pliocene (2.6 to 5 Ma ago) atmospheric CO 2 levels have been estimated as similar to o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">During the Pliocene (2.6 to 5 Ma ago) atmospheric CO 2 levels have been estimated as similar to or slightly above present levels (Tripati et al., 2009; Pagani et al., 2010), and yet Earth&#39;s climate was considerably different. Recent evidence suggests that although global temperatures were 2-3°C warmer than pre-industrial, Arctic warming may have been amplified during the Pliocene. Thus precise temperature records of this interval are required to assess the sensitivity of Earth&#39;s climate to persistent levels of CO 2 between 365 and 415 ppm.We present records of two independent proxies for terrestrial growing-season temperatures at the Early Pliocene Beaver Pond site on Ellesmere Island. δ 18 O values of cellulose from well-preserved peat constrain the δ 18 O values of meteoric water to −20.7± 0.3‰, which we combined with δ 18 Ovalues of aragonitic freshwater molluscs found within the peat in order to calculate mollusc growth temperatures. This approach results in an average growing-season temperature of 14.2± 1.3°C. Temperatures were independently derived by applying carbonate &#39;clumped isotope&#39; thermometry to mollusc shells from the same site, indicating an average growing-season temperature of 10.2± 1.4°C. A one-way ANOVA indicates that the differences between the two techniques are not significant as the difference in mean temperatures between both methods is no different than the difference between individual shells using a single technique. Both techniques indicate temperatures~11-16°C warmer than present (May-Sept temperature = −1.6 ± 1.3°C) and represent the first thermodynamic proxy results for Early Pliocene Ellesmere Island.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6116ebbc4420ddc64a7d709380a06719" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104838558,&quot;asset_id&quot;:105364944,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104838558/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105364944"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105364944"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105364944; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105364944]").text(description); $(".js-view-count[data-work-id=105364944]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105364944; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105364944']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6116ebbc4420ddc64a7d709380a06719" } } $('.js-work-strip[data-work-id=105364944]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105364944,"title":"Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies","internal_url":"https://www.academia.edu/105364944/Estimates_of_Arctic_land_surface_temperatures_during_the_early_Pliocene_from_two_novel_proxies","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":104838558,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104838558/thumbnails/1.jpg","file_name":"Csank_ArcticTempNovelProxies_EPS_2011.pdf","download_url":"https://www.academia.edu/attachments/104838558/download_file","bulk_download_file_name":"Estimates_of_Arctic_land_surface_tempera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104838558/Csank_ArcticTempNovelProxies_EPS_2011-libre.pdf?1691464614=\u0026response-content-disposition=attachment%3B+filename%3DEstimates_of_Arctic_land_surface_tempera.pdf\u0026Expires=1739389390\u0026Signature=PM5VdjqverPeHDrY9IiKR1~k3SAPsudyHMwoT4dwuoCyDOYV-iOIhOxGRrDhgN~YuwfONoKRe-OLMV~oq6zHcVMGddOUI5Io2-axGgGcQc4o77keKZW7Els61GqHlhAONTF01bEOBC~do~fQngrBkrEt69VqftoiNALa3n2P9NMn-8oPYLNpoJtCa86SS3c3FxP4s7yEPH1wfvX0S9ofeF3~BgM2baljmMs47Yl5eelMzdQ1rAzUhGmWbxikC5CT3chMz5ZlSAj4JdI61N--i0s-kF~C~iCX91MxuwaQaDXKrmU-Mba0-193EIL8~PQvjmiT3bUVzYrRBgbcXefxIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96480615"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96480615/Regional_differences_in_bone_collagen_%CE%B413C_and_%CE%B415N_of_Pleistocene_mammoths_Implications_for_paleoecology_of_the_mammoth_steppe"><img alt="Research paper thumbnail of Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe" class="work-thumbnail" src="https://attachments.academia-assets.com/98368067/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96480615/Regional_differences_in_bone_collagen_%CE%B413C_and_%CE%B415N_of_Pleistocene_mammoths_Implications_for_paleoecology_of_the_mammoth_steppe">Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this study, we present bone collagen δ 13 C and δ 15 N values from a large set of Pleistocene ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this study, we present bone collagen δ 13 C and δ 15 N values from a large set of Pleistocene woolly mammoths (Mammuthus primigenius) from Siberia, Alaska and Yukon. Overall, results for mammoth specimens from eastern Beringia (Alaska and Yukon) significantly differ, for both δ 13 C and δ 15 N values, from those from western Beringia (northeastern Siberia). In agreement with palynological, entomological, and physiographic data from the same regions, these isotopic differences strongly imply that the &#39;mammoth steppe,&#39; the extensive ice-free region spanning northern Eurasia and northwestern North America, was ecologically variable along its east-west axis to a significant degree. Prior to the Last Glacial Maximum (LGM), the high-latitude portions of Siberia and the Russian Far East appear to have been colder and more arid than central Alaska and Yukon, which were ecologically more diverse. During the LGM itself, however, isotopic signatures of mammoths from eastern Beringia support the argument that this region also experienced an extremely cold and arid climate. In terms of overall temporal trend, Beringia thus went from a condition prior to the LGM of greater ecological variability in the east to one of uniformly cold and dry conditions during the LGM.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05674efe8a556adabbfb786b119ea96c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98368067,&quot;asset_id&quot;:96480615,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98368067/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96480615"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96480615"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96480615; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96480615]").text(description); $(".js-view-count[data-work-id=96480615]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96480615; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96480615']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05674efe8a556adabbfb786b119ea96c" } } $('.js-work-strip[data-work-id=96480615]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96480615,"title":"Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe","internal_url":"https://www.academia.edu/96480615/Regional_differences_in_bone_collagen_%CE%B413C_and_%CE%B415N_of_Pleistocene_mammoths_Implications_for_paleoecology_of_the_mammoth_steppe","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":98368067,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98368067/thumbnails/1.jpg","file_name":"76b0b0_3fb13c47090844cd904e1e9d445fd143.pdf","download_url":"https://www.academia.edu/attachments/98368067/download_file","bulk_download_file_name":"Regional_differences_in_bone_collagen_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98368067/76b0b0_3fb13c47090844cd904e1e9d445fd143-libre.pdf?1675805860=\u0026response-content-disposition=attachment%3B+filename%3DRegional_differences_in_bone_collagen_1.pdf\u0026Expires=1739862729\u0026Signature=V~aBdSoe7o0G8SvB0RzXgFZJJPLvu2eRZ37qNMcLSKQZkHKtW0hPyCmjAYdQzuNW7OF8QCZvSe8jUbsyKAL1htE3BSStFIyuuRopHdzhNz69KcAL2zHWyQZbN0oKFfpgHVQcRtxgaw6jiGAW-7EBviELP5uNy5sxkJhi~rrSSSxb53yMfNNG4UwBN62BulDIew8UjTxMuH6bSCbLquEEwdUUawQbS8uifPkXec-84cGGWJhqjP7uvyk4RjJAlqzW~LQ-MV1ajbQtrWojgHG~ZBJMb3~s084ctgJHsbrxfoflfBkVuad8omyRrsduo5qt67j-wvQZHUULHgJf89rlYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978963"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978963/Cooler_winters_as_a_possible_cause_of_mass_extinctions_at_the_Eocene_Oligocene_boundary"><img alt="Research paper thumbnail of Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary" class="work-thumbnail" src="https://attachments.academia-assets.com/95843976/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978963/Cooler_winters_as_a_possible_cause_of_mass_extinctions_at_the_Eocene_Oligocene_boundary">Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary</a></div><div class="wp-workCard_item"><span>Nature</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of mar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period 1. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time 2,3. A temperature change across this boundaryÐfrom warm Eocene climates to cooler conditions in the OligoceneÐhas been suggested as a cause of this extinction event 4 , but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in ®sh otolithsÐear stonesÐcollected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9d6e6d201fd43b56b5c9a4e6b13f086" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843976,&quot;asset_id&quot;:92978963,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843976/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978963"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978963"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978963; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978963]").text(description); $(".js-view-count[data-work-id=92978963]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978963; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978963']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9d6e6d201fd43b56b5c9a4e6b13f086" } } $('.js-work-strip[data-work-id=92978963]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978963,"title":"Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary","internal_url":"https://www.academia.edu/92978963/Cooler_winters_as_a_possible_cause_of_mass_extinctions_at_the_Eocene_Oligocene_boundary","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843976/thumbnails/1.jpg","file_name":"407887a0.pdf","download_url":"https://www.academia.edu/attachments/95843976/download_file","bulk_download_file_name":"Cooler_winters_as_a_possible_cause_of_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843976/407887a0-libre.pdf?1671139252=\u0026response-content-disposition=attachment%3B+filename%3DCooler_winters_as_a_possible_cause_of_ma.pdf\u0026Expires=1739862729\u0026Signature=Zq43xoWPiSh~hAINvQ~1xlz3EdPXXuCQab-N4VpuURzVbAG-RF0co7CeG3pQOlRzTZaO4evuQljDPe1pJ4tNF9HCoajtBxVGsiM1prAmudqyrdVf9y9lfNbCq2KhA5YkdS3AxnUAtjGQpgYGN6aDdNTUmQvIG1l2re8E3ghTrnh5PT5m6y7ZvVrV87M3QxUWjzYTC58Vfo7U19skIFju1iumBQv05YT8Dg0434G8xtdXZqoljpzynjPhh9BgwrQGvAWWFh83uSWrSSuTBKRFVoy7iJtlc8eVeLRmCc6FUxaMWBpj8P~Jx5yKP9nFs8buyGJGUUrOSJx79lZZHW12jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978962"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978962/Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_%CE%B418O_values_of_sagittal_otoliths"><img alt="Research paper thumbnail of Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths" class="work-thumbnail" src="https://attachments.academia-assets.com/95844008/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978962/Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_%CE%B418O_values_of_sagittal_otoliths">Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal otoliths recovered from the Eastman rockshelter archaeological site in northeast Tennessee to evaluate climate change for the eastern interior United States from 5500 calendar years ago to the present. Micromilled samples representing less than six days of otolith growth were extracted to acquire high-resolution intra-otolith variation in d 18 O values. Freshwater drum sagittal otoliths form annual bands due to thermally induced growth cessation below 108C. d 18 O H 2 O values can be calculated once a high-resolution carbonate sample representing the beginning of the growing season is isolated. Maximum summer temperature can be calculated using the seasonal minimum d 18 O CaCO 3 value and the d 18 O H 2 O value. Maximum summer temperatures calculated from the freshwater drum sagittae suggest that summer temperatures generally decrease from 298C at ,5.5 ka to 228C at ,0.3 ka. However, warmer climates at 2.9, 1.7±1.6, and 1.2±1.0 ka punctuate this trend. A more complete picture of the climate is reconstructed, because d 18 O H 2 O values, which are a function of the ratio of summer to winter precipitation, are also calculated. A relatively low average d 18 O H 2 O value of 28.1½ VSMOW was calculated at 1.0 ka, suggesting cold winters, dry summers, and/or wet winters may have prevailed during part of the Medieval Warm Period in Tennessee. Contrary to studies suggesting that the Holocene was extremely stable and the Hypsithermal was invariably warm and dry, additional evidence suggesting both signi®cant climate variability and evidence for a wetter mid-Holocene is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cd913230bc7c98bdf0c20c424e37d34a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95844008,&quot;asset_id&quot;:92978962,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95844008/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978962"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978962"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978962; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978962]").text(description); $(".js-view-count[data-work-id=92978962]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978962; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978962']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cd913230bc7c98bdf0c20c424e37d34a" } } $('.js-work-strip[data-work-id=92978962]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978962,"title":"Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal otoliths recovered from the Eastman rockshelter archaeological site in northeast Tennessee to evaluate climate change for the eastern interior United States from 5500 calendar years ago to the present. Micromilled samples representing less than six days of otolith growth were extracted to acquire high-resolution intra-otolith variation in d 18 O values. Freshwater drum sagittal otoliths form annual bands due to thermally induced growth cessation below 108C. d 18 O H 2 O values can be calculated once a high-resolution carbonate sample representing the beginning of the growing season is isolated. Maximum summer temperature can be calculated using the seasonal minimum d 18 O CaCO 3 value and the d 18 O H 2 O value. Maximum summer temperatures calculated from the freshwater drum sagittae suggest that summer temperatures generally decrease from 298C at ,5.5 ka to 228C at ,0.3 ka. However, warmer climates at 2.9, 1.7±1.6, and 1.2±1.0 ka punctuate this trend. A more complete picture of the climate is reconstructed, because d 18 O H 2 O values, which are a function of the ratio of summer to winter precipitation, are also calculated. A relatively low average d 18 O H 2 O value of 28.1½ VSMOW was calculated at 1.0 ka, suggesting cold winters, dry summers, and/or wet winters may have prevailed during part of the Medieval Warm Period in Tennessee. Contrary to studies suggesting that the Holocene was extremely stable and the Hypsithermal was invariably warm and dry, additional evidence suggesting both signi®cant climate variability and evidence for a wetter mid-Holocene is presented.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Palaeogeography, Palaeoclimatology, Palaeoecology","grobid_abstract_attachment_id":95844008},"translated_abstract":null,"internal_url":"https://www.academia.edu/92978962/Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_%CE%B418O_values_of_sagittal_otoliths","translated_internal_url":"","created_at":"2022-12-15T12:31:35.004-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32573,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95844008,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95844008/thumbnails/1.jpg","file_name":"W_P_2001a.pdf","download_url":"https://www.academia.edu/attachments/95844008/download_file","bulk_download_file_name":"Late_Holocene_climate_change_for_the_eas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95844008/W_P_2001a-libre.pdf?1671139247=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_climate_change_for_the_eas.pdf\u0026Expires=1738788030\u0026Signature=I0c4OUBCS7Tn05T~IIwYfIbPwSBRLuPwd7Wo-Fh-d4ZY~~1MOmRxnnB7PLiwbNJnq5pDNgnbV~qQ2bons3LWDurGQyWlYlAW2WM1WVN4uaJwO6FhY585vtSCuDV-Lhj2QEOmZnw87-d5JKrAeYvsup5bfPcZsDojX4pU~BQb~Yj9RRTQ22RKnh-wPRzB1bpfB5ifVc-NODq1k0AZxUpdh6i3JjwZQFzKPvk0Dvy2c-~v3xPyLH07DPUd3scqj2OcVfQdynEJ9w3EUU8gPJ-xfqkzvPAyOmc~i78DE2iSzLGpiSXdC24LRtu0PPuZaog4iD9XpTiDqFf546lvGBL4kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_δ18O_values_of_sagittal_otoliths","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal otoliths recovered from the Eastman rockshelter archaeological site in northeast Tennessee to evaluate climate change for the eastern interior United States from 5500 calendar years ago to the present. Micromilled samples representing less than six days of otolith growth were extracted to acquire high-resolution intra-otolith variation in d 18 O values. Freshwater drum sagittal otoliths form annual bands due to thermally induced growth cessation below 108C. d 18 O H 2 O values can be calculated once a high-resolution carbonate sample representing the beginning of the growing season is isolated. Maximum summer temperature can be calculated using the seasonal minimum d 18 O CaCO 3 value and the d 18 O H 2 O value. Maximum summer temperatures calculated from the freshwater drum sagittae suggest that summer temperatures generally decrease from 298C at ,5.5 ka to 228C at ,0.3 ka. However, warmer climates at 2.9, 1.7±1.6, and 1.2±1.0 ka punctuate this trend. A more complete picture of the climate is reconstructed, because d 18 O H 2 O values, which are a function of the ratio of summer to winter precipitation, are also calculated. A relatively low average d 18 O H 2 O value of 28.1½ VSMOW was calculated at 1.0 ka, suggesting cold winters, dry summers, and/or wet winters may have prevailed during part of the Medieval Warm Period in Tennessee. Contrary to studies suggesting that the Holocene was extremely stable and the Hypsithermal was invariably warm and dry, additional evidence suggesting both signi®cant climate variability and evidence for a wetter mid-Holocene is presented.","owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95844008,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95844008/thumbnails/1.jpg","file_name":"W_P_2001a.pdf","download_url":"https://www.academia.edu/attachments/95844008/download_file","bulk_download_file_name":"Late_Holocene_climate_change_for_the_eas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95844008/W_P_2001a-libre.pdf?1671139247=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_climate_change_for_the_eas.pdf\u0026Expires=1738788030\u0026Signature=I0c4OUBCS7Tn05T~IIwYfIbPwSBRLuPwd7Wo-Fh-d4ZY~~1MOmRxnnB7PLiwbNJnq5pDNgnbV~qQ2bons3LWDurGQyWlYlAW2WM1WVN4uaJwO6FhY585vtSCuDV-Lhj2QEOmZnw87-d5JKrAeYvsup5bfPcZsDojX4pU~BQb~Yj9RRTQ22RKnh-wPRzB1bpfB5ifVc-NODq1k0AZxUpdh6i3JjwZQFzKPvk0Dvy2c-~v3xPyLH07DPUd3scqj2OcVfQdynEJ9w3EUU8gPJ-xfqkzvPAyOmc~i78DE2iSzLGpiSXdC24LRtu0PPuZaog4iD9XpTiDqFf546lvGBL4kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":289,"name":"Palaeogeography","url":"https://www.academia.edu/Documents/in/Palaeogeography"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":7941,"name":"Stable Isotopes","url":"https://www.academia.edu/Documents/in/Stable_Isotopes"},{"id":7959,"name":"Stable Isotope Geochemistry","url":"https://www.academia.edu/Documents/in/Stable_Isotope_Geochemistry"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":41732,"name":"Otoliths","url":"https://www.academia.edu/Documents/in/Otoliths"},{"id":57433,"name":"Seasonality","url":"https://www.academia.edu/Documents/in/Seasonality"},{"id":78965,"name":"Holocene","url":"https://www.academia.edu/Documents/in/Holocene"},{"id":91257,"name":"Stable Isotope","url":"https://www.academia.edu/Documents/in/Stable_Isotope"},{"id":136308,"name":"Otolith","url":"https://www.academia.edu/Documents/in/Otolith"},{"id":291658,"name":"Precipitation","url":"https://www.academia.edu/Documents/in/Precipitation"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":2163839,"name":"Growing Season","url":"https://www.academia.edu/Documents/in/Growing_Season"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978961"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978961/Mio_pliocene_seasonality_on_the_snake_river_plain_comparison_of_faunal_and_oxygen_isotopic_evidence"><img alt="Research paper thumbnail of Mio-pliocene seasonality on the snake river plain: comparison of faunal and oxygen isotopic evidence" class="work-thumbnail" src="https://attachments.academia-assets.com/95843966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978961/Mio_pliocene_seasonality_on_the_snake_river_plain_comparison_of_faunal_and_oxygen_isotopic_evidence">Mio-pliocene seasonality on the snake river plain: comparison of faunal and oxygen isotopic evidence</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Analysis of fish faunas and oxygen isotopic composition of a fish otolith from lacustrine deposit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Analysis of fish faunas and oxygen isotopic composition of a fish otolith from lacustrine deposits of southwestern Idaho provide a means of evaluating regional Miocene and Pliocene climates. A disharmonious assemblage consisting of coldwater salmon and trout and warmwater sunfish and catfish from the Chalk Hills Formation of the Snake River Plain indicates that the climate of the late Miocene was warm and moist with cool summers and mild winters. Colonization of the lake by deepwater sculpins and whitefish in the Pliocene indicates that the climate was moist and equable, but with summers cooler than either the Miocene or Quaternary. Oxygen isotopic variation among seasonal growth rings in an aragonitic otolith of a Pliocene littoral sunfish suggests a seasonal range of temperatures locally more equable than at present. Extremely depleted values of 6180 in carbonates suggest that the lake was maintained by tributaries from high-elevation watersheds, with locally low evaporation, rather than high precipitation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="890540b4ae1bcacaab056aab614bc05b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843966,&quot;asset_id&quot;:92978961,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978961"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978961"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978961; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978961]").text(description); $(".js-view-count[data-work-id=92978961]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978961; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978961']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "890540b4ae1bcacaab056aab614bc05b" } } $('.js-work-strip[data-work-id=92978961]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978961,"title":"Mio-pliocene seasonality on the snake river plain: comparison of faunal and oxygen isotopic evidence","internal_url":"https://www.academia.edu/92978961/Mio_pliocene_seasonality_on_the_snake_river_plain_comparison_of_faunal_and_oxygen_isotopic_evidence","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843966/thumbnails/1.jpg","file_name":"0000702.pdf","download_url":"https://www.academia.edu/attachments/95843966/download_file","bulk_download_file_name":"Mio_pliocene_seasonality_on_the_snake_ri.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843966/0000702-libre.pdf?1671139257=\u0026response-content-disposition=attachment%3B+filename%3DMio_pliocene_seasonality_on_the_snake_ri.pdf\u0026Expires=1739862730\u0026Signature=dohaBSFQWBKR3H8LIAlmvJZVQWTHYcP3OHZM2j~1wqrP4~n9yiMJTE5-w7Imj76o9M-kqVaOkPD02T~gvoBHyRyW2Ytw9ipOyRK1EnHG1zFmbnLwYZHgWwJ-uDqEZzVRxFWtS4wIcCxr7r9y7~dg4T6MXNcCRJ9mWHfpAfc5~SEmuPRAQOsR~EW2yToq8It5YqyN~XM8H3lqYD6dAX-lUe-bPsD75bolBedXNNycFysqJUgyBTy1inAjjjNdK~HoyBCmztDB2GFlTvO4W6CugJqke1lvVOfOSv6rZxw8TU1PyToqpLpvnmO69bHyY5mWTgroYKmew9yT8HLAF3AQww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978960"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978960/Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation"><img alt="Research paper thumbnail of Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation" class="work-thumbnail" src="https://attachments.academia-assets.com/95843965/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978960/Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation">Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation</a></div><div class="wp-workCard_item"><span>New Zealand Journal of Geology and Geophysics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Sta...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ 18 O values range from-1.4 to 2.8‰ VPDB, while δ 13 C range from-4.5 to 2.8‰ VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ 18 O and δ 13 C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e22db71541b5f709b9fa0bdbd7f71d42" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843965,&quot;asset_id&quot;:92978960,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843965/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978960"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978960"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978960; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978960]").text(description); $(".js-view-count[data-work-id=92978960]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978960; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978960']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e22db71541b5f709b9fa0bdbd7f71d42" } } $('.js-work-strip[data-work-id=92978960]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978960,"title":"Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation","translated_title":"","metadata":{"publisher":"Informa UK Limited","ai_title_tag":"Stable Isotope Values of New Zealand Bryozoans and Paleoenvironmental Insights","grobid_abstract":"Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ 18 O values range from-1.4 to 2.8‰ VPDB, while δ 13 C range from-4.5 to 2.8‰ VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ 18 O and δ 13 C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"New Zealand Journal of Geology and Geophysics","grobid_abstract_attachment_id":95843965},"translated_abstract":null,"internal_url":"https://www.academia.edu/92978960/Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation","translated_internal_url":"","created_at":"2022-12-15T12:31:34.455-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32573,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95843965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843965/thumbnails/1.jpg","file_name":"Smith_et_al_NZJGG_04.pdf","download_url":"https://www.academia.edu/attachments/95843965/download_file","bulk_download_file_name":"Stable_isotope_values_in_modern_bryozoan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843965/Smith_et_al_NZJGG_04-libre.pdf?1671139268=\u0026response-content-disposition=attachment%3B+filename%3DStable_isotope_values_in_modern_bryozoan.pdf\u0026Expires=1738788030\u0026Signature=XRVuGIr2s4O4ZRr83OmP1IHlP16sZMexmLV0sfUOn-pwOevvktgNCQACkTgYhAmFPvv15iJlY~vUzogIHB72Zsp4dI-~Cc1jmUFQmeuOU8qhnpZCU8I-XtJRCdrq1k7D20WgNchZVqNoTDm5OmUoU0CMIAMmv7eEROVMYVH~loJEmaC6V7YNqoIRJokKVLEOnsR3ojkvRjNCVDhc6GgjS4Fmp8FuRZAUMzHbh8qwf8Q8cZemhkmTVn4v~urETXv4gV8MRpsDCrpCNGJst9CEneQLyZ4BicK32XxIbx3Lcxa9CSoAXD0IZsxmA5BvbIpuraFdS7fODLET1JNjx48jmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ 18 O values range from-1.4 to 2.8‰ VPDB, while δ 13 C range from-4.5 to 2.8‰ VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ 18 O and δ 13 C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers.","owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843965/thumbnails/1.jpg","file_name":"Smith_et_al_NZJGG_04.pdf","download_url":"https://www.academia.edu/attachments/95843965/download_file","bulk_download_file_name":"Stable_isotope_values_in_modern_bryozoan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843965/Smith_et_al_NZJGG_04-libre.pdf?1671139268=\u0026response-content-disposition=attachment%3B+filename%3DStable_isotope_values_in_modern_bryozoan.pdf\u0026Expires=1738788030\u0026Signature=XRVuGIr2s4O4ZRr83OmP1IHlP16sZMexmLV0sfUOn-pwOevvktgNCQACkTgYhAmFPvv15iJlY~vUzogIHB72Zsp4dI-~Cc1jmUFQmeuOU8qhnpZCU8I-XtJRCdrq1k7D20WgNchZVqNoTDm5OmUoU0CMIAMmv7eEROVMYVH~loJEmaC6V7YNqoIRJokKVLEOnsR3ojkvRjNCVDhc6GgjS4Fmp8FuRZAUMzHbh8qwf8Q8cZemhkmTVn4v~urETXv4gV8MRpsDCrpCNGJst9CEneQLyZ4BicK32XxIbx3Lcxa9CSoAXD0IZsxmA5BvbIpuraFdS7fODLET1JNjx48jmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":7941,"name":"Stable Isotopes","url":"https://www.academia.edu/Documents/in/Stable_Isotopes"},{"id":78117,"name":"Carbon Isotopes","url":"https://www.academia.edu/Documents/in/Carbon_Isotopes"},{"id":91257,"name":"Stable Isotope","url":"https://www.academia.edu/Documents/in/Stable_Isotope"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":151448,"name":"American","url":"https://www.academia.edu/Documents/in/American"},{"id":230701,"name":"Oxygen Isotopes","url":"https://www.academia.edu/Documents/in/Oxygen_Isotopes"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":340736,"name":"Bryozoan","url":"https://www.academia.edu/Documents/in/Bryozoan"},{"id":340748,"name":"Carbon Isotope","url":"https://www.academia.edu/Documents/in/Carbon_Isotope"},{"id":394429,"name":"Sea Water","url":"https://www.academia.edu/Documents/in/Sea_Water"},{"id":406850,"name":"Marine Environment","url":"https://www.academia.edu/Documents/in/Marine_Environment"},{"id":1242196,"name":"Water Depth","url":"https://www.academia.edu/Documents/in/Water_Depth"},{"id":1406130,"name":"Bryozoans","url":"https://www.academia.edu/Documents/in/Bryozoans"}],"urls":[{"id":27073477,"url":"http://www.tandfonline.com/doi/pdf/10.1080/00288306.2004.9515090"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978959"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978959/Paleoproductivity_of_eastern_Lake_Ontario_over_the_past_10_000_years"><img alt="Research paper thumbnail of Paleoproductivity of eastern Lake Ontario over the past 10,000 years" class="work-thumbnail" src="https://attachments.academia-assets.com/95844012/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978959/Paleoproductivity_of_eastern_Lake_Ontario_over_the_past_10_000_years">Paleoproductivity of eastern Lake Ontario over the past 10,000 years</a></div><div class="wp-workCard_item"><span>Limnology and Oceanography</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We evaluated relative levels of paleo-primary productivity in eastern Lake Ontario during the pas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We evaluated relative levels of paleo-primary productivity in eastern Lake Ontario during the past ϳ10,000 yr via analysis of inorganic and organic sediment from the Rochester Basin. There was significant natural variability in primary production correlative with Holocene climate change. The cold post-Younger Dryas interval (ϳ10-9.4 ka) was a time of minimal levels of primary production. The warm Holocene Hypsithermal interval (ϳ9.4-5.3 ka) had much higher levels of primary production but was more variable, including five well-defined cycles that have an average period of ϳ750 yr. The largest negative anomaly in primary productivity occurred during the 8.2-ka climate event (ϳ8.4-8.0 ka), a time of cold, dry conditions. Another negative anomaly occurred in association with the Nipissing flood (ϳ6.3-5.3 ka), which triggered a regional cooling event. The cool Holocene Neoglacial interval (ϳ5.3 ka to ϳ1850 A.D.) was characterized by lower, but more stable, levels of primary production, as well as by a cessation of calcite precipitation and the onset of diatom productivity. During the historic interval (ϳ1850-1940 A.D.), there was a dramatic increase in primary production to unprecedented levels over the past 10,000 yr, as well as a 30-fold increase in sediment accumulation rates. These large, abrupt changes occurred in response to regional deforestation, anthropogenic nutrient loading, and increased chemical weathering due to acid rain. We project that, during 21st century global warming, eastern Lake Ontario will evolve into an ecosystem similar to that during the Holocene Hypsithermal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="763b8e795d569d0f93298867ffe86ce0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95844012,&quot;asset_id&quot;:92978959,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95844012/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978959"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978959"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978959; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978959]").text(description); $(".js-view-count[data-work-id=92978959]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978959; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978959']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "763b8e795d569d0f93298867ffe86ce0" } } $('.js-work-strip[data-work-id=92978959]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978959,"title":"Paleoproductivity of eastern Lake Ontario over the past 10,000 years","internal_url":"https://www.academia.edu/92978959/Paleoproductivity_of_eastern_Lake_Ontario_over_the_past_10_000_years","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95844012,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95844012/thumbnails/1.jpg","file_name":"McFadden_et_al_202004.pdf","download_url":"https://www.academia.edu/attachments/95844012/download_file","bulk_download_file_name":"Paleoproductivity_of_eastern_Lake_Ontari.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95844012/McFadden_et_al_202004-libre.pdf?1671139252=\u0026response-content-disposition=attachment%3B+filename%3DPaleoproductivity_of_eastern_Lake_Ontari.pdf\u0026Expires=1739862730\u0026Signature=NXuooXIMv10Ws16gTaFUG906LuZ7g0qX8zvbGerrz-51sRcZiC1IC0RPoSvD2E2GobeqzQK9soWKVuLb0kCwPd9XENHY1X2bLCI0p2Y8M7gAZcpFB9vs2aPTwQ0g~QUgAun~fXZuZ65pvpg4V9fPyUztyPDbczm7jC7Y6Ji93zCWZ14wn4YS8vPC2oncdByLd4nadkhXNUPSlKWjonH2eq6vMuLB5H7zt7u1k6fhNaTKxzVkAUzyZ5ISPiqSSs4l3a0iaeVQkzv1IUfAm4qyaPn~Os-nX8~ZScD9CfXHdZJUhEm7LA3zzLjoyMLTEgL0BeaZV4pkD4H2WVQJe3i1qg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978958"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978958/Post_glacial_climate_change_and_its_effect_on_a_shallow_dimictic_lake_in_Nova_Scotia_Canada"><img alt="Research paper thumbnail of Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/95843974/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978958/Post_glacial_climate_change_and_its_effect_on_a_shallow_dimictic_lake_in_Nova_Scotia_Canada">Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada</a></div><div class="wp-workCard_item"><span>Journal of Paleolimnology</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A high-resolution, multi-proxy lake sediment record was used to establish the timing of Holocene ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A high-resolution, multi-proxy lake sediment record was used to establish the timing of Holocene environmental change in Canoran Lake, southwest Nova Scotia, Canada. Proxies include %C, d 15 N, d 13 C, HI, magnetic susceptibility, and pollen. Canoran Lake is a small, shallow (11 m) lake with two ephemeral inlets and an outlet. The site was deglaciated at ca. 15,300 cal (calibrated) year BP and elevated %C values indicate the establishment of a productive aquatic environment that is consistent with Allerød warming. The Allerød was interrupted by rapid air temperature cooling during the Younger Dryas (ca. 12,900-11,600 cal year BP). The Early Hypsithermal (ca. 11,600-8,500 cal year BP) was relatively warm and wet. A slight increase in clastic input occurred between 9,100 and 8,500 cal year BP but d 15 N, d 13 C, and HI values imply that the lithostratigraphic response may not be indicative of climate-induced change. The strong proxy response between 8,500 and 8,000 calyear BP was likely due to cooling and drying coincident with the 8.2 k year event. The climate was relatively warm and dry during the Late Hypsithermal (ca. 8,000-3,500 cal year BP). None of the proxies&#39; exhibit notable change during the 5,500 cal year BP hemlock decline, indicating that ecological change was likely due to a pathogen attack. Post-Hypsithermal (modern) climate was characterized by an increase in precipitation and a decrease in air temperatures from ca. 3,500 to 700 cal year BP (top of core). Keywords Climate change Á Paleolimnology Á Nova Scotia Á Stable isotopes Á Multi-proxy Á Hydrogen index Á Limnology B. Lennox Waterline Resources, 531 24 Ave NW,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0ef21ac82690f47719c07fd3338b0d0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843974,&quot;asset_id&quot;:92978958,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843974/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978958"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978958"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978958; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978958]").text(description); $(".js-view-count[data-work-id=92978958]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978958; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978958']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0ef21ac82690f47719c07fd3338b0d0d" } } $('.js-work-strip[data-work-id=92978958]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978958,"title":"Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada","internal_url":"https://www.academia.edu/92978958/Post_glacial_climate_change_and_its_effect_on_a_shallow_dimictic_lake_in_Nova_Scotia_Canada","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843974,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843974/thumbnails/1.jpg","file_name":"Canoran_20Lake.pdf","download_url":"https://www.academia.edu/attachments/95843974/download_file","bulk_download_file_name":"Post_glacial_climate_change_and_its_effe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843974/Canoran_20Lake-libre.pdf?1671139252=\u0026response-content-disposition=attachment%3B+filename%3DPost_glacial_climate_change_and_its_effe.pdf\u0026Expires=1739862730\u0026Signature=Yjc9x1mo5a~JGAlBcqsp0~OgPRnoUBb0D6PpwJgIy~vC5DSNA~A-PjkNVG7QGz7kD19qLVNZQ1mJtqEA5-MJKdgJhW-i26UkrTsRjEspyN13wZZNf2V0ZhC-B2kG4~~rRhrRvYqLWXO9tsrJfPMOt4cKGqa6JJfoQrLtkHxdUT-mLZXVzxP4uEMQiSzHVYEZMF--WrHUUAEula0iBkk7L-4Gvjz93E-oWmgArkSoaabzZgzv28wdo9UGj-M45wSS6zCJNwoS8-w1uCQpYxVYooU~7bl54zScDUuJPiaZFIOTXjLWEeop0SWtYC~30iL9iGUABseqy~SyMbxgOAn4Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978957"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978957/Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS"><img alt="Research paper thumbnail of Oxygen isotope analysis of phosphate: improved precision using TC&amp;sol;EA CF&amp;hyphen;IRMS" class="work-thumbnail" src="https://attachments.academia-assets.com/95843971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978957/Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS">Oxygen isotope analysis of phosphate: improved precision using TC&amp;sol;EA CF&amp;hyphen;IRMS</a></div><div class="wp-workCard_item"><span>Journal of Mass Spectrometry</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleoth...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ 18 O PO4 measurements using a &#39;reverse-plumbed&#39; thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO 4 −3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ 44 Ca and 87 Sr/ 86 Sr in modern biogenic apatite and 143 Nd/ 144 Nd in fossil apatite. Our methodology yields an external precision of ±0.15‰ (1σ) for δ 18 O PO4. The uncertainty is related to the preparation of the Ag 3 PO 4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw δ 18 O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c25efeb6ac79bac4a797bbb7c4381e65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843971,&quot;asset_id&quot;:92978957,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843971/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978957"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978957"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978957; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978957]").text(description); $(".js-view-count[data-work-id=92978957]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978957; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978957']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c25efeb6ac79bac4a797bbb7c4381e65" } } $('.js-work-strip[data-work-id=92978957]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978957,"title":"Oxygen isotope analysis of phosphate: improved precision using TC\u0026sol;EA CF\u0026hyphen;IRMS","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ 18 O PO4 measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO 4 −3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ 44 Ca and 87 Sr/ 86 Sr in modern biogenic apatite and 143 Nd/ 144 Nd in fossil apatite. Our methodology yields an external precision of ±0.15‰ (1σ) for δ 18 O PO4. The uncertainty is related to the preparation of the Ag 3 PO 4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw δ 18 O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Mass Spectrometry","grobid_abstract_attachment_id":95843971},"translated_abstract":null,"internal_url":"https://www.academia.edu/92978957/Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS","translated_internal_url":"","created_at":"2022-12-15T12:31:33.874-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32573,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95843971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843971/thumbnails/1.jpg","file_name":"laporte_et_al_2009_jms.pdf","download_url":"https://www.academia.edu/attachments/95843971/download_file","bulk_download_file_name":"Oxygen_isotope_analysis_of_phosphate_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843971/laporte_et_al_2009_jms-libre.pdf?1671139254=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_analysis_of_phosphate_imp.pdf\u0026Expires=1738712535\u0026Signature=ePYxxlJA9siZ-WoO4XZYWLbUrE4fz-6laNEOIlaBeOUooVwYMK64VhtSSU4wynsG4cvoivcAF9y40a3DPItif3qGljYx4YzgLGOM0gnBT8Ofc4tNwOYT2Ldv39-ddHkGxDrGoqFivBliTLljFGvCdIkQJHmVfqFPJhBx0dttFtiZKpevyEDj7QqtfRqpfI4gttKmSTKdATrRaHiGMUWFcfM11-df1lxcJkzmnZk~LOgy6OENkfkpW9GkFanKtGM0aJK2k9c7h2jlJ2lnyaAACMvHXTl2b0sO7sljPjvQrkyNw7ss7Ul-YLZ-JlHVCghpIKgkZrPD6J8V7wYcPKfA8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ 18 O PO4 measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO 4 −3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ 44 Ca and 87 Sr/ 86 Sr in modern biogenic apatite and 143 Nd/ 144 Nd in fossil apatite. Our methodology yields an external precision of ±0.15‰ (1σ) for δ 18 O PO4. The uncertainty is related to the preparation of the Ag 3 PO 4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw δ 18 O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers.","owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843971/thumbnails/1.jpg","file_name":"laporte_et_al_2009_jms.pdf","download_url":"https://www.academia.edu/attachments/95843971/download_file","bulk_download_file_name":"Oxygen_isotope_analysis_of_phosphate_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843971/laporte_et_al_2009_jms-libre.pdf?1671139254=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_analysis_of_phosphate_imp.pdf\u0026Expires=1738712535\u0026Signature=ePYxxlJA9siZ-WoO4XZYWLbUrE4fz-6laNEOIlaBeOUooVwYMK64VhtSSU4wynsG4cvoivcAF9y40a3DPItif3qGljYx4YzgLGOM0gnBT8Ofc4tNwOYT2Ldv39-ddHkGxDrGoqFivBliTLljFGvCdIkQJHmVfqFPJhBx0dttFtiZKpevyEDj7QqtfRqpfI4gttKmSTKdATrRaHiGMUWFcfM11-df1lxcJkzmnZk~LOgy6OENkfkpW9GkFanKtGM0aJK2k9c7h2jlJ2lnyaAACMvHXTl2b0sO7sljPjvQrkyNw7ss7Ul-YLZ-JlHVCghpIKgkZrPD6J8V7wYcPKfA8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":12971,"name":"Isotope Ratio Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Isotope_Ratio_Mass_Spectrometry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":72215,"name":"Mass","url":"https://www.academia.edu/Documents/in/Mass"},{"id":96893,"name":"Calibration","url":"https://www.academia.edu/Documents/in/Calibration"},{"id":205587,"name":"Apatite","url":"https://www.academia.edu/Documents/in/Apatite"},{"id":230701,"name":"Oxygen Isotopes","url":"https://www.academia.edu/Documents/in/Oxygen_Isotopes"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":541785,"name":"Phosphates","url":"https://www.academia.edu/Documents/in/Phosphates"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":681938,"name":"Apatites","url":"https://www.academia.edu/Documents/in/Apatites"},{"id":901876,"name":"Sensitivity and Specificity","url":"https://www.academia.edu/Documents/in/Sensitivity_and_Specificity"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":2637271,"name":"Reference standards","url":"https://www.academia.edu/Documents/in/Reference_standards"}],"urls":[{"id":27073476,"url":"https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjms.1549"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978956"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978956/Increasing_Great_Lake_Effect_Snowfall_during_the_Twentieth_Century_A_Regional_Response_to_Global_Warming"><img alt="Research paper thumbnail of Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?" class="work-thumbnail" src="https://attachments.academia-assets.com/95843982/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978956/Increasing_Great_Lake_Effect_Snowfall_during_the_Twentieth_Century_A_Regional_Response_to_Global_Warming">Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?</a></div><div class="wp-workCard_item"><span>Journal of Climate</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, and regional hydrology. Changes in lake-effect snowfall may represent a regional-scale manifestation of hemispheric-scale climate change, such as that associated with global warming. This study examines records of snowfall from several lake-effect and non-lake-effect sites throughout most of the twentieth century in order to 1) determine whether differences in snowfall trends exist between these settings and 2) offer possible linkages between lake-effect snow trends and records of air temperature, water temperature, and ice cover. A new, historic record of oxygen isotope [␦ 18 O ] data from the sediments of three eastern Finger Lakes in central New York is presented as a means (CaCO) 3 of independently assessing changes in Great Lakes lake-effect snowfall. Results reveal a statistically significant increasing trend in snowfall for the lake-effect sites, whereas no trend is observed in the non-lake-effect settings. The Finger Lake oxygen isotope record reflects this increase in lake-effect snow through a statistically significant trend toward lower ␦ 18 O values. Records of air temperature, water temperature, and lake ice suggest that (CaCO) 3 the observed lake-effect snow increase during the twentieth century may be the result of warmer Great Lakes surface waters and decreased ice cover, both of which are consistent with the historic upward trend in Northern Hemispheric temperature due to global warming. Given projected increases in future global temperature, areas downwind of the Great Lakes may experience increased lake-effect snowfall for the foreseeable future.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7db09de92884852d6e8bb92ca48ef3ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843982,&quot;asset_id&quot;:92978956,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843982/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978956"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978956"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978956; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978956]").text(description); $(".js-view-count[data-work-id=92978956]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978956; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978956']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7db09de92884852d6e8bb92ca48ef3ca" } } $('.js-work-strip[data-work-id=92978956]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978956,"title":"Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?","internal_url":"https://www.academia.edu/92978956/Increasing_Great_Lake_Effect_Snowfall_during_the_Twentieth_Century_A_Regional_Response_to_Global_Warming","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843982,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843982/thumbnails/1.jpg","file_name":"730a9330c82663b01a3110be48b75557fb67.pdf","download_url":"https://www.academia.edu/attachments/95843982/download_file","bulk_download_file_name":"Increasing_Great_Lake_Effect_Snowfall_du.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843982/730a9330c82663b01a3110be48b75557fb67-libre.pdf?1671139250=\u0026response-content-disposition=attachment%3B+filename%3DIncreasing_Great_Lake_Effect_Snowfall_du.pdf\u0026Expires=1739176841\u0026Signature=gfWPU8zSO79cT2sW9wNQh-zOYFD4-VxZmerGKU~7Sgjll3IOiNmPhiqsdxuGii7fJauEQeepfaKheOLlp98XBC4nKYuE9F1jA8oqUSlluobBDmyCzAaBNmSYJxKznHExUZLmFZu2s8fz59O9Z1-jmI2KndQUb93m6cPHuDBBrz6TstvAzUxc~AK6brajUH3BtudJGNUPW93-TSJ1C~R-4mBxnfnAcw2olXJ5BkeBryndk0cNIq8CsgZxCG66Jtz4J1B0kPwsGww~0OhtZDWk6rgecmFWNAvhZvi-sE-Bk5c-C0YeWzt92HSi3YmwgHKH2CyL629cPu1~m~A0VkYOzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978955"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978955/The_reconstruction_of_mammal_individual_history_refining_high_resolution_isotope_record_in_bovine_tooth_dentine"><img alt="Research paper thumbnail of The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine" class="work-thumbnail" src="https://attachments.academia-assets.com/95843972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978955/The_reconstruction_of_mammal_individual_history_refining_high_resolution_isotope_record_in_bovine_tooth_dentine">The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine</a></div><div class="wp-workCard_item"><span>Journal of Archaeological Science</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Longitudinal and transverse carbon isotope profiles were performed on tooth dentine from five ste...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Longitudinal and transverse carbon isotope profiles were performed on tooth dentine from five steers (Bos taurus) initially fed C 3 and subsequently C 4-dominant food. Comparison of different protocols for bioapatite extraction revealed that the use of NaOCl considerably reduced the amplitude of variation of d 13 C within a tooth. Increasing contribution of C 4 food to the carbon isotope composition of bioapatite was found from the tip of the tooth crown to the neck and from the enameledentine junction toward the pulp cavity. These findings confirm that the model of dentine growth as a succession of stacked cones applies to bovines. Temporal resolution is estimated to be 4 months in transverse profiles, significantly better than in longitudinal dentine profiles (8e9 months) or even in profiles derived from enamel of the same individual (6e 7 months). Temporal resolution could be improved by a factor of two by selecting a different sampling zone or refining our sampling protocol. This sampling strategy could also be applied to dentine collagen and has important ecological and archaeological implications including determination of the season of weaning, or the reconstruction of mobility strategies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11a023269bf6890299c907cc295769d1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843972,&quot;asset_id&quot;:92978955,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978955"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978955"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978955; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978955]").text(description); $(".js-view-count[data-work-id=92978955]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978955; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978955']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11a023269bf6890299c907cc295769d1" } } $('.js-work-strip[data-work-id=92978955]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978955,"title":"The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine","internal_url":"https://www.academia.edu/92978955/The_reconstruction_of_mammal_individual_history_refining_high_resolution_isotope_record_in_bovine_tooth_dentine","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843972/thumbnails/1.jpg","file_name":"Zazzo_et_al._2006.pdf","download_url":"https://www.academia.edu/attachments/95843972/download_file","bulk_download_file_name":"The_reconstruction_of_mammal_individual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843972/Zazzo_et_al._2006-libre.pdf?1671139256=\u0026response-content-disposition=attachment%3B+filename%3DThe_reconstruction_of_mammal_individual.pdf\u0026Expires=1739862730\u0026Signature=F0Fpoq1P-WJh84r1hhYcXRH9ETkGK0EjE8m7-Z4ForEVsyejQG~dTu9Voz5-BRUlFL23PcGO2Sv23d3dXXE2BOoHdaenLmxSTVlFwKQWSgdv4j8Z7hFgsLOps7WAv5gK4~Ff7AFJRwuq85hYOkqHKzKxv6Xhoo~5OMzyzTPCeLXSvC5WYGOaTzVJVDz6BAIxaacYawJJ1n60fckUC8LpUGXKW4KcM2fNSux1rFA1NFUgxH6Hu6P0~Fv~E8tHlhSubcBelw4h2j1c6dBCq3nk0mArtCqqC7s3YhwKIq2xTMk5DElmO-tFdlORPWIC1oMXCa27ldGfUWAXJbxK~biLUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978953"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/92978953/Seasonality_of_Paleolithic_Fisheries_in_Upper_Egypt_Revealed_by_High_Resolution_Isotopic_Analysis_of_Otoliths"><img alt="Research paper thumbnail of Seasonality of Paleolithic Fisheries in Upper Egypt Revealed by High-Resolution Isotopic Analysis of Otoliths" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/92978953/Seasonality_of_Paleolithic_Fisheries_in_Upper_Egypt_Revealed_by_High_Resolution_Isotopic_Analysis_of_Otoliths">Seasonality of Paleolithic Fisheries in Upper Egypt Revealed by High-Resolution Isotopic Analysis of Otoliths</a></div><div class="wp-workCard_item"><span>2002 Denver Annual Meeting</span><span>, Oct 27, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reconstructing the resource scheduling is one of the main concerns in archeology because it allow...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reconstructing the resource scheduling is one of the main concerns in archeology because it allows for interpretation of subsistence strategies and for discrimination between sedentary and nomadic settlements. Hundreds of tilapia (Oreochromis niloticus) otoliths found in the late Paleolithic site of Makhadma in Upper Egypt dated 12,500 years BP demonstrate that this species was intensively exploited. However, temporal conditions of this exploitation need to be better documented. Fish could have been captured 1) from the Nile, 2) at the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978953"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978953"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978953; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978953]").text(description); $(".js-view-count[data-work-id=92978953]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978953; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978953']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=92978953]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978953,"title":"Seasonality of Paleolithic Fisheries in Upper Egypt Revealed by High-Resolution Isotopic Analysis of Otoliths","internal_url":"https://www.academia.edu/92978953/Seasonality_of_Paleolithic_Fisheries_in_Upper_Egypt_Revealed_by_High_Resolution_Isotopic_Analysis_of_Otoliths","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978880"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978880/Thermal_histories_stress_and_metabolic_rates_of_chinook_salmon_Oncorhynchus_tshawytscha_in_Lake_Ontario_evidence_from_intra_otolith_stable_isotope_analyses"><img alt="Research paper thumbnail of Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses" class="work-thumbnail" src="https://attachments.academia-assets.com/95843923/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978880/Thermal_histories_stress_and_metabolic_rates_of_chinook_salmon_Oncorhynchus_tshawytscha_in_Lake_Ontario_evidence_from_intra_otolith_stable_isotope_analyses">Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses</a></div><div class="wp-workCard_item"><span>Canadian Journal of Fisheries and Aquatic Sciences</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe thermal histories for Lake Ontario chinook salmon (Oncorhynchus tshawytscha) as deter...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe thermal histories for Lake Ontario chinook salmon (Oncorhynchus tshawytscha) as determined from otolith δ18O thermometry using computer-controlled micromilling techniques to recover otolith aragonite at subseasonal resolution. We find that during the summer months chinook salmon inhabited epilimnetic waters with temperatures of ~19–20 °C as far back as the late 1980s. Chinook would approach but rarely exceed their reported upper incipient lethal limit of approximately 22 °C, which suggests that these fish were seeking water with temperatures as high as was tolerable while otolith growth occurred. These results contrast with expected midsummer temperatures for this cold-water salmonine. Bioenergetic simulations indicate significant stress imposed upon chinook salmon. We estimate consumption to be up to 20% more and gross conversion efficiency 18% less annually relative to nominal simulations where chinook salmon are modeled nearer their preferred temperature, reinforcing ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae077e4c07d660817c942219265f6dc6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843923,&quot;asset_id&quot;:92978880,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843923/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978880"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978880"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978880; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978880]").text(description); $(".js-view-count[data-work-id=92978880]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978880; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978880']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae077e4c07d660817c942219265f6dc6" } } $('.js-work-strip[data-work-id=92978880]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978880,"title":"Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses","internal_url":"https://www.academia.edu/92978880/Thermal_histories_stress_and_metabolic_rates_of_chinook_salmon_Oncorhynchus_tshawytscha_in_Lake_Ontario_evidence_from_intra_otolith_stable_isotope_analyses","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843923,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843923/thumbnails/1.jpg","file_name":"62.Wursteretal2005Chinookisotopes.pdf","download_url":"https://www.academia.edu/attachments/95843923/download_file","bulk_download_file_name":"Thermal_histories_stress_and_metabolic_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843923/62.Wursteretal2005Chinookisotopes-libre.pdf?1671139293=\u0026response-content-disposition=attachment%3B+filename%3DThermal_histories_stress_and_metabolic_r.pdf\u0026Expires=1739862730\u0026Signature=LRcZv5C9SDJorQwv8RhMwUIGeWWDZdVWo2Bxv0IXRxavOq3vl6DLrgcw2DVzoHy6f690rvIJP-dtMgMPdFuwU-4LUWit9D5Xt-PjgGTCnBFB0FDaudOfi98zgzv7~Eu8PoFF39hGjCUAUHAhB6oThnI7JlbmMorMhgUhAjEUNUtSoSq7aDlMd8etwMAZCWI~~0alp4A5saWePyMo~4-ZK5EIl3D4GqmnKUN5KvI3n5ALr9kPPfJVRNAAggr~OdmUxF1~YyjDtSLfhGxcJtR21VxTET4VhPYaKMFQQGHNM~k1aIf1T6nsJfanWFP3hMYhIBQn3eb645V7rg4eJifDPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422922"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422922/Paleoenvironmental_reconstruction_of_the_Early_to_Middle_Miocene_Central_Paratethys_using_stable_isotopes_from_bryozoan_skeletons"><img alt="Research paper thumbnail of Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons" class="work-thumbnail" src="https://attachments.academia-assets.com/90880472/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422922/Paleoenvironmental_reconstruction_of_the_Early_to_Middle_Miocene_Central_Paratethys_using_stable_isotopes_from_bryozoan_skeletons">Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons</a></div><div class="wp-workCard_item"><span>International Journal of Earth Sciences</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. Th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author&#39;s version for posting to your own website or your institution&#39;s repository. You may further deposit the accepted author&#39;s version on a funder&#39;s repository at a funder&#39;s request, provided it is not made publicly available until 12 months after publication.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9fa5a645cef5d8a55eacda7797bcb27" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880472,&quot;asset_id&quot;:86422922,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880472/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422922"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422922"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422922; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422922]").text(description); $(".js-view-count[data-work-id=86422922]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422922; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422922']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9fa5a645cef5d8a55eacda7797bcb27" } } $('.js-work-strip[data-work-id=86422922]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422922,"title":"Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons","internal_url":"https://www.academia.edu/86422922/Paleoenvironmental_reconstruction_of_the_Early_to_Middle_Miocene_Central_Paratethys_using_stable_isotopes_from_bryozoan_skeletons","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880472/thumbnails/1.jpg","file_name":"paleoenvironmentalreconstruction.pdf","download_url":"https://www.academia.edu/attachments/90880472/download_file","bulk_download_file_name":"Paleoenvironmental_reconstruction_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880472/paleoenvironmentalreconstruction-libre.pdf?1662852721=\u0026response-content-disposition=attachment%3B+filename%3DPaleoenvironmental_reconstruction_of_the.pdf\u0026Expires=1739862730\u0026Signature=Ud~dy~TTp5AWAywO108~H3QxHemB3gSFHt13~KPu0AywjCE36OIQhe7rk~3oKfp8bKVjCsT7-UawvkYbrw28aBnuskTv6fYUZzhvCxhAzz~ey7jVzJSb5Cm1MKr~6pBsCPw0Tq82zmkncrCiMh8WlPvg3uO3YI~dz0qrfwA~gtFcpKO~ACxwrBUkaTkwpCblenuGE89EAbxMjO4HC6-3rsCVgRjBqZAGUFWvpLkqJOSGDAJkPyQG8Iz~pFUIQwOC-IA~yR2IFW3o~AiGLYdlNWl-7rO9MEQxxL~FHK~QMDW2KQBNWbv9AbU~obEUZTjSyVot-9fDmrx4wGn~66arBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422921"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422921/Stable_carbon_and_hydrogen_isotopes_from_bat_guano_in_the_Grand_Canyon_USA_reveal_Younger_Dryas_and_8_2_ka_events"><img alt="Research paper thumbnail of Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events" class="work-thumbnail" src="https://attachments.academia-assets.com/90880471/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422921/Stable_carbon_and_hydrogen_isotopes_from_bat_guano_in_the_Grand_Canyon_USA_reveal_Younger_Dryas_and_8_2_ka_events">Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We inferred climate change through the Pleistocene-Holocene transition from δ 13 C and δD values ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We inferred climate change through the Pleistocene-Holocene transition from δ 13 C and δD values of bat guano deposited from 14.5 to 6.5 ka (calendar ka) in Bat Cave, Grand Canyon, Arizona. The δ 13 C and δD values generally covaried, indicating that regional late Pleistocene climate was relatively cool and wet, and early Holocene climate gradually became warmer with increased summer precipitation until ca. 9 ka, at which time the onset of modern North American Monsoon-like conditions occurred. During the Younger Dryas event, δ 13 C values decreased, whereas δD values increased, indicating a cool and possibly drier period. We also observed a distinct isotopic anomaly during the 8.2 ka event, at which time both δ 13 C and δD values decreased. The δ 13 C values abruptly increased at 8.0 ka, suggesting a rapid change in atmospheric circulation and greater infl uence from convective storms originating from the south. Deposits of bat guano represent a largely untapped source of paleoenvironmental information that can provide continuous and long-term continental archives of environmental change.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="197eb065a0517a2c2b496ac04df2959e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880471,&quot;asset_id&quot;:86422921,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880471/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422921"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422921"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422921; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422921]").text(description); $(".js-view-count[data-work-id=86422921]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422921; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422921']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "197eb065a0517a2c2b496ac04df2959e" } } $('.js-work-strip[data-work-id=86422921]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422921,"title":"Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events","internal_url":"https://www.academia.edu/86422921/Stable_carbon_and_hydrogen_isotopes_from_bat_guano_in_the_Grand_Canyon_USA_reveal_Younger_Dryas_and_8_2_ka_events","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880471/thumbnails/1.jpg","file_name":"2e2caf26ce67dd306e92dbf3c252be130830.pdf","download_url":"https://www.academia.edu/attachments/90880471/download_file","bulk_download_file_name":"Stable_carbon_and_hydrogen_isotopes_from.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880471/2e2caf26ce67dd306e92dbf3c252be130830-libre.pdf?1662852720=\u0026response-content-disposition=attachment%3B+filename%3DStable_carbon_and_hydrogen_isotopes_from.pdf\u0026Expires=1739862730\u0026Signature=e9GZ5dw9bziUV2km1baj1ZkslpwV623XtPs3m1Oo5P3nQK0lP3F5VyuNtrTlnDfCJcRiKl3unTDeTmkG35YJMhb51nDZRNa32ArUR7IOQU8bAxN~vSPrZORe8upiubZnpipjxxTeCZ40kGpk70jK2dIxobe2F9jTTJwugUTTT~200j8036P63PZkOSTmpKi3QSnaajeCij2aGtkCnxcrZp6fbdNwI-39E0Kb~oVMAnFa33pYOQp61yBn5DyRrmvdcPbR6bLEwwMhwMvrloUzaRHOA17ko2kb2cSkmjBaau3ffPVsZdYr4550Hj9p1gVZ3iWbh5ZHwy~1ttpPgpn1Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422920/Carbon_isotope_chemostratigraphy_of_Frasnian_sequences_in_Western_Canada"><img alt="Research paper thumbnail of Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/90880477/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422920/Carbon_isotope_chemostratigraphy_of_Frasnian_sequences_in_Western_Canada">Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada</a></div><div class="wp-workCard_item"><span>… Survery, Summary of …</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a ! 13 C profile for the Frasnian succession of the eastern part of the Western Canada...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a ! 13 C profile for the Frasnian succession of the eastern part of the Western Canada Sedimentary Basin as a tool for proposing and justifying regional stratigraphic correlations. Eight positive ! 13 C excursions are identified that permit detailed correlations of Frasnian sequences for these eastern areas. In particular, this composite ! 13 C profile may be used to compare &#39;restricted&#39; and sparsely fossiliferous, or non-fossiliferous Frasnian deposits of Saskatchewan with more open-marine deposits of eastern Alberta and the southwestern Great Slave Lake region. Chemostratigraphic correlations were found to agree with those previously inferred on the basis of ostracode biostratigraphy. This includes the postulation that, in Saskatchewan, a major regional unconformity caused the omission of Cooking Lake-Leduc oil-bearing strata, which explains the absence of a major positive ! 13 C excursion that is prominent in northeastern Alberta. The most probable explanation is that the Leduc reefs and associated carbonate platform in Alberta formed during a time of decreasing sea level, resulting in no sediment deposition and/or possible subaerial exposure and erosion of Leduc-equivalent strata in the shallower water environment of Saskatchewan.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="995c4778adcdf1965d13208b0cbe50a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880477,&quot;asset_id&quot;:86422920,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880477/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422920]").text(description); $(".js-view-count[data-work-id=86422920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "995c4778adcdf1965d13208b0cbe50a2" } } $('.js-work-strip[data-work-id=86422920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422920,"title":"Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada","internal_url":"https://www.academia.edu/86422920/Carbon_isotope_chemostratigraphy_of_Frasnian_sequences_in_Western_Canada","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880477/thumbnails/1.jpg","file_name":"holmden_et_al_2007_summary_.pdf","download_url":"https://www.academia.edu/attachments/90880477/download_file","bulk_download_file_name":"Carbon_isotope_chemostratigraphy_of_Fras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880477/holmden_et_al_2007_summary_-libre.pdf?1662852723=\u0026response-content-disposition=attachment%3B+filename%3DCarbon_isotope_chemostratigraphy_of_Fras.pdf\u0026Expires=1739862730\u0026Signature=S0Awc~wXWWawzKWBrud~pUCgQJi2PQtZFQTKpkuZbZ~WAzfI7c9j~bNyd5sSUmj0D~zIUgJVxT86js3JCTS7w1jSLViEWL13WHeAeGkDqhcjDIT974NXpbe96sVWaD71ncNMVU6sYcH1Qn4gFCatkg7uP9VIOCvdl3vS~G2Cwm5QE2n4xcN33S5Cdr3gmb-NDh0dd13SSJn6HHCs5JlsEo~GqiUHef4d0gSF2UZAFi9G4tW-AIfsv3VYeV2aTUbtvfp5qihqQDXB6YopuvkCuUmCnNFkq-9A65yn3ddXNelr~x1z8gfg6ytK85ezpiz3mePivujVzyqkAzMtKnbMBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422912/Climate_variability_in_the_Early_Pliocene_Arctic_Annually_resolved_evidence_from_stable_isotope_values_of_sub_fossil_wood_Ellesmere_Island_Canada"><img alt="Research paper thumbnail of Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/90880465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422912/Climate_variability_in_the_Early_Pliocene_Arctic_Annually_resolved_evidence_from_stable_isotope_values_of_sub_fossil_wood_Ellesmere_Island_Canada">Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tree-ring analyses have contributed significantly to investigations of past climate. Stable isoto...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tree-ring analyses have contributed significantly to investigations of past climate. Stable isotope climate proxies (δ 18 O, δD and δ 13 C values) enhance traditional ring-width data, although poor preservation of ancient wood has tended to limit development of stable isotope proxy records to the Holocene and the Late Pleistocene. Here we apply stable isotope techniques to wood that represent the remains of Mixed-Coniferous Boreal Vegetation preserved in Early Pliocene (4-5 Ma) deposits at Strathcona Fiord, Ellesmere Island, Canada (ca. 78°N). Four well-preserved tree trunks, identified through wood anatomical characteristics as Larix (larch), from this high Arctic site provide annually resolved sequences of up to 250 years from which we developed a high-resolution record of Pliocene climate. Stable oxygen isotope values, in conjunction with ringwidth measurements were used to derive annually resolved temperature records for this site. Our ring-width and isotope-based reconstructions provide an annually resolved record, up to 250 years, of temperature and indicate growing season (JJ) temperatures (15.8 ± 5.0°C) 11.8± 5.1°C, and mean annual temperatures (MAT) (−1.4 ± 4.0°C) 18.3± 4.1°C warmer than present. Estimated isotope values of precipitation of −16.3± 2‰ (δ 18 O) and −150.1 ± 8.9‰ (δD) were calculated from the isotopic values of wood cellulose. Relative humidity estimated from both δ 13 C and δD records ranged from 60 to 80%. Paleotemperature, source water and humidity estimates are comparable to those of a modern Boreal Forest growing ca. 15-20°south of modern Ellesmere Island.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef23964eeb7ae367a2fd644a06b27e1f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880465,&quot;asset_id&quot;:86422912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880465/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422912]").text(description); $(".js-view-count[data-work-id=86422912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef23964eeb7ae367a2fd644a06b27e1f" } } $('.js-work-strip[data-work-id=86422912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422912,"title":"Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada","internal_url":"https://www.academia.edu/86422912/Climate_variability_in_the_Early_Pliocene_Arctic_Annually_resolved_evidence_from_stable_isotope_values_of_sub_fossil_wood_Ellesmere_Island_Canada","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880465/thumbnails/1.jpg","file_name":"j.palaeo.2011.05.03820220910-1-1hvzlu.pdf","download_url":"https://www.academia.edu/attachments/90880465/download_file","bulk_download_file_name":"Climate_variability_in_the_Early_Pliocen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880465/j.palaeo.2011.05.03820220910-1-1hvzlu-libre.pdf?1662852723=\u0026response-content-disposition=attachment%3B+filename%3DClimate_variability_in_the_Early_Pliocen.pdf\u0026Expires=1739176842\u0026Signature=Ytbpjl8HPPGueksFQGWaoQNqcS9xCBUBihNqJZNGENYZbeHXh1~44EilLqwNFB24bbcyHndeV55yiEIeWmTZPhbzHDboI08O4Wfp2WoryEBUK7St3T0mai1Z1yA5auOlQxFzqNRoqRj~Uek81W8P0cctVixXs3JuS-X0yzHL9C~F44gbfMSnK9q-VLrFd3w3CLJzA-c8TryANz4acgsk0HWF8~EjaevN9qDnWeHyjpyhq3ziC~q4lGtUbwjsRmQasLK6Vxz-y8msgvTTABO3-AIBY51qn0dow0X8ioMb2aKblya4XCraci0WqJK-DUeTl6i0u9Dp5fnxXfL2BQpOIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83412141"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83412141/Stable_isotope_profiling_in_moderate_marine_bryozoan_colonies_across_the_Isthmus_of_Panama"><img alt="Research paper thumbnail of Stable isotope profiling in moderate marine bryozoan colonies across the Isthmus of Panama" class="work-thumbnail" src="https://attachments.academia-assets.com/88762687/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83412141/Stable_isotope_profiling_in_moderate_marine_bryozoan_colonies_across_the_Isthmus_of_Panama">Stable isotope profiling in moderate marine bryozoan colonies across the Isthmus of Panama</a></div><div class="wp-workCard_item"><span>Bulletin of Marine Science</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the tropics, upwelling of cold, deep water is the principal source of major seasonal fluctuati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the tropics, upwelling of cold, deep water is the principal source of major seasonal fluctuations in temperature. Along the tropical eastern Pacific (TEP) coast of the Isthmus of Panama, seasonal upwelling induces corresponding drops in temperature. Upwelling does not occur along the southwestern Caribbean (SWC) coast of the isthmus. Our goal was to use these oceanographic differences to test the use of stable isotope profiles of free-living modern cupuladriid bryozoans as a method for quantifying paleo-seasonality. We determined O and C stable isotope values from micromilled carbonates profiled along the growth axis in three colonies of Cupuladria exfragminis Herrera-Cubilla, Dick, Sanner and Jackson, 2006 from the upwelling Gulf of Panama in TEP and three colonies of Cupuladria surinamensis Cadée, 1975 from the non-upwelling Bocas del Toro Archipelago in SWC. Pacific colonies had inter-colony δ 18 O carb values ranging from −2.1‰ to −0.2‰ on the international Vienna Pee Dee Belemnite scale, whereas SWC colonies ranged from −1.7‰ to −0.6‰. Pacific colonies consistently reveal cyclical trends in δ 18 O carb that are absent in the Caribbean colonies. Based on published measurements of temperature, salinity, and δ 18 O sw , the ≤2.5 yrs of cyclicity seen in the Pacific colonies reflects a combination of seasonal freshening and seasonal upwelling of colder water. is preliminary study suggests the potential for more exploration of bryozoans as a source of paleoclimate proxies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2ae3aa5975180f037106748d63524384" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:88762687,&quot;asset_id&quot;:83412141,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/88762687/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83412141"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83412141"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83412141; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83412141]").text(description); $(".js-view-count[data-work-id=83412141]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83412141; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83412141']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2ae3aa5975180f037106748d63524384" } } $('.js-work-strip[data-work-id=83412141]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83412141,"title":"Stable isotope profiling in moderate marine bryozoan colonies across the Isthmus of Panama","internal_url":"https://www.academia.edu/83412141/Stable_isotope_profiling_in_moderate_marine_bryozoan_colonies_across_the_Isthmus_of_Panama","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":88762687,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88762687/thumbnails/1.jpg","file_name":"12fcf0727c05a84a473ff4bea8c02ac47b96.pdf","download_url":"https://www.academia.edu/attachments/88762687/download_file","bulk_download_file_name":"Stable_isotope_profiling_in_moderate_mar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88762687/12fcf0727c05a84a473ff4bea8c02ac47b96-libre.pdf?1658247956=\u0026response-content-disposition=attachment%3B+filename%3DStable_isotope_profiling_in_moderate_mar.pdf\u0026Expires=1739862730\u0026Signature=Wk9OX1vFIvagGv1JwacvdQF-uPZsGTKZGTI32khnmgl-1Vj6FMlvehf5P6UvaZe0UL006XSCc3c0AazcWurPw-X50g5kax052EcLhYosjedFpwusUoop2EPMeAOFUx1w68PGPmqq4vanj6HCDnF7T48WagGivUY8JdZx2LPaQxjIsdYsWoQoAthUyoyKXy9tL5IDJZYTdB5JTf8txVfDVYEBz2D3AbQLIvDOHY9n3KOjTA5QImkXUACpCz6W-~PgBLTiMMDneIAx0Op9J2wVHnFyN0kIDIHc8MbJry56~v8Npgym7fnpYYezvj1np4SIL2~syxir4KNihfN3-NN-MQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78150325"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78150325/Baldwin_Lake_pollen_dataset"><img alt="Research paper thumbnail of Baldwin Lake pollen dataset" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78150325/Baldwin_Lake_pollen_dataset">Baldwin Lake pollen dataset</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Raw data for the Baldwin Lake pollen dataset obtained from the Neotoma Paleoecology Database.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78150325"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78150325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78150325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78150325]").text(description); $(".js-view-count[data-work-id=78150325]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78150325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78150325']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78150325]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78150325,"title":"Baldwin Lake pollen dataset","internal_url":"https://www.academia.edu/78150325/Baldwin_Lake_pollen_dataset","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="9085" id="papers"><div class="js-work-strip profile--work_container" data-work-id="108960265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108960265/Gron_K_J_Gr%C3%B6cke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_"><img alt="Research paper thumbnail of Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)" class="work-thumbnail" src="https://attachments.academia-assets.com/107215362/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108960265/Gron_K_J_Gr%C3%B6cke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_">Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://naturalsciences-be.academia.edu/WimVanNeer">Wim Van Neer</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://usask.academia.edu/WilliamPatterson">William Patterson</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 20...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh &amp; N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8e56982e84fe2fe9e4e600e312a1c07c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:107215362,&quot;asset_id&quot;:108960265,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/107215362/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108960265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108960265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108960265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108960265]").text(description); $(".js-view-count[data-work-id=108960265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108960265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108960265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8e56982e84fe2fe9e4e600e312a1c07c" } } $('.js-work-strip[data-work-id=108960265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108960265,"title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)","translated_title":"","metadata":{"abstract":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh \u0026 N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.","ai_title_tag":"Isotopic Analysis of Agriculture in Swifterbant Period"},"translated_abstract":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh \u0026 N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.","internal_url":"https://www.academia.edu/108960265/Gron_K_J_Gr%C3%B6cke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_","translated_internal_url":"","created_at":"2023-11-07T07:44:35.011-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2712072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":40516972,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":333909,"co_author_invite_id":null,"email":"h***n@hotmail.co.uk","affiliation":"University of York","display_order":1,"name":"Harry K Robson","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516973,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":32573,"co_author_invite_id":null,"email":"B***n@usask.ca","affiliation":"University of Saskatchewan","display_order":2,"name":"William Patterson","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516974,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":41073294,"co_author_invite_id":null,"email":"p***y@durham.ac.uk","affiliation":"Durham University","display_order":3,"name":"Peter Rowley-Conwy","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516975,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":null,"co_author_invite_id":6794333,"email":"k***n@durham.ac.uk","display_order":4,"name":"Kurt Gron","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516976,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":856422,"co_author_invite_id":null,"email":"d***e@durham.ac.uk","affiliation":"Durham University","display_order":5,"name":"Darren Gröcke","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"},{"id":40516977,"work_id":108960265,"tagging_user_id":2712072,"tagged_user_id":273411,"co_author_invite_id":null,"email":"m***h@durham.ac.uk","affiliation":"Durham University","display_order":6,"name":"Mike Church","title":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher (red)"}],"downloadable_attachments":[{"id":107215362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107215362/thumbnails/1.jpg","file_name":"Gron_2023_SW_stable_isotopes.pdf","download_url":"https://www.academia.edu/attachments/107215362/download_file","bulk_download_file_name":"Gron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107215362/Gron_2023_SW_stable_isotopes-libre.pdf?1699373341=\u0026response-content-disposition=attachment%3B+filename%3DGron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf\u0026Expires=1738736188\u0026Signature=DIfB5Sja0GKYsxV-M~gpxuloa94WCfI8kjoqR2qq1oH7PV1~KZtsPhMZ1Ljs2-Mgs5RRz2ydDtNJxhKE8T7zl1ZZoeldxR3qvS0O0E-BdbMo5JLkLiunPfE6BL6pkTCyH6J6IXfRr8gSoTDsf-gQ5xnl-bTs9NCpakF~6r6uZwr6duDMMi4Aj2jXSDHGgBOpyDXJh3yimghZ-WnOG0LbToTCe2bStB9~GCuJ-LKvrShZXw0mzII4URGfMNHlikkGsQEe0RIXbnQUxwsT~9TGkMLOv1FX0wxhWgZVQZ8pkpgRKfXCYnLk6lpJCfebdsut7qamy-ECCIGMUJyRecC4gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gron_K_J_Gröcke_D_R_Rowley_Conwy_P_Patterson_W_P_Van_Neer_W_Robson_H_K_Church_M_J_2023_Stable_isotopes_reveal_agricultural_practices_in_the_Swifterbant_period_In_T_J_ten_Anscher_red_","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"Gron K.J., Gröcke D.R., Rowley-Conwy P., Patterson W.P., Van Neer W., Robson H.K., Church M.J. 2023. Stable isotopes reveal agricultural practices in the Swifterbant period. In: T.J. ten Anscher, S. Knippenberg, C.M. van der Linde, W. Roessingh \u0026 N.W. Willemse (red.), Doorbraken aan de Rijn. Een Swifterbant-gehucht, een Hazendonk-nederzetting en erven en graven uit de bronstijd in Medel-De Roeskamp, pp. 737-750. RAAP-rapport 6519, Weesp.","owner":{"id":2712072,"first_name":"Wim","middle_initials":"","last_name":"Van Neer","page_name":"WimVanNeer","domain_name":"naturalsciences-be","created_at":"2012-11-01T02:19:16.095-07:00","display_name":"Wim Van Neer","url":"https://naturalsciences-be.academia.edu/WimVanNeer"},"attachments":[{"id":107215362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107215362/thumbnails/1.jpg","file_name":"Gron_2023_SW_stable_isotopes.pdf","download_url":"https://www.academia.edu/attachments/107215362/download_file","bulk_download_file_name":"Gron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107215362/Gron_2023_SW_stable_isotopes-libre.pdf?1699373341=\u0026response-content-disposition=attachment%3B+filename%3DGron_K_J_Grocke_D_R_Rowley_Conwy_P_Patte.pdf\u0026Expires=1738736188\u0026Signature=DIfB5Sja0GKYsxV-M~gpxuloa94WCfI8kjoqR2qq1oH7PV1~KZtsPhMZ1Ljs2-Mgs5RRz2ydDtNJxhKE8T7zl1ZZoeldxR3qvS0O0E-BdbMo5JLkLiunPfE6BL6pkTCyH6J6IXfRr8gSoTDsf-gQ5xnl-bTs9NCpakF~6r6uZwr6duDMMi4Aj2jXSDHGgBOpyDXJh3yimghZ-WnOG0LbToTCe2bStB9~GCuJ-LKvrShZXw0mzII4URGfMNHlikkGsQEe0RIXbnQUxwsT~9TGkMLOv1FX0wxhWgZVQZ8pkpgRKfXCYnLk6lpJCfebdsut7qamy-ECCIGMUJyRecC4gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="105364944"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105364944/Estimates_of_Arctic_land_surface_temperatures_during_the_early_Pliocene_from_two_novel_proxies"><img alt="Research paper thumbnail of Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies" class="work-thumbnail" src="https://attachments.academia-assets.com/104838558/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105364944/Estimates_of_Arctic_land_surface_temperatures_during_the_early_Pliocene_from_two_novel_proxies">Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">During the Pliocene (2.6 to 5 Ma ago) atmospheric CO 2 levels have been estimated as similar to o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">During the Pliocene (2.6 to 5 Ma ago) atmospheric CO 2 levels have been estimated as similar to or slightly above present levels (Tripati et al., 2009; Pagani et al., 2010), and yet Earth&#39;s climate was considerably different. Recent evidence suggests that although global temperatures were 2-3°C warmer than pre-industrial, Arctic warming may have been amplified during the Pliocene. Thus precise temperature records of this interval are required to assess the sensitivity of Earth&#39;s climate to persistent levels of CO 2 between 365 and 415 ppm.We present records of two independent proxies for terrestrial growing-season temperatures at the Early Pliocene Beaver Pond site on Ellesmere Island. δ 18 O values of cellulose from well-preserved peat constrain the δ 18 O values of meteoric water to −20.7± 0.3‰, which we combined with δ 18 Ovalues of aragonitic freshwater molluscs found within the peat in order to calculate mollusc growth temperatures. This approach results in an average growing-season temperature of 14.2± 1.3°C. Temperatures were independently derived by applying carbonate &#39;clumped isotope&#39; thermometry to mollusc shells from the same site, indicating an average growing-season temperature of 10.2± 1.4°C. A one-way ANOVA indicates that the differences between the two techniques are not significant as the difference in mean temperatures between both methods is no different than the difference between individual shells using a single technique. Both techniques indicate temperatures~11-16°C warmer than present (May-Sept temperature = −1.6 ± 1.3°C) and represent the first thermodynamic proxy results for Early Pliocene Ellesmere Island.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6116ebbc4420ddc64a7d709380a06719" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104838558,&quot;asset_id&quot;:105364944,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104838558/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105364944"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105364944"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105364944; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105364944]").text(description); $(".js-view-count[data-work-id=105364944]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105364944; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105364944']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6116ebbc4420ddc64a7d709380a06719" } } $('.js-work-strip[data-work-id=105364944]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105364944,"title":"Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies","internal_url":"https://www.academia.edu/105364944/Estimates_of_Arctic_land_surface_temperatures_during_the_early_Pliocene_from_two_novel_proxies","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":104838558,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104838558/thumbnails/1.jpg","file_name":"Csank_ArcticTempNovelProxies_EPS_2011.pdf","download_url":"https://www.academia.edu/attachments/104838558/download_file","bulk_download_file_name":"Estimates_of_Arctic_land_surface_tempera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104838558/Csank_ArcticTempNovelProxies_EPS_2011-libre.pdf?1691464614=\u0026response-content-disposition=attachment%3B+filename%3DEstimates_of_Arctic_land_surface_tempera.pdf\u0026Expires=1739389390\u0026Signature=PM5VdjqverPeHDrY9IiKR1~k3SAPsudyHMwoT4dwuoCyDOYV-iOIhOxGRrDhgN~YuwfONoKRe-OLMV~oq6zHcVMGddOUI5Io2-axGgGcQc4o77keKZW7Els61GqHlhAONTF01bEOBC~do~fQngrBkrEt69VqftoiNALa3n2P9NMn-8oPYLNpoJtCa86SS3c3FxP4s7yEPH1wfvX0S9ofeF3~BgM2baljmMs47Yl5eelMzdQ1rAzUhGmWbxikC5CT3chMz5ZlSAj4JdI61N--i0s-kF~C~iCX91MxuwaQaDXKrmU-Mba0-193EIL8~PQvjmiT3bUVzYrRBgbcXefxIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96480615"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96480615/Regional_differences_in_bone_collagen_%CE%B413C_and_%CE%B415N_of_Pleistocene_mammoths_Implications_for_paleoecology_of_the_mammoth_steppe"><img alt="Research paper thumbnail of Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe" class="work-thumbnail" src="https://attachments.academia-assets.com/98368067/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96480615/Regional_differences_in_bone_collagen_%CE%B413C_and_%CE%B415N_of_Pleistocene_mammoths_Implications_for_paleoecology_of_the_mammoth_steppe">Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this study, we present bone collagen δ 13 C and δ 15 N values from a large set of Pleistocene ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this study, we present bone collagen δ 13 C and δ 15 N values from a large set of Pleistocene woolly mammoths (Mammuthus primigenius) from Siberia, Alaska and Yukon. Overall, results for mammoth specimens from eastern Beringia (Alaska and Yukon) significantly differ, for both δ 13 C and δ 15 N values, from those from western Beringia (northeastern Siberia). In agreement with palynological, entomological, and physiographic data from the same regions, these isotopic differences strongly imply that the &#39;mammoth steppe,&#39; the extensive ice-free region spanning northern Eurasia and northwestern North America, was ecologically variable along its east-west axis to a significant degree. Prior to the Last Glacial Maximum (LGM), the high-latitude portions of Siberia and the Russian Far East appear to have been colder and more arid than central Alaska and Yukon, which were ecologically more diverse. During the LGM itself, however, isotopic signatures of mammoths from eastern Beringia support the argument that this region also experienced an extremely cold and arid climate. In terms of overall temporal trend, Beringia thus went from a condition prior to the LGM of greater ecological variability in the east to one of uniformly cold and dry conditions during the LGM.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05674efe8a556adabbfb786b119ea96c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98368067,&quot;asset_id&quot;:96480615,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98368067/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96480615"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96480615"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96480615; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96480615]").text(description); $(".js-view-count[data-work-id=96480615]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96480615; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96480615']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05674efe8a556adabbfb786b119ea96c" } } $('.js-work-strip[data-work-id=96480615]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96480615,"title":"Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe","internal_url":"https://www.academia.edu/96480615/Regional_differences_in_bone_collagen_%CE%B413C_and_%CE%B415N_of_Pleistocene_mammoths_Implications_for_paleoecology_of_the_mammoth_steppe","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":98368067,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98368067/thumbnails/1.jpg","file_name":"76b0b0_3fb13c47090844cd904e1e9d445fd143.pdf","download_url":"https://www.academia.edu/attachments/98368067/download_file","bulk_download_file_name":"Regional_differences_in_bone_collagen_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98368067/76b0b0_3fb13c47090844cd904e1e9d445fd143-libre.pdf?1675805860=\u0026response-content-disposition=attachment%3B+filename%3DRegional_differences_in_bone_collagen_1.pdf\u0026Expires=1739862729\u0026Signature=V~aBdSoe7o0G8SvB0RzXgFZJJPLvu2eRZ37qNMcLSKQZkHKtW0hPyCmjAYdQzuNW7OF8QCZvSe8jUbsyKAL1htE3BSStFIyuuRopHdzhNz69KcAL2zHWyQZbN0oKFfpgHVQcRtxgaw6jiGAW-7EBviELP5uNy5sxkJhi~rrSSSxb53yMfNNG4UwBN62BulDIew8UjTxMuH6bSCbLquEEwdUUawQbS8uifPkXec-84cGGWJhqjP7uvyk4RjJAlqzW~LQ-MV1ajbQtrWojgHG~ZBJMb3~s084ctgJHsbrxfoflfBkVuad8omyRrsduo5qt67j-wvQZHUULHgJf89rlYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978963"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978963/Cooler_winters_as_a_possible_cause_of_mass_extinctions_at_the_Eocene_Oligocene_boundary"><img alt="Research paper thumbnail of Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary" class="work-thumbnail" src="https://attachments.academia-assets.com/95843976/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978963/Cooler_winters_as_a_possible_cause_of_mass_extinctions_at_the_Eocene_Oligocene_boundary">Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary</a></div><div class="wp-workCard_item"><span>Nature</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of mar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period 1. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time 2,3. A temperature change across this boundaryÐfrom warm Eocene climates to cooler conditions in the OligoceneÐhas been suggested as a cause of this extinction event 4 , but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in ®sh otolithsÐear stonesÐcollected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9d6e6d201fd43b56b5c9a4e6b13f086" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843976,&quot;asset_id&quot;:92978963,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843976/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978963"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978963"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978963; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978963]").text(description); $(".js-view-count[data-work-id=92978963]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978963; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978963']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9d6e6d201fd43b56b5c9a4e6b13f086" } } $('.js-work-strip[data-work-id=92978963]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978963,"title":"Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary","internal_url":"https://www.academia.edu/92978963/Cooler_winters_as_a_possible_cause_of_mass_extinctions_at_the_Eocene_Oligocene_boundary","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843976/thumbnails/1.jpg","file_name":"407887a0.pdf","download_url":"https://www.academia.edu/attachments/95843976/download_file","bulk_download_file_name":"Cooler_winters_as_a_possible_cause_of_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843976/407887a0-libre.pdf?1671139252=\u0026response-content-disposition=attachment%3B+filename%3DCooler_winters_as_a_possible_cause_of_ma.pdf\u0026Expires=1739862729\u0026Signature=Zq43xoWPiSh~hAINvQ~1xlz3EdPXXuCQab-N4VpuURzVbAG-RF0co7CeG3pQOlRzTZaO4evuQljDPe1pJ4tNF9HCoajtBxVGsiM1prAmudqyrdVf9y9lfNbCq2KhA5YkdS3AxnUAtjGQpgYGN6aDdNTUmQvIG1l2re8E3ghTrnh5PT5m6y7ZvVrV87M3QxUWjzYTC58Vfo7U19skIFju1iumBQv05YT8Dg0434G8xtdXZqoljpzynjPhh9BgwrQGvAWWFh83uSWrSSuTBKRFVoy7iJtlc8eVeLRmCc6FUxaMWBpj8P~Jx5yKP9nFs8buyGJGUUrOSJx79lZZHW12jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978962"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978962/Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_%CE%B418O_values_of_sagittal_otoliths"><img alt="Research paper thumbnail of Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths" class="work-thumbnail" src="https://attachments.academia-assets.com/95844008/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978962/Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_%CE%B418O_values_of_sagittal_otoliths">Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal otoliths recovered from the Eastman rockshelter archaeological site in northeast Tennessee to evaluate climate change for the eastern interior United States from 5500 calendar years ago to the present. Micromilled samples representing less than six days of otolith growth were extracted to acquire high-resolution intra-otolith variation in d 18 O values. Freshwater drum sagittal otoliths form annual bands due to thermally induced growth cessation below 108C. d 18 O H 2 O values can be calculated once a high-resolution carbonate sample representing the beginning of the growing season is isolated. Maximum summer temperature can be calculated using the seasonal minimum d 18 O CaCO 3 value and the d 18 O H 2 O value. Maximum summer temperatures calculated from the freshwater drum sagittae suggest that summer temperatures generally decrease from 298C at ,5.5 ka to 228C at ,0.3 ka. However, warmer climates at 2.9, 1.7±1.6, and 1.2±1.0 ka punctuate this trend. A more complete picture of the climate is reconstructed, because d 18 O H 2 O values, which are a function of the ratio of summer to winter precipitation, are also calculated. A relatively low average d 18 O H 2 O value of 28.1½ VSMOW was calculated at 1.0 ka, suggesting cold winters, dry summers, and/or wet winters may have prevailed during part of the Medieval Warm Period in Tennessee. Contrary to studies suggesting that the Holocene was extremely stable and the Hypsithermal was invariably warm and dry, additional evidence suggesting both signi®cant climate variability and evidence for a wetter mid-Holocene is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cd913230bc7c98bdf0c20c424e37d34a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95844008,&quot;asset_id&quot;:92978962,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95844008/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978962"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978962"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978962; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978962]").text(description); $(".js-view-count[data-work-id=92978962]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978962; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978962']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cd913230bc7c98bdf0c20c424e37d34a" } } $('.js-work-strip[data-work-id=92978962]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978962,"title":"Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal otoliths recovered from the Eastman rockshelter archaeological site in northeast Tennessee to evaluate climate change for the eastern interior United States from 5500 calendar years ago to the present. Micromilled samples representing less than six days of otolith growth were extracted to acquire high-resolution intra-otolith variation in d 18 O values. Freshwater drum sagittal otoliths form annual bands due to thermally induced growth cessation below 108C. d 18 O H 2 O values can be calculated once a high-resolution carbonate sample representing the beginning of the growing season is isolated. Maximum summer temperature can be calculated using the seasonal minimum d 18 O CaCO 3 value and the d 18 O H 2 O value. Maximum summer temperatures calculated from the freshwater drum sagittae suggest that summer temperatures generally decrease from 298C at ,5.5 ka to 228C at ,0.3 ka. However, warmer climates at 2.9, 1.7±1.6, and 1.2±1.0 ka punctuate this trend. A more complete picture of the climate is reconstructed, because d 18 O H 2 O values, which are a function of the ratio of summer to winter precipitation, are also calculated. A relatively low average d 18 O H 2 O value of 28.1½ VSMOW was calculated at 1.0 ka, suggesting cold winters, dry summers, and/or wet winters may have prevailed during part of the Medieval Warm Period in Tennessee. Contrary to studies suggesting that the Holocene was extremely stable and the Hypsithermal was invariably warm and dry, additional evidence suggesting both signi®cant climate variability and evidence for a wetter mid-Holocene is presented.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Palaeogeography, Palaeoclimatology, Palaeoecology","grobid_abstract_attachment_id":95844008},"translated_abstract":null,"internal_url":"https://www.academia.edu/92978962/Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_%CE%B418O_values_of_sagittal_otoliths","translated_internal_url":"","created_at":"2022-12-15T12:31:35.004-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32573,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95844008,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95844008/thumbnails/1.jpg","file_name":"W_P_2001a.pdf","download_url":"https://www.academia.edu/attachments/95844008/download_file","bulk_download_file_name":"Late_Holocene_climate_change_for_the_eas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95844008/W_P_2001a-libre.pdf?1671139247=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_climate_change_for_the_eas.pdf\u0026Expires=1738788030\u0026Signature=I0c4OUBCS7Tn05T~IIwYfIbPwSBRLuPwd7Wo-Fh-d4ZY~~1MOmRxnnB7PLiwbNJnq5pDNgnbV~qQ2bons3LWDurGQyWlYlAW2WM1WVN4uaJwO6FhY585vtSCuDV-Lhj2QEOmZnw87-d5JKrAeYvsup5bfPcZsDojX4pU~BQb~Yj9RRTQ22RKnh-wPRzB1bpfB5ifVc-NODq1k0AZxUpdh6i3JjwZQFzKPvk0Dvy2c-~v3xPyLH07DPUd3scqj2OcVfQdynEJ9w3EUU8gPJ-xfqkzvPAyOmc~i78DE2iSzLGpiSXdC24LRtu0PPuZaog4iD9XpTiDqFf546lvGBL4kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Late_Holocene_climate_change_for_the_eastern_interior_United_States_evidence_from_high_resolution_δ18O_values_of_sagittal_otoliths","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"Stable oxygen isotope values were determined for freshwater drum (Aplodinotus grunniens) sagittal otoliths recovered from the Eastman rockshelter archaeological site in northeast Tennessee to evaluate climate change for the eastern interior United States from 5500 calendar years ago to the present. Micromilled samples representing less than six days of otolith growth were extracted to acquire high-resolution intra-otolith variation in d 18 O values. Freshwater drum sagittal otoliths form annual bands due to thermally induced growth cessation below 108C. d 18 O H 2 O values can be calculated once a high-resolution carbonate sample representing the beginning of the growing season is isolated. Maximum summer temperature can be calculated using the seasonal minimum d 18 O CaCO 3 value and the d 18 O H 2 O value. Maximum summer temperatures calculated from the freshwater drum sagittae suggest that summer temperatures generally decrease from 298C at ,5.5 ka to 228C at ,0.3 ka. However, warmer climates at 2.9, 1.7±1.6, and 1.2±1.0 ka punctuate this trend. A more complete picture of the climate is reconstructed, because d 18 O H 2 O values, which are a function of the ratio of summer to winter precipitation, are also calculated. A relatively low average d 18 O H 2 O value of 28.1½ VSMOW was calculated at 1.0 ka, suggesting cold winters, dry summers, and/or wet winters may have prevailed during part of the Medieval Warm Period in Tennessee. Contrary to studies suggesting that the Holocene was extremely stable and the Hypsithermal was invariably warm and dry, additional evidence suggesting both signi®cant climate variability and evidence for a wetter mid-Holocene is presented.","owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95844008,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95844008/thumbnails/1.jpg","file_name":"W_P_2001a.pdf","download_url":"https://www.academia.edu/attachments/95844008/download_file","bulk_download_file_name":"Late_Holocene_climate_change_for_the_eas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95844008/W_P_2001a-libre.pdf?1671139247=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_climate_change_for_the_eas.pdf\u0026Expires=1738788030\u0026Signature=I0c4OUBCS7Tn05T~IIwYfIbPwSBRLuPwd7Wo-Fh-d4ZY~~1MOmRxnnB7PLiwbNJnq5pDNgnbV~qQ2bons3LWDurGQyWlYlAW2WM1WVN4uaJwO6FhY585vtSCuDV-Lhj2QEOmZnw87-d5JKrAeYvsup5bfPcZsDojX4pU~BQb~Yj9RRTQ22RKnh-wPRzB1bpfB5ifVc-NODq1k0AZxUpdh6i3JjwZQFzKPvk0Dvy2c-~v3xPyLH07DPUd3scqj2OcVfQdynEJ9w3EUU8gPJ-xfqkzvPAyOmc~i78DE2iSzLGpiSXdC24LRtu0PPuZaog4iD9XpTiDqFf546lvGBL4kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":289,"name":"Palaeogeography","url":"https://www.academia.edu/Documents/in/Palaeogeography"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":7941,"name":"Stable Isotopes","url":"https://www.academia.edu/Documents/in/Stable_Isotopes"},{"id":7959,"name":"Stable Isotope Geochemistry","url":"https://www.academia.edu/Documents/in/Stable_Isotope_Geochemistry"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":41732,"name":"Otoliths","url":"https://www.academia.edu/Documents/in/Otoliths"},{"id":57433,"name":"Seasonality","url":"https://www.academia.edu/Documents/in/Seasonality"},{"id":78965,"name":"Holocene","url":"https://www.academia.edu/Documents/in/Holocene"},{"id":91257,"name":"Stable Isotope","url":"https://www.academia.edu/Documents/in/Stable_Isotope"},{"id":136308,"name":"Otolith","url":"https://www.academia.edu/Documents/in/Otolith"},{"id":291658,"name":"Precipitation","url":"https://www.academia.edu/Documents/in/Precipitation"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":2163839,"name":"Growing Season","url":"https://www.academia.edu/Documents/in/Growing_Season"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978961"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978961/Mio_pliocene_seasonality_on_the_snake_river_plain_comparison_of_faunal_and_oxygen_isotopic_evidence"><img alt="Research paper thumbnail of Mio-pliocene seasonality on the snake river plain: comparison of faunal and oxygen isotopic evidence" class="work-thumbnail" src="https://attachments.academia-assets.com/95843966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978961/Mio_pliocene_seasonality_on_the_snake_river_plain_comparison_of_faunal_and_oxygen_isotopic_evidence">Mio-pliocene seasonality on the snake river plain: comparison of faunal and oxygen isotopic evidence</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Analysis of fish faunas and oxygen isotopic composition of a fish otolith from lacustrine deposit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Analysis of fish faunas and oxygen isotopic composition of a fish otolith from lacustrine deposits of southwestern Idaho provide a means of evaluating regional Miocene and Pliocene climates. A disharmonious assemblage consisting of coldwater salmon and trout and warmwater sunfish and catfish from the Chalk Hills Formation of the Snake River Plain indicates that the climate of the late Miocene was warm and moist with cool summers and mild winters. Colonization of the lake by deepwater sculpins and whitefish in the Pliocene indicates that the climate was moist and equable, but with summers cooler than either the Miocene or Quaternary. Oxygen isotopic variation among seasonal growth rings in an aragonitic otolith of a Pliocene littoral sunfish suggests a seasonal range of temperatures locally more equable than at present. Extremely depleted values of 6180 in carbonates suggest that the lake was maintained by tributaries from high-elevation watersheds, with locally low evaporation, rather than high precipitation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="890540b4ae1bcacaab056aab614bc05b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843966,&quot;asset_id&quot;:92978961,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978961"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978961"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978961; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978961]").text(description); $(".js-view-count[data-work-id=92978961]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978961; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978961']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "890540b4ae1bcacaab056aab614bc05b" } } $('.js-work-strip[data-work-id=92978961]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978961,"title":"Mio-pliocene seasonality on the snake river plain: comparison of faunal and oxygen isotopic evidence","internal_url":"https://www.academia.edu/92978961/Mio_pliocene_seasonality_on_the_snake_river_plain_comparison_of_faunal_and_oxygen_isotopic_evidence","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843966/thumbnails/1.jpg","file_name":"0000702.pdf","download_url":"https://www.academia.edu/attachments/95843966/download_file","bulk_download_file_name":"Mio_pliocene_seasonality_on_the_snake_ri.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843966/0000702-libre.pdf?1671139257=\u0026response-content-disposition=attachment%3B+filename%3DMio_pliocene_seasonality_on_the_snake_ri.pdf\u0026Expires=1739862730\u0026Signature=dohaBSFQWBKR3H8LIAlmvJZVQWTHYcP3OHZM2j~1wqrP4~n9yiMJTE5-w7Imj76o9M-kqVaOkPD02T~gvoBHyRyW2Ytw9ipOyRK1EnHG1zFmbnLwYZHgWwJ-uDqEZzVRxFWtS4wIcCxr7r9y7~dg4T6MXNcCRJ9mWHfpAfc5~SEmuPRAQOsR~EW2yToq8It5YqyN~XM8H3lqYD6dAX-lUe-bPsD75bolBedXNNycFysqJUgyBTy1inAjjjNdK~HoyBCmztDB2GFlTvO4W6CugJqke1lvVOfOSv6rZxw8TU1PyToqpLpvnmO69bHyY5mWTgroYKmew9yT8HLAF3AQww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978960"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978960/Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation"><img alt="Research paper thumbnail of Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation" class="work-thumbnail" src="https://attachments.academia-assets.com/95843965/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978960/Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation">Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation</a></div><div class="wp-workCard_item"><span>New Zealand Journal of Geology and Geophysics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Sta...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ 18 O values range from-1.4 to 2.8‰ VPDB, while δ 13 C range from-4.5 to 2.8‰ VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ 18 O and δ 13 C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e22db71541b5f709b9fa0bdbd7f71d42" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843965,&quot;asset_id&quot;:92978960,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843965/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978960"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978960"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978960; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978960]").text(description); $(".js-view-count[data-work-id=92978960]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978960; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978960']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e22db71541b5f709b9fa0bdbd7f71d42" } } $('.js-work-strip[data-work-id=92978960]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978960,"title":"Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation","translated_title":"","metadata":{"publisher":"Informa UK Limited","ai_title_tag":"Stable Isotope Values of New Zealand Bryozoans and Paleoenvironmental Insights","grobid_abstract":"Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ 18 O values range from-1.4 to 2.8‰ VPDB, while δ 13 C range from-4.5 to 2.8‰ VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ 18 O and δ 13 C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"New Zealand Journal of Geology and Geophysics","grobid_abstract_attachment_id":95843965},"translated_abstract":null,"internal_url":"https://www.academia.edu/92978960/Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation","translated_internal_url":"","created_at":"2022-12-15T12:31:34.455-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32573,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95843965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843965/thumbnails/1.jpg","file_name":"Smith_et_al_NZJGG_04.pdf","download_url":"https://www.academia.edu/attachments/95843965/download_file","bulk_download_file_name":"Stable_isotope_values_in_modern_bryozoan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843965/Smith_et_al_NZJGG_04-libre.pdf?1671139268=\u0026response-content-disposition=attachment%3B+filename%3DStable_isotope_values_in_modern_bryozoan.pdf\u0026Expires=1738788030\u0026Signature=XRVuGIr2s4O4ZRr83OmP1IHlP16sZMexmLV0sfUOn-pwOevvktgNCQACkTgYhAmFPvv15iJlY~vUzogIHB72Zsp4dI-~Cc1jmUFQmeuOU8qhnpZCU8I-XtJRCdrq1k7D20WgNchZVqNoTDm5OmUoU0CMIAMmv7eEROVMYVH~loJEmaC6V7YNqoIRJokKVLEOnsR3ojkvRjNCVDhc6GgjS4Fmp8FuRZAUMzHbh8qwf8Q8cZemhkmTVn4v~urETXv4gV8MRpsDCrpCNGJst9CEneQLyZ4BicK32XxIbx3Lcxa9CSoAXD0IZsxmA5BvbIpuraFdS7fODLET1JNjx48jmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stable_isotope_values_in_modern_bryozoan_carbonate_from_New_Zealand_and_implications_for_paleoenvironmental_interpretation","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ 18 O values range from-1.4 to 2.8‰ VPDB, while δ 13 C range from-4.5 to 2.8‰ VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ 18 O and δ 13 C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers.","owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843965/thumbnails/1.jpg","file_name":"Smith_et_al_NZJGG_04.pdf","download_url":"https://www.academia.edu/attachments/95843965/download_file","bulk_download_file_name":"Stable_isotope_values_in_modern_bryozoan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843965/Smith_et_al_NZJGG_04-libre.pdf?1671139268=\u0026response-content-disposition=attachment%3B+filename%3DStable_isotope_values_in_modern_bryozoan.pdf\u0026Expires=1738788030\u0026Signature=XRVuGIr2s4O4ZRr83OmP1IHlP16sZMexmLV0sfUOn-pwOevvktgNCQACkTgYhAmFPvv15iJlY~vUzogIHB72Zsp4dI-~Cc1jmUFQmeuOU8qhnpZCU8I-XtJRCdrq1k7D20WgNchZVqNoTDm5OmUoU0CMIAMmv7eEROVMYVH~loJEmaC6V7YNqoIRJokKVLEOnsR3ojkvRjNCVDhc6GgjS4Fmp8FuRZAUMzHbh8qwf8Q8cZemhkmTVn4v~urETXv4gV8MRpsDCrpCNGJst9CEneQLyZ4BicK32XxIbx3Lcxa9CSoAXD0IZsxmA5BvbIpuraFdS7fODLET1JNjx48jmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":7941,"name":"Stable Isotopes","url":"https://www.academia.edu/Documents/in/Stable_Isotopes"},{"id":78117,"name":"Carbon Isotopes","url":"https://www.academia.edu/Documents/in/Carbon_Isotopes"},{"id":91257,"name":"Stable Isotope","url":"https://www.academia.edu/Documents/in/Stable_Isotope"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":151448,"name":"American","url":"https://www.academia.edu/Documents/in/American"},{"id":230701,"name":"Oxygen Isotopes","url":"https://www.academia.edu/Documents/in/Oxygen_Isotopes"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":340736,"name":"Bryozoan","url":"https://www.academia.edu/Documents/in/Bryozoan"},{"id":340748,"name":"Carbon Isotope","url":"https://www.academia.edu/Documents/in/Carbon_Isotope"},{"id":394429,"name":"Sea Water","url":"https://www.academia.edu/Documents/in/Sea_Water"},{"id":406850,"name":"Marine Environment","url":"https://www.academia.edu/Documents/in/Marine_Environment"},{"id":1242196,"name":"Water Depth","url":"https://www.academia.edu/Documents/in/Water_Depth"},{"id":1406130,"name":"Bryozoans","url":"https://www.academia.edu/Documents/in/Bryozoans"}],"urls":[{"id":27073477,"url":"http://www.tandfonline.com/doi/pdf/10.1080/00288306.2004.9515090"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978959"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978959/Paleoproductivity_of_eastern_Lake_Ontario_over_the_past_10_000_years"><img alt="Research paper thumbnail of Paleoproductivity of eastern Lake Ontario over the past 10,000 years" class="work-thumbnail" src="https://attachments.academia-assets.com/95844012/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978959/Paleoproductivity_of_eastern_Lake_Ontario_over_the_past_10_000_years">Paleoproductivity of eastern Lake Ontario over the past 10,000 years</a></div><div class="wp-workCard_item"><span>Limnology and Oceanography</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We evaluated relative levels of paleo-primary productivity in eastern Lake Ontario during the pas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We evaluated relative levels of paleo-primary productivity in eastern Lake Ontario during the past ϳ10,000 yr via analysis of inorganic and organic sediment from the Rochester Basin. There was significant natural variability in primary production correlative with Holocene climate change. The cold post-Younger Dryas interval (ϳ10-9.4 ka) was a time of minimal levels of primary production. The warm Holocene Hypsithermal interval (ϳ9.4-5.3 ka) had much higher levels of primary production but was more variable, including five well-defined cycles that have an average period of ϳ750 yr. The largest negative anomaly in primary productivity occurred during the 8.2-ka climate event (ϳ8.4-8.0 ka), a time of cold, dry conditions. Another negative anomaly occurred in association with the Nipissing flood (ϳ6.3-5.3 ka), which triggered a regional cooling event. The cool Holocene Neoglacial interval (ϳ5.3 ka to ϳ1850 A.D.) was characterized by lower, but more stable, levels of primary production, as well as by a cessation of calcite precipitation and the onset of diatom productivity. During the historic interval (ϳ1850-1940 A.D.), there was a dramatic increase in primary production to unprecedented levels over the past 10,000 yr, as well as a 30-fold increase in sediment accumulation rates. These large, abrupt changes occurred in response to regional deforestation, anthropogenic nutrient loading, and increased chemical weathering due to acid rain. We project that, during 21st century global warming, eastern Lake Ontario will evolve into an ecosystem similar to that during the Holocene Hypsithermal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="763b8e795d569d0f93298867ffe86ce0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95844012,&quot;asset_id&quot;:92978959,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95844012/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978959"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978959"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978959; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978959]").text(description); $(".js-view-count[data-work-id=92978959]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978959; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978959']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "763b8e795d569d0f93298867ffe86ce0" } } $('.js-work-strip[data-work-id=92978959]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978959,"title":"Paleoproductivity of eastern Lake Ontario over the past 10,000 years","internal_url":"https://www.academia.edu/92978959/Paleoproductivity_of_eastern_Lake_Ontario_over_the_past_10_000_years","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95844012,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95844012/thumbnails/1.jpg","file_name":"McFadden_et_al_202004.pdf","download_url":"https://www.academia.edu/attachments/95844012/download_file","bulk_download_file_name":"Paleoproductivity_of_eastern_Lake_Ontari.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95844012/McFadden_et_al_202004-libre.pdf?1671139252=\u0026response-content-disposition=attachment%3B+filename%3DPaleoproductivity_of_eastern_Lake_Ontari.pdf\u0026Expires=1739862730\u0026Signature=NXuooXIMv10Ws16gTaFUG906LuZ7g0qX8zvbGerrz-51sRcZiC1IC0RPoSvD2E2GobeqzQK9soWKVuLb0kCwPd9XENHY1X2bLCI0p2Y8M7gAZcpFB9vs2aPTwQ0g~QUgAun~fXZuZ65pvpg4V9fPyUztyPDbczm7jC7Y6Ji93zCWZ14wn4YS8vPC2oncdByLd4nadkhXNUPSlKWjonH2eq6vMuLB5H7zt7u1k6fhNaTKxzVkAUzyZ5ISPiqSSs4l3a0iaeVQkzv1IUfAm4qyaPn~Os-nX8~ZScD9CfXHdZJUhEm7LA3zzLjoyMLTEgL0BeaZV4pkD4H2WVQJe3i1qg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978958"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978958/Post_glacial_climate_change_and_its_effect_on_a_shallow_dimictic_lake_in_Nova_Scotia_Canada"><img alt="Research paper thumbnail of Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/95843974/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978958/Post_glacial_climate_change_and_its_effect_on_a_shallow_dimictic_lake_in_Nova_Scotia_Canada">Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada</a></div><div class="wp-workCard_item"><span>Journal of Paleolimnology</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A high-resolution, multi-proxy lake sediment record was used to establish the timing of Holocene ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A high-resolution, multi-proxy lake sediment record was used to establish the timing of Holocene environmental change in Canoran Lake, southwest Nova Scotia, Canada. Proxies include %C, d 15 N, d 13 C, HI, magnetic susceptibility, and pollen. Canoran Lake is a small, shallow (11 m) lake with two ephemeral inlets and an outlet. The site was deglaciated at ca. 15,300 cal (calibrated) year BP and elevated %C values indicate the establishment of a productive aquatic environment that is consistent with Allerød warming. The Allerød was interrupted by rapid air temperature cooling during the Younger Dryas (ca. 12,900-11,600 cal year BP). The Early Hypsithermal (ca. 11,600-8,500 cal year BP) was relatively warm and wet. A slight increase in clastic input occurred between 9,100 and 8,500 cal year BP but d 15 N, d 13 C, and HI values imply that the lithostratigraphic response may not be indicative of climate-induced change. The strong proxy response between 8,500 and 8,000 calyear BP was likely due to cooling and drying coincident with the 8.2 k year event. The climate was relatively warm and dry during the Late Hypsithermal (ca. 8,000-3,500 cal year BP). None of the proxies&#39; exhibit notable change during the 5,500 cal year BP hemlock decline, indicating that ecological change was likely due to a pathogen attack. Post-Hypsithermal (modern) climate was characterized by an increase in precipitation and a decrease in air temperatures from ca. 3,500 to 700 cal year BP (top of core). Keywords Climate change Á Paleolimnology Á Nova Scotia Á Stable isotopes Á Multi-proxy Á Hydrogen index Á Limnology B. Lennox Waterline Resources, 531 24 Ave NW,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0ef21ac82690f47719c07fd3338b0d0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843974,&quot;asset_id&quot;:92978958,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843974/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978958"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978958"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978958; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978958]").text(description); $(".js-view-count[data-work-id=92978958]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978958; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978958']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0ef21ac82690f47719c07fd3338b0d0d" } } $('.js-work-strip[data-work-id=92978958]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978958,"title":"Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada","internal_url":"https://www.academia.edu/92978958/Post_glacial_climate_change_and_its_effect_on_a_shallow_dimictic_lake_in_Nova_Scotia_Canada","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843974,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843974/thumbnails/1.jpg","file_name":"Canoran_20Lake.pdf","download_url":"https://www.academia.edu/attachments/95843974/download_file","bulk_download_file_name":"Post_glacial_climate_change_and_its_effe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843974/Canoran_20Lake-libre.pdf?1671139252=\u0026response-content-disposition=attachment%3B+filename%3DPost_glacial_climate_change_and_its_effe.pdf\u0026Expires=1739862730\u0026Signature=Yjc9x1mo5a~JGAlBcqsp0~OgPRnoUBb0D6PpwJgIy~vC5DSNA~A-PjkNVG7QGz7kD19qLVNZQ1mJtqEA5-MJKdgJhW-i26UkrTsRjEspyN13wZZNf2V0ZhC-B2kG4~~rRhrRvYqLWXO9tsrJfPMOt4cKGqa6JJfoQrLtkHxdUT-mLZXVzxP4uEMQiSzHVYEZMF--WrHUUAEula0iBkk7L-4Gvjz93E-oWmgArkSoaabzZgzv28wdo9UGj-M45wSS6zCJNwoS8-w1uCQpYxVYooU~7bl54zScDUuJPiaZFIOTXjLWEeop0SWtYC~30iL9iGUABseqy~SyMbxgOAn4Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978957"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978957/Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS"><img alt="Research paper thumbnail of Oxygen isotope analysis of phosphate: improved precision using TC&amp;sol;EA CF&amp;hyphen;IRMS" class="work-thumbnail" src="https://attachments.academia-assets.com/95843971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978957/Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS">Oxygen isotope analysis of phosphate: improved precision using TC&amp;sol;EA CF&amp;hyphen;IRMS</a></div><div class="wp-workCard_item"><span>Journal of Mass Spectrometry</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleoth...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ 18 O PO4 measurements using a &#39;reverse-plumbed&#39; thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO 4 −3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ 44 Ca and 87 Sr/ 86 Sr in modern biogenic apatite and 143 Nd/ 144 Nd in fossil apatite. Our methodology yields an external precision of ±0.15‰ (1σ) for δ 18 O PO4. The uncertainty is related to the preparation of the Ag 3 PO 4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw δ 18 O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c25efeb6ac79bac4a797bbb7c4381e65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843971,&quot;asset_id&quot;:92978957,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843971/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978957"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978957"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978957; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978957]").text(description); $(".js-view-count[data-work-id=92978957]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978957; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978957']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c25efeb6ac79bac4a797bbb7c4381e65" } } $('.js-work-strip[data-work-id=92978957]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978957,"title":"Oxygen isotope analysis of phosphate: improved precision using TC\u0026sol;EA CF\u0026hyphen;IRMS","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ 18 O PO4 measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO 4 −3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ 44 Ca and 87 Sr/ 86 Sr in modern biogenic apatite and 143 Nd/ 144 Nd in fossil apatite. Our methodology yields an external precision of ±0.15‰ (1σ) for δ 18 O PO4. The uncertainty is related to the preparation of the Ag 3 PO 4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw δ 18 O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Mass Spectrometry","grobid_abstract_attachment_id":95843971},"translated_abstract":null,"internal_url":"https://www.academia.edu/92978957/Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS","translated_internal_url":"","created_at":"2022-12-15T12:31:33.874-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32573,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95843971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843971/thumbnails/1.jpg","file_name":"laporte_et_al_2009_jms.pdf","download_url":"https://www.academia.edu/attachments/95843971/download_file","bulk_download_file_name":"Oxygen_isotope_analysis_of_phosphate_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843971/laporte_et_al_2009_jms-libre.pdf?1671139254=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_analysis_of_phosphate_imp.pdf\u0026Expires=1738712535\u0026Signature=ePYxxlJA9siZ-WoO4XZYWLbUrE4fz-6laNEOIlaBeOUooVwYMK64VhtSSU4wynsG4cvoivcAF9y40a3DPItif3qGljYx4YzgLGOM0gnBT8Ofc4tNwOYT2Ldv39-ddHkGxDrGoqFivBliTLljFGvCdIkQJHmVfqFPJhBx0dttFtiZKpevyEDj7QqtfRqpfI4gttKmSTKdATrRaHiGMUWFcfM11-df1lxcJkzmnZk~LOgy6OENkfkpW9GkFanKtGM0aJK2k9c7h2jlJ2lnyaAACMvHXTl2b0sO7sljPjvQrkyNw7ss7Ul-YLZ-JlHVCghpIKgkZrPD6J8V7wYcPKfA8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oxygen_isotope_analysis_of_phosphate_improved_precision_using_TC_and_sol_EA_CF_and_hyphen_IRMS","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ 18 O PO4 measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO 4 −3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ 44 Ca and 87 Sr/ 86 Sr in modern biogenic apatite and 143 Nd/ 144 Nd in fossil apatite. Our methodology yields an external precision of ±0.15‰ (1σ) for δ 18 O PO4. The uncertainty is related to the preparation of the Ag 3 PO 4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw δ 18 O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers.","owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843971/thumbnails/1.jpg","file_name":"laporte_et_al_2009_jms.pdf","download_url":"https://www.academia.edu/attachments/95843971/download_file","bulk_download_file_name":"Oxygen_isotope_analysis_of_phosphate_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843971/laporte_et_al_2009_jms-libre.pdf?1671139254=\u0026response-content-disposition=attachment%3B+filename%3DOxygen_isotope_analysis_of_phosphate_imp.pdf\u0026Expires=1738712535\u0026Signature=ePYxxlJA9siZ-WoO4XZYWLbUrE4fz-6laNEOIlaBeOUooVwYMK64VhtSSU4wynsG4cvoivcAF9y40a3DPItif3qGljYx4YzgLGOM0gnBT8Ofc4tNwOYT2Ldv39-ddHkGxDrGoqFivBliTLljFGvCdIkQJHmVfqFPJhBx0dttFtiZKpevyEDj7QqtfRqpfI4gttKmSTKdATrRaHiGMUWFcfM11-df1lxcJkzmnZk~LOgy6OENkfkpW9GkFanKtGM0aJK2k9c7h2jlJ2lnyaAACMvHXTl2b0sO7sljPjvQrkyNw7ss7Ul-YLZ-JlHVCghpIKgkZrPD6J8V7wYcPKfA8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":12971,"name":"Isotope Ratio Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Isotope_Ratio_Mass_Spectrometry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":72215,"name":"Mass","url":"https://www.academia.edu/Documents/in/Mass"},{"id":96893,"name":"Calibration","url":"https://www.academia.edu/Documents/in/Calibration"},{"id":205587,"name":"Apatite","url":"https://www.academia.edu/Documents/in/Apatite"},{"id":230701,"name":"Oxygen Isotopes","url":"https://www.academia.edu/Documents/in/Oxygen_Isotopes"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":275177,"name":"Oxygen Isotope","url":"https://www.academia.edu/Documents/in/Oxygen_Isotope"},{"id":541785,"name":"Phosphates","url":"https://www.academia.edu/Documents/in/Phosphates"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":681938,"name":"Apatites","url":"https://www.academia.edu/Documents/in/Apatites"},{"id":901876,"name":"Sensitivity and Specificity","url":"https://www.academia.edu/Documents/in/Sensitivity_and_Specificity"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":2637271,"name":"Reference standards","url":"https://www.academia.edu/Documents/in/Reference_standards"}],"urls":[{"id":27073476,"url":"https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjms.1549"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978956"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978956/Increasing_Great_Lake_Effect_Snowfall_during_the_Twentieth_Century_A_Regional_Response_to_Global_Warming"><img alt="Research paper thumbnail of Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?" class="work-thumbnail" src="https://attachments.academia-assets.com/95843982/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978956/Increasing_Great_Lake_Effect_Snowfall_during_the_Twentieth_Century_A_Regional_Response_to_Global_Warming">Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?</a></div><div class="wp-workCard_item"><span>Journal of Climate</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, and regional hydrology. Changes in lake-effect snowfall may represent a regional-scale manifestation of hemispheric-scale climate change, such as that associated with global warming. This study examines records of snowfall from several lake-effect and non-lake-effect sites throughout most of the twentieth century in order to 1) determine whether differences in snowfall trends exist between these settings and 2) offer possible linkages between lake-effect snow trends and records of air temperature, water temperature, and ice cover. A new, historic record of oxygen isotope [␦ 18 O ] data from the sediments of three eastern Finger Lakes in central New York is presented as a means (CaCO) 3 of independently assessing changes in Great Lakes lake-effect snowfall. Results reveal a statistically significant increasing trend in snowfall for the lake-effect sites, whereas no trend is observed in the non-lake-effect settings. The Finger Lake oxygen isotope record reflects this increase in lake-effect snow through a statistically significant trend toward lower ␦ 18 O values. Records of air temperature, water temperature, and lake ice suggest that (CaCO) 3 the observed lake-effect snow increase during the twentieth century may be the result of warmer Great Lakes surface waters and decreased ice cover, both of which are consistent with the historic upward trend in Northern Hemispheric temperature due to global warming. Given projected increases in future global temperature, areas downwind of the Great Lakes may experience increased lake-effect snowfall for the foreseeable future.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7db09de92884852d6e8bb92ca48ef3ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843982,&quot;asset_id&quot;:92978956,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843982/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978956"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978956"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978956; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978956]").text(description); $(".js-view-count[data-work-id=92978956]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978956; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978956']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7db09de92884852d6e8bb92ca48ef3ca" } } $('.js-work-strip[data-work-id=92978956]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978956,"title":"Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?","internal_url":"https://www.academia.edu/92978956/Increasing_Great_Lake_Effect_Snowfall_during_the_Twentieth_Century_A_Regional_Response_to_Global_Warming","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843982,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843982/thumbnails/1.jpg","file_name":"730a9330c82663b01a3110be48b75557fb67.pdf","download_url":"https://www.academia.edu/attachments/95843982/download_file","bulk_download_file_name":"Increasing_Great_Lake_Effect_Snowfall_du.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843982/730a9330c82663b01a3110be48b75557fb67-libre.pdf?1671139250=\u0026response-content-disposition=attachment%3B+filename%3DIncreasing_Great_Lake_Effect_Snowfall_du.pdf\u0026Expires=1739176841\u0026Signature=gfWPU8zSO79cT2sW9wNQh-zOYFD4-VxZmerGKU~7Sgjll3IOiNmPhiqsdxuGii7fJauEQeepfaKheOLlp98XBC4nKYuE9F1jA8oqUSlluobBDmyCzAaBNmSYJxKznHExUZLmFZu2s8fz59O9Z1-jmI2KndQUb93m6cPHuDBBrz6TstvAzUxc~AK6brajUH3BtudJGNUPW93-TSJ1C~R-4mBxnfnAcw2olXJ5BkeBryndk0cNIq8CsgZxCG66Jtz4J1B0kPwsGww~0OhtZDWk6rgecmFWNAvhZvi-sE-Bk5c-C0YeWzt92HSi3YmwgHKH2CyL629cPu1~m~A0VkYOzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978955"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978955/The_reconstruction_of_mammal_individual_history_refining_high_resolution_isotope_record_in_bovine_tooth_dentine"><img alt="Research paper thumbnail of The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine" class="work-thumbnail" src="https://attachments.academia-assets.com/95843972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978955/The_reconstruction_of_mammal_individual_history_refining_high_resolution_isotope_record_in_bovine_tooth_dentine">The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine</a></div><div class="wp-workCard_item"><span>Journal of Archaeological Science</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Longitudinal and transverse carbon isotope profiles were performed on tooth dentine from five ste...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Longitudinal and transverse carbon isotope profiles were performed on tooth dentine from five steers (Bos taurus) initially fed C 3 and subsequently C 4-dominant food. Comparison of different protocols for bioapatite extraction revealed that the use of NaOCl considerably reduced the amplitude of variation of d 13 C within a tooth. Increasing contribution of C 4 food to the carbon isotope composition of bioapatite was found from the tip of the tooth crown to the neck and from the enameledentine junction toward the pulp cavity. These findings confirm that the model of dentine growth as a succession of stacked cones applies to bovines. Temporal resolution is estimated to be 4 months in transverse profiles, significantly better than in longitudinal dentine profiles (8e9 months) or even in profiles derived from enamel of the same individual (6e 7 months). Temporal resolution could be improved by a factor of two by selecting a different sampling zone or refining our sampling protocol. This sampling strategy could also be applied to dentine collagen and has important ecological and archaeological implications including determination of the season of weaning, or the reconstruction of mobility strategies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11a023269bf6890299c907cc295769d1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843972,&quot;asset_id&quot;:92978955,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978955"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978955"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978955; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978955]").text(description); $(".js-view-count[data-work-id=92978955]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978955; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978955']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11a023269bf6890299c907cc295769d1" } } $('.js-work-strip[data-work-id=92978955]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978955,"title":"The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine","internal_url":"https://www.academia.edu/92978955/The_reconstruction_of_mammal_individual_history_refining_high_resolution_isotope_record_in_bovine_tooth_dentine","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843972/thumbnails/1.jpg","file_name":"Zazzo_et_al._2006.pdf","download_url":"https://www.academia.edu/attachments/95843972/download_file","bulk_download_file_name":"The_reconstruction_of_mammal_individual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843972/Zazzo_et_al._2006-libre.pdf?1671139256=\u0026response-content-disposition=attachment%3B+filename%3DThe_reconstruction_of_mammal_individual.pdf\u0026Expires=1739862730\u0026Signature=F0Fpoq1P-WJh84r1hhYcXRH9ETkGK0EjE8m7-Z4ForEVsyejQG~dTu9Voz5-BRUlFL23PcGO2Sv23d3dXXE2BOoHdaenLmxSTVlFwKQWSgdv4j8Z7hFgsLOps7WAv5gK4~Ff7AFJRwuq85hYOkqHKzKxv6Xhoo~5OMzyzTPCeLXSvC5WYGOaTzVJVDz6BAIxaacYawJJ1n60fckUC8LpUGXKW4KcM2fNSux1rFA1NFUgxH6Hu6P0~Fv~E8tHlhSubcBelw4h2j1c6dBCq3nk0mArtCqqC7s3YhwKIq2xTMk5DElmO-tFdlORPWIC1oMXCa27ldGfUWAXJbxK~biLUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978953"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/92978953/Seasonality_of_Paleolithic_Fisheries_in_Upper_Egypt_Revealed_by_High_Resolution_Isotopic_Analysis_of_Otoliths"><img alt="Research paper thumbnail of Seasonality of Paleolithic Fisheries in Upper Egypt Revealed by High-Resolution Isotopic Analysis of Otoliths" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/92978953/Seasonality_of_Paleolithic_Fisheries_in_Upper_Egypt_Revealed_by_High_Resolution_Isotopic_Analysis_of_Otoliths">Seasonality of Paleolithic Fisheries in Upper Egypt Revealed by High-Resolution Isotopic Analysis of Otoliths</a></div><div class="wp-workCard_item"><span>2002 Denver Annual Meeting</span><span>, Oct 27, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reconstructing the resource scheduling is one of the main concerns in archeology because it allow...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reconstructing the resource scheduling is one of the main concerns in archeology because it allows for interpretation of subsistence strategies and for discrimination between sedentary and nomadic settlements. Hundreds of tilapia (Oreochromis niloticus) otoliths found in the late Paleolithic site of Makhadma in Upper Egypt dated 12,500 years BP demonstrate that this species was intensively exploited. However, temporal conditions of this exploitation need to be better documented. Fish could have been captured 1) from the Nile, 2) at the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978953"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978953"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978953; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978953]").text(description); $(".js-view-count[data-work-id=92978953]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978953; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978953']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=92978953]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978953,"title":"Seasonality of Paleolithic Fisheries in Upper Egypt Revealed by High-Resolution Isotopic Analysis of Otoliths","internal_url":"https://www.academia.edu/92978953/Seasonality_of_Paleolithic_Fisheries_in_Upper_Egypt_Revealed_by_High_Resolution_Isotopic_Analysis_of_Otoliths","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92978880"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92978880/Thermal_histories_stress_and_metabolic_rates_of_chinook_salmon_Oncorhynchus_tshawytscha_in_Lake_Ontario_evidence_from_intra_otolith_stable_isotope_analyses"><img alt="Research paper thumbnail of Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses" class="work-thumbnail" src="https://attachments.academia-assets.com/95843923/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92978880/Thermal_histories_stress_and_metabolic_rates_of_chinook_salmon_Oncorhynchus_tshawytscha_in_Lake_Ontario_evidence_from_intra_otolith_stable_isotope_analyses">Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses</a></div><div class="wp-workCard_item"><span>Canadian Journal of Fisheries and Aquatic Sciences</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe thermal histories for Lake Ontario chinook salmon (Oncorhynchus tshawytscha) as deter...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe thermal histories for Lake Ontario chinook salmon (Oncorhynchus tshawytscha) as determined from otolith δ18O thermometry using computer-controlled micromilling techniques to recover otolith aragonite at subseasonal resolution. We find that during the summer months chinook salmon inhabited epilimnetic waters with temperatures of ~19–20 °C as far back as the late 1980s. Chinook would approach but rarely exceed their reported upper incipient lethal limit of approximately 22 °C, which suggests that these fish were seeking water with temperatures as high as was tolerable while otolith growth occurred. These results contrast with expected midsummer temperatures for this cold-water salmonine. Bioenergetic simulations indicate significant stress imposed upon chinook salmon. We estimate consumption to be up to 20% more and gross conversion efficiency 18% less annually relative to nominal simulations where chinook salmon are modeled nearer their preferred temperature, reinforcing ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae077e4c07d660817c942219265f6dc6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:95843923,&quot;asset_id&quot;:92978880,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/95843923/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92978880"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92978880"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92978880; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92978880]").text(description); $(".js-view-count[data-work-id=92978880]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92978880; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92978880']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae077e4c07d660817c942219265f6dc6" } } $('.js-work-strip[data-work-id=92978880]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92978880,"title":"Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses","internal_url":"https://www.academia.edu/92978880/Thermal_histories_stress_and_metabolic_rates_of_chinook_salmon_Oncorhynchus_tshawytscha_in_Lake_Ontario_evidence_from_intra_otolith_stable_isotope_analyses","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":95843923,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95843923/thumbnails/1.jpg","file_name":"62.Wursteretal2005Chinookisotopes.pdf","download_url":"https://www.academia.edu/attachments/95843923/download_file","bulk_download_file_name":"Thermal_histories_stress_and_metabolic_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95843923/62.Wursteretal2005Chinookisotopes-libre.pdf?1671139293=\u0026response-content-disposition=attachment%3B+filename%3DThermal_histories_stress_and_metabolic_r.pdf\u0026Expires=1739862730\u0026Signature=LRcZv5C9SDJorQwv8RhMwUIGeWWDZdVWo2Bxv0IXRxavOq3vl6DLrgcw2DVzoHy6f690rvIJP-dtMgMPdFuwU-4LUWit9D5Xt-PjgGTCnBFB0FDaudOfi98zgzv7~Eu8PoFF39hGjCUAUHAhB6oThnI7JlbmMorMhgUhAjEUNUtSoSq7aDlMd8etwMAZCWI~~0alp4A5saWePyMo~4-ZK5EIl3D4GqmnKUN5KvI3n5ALr9kPPfJVRNAAggr~OdmUxF1~YyjDtSLfhGxcJtR21VxTET4VhPYaKMFQQGHNM~k1aIf1T6nsJfanWFP3hMYhIBQn3eb645V7rg4eJifDPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422922"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422922/Paleoenvironmental_reconstruction_of_the_Early_to_Middle_Miocene_Central_Paratethys_using_stable_isotopes_from_bryozoan_skeletons"><img alt="Research paper thumbnail of Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons" class="work-thumbnail" src="https://attachments.academia-assets.com/90880472/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422922/Paleoenvironmental_reconstruction_of_the_Early_to_Middle_Miocene_Central_Paratethys_using_stable_isotopes_from_bryozoan_skeletons">Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons</a></div><div class="wp-workCard_item"><span>International Journal of Earth Sciences</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. Th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author&#39;s version for posting to your own website or your institution&#39;s repository. You may further deposit the accepted author&#39;s version on a funder&#39;s repository at a funder&#39;s request, provided it is not made publicly available until 12 months after publication.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9fa5a645cef5d8a55eacda7797bcb27" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880472,&quot;asset_id&quot;:86422922,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880472/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422922"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422922"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422922; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422922]").text(description); $(".js-view-count[data-work-id=86422922]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422922; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422922']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9fa5a645cef5d8a55eacda7797bcb27" } } $('.js-work-strip[data-work-id=86422922]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422922,"title":"Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons","internal_url":"https://www.academia.edu/86422922/Paleoenvironmental_reconstruction_of_the_Early_to_Middle_Miocene_Central_Paratethys_using_stable_isotopes_from_bryozoan_skeletons","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880472/thumbnails/1.jpg","file_name":"paleoenvironmentalreconstruction.pdf","download_url":"https://www.academia.edu/attachments/90880472/download_file","bulk_download_file_name":"Paleoenvironmental_reconstruction_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880472/paleoenvironmentalreconstruction-libre.pdf?1662852721=\u0026response-content-disposition=attachment%3B+filename%3DPaleoenvironmental_reconstruction_of_the.pdf\u0026Expires=1739862730\u0026Signature=Ud~dy~TTp5AWAywO108~H3QxHemB3gSFHt13~KPu0AywjCE36OIQhe7rk~3oKfp8bKVjCsT7-UawvkYbrw28aBnuskTv6fYUZzhvCxhAzz~ey7jVzJSb5Cm1MKr~6pBsCPw0Tq82zmkncrCiMh8WlPvg3uO3YI~dz0qrfwA~gtFcpKO~ACxwrBUkaTkwpCblenuGE89EAbxMjO4HC6-3rsCVgRjBqZAGUFWvpLkqJOSGDAJkPyQG8Iz~pFUIQwOC-IA~yR2IFW3o~AiGLYdlNWl-7rO9MEQxxL~FHK~QMDW2KQBNWbv9AbU~obEUZTjSyVot-9fDmrx4wGn~66arBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422921"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422921/Stable_carbon_and_hydrogen_isotopes_from_bat_guano_in_the_Grand_Canyon_USA_reveal_Younger_Dryas_and_8_2_ka_events"><img alt="Research paper thumbnail of Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events" class="work-thumbnail" src="https://attachments.academia-assets.com/90880471/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422921/Stable_carbon_and_hydrogen_isotopes_from_bat_guano_in_the_Grand_Canyon_USA_reveal_Younger_Dryas_and_8_2_ka_events">Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We inferred climate change through the Pleistocene-Holocene transition from δ 13 C and δD values ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We inferred climate change through the Pleistocene-Holocene transition from δ 13 C and δD values of bat guano deposited from 14.5 to 6.5 ka (calendar ka) in Bat Cave, Grand Canyon, Arizona. The δ 13 C and δD values generally covaried, indicating that regional late Pleistocene climate was relatively cool and wet, and early Holocene climate gradually became warmer with increased summer precipitation until ca. 9 ka, at which time the onset of modern North American Monsoon-like conditions occurred. During the Younger Dryas event, δ 13 C values decreased, whereas δD values increased, indicating a cool and possibly drier period. We also observed a distinct isotopic anomaly during the 8.2 ka event, at which time both δ 13 C and δD values decreased. The δ 13 C values abruptly increased at 8.0 ka, suggesting a rapid change in atmospheric circulation and greater infl uence from convective storms originating from the south. Deposits of bat guano represent a largely untapped source of paleoenvironmental information that can provide continuous and long-term continental archives of environmental change.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="197eb065a0517a2c2b496ac04df2959e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880471,&quot;asset_id&quot;:86422921,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880471/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422921"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422921"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422921; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422921]").text(description); $(".js-view-count[data-work-id=86422921]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422921; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422921']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "197eb065a0517a2c2b496ac04df2959e" } } $('.js-work-strip[data-work-id=86422921]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422921,"title":"Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events","internal_url":"https://www.academia.edu/86422921/Stable_carbon_and_hydrogen_isotopes_from_bat_guano_in_the_Grand_Canyon_USA_reveal_Younger_Dryas_and_8_2_ka_events","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880471/thumbnails/1.jpg","file_name":"2e2caf26ce67dd306e92dbf3c252be130830.pdf","download_url":"https://www.academia.edu/attachments/90880471/download_file","bulk_download_file_name":"Stable_carbon_and_hydrogen_isotopes_from.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880471/2e2caf26ce67dd306e92dbf3c252be130830-libre.pdf?1662852720=\u0026response-content-disposition=attachment%3B+filename%3DStable_carbon_and_hydrogen_isotopes_from.pdf\u0026Expires=1739862730\u0026Signature=e9GZ5dw9bziUV2km1baj1ZkslpwV623XtPs3m1Oo5P3nQK0lP3F5VyuNtrTlnDfCJcRiKl3unTDeTmkG35YJMhb51nDZRNa32ArUR7IOQU8bAxN~vSPrZORe8upiubZnpipjxxTeCZ40kGpk70jK2dIxobe2F9jTTJwugUTTT~200j8036P63PZkOSTmpKi3QSnaajeCij2aGtkCnxcrZp6fbdNwI-39E0Kb~oVMAnFa33pYOQp61yBn5DyRrmvdcPbR6bLEwwMhwMvrloUzaRHOA17ko2kb2cSkmjBaau3ffPVsZdYr4550Hj9p1gVZ3iWbh5ZHwy~1ttpPgpn1Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422920/Carbon_isotope_chemostratigraphy_of_Frasnian_sequences_in_Western_Canada"><img alt="Research paper thumbnail of Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/90880477/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422920/Carbon_isotope_chemostratigraphy_of_Frasnian_sequences_in_Western_Canada">Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada</a></div><div class="wp-workCard_item"><span>… Survery, Summary of …</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a ! 13 C profile for the Frasnian succession of the eastern part of the Western Canada...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a ! 13 C profile for the Frasnian succession of the eastern part of the Western Canada Sedimentary Basin as a tool for proposing and justifying regional stratigraphic correlations. Eight positive ! 13 C excursions are identified that permit detailed correlations of Frasnian sequences for these eastern areas. In particular, this composite ! 13 C profile may be used to compare &#39;restricted&#39; and sparsely fossiliferous, or non-fossiliferous Frasnian deposits of Saskatchewan with more open-marine deposits of eastern Alberta and the southwestern Great Slave Lake region. Chemostratigraphic correlations were found to agree with those previously inferred on the basis of ostracode biostratigraphy. This includes the postulation that, in Saskatchewan, a major regional unconformity caused the omission of Cooking Lake-Leduc oil-bearing strata, which explains the absence of a major positive ! 13 C excursion that is prominent in northeastern Alberta. The most probable explanation is that the Leduc reefs and associated carbonate platform in Alberta formed during a time of decreasing sea level, resulting in no sediment deposition and/or possible subaerial exposure and erosion of Leduc-equivalent strata in the shallower water environment of Saskatchewan.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="995c4778adcdf1965d13208b0cbe50a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880477,&quot;asset_id&quot;:86422920,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880477/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422920]").text(description); $(".js-view-count[data-work-id=86422920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "995c4778adcdf1965d13208b0cbe50a2" } } $('.js-work-strip[data-work-id=86422920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422920,"title":"Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada","internal_url":"https://www.academia.edu/86422920/Carbon_isotope_chemostratigraphy_of_Frasnian_sequences_in_Western_Canada","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880477/thumbnails/1.jpg","file_name":"holmden_et_al_2007_summary_.pdf","download_url":"https://www.academia.edu/attachments/90880477/download_file","bulk_download_file_name":"Carbon_isotope_chemostratigraphy_of_Fras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880477/holmden_et_al_2007_summary_-libre.pdf?1662852723=\u0026response-content-disposition=attachment%3B+filename%3DCarbon_isotope_chemostratigraphy_of_Fras.pdf\u0026Expires=1739862730\u0026Signature=S0Awc~wXWWawzKWBrud~pUCgQJi2PQtZFQTKpkuZbZ~WAzfI7c9j~bNyd5sSUmj0D~zIUgJVxT86js3JCTS7w1jSLViEWL13WHeAeGkDqhcjDIT974NXpbe96sVWaD71ncNMVU6sYcH1Qn4gFCatkg7uP9VIOCvdl3vS~G2Cwm5QE2n4xcN33S5Cdr3gmb-NDh0dd13SSJn6HHCs5JlsEo~GqiUHef4d0gSF2UZAFi9G4tW-AIfsv3VYeV2aTUbtvfp5qihqQDXB6YopuvkCuUmCnNFkq-9A65yn3ddXNelr~x1z8gfg6ytK85ezpiz3mePivujVzyqkAzMtKnbMBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86422912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86422912/Climate_variability_in_the_Early_Pliocene_Arctic_Annually_resolved_evidence_from_stable_isotope_values_of_sub_fossil_wood_Ellesmere_Island_Canada"><img alt="Research paper thumbnail of Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada" class="work-thumbnail" src="https://attachments.academia-assets.com/90880465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86422912/Climate_variability_in_the_Early_Pliocene_Arctic_Annually_resolved_evidence_from_stable_isotope_values_of_sub_fossil_wood_Ellesmere_Island_Canada">Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tree-ring analyses have contributed significantly to investigations of past climate. Stable isoto...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tree-ring analyses have contributed significantly to investigations of past climate. Stable isotope climate proxies (δ 18 O, δD and δ 13 C values) enhance traditional ring-width data, although poor preservation of ancient wood has tended to limit development of stable isotope proxy records to the Holocene and the Late Pleistocene. Here we apply stable isotope techniques to wood that represent the remains of Mixed-Coniferous Boreal Vegetation preserved in Early Pliocene (4-5 Ma) deposits at Strathcona Fiord, Ellesmere Island, Canada (ca. 78°N). Four well-preserved tree trunks, identified through wood anatomical characteristics as Larix (larch), from this high Arctic site provide annually resolved sequences of up to 250 years from which we developed a high-resolution record of Pliocene climate. Stable oxygen isotope values, in conjunction with ringwidth measurements were used to derive annually resolved temperature records for this site. Our ring-width and isotope-based reconstructions provide an annually resolved record, up to 250 years, of temperature and indicate growing season (JJ) temperatures (15.8 ± 5.0°C) 11.8± 5.1°C, and mean annual temperatures (MAT) (−1.4 ± 4.0°C) 18.3± 4.1°C warmer than present. Estimated isotope values of precipitation of −16.3± 2‰ (δ 18 O) and −150.1 ± 8.9‰ (δD) were calculated from the isotopic values of wood cellulose. Relative humidity estimated from both δ 13 C and δD records ranged from 60 to 80%. Paleotemperature, source water and humidity estimates are comparable to those of a modern Boreal Forest growing ca. 15-20°south of modern Ellesmere Island.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef23964eeb7ae367a2fd644a06b27e1f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90880465,&quot;asset_id&quot;:86422912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90880465/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86422912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86422912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86422912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86422912]").text(description); $(".js-view-count[data-work-id=86422912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86422912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86422912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef23964eeb7ae367a2fd644a06b27e1f" } } $('.js-work-strip[data-work-id=86422912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86422912,"title":"Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada","internal_url":"https://www.academia.edu/86422912/Climate_variability_in_the_Early_Pliocene_Arctic_Annually_resolved_evidence_from_stable_isotope_values_of_sub_fossil_wood_Ellesmere_Island_Canada","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":90880465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90880465/thumbnails/1.jpg","file_name":"j.palaeo.2011.05.03820220910-1-1hvzlu.pdf","download_url":"https://www.academia.edu/attachments/90880465/download_file","bulk_download_file_name":"Climate_variability_in_the_Early_Pliocen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90880465/j.palaeo.2011.05.03820220910-1-1hvzlu-libre.pdf?1662852723=\u0026response-content-disposition=attachment%3B+filename%3DClimate_variability_in_the_Early_Pliocen.pdf\u0026Expires=1739176842\u0026Signature=Ytbpjl8HPPGueksFQGWaoQNqcS9xCBUBihNqJZNGENYZbeHXh1~44EilLqwNFB24bbcyHndeV55yiEIeWmTZPhbzHDboI08O4Wfp2WoryEBUK7St3T0mai1Z1yA5auOlQxFzqNRoqRj~Uek81W8P0cctVixXs3JuS-X0yzHL9C~F44gbfMSnK9q-VLrFd3w3CLJzA-c8TryANz4acgsk0HWF8~EjaevN9qDnWeHyjpyhq3ziC~q4lGtUbwjsRmQasLK6Vxz-y8msgvTTABO3-AIBY51qn0dow0X8ioMb2aKblya4XCraci0WqJK-DUeTl6i0u9Dp5fnxXfL2BQpOIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83412141"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83412141/Stable_isotope_profiling_in_moderate_marine_bryozoan_colonies_across_the_Isthmus_of_Panama"><img alt="Research paper thumbnail of Stable isotope profiling in moderate marine bryozoan colonies across the Isthmus of Panama" class="work-thumbnail" src="https://attachments.academia-assets.com/88762687/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83412141/Stable_isotope_profiling_in_moderate_marine_bryozoan_colonies_across_the_Isthmus_of_Panama">Stable isotope profiling in moderate marine bryozoan colonies across the Isthmus of Panama</a></div><div class="wp-workCard_item"><span>Bulletin of Marine Science</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the tropics, upwelling of cold, deep water is the principal source of major seasonal fluctuati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the tropics, upwelling of cold, deep water is the principal source of major seasonal fluctuations in temperature. Along the tropical eastern Pacific (TEP) coast of the Isthmus of Panama, seasonal upwelling induces corresponding drops in temperature. Upwelling does not occur along the southwestern Caribbean (SWC) coast of the isthmus. Our goal was to use these oceanographic differences to test the use of stable isotope profiles of free-living modern cupuladriid bryozoans as a method for quantifying paleo-seasonality. We determined O and C stable isotope values from micromilled carbonates profiled along the growth axis in three colonies of Cupuladria exfragminis Herrera-Cubilla, Dick, Sanner and Jackson, 2006 from the upwelling Gulf of Panama in TEP and three colonies of Cupuladria surinamensis Cadée, 1975 from the non-upwelling Bocas del Toro Archipelago in SWC. Pacific colonies had inter-colony δ 18 O carb values ranging from −2.1‰ to −0.2‰ on the international Vienna Pee Dee Belemnite scale, whereas SWC colonies ranged from −1.7‰ to −0.6‰. Pacific colonies consistently reveal cyclical trends in δ 18 O carb that are absent in the Caribbean colonies. Based on published measurements of temperature, salinity, and δ 18 O sw , the ≤2.5 yrs of cyclicity seen in the Pacific colonies reflects a combination of seasonal freshening and seasonal upwelling of colder water. is preliminary study suggests the potential for more exploration of bryozoans as a source of paleoclimate proxies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2ae3aa5975180f037106748d63524384" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:88762687,&quot;asset_id&quot;:83412141,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/88762687/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83412141"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83412141"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83412141; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83412141]").text(description); $(".js-view-count[data-work-id=83412141]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83412141; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83412141']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2ae3aa5975180f037106748d63524384" } } $('.js-work-strip[data-work-id=83412141]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83412141,"title":"Stable isotope profiling in moderate marine bryozoan colonies across the Isthmus of Panama","internal_url":"https://www.academia.edu/83412141/Stable_isotope_profiling_in_moderate_marine_bryozoan_colonies_across_the_Isthmus_of_Panama","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[{"id":88762687,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88762687/thumbnails/1.jpg","file_name":"12fcf0727c05a84a473ff4bea8c02ac47b96.pdf","download_url":"https://www.academia.edu/attachments/88762687/download_file","bulk_download_file_name":"Stable_isotope_profiling_in_moderate_mar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88762687/12fcf0727c05a84a473ff4bea8c02ac47b96-libre.pdf?1658247956=\u0026response-content-disposition=attachment%3B+filename%3DStable_isotope_profiling_in_moderate_mar.pdf\u0026Expires=1739862730\u0026Signature=Wk9OX1vFIvagGv1JwacvdQF-uPZsGTKZGTI32khnmgl-1Vj6FMlvehf5P6UvaZe0UL006XSCc3c0AazcWurPw-X50g5kax052EcLhYosjedFpwusUoop2EPMeAOFUx1w68PGPmqq4vanj6HCDnF7T48WagGivUY8JdZx2LPaQxjIsdYsWoQoAthUyoyKXy9tL5IDJZYTdB5JTf8txVfDVYEBz2D3AbQLIvDOHY9n3KOjTA5QImkXUACpCz6W-~PgBLTiMMDneIAx0Op9J2wVHnFyN0kIDIHc8MbJry56~v8Npgym7fnpYYezvj1np4SIL2~syxir4KNihfN3-NN-MQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78150325"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/78150325/Baldwin_Lake_pollen_dataset"><img alt="Research paper thumbnail of Baldwin Lake pollen dataset" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/78150325/Baldwin_Lake_pollen_dataset">Baldwin Lake pollen dataset</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Raw data for the Baldwin Lake pollen dataset obtained from the Neotoma Paleoecology Database.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78150325"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78150325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78150325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78150325]").text(description); $(".js-view-count[data-work-id=78150325]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78150325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78150325']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=78150325]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78150325,"title":"Baldwin Lake pollen dataset","internal_url":"https://www.academia.edu/78150325/Baldwin_Lake_pollen_dataset","owner_id":32573,"coauthors_can_edit":true,"owner":{"id":32573,"first_name":"William","middle_initials":null,"last_name":"Patterson","page_name":"WilliamPatterson","domain_name":"usask","created_at":"2009-02-24T03:23:15.541-08:00","display_name":"William Patterson","url":"https://usask.academia.edu/WilliamPatterson"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "21a16bda47730e64abbeee5f784b2fe30112cf2189a1f91d10e4a428de09c3ac", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="e1XixBjj5VrsVW9DKkvlfs63O7wnCTWcdAZ-6G8OTITiiO_iIUXQFlFkMsp_lE1c9D2b52QNSbFb7odveU_hEw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://usask.academia.edu/WilliamPatterson" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="d1fbOOOILMuni8UiKbekREG8FOGyJE7EzqX1GklsmhjuitYe2i4Zhxq6mKt8aAxmeza0uvEgMunhTQydXy03jw" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10