CINXE.COM
coproduct in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> coproduct in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> coproduct </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/1939/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Coproducts</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="limits_and_colimits">Limits and colimits</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/limit">limits and colimits</a></strong></p> <h2 id="1categorical">1-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit and colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limits+and+colimits+by+example">limits and colimits by example</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutativity+of+limits+and+colimits">commutativity of limits and colimits</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+limit">small limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filtered+colimit">filtered colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/directed+colimit">directed colimit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/sequential+colimit">sequential colimit</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sifted+colimit">sifted colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+limit">connected limit</a>, <a class="existingWikiWord" href="/nlab/show/wide+pullback">wide pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/preserved+limit">preserved limit</a>, <a class="existingWikiWord" href="/nlab/show/reflected+limit">reflected limit</a>, <a class="existingWikiWord" href="/nlab/show/created+limit">created limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product">product</a>, <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a>, <a class="existingWikiWord" href="/nlab/show/base+change">base change</a>, <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a>, <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a>, <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a>, <a class="existingWikiWord" href="/nlab/show/cobase+change">cobase change</a>, <a class="existingWikiWord" href="/nlab/show/equalizer">equalizer</a>, <a class="existingWikiWord" href="/nlab/show/coequalizer">coequalizer</a>, <a class="existingWikiWord" href="/nlab/show/join">join</a>, <a class="existingWikiWord" href="/nlab/show/meet">meet</a>, <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a>, <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a>, <a class="existingWikiWord" href="/nlab/show/direct+product">direct product</a>, <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+limit">finite limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/exact+functor">exact functor</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Yoneda+extension">Yoneda extension</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end and coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibered+limit">fibered limit</a></p> </li> </ul> <h2 id="2categorical">2-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isoinserter">isoinserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/PIE-limit">PIE-limit</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a>, <a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> </ul> <h2 id="1categorical_2">(∞,1)-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-limit">(∞,1)-limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-pullback">(∞,1)-pullback</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a></li> </ul> </li> </ul> </li> </ul> <h3 id="modelcategorical">Model-categorical</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+Kan+extension">homotopy Kan extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+product">homotopy product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equalizer">homotopy equalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+fiber">homotopy fiber</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+totalization">homotopy totalization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+end">homotopy end</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coproduct">homotopy coproduct</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coequalizer">homotopy coequalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+cofiber">homotopy cofiber</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+pushout">homotopy pushout</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+realization">homotopy realization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coend">homotopy coend</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/infinity-limits+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="coproducts">Coproducts</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The notion of <em>coproduct</em> is a generalization to arbitrary <a class="existingWikiWord" href="/nlab/show/categories">categories</a> of the notion of <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a> in the category <a class="existingWikiWord" href="/nlab/show/Set">Set</a>.</p> <h2 id="definition">Definition</h2> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/category">category</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>Obj</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x, y \in Obj(C)</annotation></semantics></math> two <a class="existingWikiWord" href="/nlab/show/object">object</a>s, their <strong>coproduct</strong> is an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x \coprod y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> equipped with two <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a>s</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="200.804pt" height="86.475pt" viewBox="0 0 200.804 86.475" version="1.2"> <defs> <g> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-1"> <path style="stroke:none;" d="M 7.046875 -6.0625 C 6.5625 -5.96875 6.390625 -5.609375 6.390625 -5.328125 C 6.390625 -4.984375 6.671875 -4.859375 6.875 -4.859375 C 7.328125 -4.859375 7.640625 -5.25 7.640625 -5.640625 C 7.640625 -6.265625 6.921875 -6.546875 6.296875 -6.546875 C 5.390625 -6.546875 4.890625 -5.65625 4.75 -5.375 C 4.40625 -6.5 3.484375 -6.546875 3.21875 -6.546875 C 1.703125 -6.546875 0.90625 -4.609375 0.90625 -4.28125 C 0.90625 -4.21875 0.96875 -4.140625 1.0625 -4.140625 C 1.1875 -4.140625 1.21875 -4.234375 1.25 -4.296875 C 1.75 -5.9375 2.75 -6.25 3.1875 -6.25 C 3.84375 -6.25 3.984375 -5.625 3.984375 -5.28125 C 3.984375 -4.953125 3.890625 -4.609375 3.71875 -3.890625 L 3.203125 -1.859375 C 2.984375 -0.96875 2.5625 -0.15625 1.765625 -0.15625 C 1.6875 -0.15625 1.328125 -0.15625 1.015625 -0.34375 C 1.546875 -0.453125 1.671875 -0.890625 1.671875 -1.0625 C 1.671875 -1.359375 1.4375 -1.546875 1.15625 -1.546875 C 0.796875 -1.546875 0.421875 -1.234375 0.421875 -0.765625 C 0.421875 -0.140625 1.109375 0.15625 1.75 0.15625 C 2.46875 0.15625 2.96875 -0.421875 3.28125 -1.03125 C 3.515625 -0.15625 4.265625 0.15625 4.8125 0.15625 C 6.328125 0.15625 7.125 -1.796875 7.125 -2.125 C 7.125 -2.203125 7.078125 -2.265625 6.984375 -2.265625 C 6.84375 -2.265625 6.828125 -2.1875 6.796875 -2.0625 C 6.390625 -0.765625 5.53125 -0.15625 4.859375 -0.15625 C 4.34375 -0.15625 4.0625 -0.53125 4.0625 -1.140625 C 4.0625 -1.46875 4.109375 -1.703125 4.359375 -2.6875 L 4.875 -4.703125 C 5.09375 -5.609375 5.609375 -6.25 6.28125 -6.25 C 6.3125 -6.25 6.734375 -6.25 7.046875 -6.0625 Z M 7.046875 -6.0625 "></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-2"> <path style="stroke:none;" d="M 3.90625 1.671875 C 3.5 2.234375 2.921875 2.734375 2.203125 2.734375 C 2.015625 2.734375 1.3125 2.703125 1.078125 2.015625 C 1.125 2.03125 1.203125 2.03125 1.234375 2.03125 C 1.671875 2.03125 1.96875 1.65625 1.96875 1.3125 C 1.96875 0.96875 1.6875 0.84375 1.46875 0.84375 C 1.234375 0.84375 0.71875 1.03125 0.71875 1.75 C 0.71875 2.515625 1.359375 3.03125 2.203125 3.03125 C 3.6875 3.03125 5.1875 1.671875 5.609375 0.015625 L 7.0625 -5.78125 C 7.078125 -5.859375 7.109375 -5.9375 7.109375 -6.03125 C 7.109375 -6.25 6.921875 -6.40625 6.703125 -6.40625 C 6.5625 -6.40625 6.25 -6.34375 6.140625 -5.90625 L 5.03125 -1.53125 C 4.96875 -1.265625 4.96875 -1.234375 4.84375 -1.0625 C 4.546875 -0.65625 4.0625 -0.15625 3.34375 -0.15625 C 2.515625 -0.15625 2.4375 -0.96875 2.4375 -1.359375 C 2.4375 -2.21875 2.84375 -3.359375 3.234375 -4.421875 C 3.40625 -4.859375 3.484375 -5.0625 3.484375 -5.359375 C 3.484375 -5.984375 3.046875 -6.546875 2.3125 -6.546875 C 0.953125 -6.546875 0.40625 -4.390625 0.40625 -4.28125 C 0.40625 -4.21875 0.453125 -4.140625 0.5625 -4.140625 C 0.703125 -4.140625 0.71875 -4.203125 0.765625 -4.40625 C 1.125 -5.65625 1.6875 -6.25 2.28125 -6.25 C 2.40625 -6.25 2.65625 -6.25 2.65625 -5.765625 C 2.65625 -5.375 2.5 -4.953125 2.28125 -4.390625 C 1.546875 -2.4375 1.546875 -1.953125 1.546875 -1.59375 C 1.546875 -0.171875 2.5625 0.15625 3.296875 0.15625 C 3.734375 0.15625 4.265625 0.015625 4.78125 -0.53125 L 4.796875 -0.515625 C 4.578125 0.359375 4.421875 0.9375 3.90625 1.671875 Z M 3.90625 1.671875 "></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph1-1"> <path style="stroke:none;" d="M 9.078125 -8.984375 C 9.078125 -9.59375 9.078125 -9.6875 10.21875 -9.6875 C 10.5 -9.6875 10.609375 -9.6875 10.609375 -9.921875 C 10.609375 -10.15625 10.46875 -10.15625 10.359375 -10.15625 C 9.9375 -10.15625 8.875 -10.109375 8.453125 -10.109375 C 8.140625 -10.109375 7.8125 -10.125 7.5 -10.125 C 7.1875 -10.125 6.859375 -10.15625 6.546875 -10.15625 C 6.453125 -10.15625 6.296875 -10.15625 6.296875 -9.921875 C 6.296875 -9.6875 6.390625 -9.6875 6.765625 -9.6875 C 7.828125 -9.6875 7.828125 -9.578125 7.828125 -8.984375 L 7.828125 -0.453125 L 3.296875 -0.453125 L 3.296875 -8.984375 C 3.296875 -9.59375 3.296875 -9.6875 4.4375 -9.6875 C 4.71875 -9.6875 4.828125 -9.6875 4.828125 -9.921875 C 4.828125 -10.15625 4.6875 -10.15625 4.578125 -10.15625 C 4.15625 -10.15625 3.09375 -10.109375 2.671875 -10.109375 C 2.359375 -10.109375 2.03125 -10.125 1.71875 -10.125 C 1.40625 -10.125 1.078125 -10.15625 0.765625 -10.15625 C 0.671875 -10.15625 0.515625 -10.15625 0.515625 -9.921875 C 0.515625 -9.6875 0.609375 -9.6875 0.984375 -9.6875 C 2.046875 -9.6875 2.046875 -9.578125 2.046875 -8.984375 L 2.046875 -1.15625 C 2.046875 -0.546875 2.046875 -0.453125 0.90625 -0.453125 C 0.625 -0.453125 0.515625 -0.453125 0.515625 -0.21875 C 0.515625 0 0.625 0 0.9375 0 L 10.1875 0 C 10.5 0 10.609375 0 10.609375 -0.21875 C 10.609375 -0.453125 10.515625 -0.453125 10.15625 -0.453125 C 9.078125 -0.453125 9.078125 -0.5625 9.078125 -1.15625 Z M 9.078125 -8.984375 "></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph2-1"> <path style="stroke:none;" d="M 2.953125 -6.1875 C 2.953125 -6.40625 2.796875 -6.5625 2.5625 -6.5625 C 2.3125 -6.5625 2.015625 -6.3125 2.015625 -6.015625 C 2.015625 -5.8125 2.171875 -5.640625 2.40625 -5.640625 C 2.671875 -5.640625 2.953125 -5.890625 2.953125 -6.1875 Z M 1.5 -2.546875 L 0.96875 -1.171875 C 0.921875 -1.03125 0.875 -0.90625 0.875 -0.75 C 0.875 -0.25 1.25 0.09375 1.765625 0.09375 C 2.734375 0.09375 3.140625 -1.28125 3.140625 -1.421875 C 3.140625 -1.515625 3.0625 -1.546875 2.984375 -1.546875 C 2.875 -1.546875 2.859375 -1.46875 2.828125 -1.375 C 2.59375 -0.578125 2.1875 -0.171875 1.796875 -0.171875 C 1.671875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.625 -0.90625 1.75 -1.21875 C 1.859375 -1.484375 1.953125 -1.75 2.0625 -2.015625 L 2.375 -2.828125 C 2.453125 -3.046875 2.578125 -3.359375 2.578125 -3.53125 C 2.578125 -4.015625 2.171875 -4.375 1.671875 -4.375 C 0.71875 -4.375 0.296875 -2.984375 0.296875 -2.859375 C 0.296875 -2.765625 0.359375 -2.71875 0.453125 -2.71875 C 0.578125 -2.71875 0.578125 -2.78125 0.609375 -2.875 C 0.890625 -3.828125 1.34375 -4.09375 1.640625 -4.09375 C 1.78125 -4.09375 1.875 -4.046875 1.875 -3.765625 C 1.875 -3.671875 1.875 -3.53125 1.765625 -3.234375 Z M 1.5 -2.546875 "></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph3-1"> <path style="stroke:none;" d="M 4.171875 -2.921875 C 3.921875 -2.84375 3.859375 -2.625 3.859375 -2.515625 C 3.859375 -2.28125 4.046875 -2.234375 4.15625 -2.234375 C 4.375 -2.234375 4.59375 -2.40625 4.59375 -2.6875 C 4.59375 -3.09375 4.15625 -3.265625 3.765625 -3.265625 C 3.28125 -3.265625 2.984375 -2.890625 2.90625 -2.75 C 2.8125 -2.9375 2.53125 -3.265625 1.96875 -3.265625 C 1.109375 -3.265625 0.609375 -2.390625 0.609375 -2.125 C 0.609375 -2.09375 0.640625 -2.03125 0.75 -2.03125 C 0.84375 -2.03125 0.875 -2.078125 0.890625 -2.140625 C 1.078125 -2.734375 1.578125 -3.03125 1.9375 -3.03125 C 2.3125 -3.03125 2.421875 -2.796875 2.421875 -2.546875 C 2.421875 -2.453125 2.421875 -2.390625 2.359375 -2.15625 C 2.1875 -1.46875 2.03125 -0.796875 1.984375 -0.703125 C 1.875 -0.421875 1.609375 -0.171875 1.296875 -0.171875 C 1.25 -0.171875 1.046875 -0.171875 0.875 -0.28125 C 1.171875 -0.375 1.1875 -0.625 1.1875 -0.6875 C 1.1875 -0.875 1.046875 -0.96875 0.890625 -0.96875 C 0.6875 -0.96875 0.46875 -0.8125 0.46875 -0.5 C 0.46875 -0.078125 0.9375 0.078125 1.28125 0.078125 C 1.703125 0.078125 2.015625 -0.21875 2.15625 -0.453125 C 2.296875 -0.140625 2.65625 0.078125 3.078125 0.078125 C 3.953125 0.078125 4.453125 -0.828125 4.453125 -1.0625 C 4.453125 -1.078125 4.4375 -1.171875 4.3125 -1.171875 C 4.203125 -1.171875 4.1875 -1.125 4.15625 -1.046875 C 3.953125 -0.40625 3.421875 -0.171875 3.109375 -0.171875 C 2.828125 -0.171875 2.625 -0.328125 2.625 -0.640625 C 2.625 -0.78125 2.671875 -0.953125 2.734375 -1.203125 L 2.96875 -2.171875 C 3.046875 -2.46875 3.078125 -2.59375 3.234375 -2.78125 C 3.34375 -2.890625 3.515625 -3.03125 3.75 -3.03125 C 3.796875 -3.03125 4.015625 -3.03125 4.171875 -2.921875 Z M 4.171875 -2.921875 "></path> </symbol> <symbol overflow="visible" id="qf-753wdRxXHR4Prk4ykapbpVmE=-glyph3-2"> <path style="stroke:none;" d="M 4.421875 -2.84375 C 4.4375 -2.90625 4.453125 -2.9375 4.453125 -2.953125 C 4.453125 -3.046875 4.375 -3.203125 4.171875 -3.203125 C 4.046875 -3.203125 3.921875 -3.125 3.875 -3.015625 C 3.84375 -2.96875 3.796875 -2.734375 3.75 -2.59375 L 3.59375 -1.96875 L 3.375 -1.046875 C 3.3125 -0.84375 3.28125 -0.71875 2.984375 -0.4375 C 2.90625 -0.359375 2.671875 -0.171875 2.359375 -0.171875 C 1.796875 -0.171875 1.796875 -0.65625 1.796875 -0.78125 C 1.796875 -1.109375 1.890625 -1.453125 2.21875 -2.265625 C 2.296875 -2.4375 2.3125 -2.5 2.3125 -2.625 C 2.3125 -3.046875 1.9375 -3.265625 1.578125 -3.265625 C 0.8125 -3.265625 0.453125 -2.296875 0.453125 -2.125 C 0.453125 -2.09375 0.484375 -2.03125 0.59375 -2.03125 C 0.6875 -2.03125 0.71875 -2.078125 0.734375 -2.140625 C 0.9375 -2.859375 1.34375 -3.03125 1.546875 -3.03125 C 1.6875 -3.03125 1.75 -2.9375 1.75 -2.765625 C 1.75 -2.609375 1.640625 -2.359375 1.5625 -2.15625 C 1.3125 -1.5 1.21875 -1.15625 1.21875 -0.890625 C 1.21875 -0.1875 1.75 0.078125 2.328125 0.078125 C 2.421875 0.078125 2.78125 0.078125 3.171875 -0.265625 C 3.078125 0.140625 3 0.4375 2.65625 0.8125 C 2.515625 0.96875 2.1875 1.265625 1.734375 1.265625 C 1.671875 1.265625 1.34375 1.265625 1.1875 1.0625 C 1.5 1.015625 1.546875 0.71875 1.546875 0.65625 C 1.546875 0.453125 1.390625 0.375 1.25 0.375 C 1.0625 0.375 0.8125 0.515625 0.8125 0.859375 C 0.8125 1.21875 1.171875 1.515625 1.75 1.515625 C 2.53125 1.515625 3.484375 0.9375 3.71875 0 Z M 4.421875 -2.84375 "></path> </symbol> </g> </defs> <g id="qf-753wdRxXHR4Prk4ykapbpVmE=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-1" x="6.90364" y="11.831172"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-2" x="186.080834" y="11.831172"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-1" x="83.80874" y="77.628707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph1-1" x="95.374771" y="77.628707"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph0-2" x="109.815847" y="77.628707"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -78.968626 27.112352 L -16.659026 -18.652094 " transform="matrix(0.993966,0,0,-0.993966,100.304591,42.976087)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484576 2.868743 C -2.031005 1.148976 -1.019639 0.336231 -0.000364976 -0.00259129 C -1.018533 -0.335871 -2.031295 -1.147923 -2.488791 -2.868752 " transform="matrix(0.801087,0.588328,0.588328,-0.801087,83.939317,61.654389)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph2-1" x="40.092148" y="48.951808"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph3-1" x="43.674152" y="50.189295"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 79.613334 27.320641 L 17.244784 -18.648164 " transform="matrix(0.993966,0,0,-0.993966,100.304591,42.976087)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48563 2.869851 C -2.031086 1.148233 -1.019715 0.334442 -0.00211677 -0.000586024 C -1.019642 -0.334497 -2.032406 -1.145507 -2.488098 -2.869996 " transform="matrix(-0.800073,0.5897,0.5897,0.800073,117.252558,61.654061)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph2-1" x="151.744295" y="48.848435"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#qf-753wdRxXHR4Prk4ykapbpVmE=-glyph3-2" x="155.326298" y="50.085922"></use> </g> </g> </svg> </div> <p>such that this is <a class="existingWikiWord" href="/nlab/show/universal+property">universal</a> with this property, meaning such that for any other object with maps like this</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="178.558" height="86.475" viewBox="0 0 178.558 86.475"> <defs> <g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-0"> </g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-1"> <path d="M 7.078125 -6.09375 C 6.609375 -6 6.421875 -5.640625 6.421875 -5.359375 C 6.421875 -5 6.703125 -4.890625 6.921875 -4.890625 C 7.359375 -4.890625 7.671875 -5.265625 7.671875 -5.671875 C 7.671875 -6.296875 6.953125 -6.59375 6.328125 -6.59375 C 5.421875 -6.59375 4.921875 -5.6875 4.78125 -5.40625 C 4.4375 -6.53125 3.515625 -6.59375 3.234375 -6.59375 C 1.71875 -6.59375 0.90625 -4.625 0.90625 -4.296875 C 0.90625 -4.25 0.96875 -4.171875 1.078125 -4.171875 C 1.1875 -4.171875 1.21875 -4.25 1.25 -4.3125 C 1.765625 -5.96875 2.765625 -6.28125 3.203125 -6.28125 C 3.875 -6.28125 4 -5.65625 4 -5.296875 C 4 -4.96875 3.90625 -4.625 3.734375 -3.90625 L 3.21875 -1.859375 C 3 -0.96875 2.5625 -0.15625 1.78125 -0.15625 C 1.703125 -0.15625 1.328125 -0.15625 1.015625 -0.34375 C 1.546875 -0.453125 1.671875 -0.890625 1.671875 -1.078125 C 1.671875 -1.375 1.453125 -1.546875 1.171875 -1.546875 C 0.8125 -1.546875 0.421875 -1.234375 0.421875 -0.765625 C 0.421875 -0.140625 1.125 0.15625 1.765625 0.15625 C 2.484375 0.15625 2.984375 -0.421875 3.296875 -1.03125 C 3.546875 -0.15625 4.28125 0.15625 4.84375 0.15625 C 6.359375 0.15625 7.171875 -1.8125 7.171875 -2.140625 C 7.171875 -2.203125 7.109375 -2.265625 7.015625 -2.265625 C 6.890625 -2.265625 6.875 -2.203125 6.828125 -2.078125 C 6.421875 -0.765625 5.5625 -0.15625 4.890625 -0.15625 C 4.359375 -0.15625 4.078125 -0.53125 4.078125 -1.15625 C 4.078125 -1.484375 4.140625 -1.71875 4.375 -2.703125 L 4.90625 -4.734375 C 5.125 -5.625 5.625 -6.28125 6.3125 -6.28125 C 6.34375 -6.28125 6.765625 -6.28125 7.078125 -6.09375 Z M 7.078125 -6.09375 "></path> </g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-2"> <path d="M 3.921875 1.671875 C 3.53125 2.234375 2.9375 2.75 2.203125 2.75 C 2.03125 2.75 1.3125 2.71875 1.09375 2.03125 C 1.140625 2.046875 1.203125 2.046875 1.234375 2.046875 C 1.6875 2.046875 1.984375 1.65625 1.984375 1.3125 C 1.984375 0.96875 1.703125 0.84375 1.484375 0.84375 C 1.234375 0.84375 0.71875 1.03125 0.71875 1.765625 C 0.71875 2.53125 1.359375 3.046875 2.203125 3.046875 C 3.703125 3.046875 5.21875 1.671875 5.625 0.015625 L 7.09375 -5.8125 C 7.109375 -5.890625 7.140625 -5.96875 7.140625 -6.0625 C 7.140625 -6.28125 6.953125 -6.4375 6.734375 -6.4375 C 6.609375 -6.4375 6.28125 -6.375 6.171875 -5.9375 L 5.0625 -1.53125 C 4.984375 -1.265625 4.984375 -1.234375 4.875 -1.078125 C 4.578125 -0.65625 4.078125 -0.15625 3.359375 -0.15625 C 2.53125 -0.15625 2.453125 -0.96875 2.453125 -1.375 C 2.453125 -2.21875 2.859375 -3.375 3.25 -4.453125 C 3.421875 -4.890625 3.515625 -5.09375 3.515625 -5.390625 C 3.515625 -6.015625 3.0625 -6.59375 2.328125 -6.59375 C 0.953125 -6.59375 0.40625 -4.421875 0.40625 -4.296875 C 0.40625 -4.25 0.46875 -4.171875 0.5625 -4.171875 C 0.703125 -4.171875 0.71875 -4.234375 0.78125 -4.4375 C 1.140625 -5.6875 1.703125 -6.28125 2.28125 -6.28125 C 2.421875 -6.28125 2.671875 -6.28125 2.671875 -5.796875 C 2.671875 -5.40625 2.515625 -4.96875 2.28125 -4.40625 C 1.546875 -2.453125 1.546875 -1.953125 1.546875 -1.59375 C 1.546875 -0.171875 2.5625 0.15625 3.3125 0.15625 C 3.75 0.15625 4.28125 0.015625 4.8125 -0.53125 L 4.828125 -0.515625 C 4.59375 0.359375 4.453125 0.9375 3.921875 1.671875 Z M 3.921875 1.671875 "></path> </g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-3"> <path d="M 6.359375 -0.09375 C 8.9375 -1.125 10.84375 -3.84375 10.84375 -6.546875 C 10.84375 -9 9.234375 -10.515625 7.140625 -10.515625 C 3.9375 -10.515625 0.71875 -7.078125 0.71875 -3.625 C 0.71875 -1.28125 2.265625 0.3125 4.4375 0.3125 C 4.9375 0.3125 5.4375 0.234375 5.921875 0.09375 C 5.828125 0.984375 5.828125 1.0625 5.828125 1.34375 C 5.828125 1.78125 5.828125 2.890625 7.015625 2.890625 C 8.796875 2.890625 9.453125 0.109375 9.453125 0.015625 C 9.453125 -0.078125 9.390625 -0.140625 9.328125 -0.140625 C 9.234375 -0.140625 9.203125 -0.0625 9.15625 0.109375 C 8.828125 1.046875 8.046875 1.578125 7.390625 1.578125 C 6.625 1.578125 6.4375 1.0625 6.359375 -0.09375 Z M 3.671875 -0.171875 C 2.5 -0.5625 1.921875 -1.8125 1.921875 -3.1875 C 1.921875 -4.234375 2.3125 -6.21875 3.296875 -7.71875 C 4.40625 -9.421875 5.890625 -10.1875 7.046875 -10.1875 C 8.609375 -10.1875 9.65625 -8.9375 9.65625 -6.984375 C 9.65625 -5.890625 9.125 -2.1875 6.3125 -0.53125 C 6.25 -1.296875 6.03125 -2.203125 5.046875 -2.203125 C 4.25 -2.203125 3.5625 -1.390625 3.5625 -0.65625 C 3.5625 -0.5 3.609375 -0.265625 3.671875 -0.171875 Z M 5.9375 -0.34375 C 5.40625 -0.109375 4.9375 -0.015625 4.53125 -0.015625 C 4.375 -0.015625 3.859375 -0.015625 3.859375 -0.671875 C 3.859375 -1.203125 4.375 -1.890625 5.046875 -1.890625 C 5.796875 -1.890625 5.953125 -1.390625 5.953125 -0.640625 C 5.953125 -0.546875 5.953125 -0.4375 5.9375 -0.34375 Z M 5.9375 -0.34375 "></path> </g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-1-0"> </g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-1-1"> <path d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </g> <g id="ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-1-2"> <path d="M 4.9375 -3.671875 C 4.984375 -3.828125 4.984375 -3.890625 4.984375 -3.890625 C 4.984375 -4.125 4.796875 -4.203125 4.671875 -4.203125 C 4.4375 -4.203125 4.25 -4.03125 4.21875 -3.8125 C 4.140625 -3.96875 3.84375 -4.390625 3.234375 -4.390625 C 2.046875 -4.390625 0.75 -3.078125 0.75 -1.609375 C 0.75 -0.53125 1.46875 0 2.203125 0 C 2.65625 0 3.078125 -0.25 3.40625 -0.53125 L 3.1875 0.359375 C 3.078125 0.78125 3 1.0625 2.609375 1.390625 C 2.1875 1.75 1.8125 1.75 1.5625 1.75 C 1.3125 1.75 1.078125 1.75 0.84375 1.6875 C 1.0625 1.578125 1.15625 1.359375 1.15625 1.203125 C 1.15625 0.953125 0.984375 0.828125 0.765625 0.828125 C 0.515625 0.828125 0.203125 1.03125 0.203125 1.421875 C 0.203125 2 0.984375 2.03125 1.578125 2.03125 C 3 2.03125 3.703125 1.28125 3.859375 0.671875 Z M 3.59375 -1.3125 C 3.53125 -1.03125 3.3125 -0.84375 3.09375 -0.640625 C 3.015625 -0.578125 2.625 -0.28125 2.21875 -0.28125 C 1.828125 -0.28125 1.53125 -0.609375 1.53125 -1.203125 C 1.53125 -1.625 1.78125 -2.71875 2.046875 -3.21875 C 2.375 -3.78125 2.84375 -4.109375 3.234375 -4.109375 C 3.90625 -4.109375 4.09375 -3.375 4.09375 -3.296875 L 4.0625 -3.15625 Z M 3.59375 -1.3125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-1" x="6.434" y="11.903"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-2" x="164.453" y="11.903"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-0-3" x="83.806" y="78.1"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -67.845406 25.990906 L -12.521187 -20.372375 " transform="matrix(1, 0, 0, -1, 89.279, 43.237)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484257 2.869351 C -2.03136 1.149059 -1.018793 0.3361 -0.0000484778 0.00230956 C -1.022441 -0.334622 -2.034016 -1.146675 -2.485395 -2.870467 " transform="matrix(0.76643, 0.64229, 0.64229, -0.76643, 76.93996, 63.76352)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-1-1" x="39.578" y="51.017"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 68.490531 26.221375 L 13.166313 -20.333313 " transform="matrix(1, 0, 0, -1, 89.279, 43.237)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486801 2.868704 C -2.030883 1.147443 -1.020938 0.333337 0.000310212 -0.000161379 C -1.021635 -0.334884 -2.032868 -1.14832 -2.486259 -2.87023 " transform="matrix(-0.76512, 0.64383, 0.64383, 0.76512, 102.26206, 63.72258)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ixHDqqwmVROSGb09lEmKy91d7r0=-glyph-1-2" x="133.44" y="48.251"></use> </g> </svg> </div> <p>there exists a <em>unique</em> morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo><mo>:</mo><mi>x</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>y</mi><mo>→</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">(f,g) : x \coprod y \to Q</annotation></semantics></math> such that we have the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">commuting diagram</a>:</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="200.804" height="94.325" viewBox="0 0 200.804 94.325"> <defs> <g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-0"> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-1"> <path d="M 7.078125 -6.09375 C 6.609375 -6 6.421875 -5.640625 6.421875 -5.359375 C 6.421875 -5 6.703125 -4.890625 6.921875 -4.890625 C 7.359375 -4.890625 7.671875 -5.265625 7.671875 -5.671875 C 7.671875 -6.296875 6.953125 -6.59375 6.328125 -6.59375 C 5.421875 -6.59375 4.921875 -5.6875 4.78125 -5.40625 C 4.4375 -6.53125 3.515625 -6.59375 3.234375 -6.59375 C 1.71875 -6.59375 0.90625 -4.625 0.90625 -4.296875 C 0.90625 -4.25 0.96875 -4.171875 1.078125 -4.171875 C 1.1875 -4.171875 1.21875 -4.25 1.25 -4.3125 C 1.765625 -5.96875 2.765625 -6.28125 3.203125 -6.28125 C 3.875 -6.28125 4 -5.65625 4 -5.296875 C 4 -4.96875 3.90625 -4.625 3.734375 -3.90625 L 3.21875 -1.859375 C 3 -0.96875 2.5625 -0.15625 1.78125 -0.15625 C 1.703125 -0.15625 1.328125 -0.15625 1.015625 -0.34375 C 1.546875 -0.453125 1.671875 -0.890625 1.671875 -1.078125 C 1.671875 -1.375 1.453125 -1.546875 1.171875 -1.546875 C 0.8125 -1.546875 0.421875 -1.234375 0.421875 -0.765625 C 0.421875 -0.140625 1.125 0.15625 1.765625 0.15625 C 2.484375 0.15625 2.984375 -0.421875 3.296875 -1.03125 C 3.546875 -0.15625 4.28125 0.15625 4.84375 0.15625 C 6.359375 0.15625 7.171875 -1.8125 7.171875 -2.140625 C 7.171875 -2.203125 7.109375 -2.265625 7.015625 -2.265625 C 6.890625 -2.265625 6.875 -2.203125 6.828125 -2.078125 C 6.421875 -0.765625 5.5625 -0.15625 4.890625 -0.15625 C 4.359375 -0.15625 4.078125 -0.53125 4.078125 -1.15625 C 4.078125 -1.484375 4.140625 -1.71875 4.375 -2.703125 L 4.90625 -4.734375 C 5.125 -5.625 5.625 -6.28125 6.3125 -6.28125 C 6.34375 -6.28125 6.765625 -6.28125 7.078125 -6.09375 Z M 7.078125 -6.09375 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-2"> <path d="M 3.921875 1.671875 C 3.53125 2.234375 2.9375 2.75 2.203125 2.75 C 2.03125 2.75 1.3125 2.71875 1.09375 2.03125 C 1.140625 2.046875 1.203125 2.046875 1.234375 2.046875 C 1.6875 2.046875 1.984375 1.65625 1.984375 1.3125 C 1.984375 0.96875 1.703125 0.84375 1.484375 0.84375 C 1.234375 0.84375 0.71875 1.03125 0.71875 1.765625 C 0.71875 2.53125 1.359375 3.046875 2.203125 3.046875 C 3.703125 3.046875 5.21875 1.671875 5.625 0.015625 L 7.09375 -5.8125 C 7.109375 -5.890625 7.140625 -5.96875 7.140625 -6.0625 C 7.140625 -6.28125 6.953125 -6.4375 6.734375 -6.4375 C 6.609375 -6.4375 6.28125 -6.375 6.171875 -5.9375 L 5.0625 -1.53125 C 4.984375 -1.265625 4.984375 -1.234375 4.875 -1.078125 C 4.578125 -0.65625 4.078125 -0.15625 3.359375 -0.15625 C 2.53125 -0.15625 2.453125 -0.96875 2.453125 -1.375 C 2.453125 -2.21875 2.859375 -3.375 3.25 -4.453125 C 3.421875 -4.890625 3.515625 -5.09375 3.515625 -5.390625 C 3.515625 -6.015625 3.0625 -6.59375 2.328125 -6.59375 C 0.953125 -6.59375 0.40625 -4.421875 0.40625 -4.296875 C 0.40625 -4.25 0.46875 -4.171875 0.5625 -4.171875 C 0.703125 -4.171875 0.71875 -4.234375 0.78125 -4.4375 C 1.140625 -5.6875 1.703125 -6.28125 2.28125 -6.28125 C 2.421875 -6.28125 2.671875 -6.28125 2.671875 -5.796875 C 2.671875 -5.40625 2.515625 -4.96875 2.28125 -4.40625 C 1.546875 -2.453125 1.546875 -1.953125 1.546875 -1.59375 C 1.546875 -0.171875 2.5625 0.15625 3.3125 0.15625 C 3.75 0.15625 4.28125 0.015625 4.8125 -0.53125 L 4.828125 -0.515625 C 4.59375 0.359375 4.453125 0.9375 3.921875 1.671875 Z M 3.921875 1.671875 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-3"> <path d="M 6.359375 -0.09375 C 8.9375 -1.125 10.84375 -3.84375 10.84375 -6.546875 C 10.84375 -9 9.234375 -10.515625 7.140625 -10.515625 C 3.9375 -10.515625 0.71875 -7.078125 0.71875 -3.625 C 0.71875 -1.28125 2.265625 0.3125 4.4375 0.3125 C 4.9375 0.3125 5.4375 0.234375 5.921875 0.09375 C 5.828125 0.984375 5.828125 1.0625 5.828125 1.34375 C 5.828125 1.78125 5.828125 2.890625 7.015625 2.890625 C 8.796875 2.890625 9.453125 0.109375 9.453125 0.015625 C 9.453125 -0.078125 9.390625 -0.140625 9.328125 -0.140625 C 9.234375 -0.140625 9.203125 -0.0625 9.15625 0.109375 C 8.828125 1.046875 8.046875 1.578125 7.390625 1.578125 C 6.625 1.578125 6.4375 1.0625 6.359375 -0.09375 Z M 3.671875 -0.171875 C 2.5 -0.5625 1.921875 -1.8125 1.921875 -3.1875 C 1.921875 -4.234375 2.3125 -6.21875 3.296875 -7.71875 C 4.40625 -9.421875 5.890625 -10.1875 7.046875 -10.1875 C 8.609375 -10.1875 9.65625 -8.9375 9.65625 -6.984375 C 9.65625 -5.890625 9.125 -2.1875 6.3125 -0.53125 C 6.25 -1.296875 6.03125 -2.203125 5.046875 -2.203125 C 4.25 -2.203125 3.5625 -1.390625 3.5625 -0.65625 C 3.5625 -0.5 3.609375 -0.265625 3.671875 -0.171875 Z M 5.9375 -0.34375 C 5.40625 -0.109375 4.9375 -0.015625 4.53125 -0.015625 C 4.375 -0.015625 3.859375 -0.015625 3.859375 -0.671875 C 3.859375 -1.203125 4.375 -1.890625 5.046875 -1.890625 C 5.796875 -1.890625 5.953125 -1.390625 5.953125 -0.640625 C 5.953125 -0.546875 5.953125 -0.4375 5.9375 -0.34375 Z M 5.9375 -0.34375 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-1-0"> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-1-1"> <path d="M 9.125 -9.03125 C 9.125 -9.65625 9.125 -9.734375 10.28125 -9.734375 C 10.5625 -9.734375 10.671875 -9.734375 10.671875 -9.984375 C 10.671875 -10.203125 10.515625 -10.203125 10.40625 -10.203125 C 10 -10.203125 8.921875 -10.15625 8.5 -10.15625 C 8.1875 -10.15625 7.859375 -10.171875 7.546875 -10.171875 C 7.234375 -10.171875 6.90625 -10.203125 6.59375 -10.203125 C 6.484375 -10.203125 6.328125 -10.203125 6.328125 -9.984375 C 6.328125 -9.734375 6.421875 -9.734375 6.796875 -9.734375 C 7.875 -9.734375 7.875 -9.640625 7.875 -9.03125 L 7.875 -0.46875 L 3.3125 -0.46875 L 3.3125 -9.03125 C 3.3125 -9.65625 3.3125 -9.734375 4.46875 -9.734375 C 4.75 -9.734375 4.859375 -9.734375 4.859375 -9.984375 C 4.859375 -10.203125 4.703125 -10.203125 4.59375 -10.203125 C 4.1875 -10.203125 3.109375 -10.15625 2.6875 -10.15625 C 2.375 -10.15625 2.046875 -10.171875 1.734375 -10.171875 C 1.421875 -10.171875 1.09375 -10.203125 0.78125 -10.203125 C 0.671875 -10.203125 0.515625 -10.203125 0.515625 -9.984375 C 0.515625 -9.734375 0.609375 -9.734375 0.984375 -9.734375 C 2.0625 -9.734375 2.0625 -9.640625 2.0625 -9.03125 L 2.0625 -1.171875 C 2.0625 -0.546875 2.0625 -0.46875 0.90625 -0.46875 C 0.625 -0.46875 0.515625 -0.46875 0.515625 -0.21875 C 0.515625 0 0.625 0 0.9375 0 L 10.25 0 C 10.5625 0 10.671875 0 10.671875 -0.21875 C 10.671875 -0.46875 10.578125 -0.46875 10.203125 -0.46875 C 9.125 -0.46875 9.125 -0.5625 9.125 -1.171875 Z M 9.125 -9.03125 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-0"> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-1"> <path d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-2"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-3"> <path d="M 1.859375 -0.15625 C 1.859375 0.5 1.71875 1.0625 1.109375 1.6875 C 1.0625 1.71875 1.046875 1.734375 1.046875 1.78125 C 1.046875 1.859375 1.125 1.921875 1.203125 1.921875 C 1.3125 1.921875 2.140625 1.140625 2.140625 -0.03125 C 2.140625 -0.671875 1.90625 -1.109375 1.46875 -1.109375 C 1.109375 -1.109375 0.921875 -0.828125 0.921875 -0.5625 C 0.921875 -0.28125 1.109375 0 1.46875 0 C 1.71875 0 1.859375 -0.140625 1.859375 -0.15625 Z M 1.859375 -0.15625 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-4"> <path d="M 4.9375 -3.671875 C 4.984375 -3.828125 4.984375 -3.890625 4.984375 -3.890625 C 4.984375 -4.125 4.796875 -4.203125 4.671875 -4.203125 C 4.4375 -4.203125 4.25 -4.03125 4.21875 -3.8125 C 4.140625 -3.96875 3.84375 -4.390625 3.234375 -4.390625 C 2.046875 -4.390625 0.75 -3.078125 0.75 -1.609375 C 0.75 -0.53125 1.46875 0 2.203125 0 C 2.65625 0 3.078125 -0.25 3.40625 -0.53125 L 3.1875 0.359375 C 3.078125 0.78125 3 1.0625 2.609375 1.390625 C 2.1875 1.75 1.8125 1.75 1.5625 1.75 C 1.3125 1.75 1.078125 1.75 0.84375 1.6875 C 1.0625 1.578125 1.15625 1.359375 1.15625 1.203125 C 1.15625 0.953125 0.984375 0.828125 0.765625 0.828125 C 0.515625 0.828125 0.203125 1.03125 0.203125 1.421875 C 0.203125 2 0.984375 2.03125 1.578125 2.03125 C 3 2.03125 3.703125 1.28125 3.859375 0.671875 Z M 3.59375 -1.3125 C 3.53125 -1.03125 3.3125 -0.84375 3.09375 -0.640625 C 3.015625 -0.578125 2.625 -0.28125 2.21875 -0.28125 C 1.828125 -0.28125 1.53125 -0.609375 1.53125 -1.203125 C 1.53125 -1.625 1.78125 -2.71875 2.046875 -3.21875 C 2.375 -3.78125 2.84375 -4.109375 3.234375 -4.109375 C 3.90625 -4.109375 4.09375 -3.375 4.09375 -3.296875 L 4.0625 -3.15625 Z M 3.59375 -1.3125 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-3-0"> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-3-1"> <path d="M 4.203125 -2.9375 C 3.9375 -2.859375 3.890625 -2.640625 3.890625 -2.53125 C 3.890625 -2.296875 4.078125 -2.234375 4.1875 -2.234375 C 4.40625 -2.234375 4.609375 -2.421875 4.609375 -2.71875 C 4.609375 -3.109375 4.171875 -3.296875 3.796875 -3.296875 C 3.296875 -3.296875 3 -2.90625 2.921875 -2.765625 C 2.828125 -2.953125 2.546875 -3.296875 1.984375 -3.296875 C 1.125 -3.296875 0.609375 -2.40625 0.609375 -2.140625 C 0.609375 -2.109375 0.640625 -2.03125 0.75 -2.03125 C 0.84375 -2.03125 0.875 -2.078125 0.890625 -2.15625 C 1.078125 -2.75 1.59375 -3.046875 1.953125 -3.046875 C 2.328125 -3.046875 2.4375 -2.8125 2.4375 -2.5625 C 2.4375 -2.46875 2.4375 -2.40625 2.375 -2.171875 C 2.203125 -1.484375 2.03125 -0.796875 2 -0.703125 C 1.890625 -0.421875 1.625 -0.171875 1.3125 -0.171875 C 1.265625 -0.171875 1.046875 -0.171875 0.875 -0.28125 C 1.171875 -0.375 1.203125 -0.625 1.203125 -0.6875 C 1.203125 -0.875 1.046875 -0.984375 0.90625 -0.984375 C 0.6875 -0.984375 0.46875 -0.8125 0.46875 -0.515625 C 0.46875 -0.078125 0.9375 0.078125 1.296875 0.078125 C 1.71875 0.078125 2.03125 -0.21875 2.171875 -0.453125 C 2.3125 -0.140625 2.671875 0.078125 3.09375 0.078125 C 3.984375 0.078125 4.46875 -0.828125 4.46875 -1.078125 C 4.46875 -1.09375 4.46875 -1.1875 4.328125 -1.1875 C 4.234375 -1.1875 4.21875 -1.125 4.1875 -1.0625 C 3.96875 -0.40625 3.4375 -0.171875 3.125 -0.171875 C 2.84375 -0.171875 2.640625 -0.34375 2.640625 -0.65625 C 2.640625 -0.796875 2.6875 -0.953125 2.75 -1.21875 L 2.984375 -2.1875 C 3.0625 -2.484375 3.09375 -2.609375 3.25 -2.796875 C 3.359375 -2.90625 3.546875 -3.046875 3.78125 -3.046875 C 3.8125 -3.046875 4.046875 -3.046875 4.203125 -2.9375 Z M 4.203125 -2.9375 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-3-2"> <path d="M 4.453125 -2.875 C 4.46875 -2.921875 4.46875 -2.953125 4.46875 -2.96875 C 4.46875 -3.0625 4.40625 -3.21875 4.203125 -3.21875 C 4.078125 -3.21875 3.953125 -3.140625 3.90625 -3.03125 C 3.875 -2.984375 3.8125 -2.75 3.78125 -2.609375 L 3.390625 -1.046875 C 3.34375 -0.84375 3.3125 -0.71875 3.015625 -0.4375 C 2.921875 -0.359375 2.6875 -0.171875 2.375 -0.171875 C 1.8125 -0.171875 1.8125 -0.65625 1.8125 -0.796875 C 1.8125 -1.125 1.90625 -1.453125 2.234375 -2.28125 C 2.3125 -2.453125 2.328125 -2.515625 2.328125 -2.640625 C 2.328125 -3.0625 1.953125 -3.296875 1.578125 -3.296875 C 0.828125 -3.296875 0.453125 -2.3125 0.453125 -2.140625 C 0.453125 -2.109375 0.484375 -2.03125 0.59375 -2.03125 C 0.6875 -2.03125 0.71875 -2.078125 0.734375 -2.15625 C 0.953125 -2.875 1.34375 -3.046875 1.546875 -3.046875 C 1.703125 -3.046875 1.75 -2.953125 1.75 -2.78125 C 1.75 -2.625 1.65625 -2.375 1.578125 -2.171875 C 1.3125 -1.515625 1.21875 -1.171875 1.21875 -0.890625 C 1.21875 -0.1875 1.75 0.078125 2.34375 0.078125 C 2.4375 0.078125 2.796875 0.078125 3.1875 -0.265625 C 3.09375 0.140625 3.03125 0.4375 2.671875 0.828125 C 2.53125 0.96875 2.203125 1.28125 1.75 1.28125 C 1.6875 1.28125 1.359375 1.265625 1.1875 1.078125 C 1.515625 1.015625 1.5625 0.71875 1.5625 0.65625 C 1.5625 0.453125 1.390625 0.375 1.25 0.375 C 1.0625 0.375 0.828125 0.515625 0.828125 0.859375 C 0.828125 1.21875 1.171875 1.53125 1.75 1.53125 C 2.546875 1.53125 3.5 0.9375 3.734375 0 Z M 4.453125 -2.875 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-4-0"> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-4-1"> <path d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </g> <g id="Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-4-2"> <path d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-1" x="6.434" y="19.753"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-1" x="83.806" y="19.753"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-1-1" x="95.44225" y="19.753"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-2" x="109.971" y="19.753"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-2" x="186.699" y="19.753"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-0-3" x="94.93" y="85.95"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -78.972313 25.226344 L -12.542625 -23.570531 " transform="matrix(1, 0, 0, -1, 100.402, 49.199)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484293 2.869255 C -2.032659 1.14585 -1.019554 0.334126 -0.000109643 0.00207078 C -1.018392 -0.333916 -2.031256 -1.145781 -2.485186 -2.870327 " transform="matrix(0.8059, 0.59198, 0.59198, -0.8059, 88.05355, 72.91189)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-1" x="45.14" y="58.948"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -78.972313 33.183375 L -23.757469 33.183375 " transform="matrix(1, 0, 0, -1, 100.402, 49.199)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485282 2.868512 C -2.032157 1.145856 -1.020439 0.333356 -0.0009075 0.001325 C -1.020439 -0.334613 -2.032157 -1.147113 -2.485282 -2.869769 " transform="matrix(1, 0, 0, -1, 76.88372, 16.01695)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-2" x="44.557" y="11.256"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-3-1" x="48.16075" y="12.501"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.324562 20.820094 L 0.320656 -20.343969 " transform="matrix(1, 0, 0, -1, 100.402, 49.199)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485152 2.869418 C -2.031984 1.146736 -1.020228 0.33424 -0.00066998 -0.0016838 C -1.020215 -0.333742 -2.031938 -1.146279 -2.485037 -2.868978 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 100.72434, 69.78192)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-4-1" x="104.241" y="51.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-1" x="108.35725" y="51.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-3" x="113.950268" y="51.689"></use> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-4" x="116.890238" y="51.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-4-2" x="122.28725" y="51.689"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 79.613625 25.429469 L 13.183937 -23.539281 " transform="matrix(1, 0, 0, -1, 100.402, 49.199)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486348 2.868384 C -2.032986 1.14619 -1.019148 0.335755 0.000906667 0.00119837 C -1.018286 -0.334614 -2.031945 -1.150115 -2.487305 -2.867331 " transform="matrix(-0.80489, 0.59332, 0.59332, 0.80489, 113.39455, 72.88131)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-4" x="150.125" y="56.201"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 79.613625 33.183375 L 24.402687 33.183375 " transform="matrix(1, 0, 0, -1, 100.402, 49.199)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486171 2.869769 C -2.033046 1.147113 -1.021327 0.334613 -0.00179625 -0.001325 C -1.021327 -0.333356 -2.033046 -1.145856 -2.486171 -2.868512 " transform="matrix(-1, 0, 0, 1, 124.56461, 16.01695)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-2-2" x="147.558" y="9.803"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Lj7HOnF5lycppnNY6j4y38yK3LU=-glyph-3-2" x="151.16175" y="11.048"></use> </g> </svg> </div> <p>This morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(f,g)</annotation></semantics></math> is called the <strong><a class="existingWikiWord" href="/nlab/show/copairing">copairing</a></strong> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math>. The morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>→</mo><mi>x</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x\to x\coprod y</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>→</mo><mi>x</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">y\to x\coprod y</annotation></semantics></math> are called <a class="existingWikiWord" href="/nlab/show/coprojections">coprojections</a> or sometimes “injections” or “inclusions”, although in general they may not be <a class="existingWikiWord" href="/nlab/show/monomorphisms">monomorphisms</a>.</p> <p><strong>Notation.</strong> The coproduct is also denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a+b</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>⨿</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a\amalg b</annotation></semantics></math>, especially when it is <a class="existingWikiWord" href="/nlab/show/disjoint+coproduct">disjoint</a> (or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>⊔</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a \sqcup b</annotation></semantics></math> if your fonts don't include ‘<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⨿</mo></mrow><annotation encoding="application/x-tex">\amalg</annotation></semantics></math>’). The copairing is also denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[f,g]</annotation></semantics></math> or (when possible) given vertically: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mo>{</mo><mfrac linethickness="0"><mrow><mi>f</mi></mrow><mrow><mi>g</mi></mrow></mfrac><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex">\left\{{f \atop g}\right\}</annotation></semantics></math>.</p> <p>A coproduct is thus the <a class="existingWikiWord" href="/nlab/show/colimit">colimit</a> over the <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> that consists of just two objects.</p> <p>More generally, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> any <a class="existingWikiWord" href="/nlab/show/set">set</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>S</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">F : S \to C</annotation></semantics></math> a collection of objects in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> indexed by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>, their <strong>coproduct</strong> is an object</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></munder><mi>F</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \coprod_{s \in S} F(s) </annotation></semantics></math></div> <p>equipped with maps</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>→</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></munder><mi>F</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> F(s) \to \coprod_{s \in S} F(s) </annotation></semantics></math></div> <p>such that this is <a class="existingWikiWord" href="/nlab/show/universal+property">universal</a> among all objects with maps from the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(s)</annotation></semantics></math>.</p> <h2 id="examples">Examples</h2> <ul> <li> <p>In <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, the coproduct of a <a class="existingWikiWord" href="/nlab/show/family+of+sets">family of sets</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>i</mi></msub><msub><mo stretchy="false">)</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(C_i)_{i\in I}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub><msub><mi>C</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\coprod_{i\in I} C_i</annotation></semantics></math> of sets.</p> <p>This makes the coproduct a <a class="existingWikiWord" href="/nlab/show/categorification">categorification</a> of the operation of addition of <a class="existingWikiWord" href="/nlab/show/natural+number">natural number</a>s and more generally of <a class="existingWikiWord" href="/nlab/show/cardinal">cardinal</a> numbers: for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>,</mo><mi>T</mi><mo>∈</mo><mi>FinSet</mi></mrow><annotation encoding="application/x-tex">S,T \in FinSet</annotation></semantics></math> two finite sets and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">|</mo><mo>−</mo><mo stretchy="false">|</mo><mo>:</mo><mi>FinSet</mi><mo>→</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">|-| : FinSet \to \mathbb{N}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/cardinality">cardinality</a> operation, we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">|</mo><mi>S</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>T</mi><mo stretchy="false">|</mo><mo>=</mo><mo stretchy="false">|</mo><mi>S</mi><mo stretchy="false">|</mo><mo>+</mo><mo stretchy="false">|</mo><mi>T</mi><mo stretchy="false">|</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> |S \coprod T| = |S| + |T| \,. </annotation></semantics></math></div></li> <li> <p>In <a class="existingWikiWord" href="/nlab/show/Top">Top</a>, the coproduct of a family of spaces <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>i</mi></msub><msub><mo stretchy="false">)</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(C_i)_{i\in I}</annotation></semantics></math> is the space whose set of points is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub><msub><mi>C</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\coprod_{i\in I} C_i</annotation></semantics></math> and whose open subspaces are of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub><msub><mi>U</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\coprod_{i\in I} U_i</annotation></semantics></math> (the internal <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a>) where each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">U_i</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/open+subspace">open subspace</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">C_i</annotation></semantics></math>. This is typical of <a class="existingWikiWord" href="/nlab/show/topological+concrete+categories">topological concrete categories</a>.</p> </li> <li> <p>In <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a>, the coproduct is the “<a class="existingWikiWord" href="/nlab/show/free+product+of+groups">free product of groups</a>”, whose <a class="existingWikiWord" href="/nlab/show/underlying+set">underlying set</a> is <em>not</em> a <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a>. This is typical of <a class="existingWikiWord" href="/nlab/show/algebraic+category">algebraic categories</a>.</p> </li> <li> <p>In <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a>, in <a class="existingWikiWord" href="/nlab/show/Vect">Vect</a>, the coproduct is the <a class="existingWikiWord" href="/nlab/show/subobject">subobject</a> of the <a class="existingWikiWord" href="/nlab/show/product">product</a> consisting of those tuples of elements for which only finitely many are not 0.</p> </li> <li> <p>In <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>, the coproduct of a family of categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>i</mi></msub><msub><mo stretchy="false">)</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(C_i)_{i\in I}</annotation></semantics></math> is the category with</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Obj</mi><mo stretchy="false">(</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></munder><msub><mi>C</mi> <mi>i</mi></msub><mo stretchy="false">)</mo><mo>=</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></munder><mi>Obj</mi><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Obj(\coprod_{i\in I} C_i) = \coprod_{i\in I} Obj(C_i)</annotation></semantics></math></div> <p>and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mrow><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></munder><msub><mi>C</mi> <mi>i</mi></msub></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><msub><mi>Hom</mi> <mrow><msub><mi>C</mi> <mi>i</mi></msub></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mtd> <mtd><mi>if</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mi>C</mi> <mi>i</mi></msub></mtd></mtr> <mtr><mtd><mi>∅</mi></mtd> <mtd><mi>otherwise</mi></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding="application/x-tex"> Hom_{\coprod_{i\in I} C_i}(x,y) = \left\{ \begin{aligned} Hom_{C_i}(x,y) & if x,y \in C_i \\ \emptyset & otherwise \end{aligned} \right. </annotation></semantics></math></div></li> <li> <p>In <a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a>, the coproduct follows <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> rather than <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a>. This is typical of <a class="existingWikiWord" href="/nlab/show/oidifications">oidifications</a>: the coproduct becomes a disjoint union again.</p> </li> </ul> <h2 id="properties">Properties</h2> <ul> <li> <p>A coproduct in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is the same as a <a class="existingWikiWord" href="/nlab/show/product">product</a> in the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">C^{op}</annotation></semantics></math>.</p> </li> <li> <p>When they exist, coproducts are unique up to unique canonical isomorphism, so we often say “<a class="existingWikiWord" href="/nlab/show/generalized+the">the</a> coproduct.”</p> </li> <li> <p>A coproduct indexed by the <a class="existingWikiWord" href="/nlab/show/empty+set">empty set</a> is an <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-coproduct">quasi-coproduct</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sum+type">sum type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/free+coproduct+completion">free coproduct completion</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+change">base change</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/dependent+sum">dependent sum</a>, <a class="existingWikiWord" href="/nlab/show/dependent+product">dependent product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dependent+sum+type">dependent sum type</a>, <a class="existingWikiWord" href="/nlab/show/dependent+product+type">dependent product type</a></p> </li> </ul> </li> </ul> <h2 id="references">References</h2> <p>Textbook account:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Section 2.2 in Vol. 1: <em>Basic Category Theory</em> of: <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em>, Encyclopedia of Mathematics and its Applications <strong>50</strong> Cambridge University Press (1994) (<a href="https://doi.org/10.1017/CBO9780511525858">doi:10.1017/CBO9780511525858</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 23, 2023 at 23:52:26. See the <a href="/nlab/history/coproduct" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/coproduct" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/1939/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/coproduct/22" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/coproduct" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/coproduct" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a> <a href="/nlab/show/coproduct/cite" style="color: black">Cite</a> <a href="/nlab/print/coproduct" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/coproduct" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>