CINXE.COM

disjoint coproduct in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> disjoint coproduct in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> disjoint coproduct </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/4502/#Item_16" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="limits_and_colimits">Limits and colimits</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/limit">limits and colimits</a></strong></p> <h2 id="1categorical">1-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit and colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limits+and+colimits+by+example">limits and colimits by example</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutativity+of+limits+and+colimits">commutativity of limits and colimits</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+limit">small limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filtered+colimit">filtered colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/directed+colimit">directed colimit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/sequential+colimit">sequential colimit</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sifted+colimit">sifted colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+limit">connected limit</a>, <a class="existingWikiWord" href="/nlab/show/wide+pullback">wide pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/preserved+limit">preserved limit</a>, <a class="existingWikiWord" href="/nlab/show/reflected+limit">reflected limit</a>, <a class="existingWikiWord" href="/nlab/show/created+limit">created limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product">product</a>, <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a>, <a class="existingWikiWord" href="/nlab/show/base+change">base change</a>, <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a>, <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a>, <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a>, <a class="existingWikiWord" href="/nlab/show/cobase+change">cobase change</a>, <a class="existingWikiWord" href="/nlab/show/equalizer">equalizer</a>, <a class="existingWikiWord" href="/nlab/show/coequalizer">coequalizer</a>, <a class="existingWikiWord" href="/nlab/show/join">join</a>, <a class="existingWikiWord" href="/nlab/show/meet">meet</a>, <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a>, <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a>, <a class="existingWikiWord" href="/nlab/show/direct+product">direct product</a>, <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+limit">finite limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/exact+functor">exact functor</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Yoneda+extension">Yoneda extension</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end and coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibered+limit">fibered limit</a></p> </li> </ul> <h2 id="2categorical">2-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isoinserter">isoinserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/PIE-limit">PIE-limit</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a>, <a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> </ul> <h2 id="1categorical_2">(∞,1)-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-limit">(∞,1)-limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-pullback">(∞,1)-pullback</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a></li> </ul> </li> </ul> </li> </ul> <h3 id="modelcategorical">Model-categorical</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+Kan+extension">homotopy Kan extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+product">homotopy product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equalizer">homotopy equalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+fiber">homotopy fiber</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+totalization">homotopy totalization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+end">homotopy end</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coproduct">homotopy coproduct</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coequalizer">homotopy coequalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+cofiber">homotopy cofiber</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+pushout">homotopy pushout</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+realization">homotopy realization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coend">homotopy coend</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/infinity-limits+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#in_a_category'>In a category</a></li> <li><a href='#in_a_fibration'>In a fibration</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#characterization_of_sheaf_toposes'>Characterization of sheaf toposes</a></li> <li><a href='#in_coherent_categories'>In coherent categories</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The notion of <em>disjoint coproduct</em> is a generalization to arbitrary <a class="existingWikiWord" href="/nlab/show/categories">categories</a> of that of <em><a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a></em> of sets.</p> <p>Informally, one says that a <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X + Y</annotation></semantics></math> of two <a class="existingWikiWord" href="/nlab/show/objects">objects</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X, Y</annotation></semantics></math> in a <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> is <em>disjoint</em> if both <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> inject into it and the <a class="existingWikiWord" href="/nlab/show/intersection">intersection</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X + Y</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/initial+object">empty</a>. In this case one often writes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>Y</mi><mo>≔</mo><mi>X</mi><mo>+</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \coprod Y \coloneqq X + Y</annotation></semantics></math> for the coproduct, particularly if the coproduct is <a class="existingWikiWord" href="/nlab/show/pullback-stable+colimit">stable under pullbacks</a>, and there one speaks of the <em><a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a></em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>.</p> <h2 id="definition">Definition</h2> <h3 id="in_a_category">In a category</h3> <p>A binary <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a+b</annotation></semantics></math> in a <a class="existingWikiWord" href="/nlab/show/category">category</a> is <strong>disjoint</strong> if</p> <ol> <li> <p>the coprojections <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>→</mo><mi>a</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a\to a+b</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>→</mo><mi>a</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">b\to a+b</annotation></semantics></math> are <a class="existingWikiWord" href="/nlab/show/monomorphism">monic</a>, and</p> </li> <li> <p>their <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> (exists and) is an <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a> (which is therefore also their <a class="existingWikiWord" href="/nlab/show/intersection">intersection</a> in the poset of subobjects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a+b</annotation></semantics></math>).</p> </li> </ol> <p>Equivalently, this means we have <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> squares</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>a</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>a</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>b</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><mn>0</mn></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>b</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>a</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>a</mi><mo>+</mo><mi>b</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>a</mi><mo>+</mo><mi>b</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>a</mi><mo>+</mo><mi>b</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ a &amp; \to &amp; a &amp;&amp;&amp; b &amp; \to &amp; b &amp;&amp;&amp; 0 &amp; \to &amp; b\\ \downarrow &amp;&amp; \downarrow &amp;&amp;&amp; \downarrow &amp;&amp; \downarrow &amp;&amp;&amp; \downarrow &amp;&amp; \downarrow \\ a &amp; \to &amp; a+b &amp;&amp;&amp; b &amp; \to &amp; a+b &amp;&amp;&amp; a &amp; \to &amp; a+b} </annotation></semantics></math></div> <p>An arbitrary coproduct <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></msub><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\sum_i a_i</annotation></semantics></math> is disjoint if each coprojection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub><mo>→</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>k</mi></msub><msub><mi>a</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">a_i\to \sum_k a_k</annotation></semantics></math> is monic and the intersection of any two distinct ones is initial.</p> <p>Note that every 0-ary coproduct (that, is initial object) is disjoint. However, disjointness of coproducts is most commonly considered in categories with a <a class="existingWikiWord" href="/nlab/show/strict+initial+object">strict initial object</a>, in which case disjointness can be expressed as “a map into a coproduct from a noninitial object factors through a coprojection in at most one way”.</p> <p>A more <a class="existingWikiWord" href="/nlab/show/constructive+mathematics">constructive</a> way to phrase disjointness of an arbitrary coproduct is that the pullback of any two <a class="existingWikiWord" href="/nlab/show/coprojections">coprojections</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub><mo>→</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>k</mi></msub><msub><mi>a</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">a_i\to \sum_k a_k</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>j</mi></msub><mo>→</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>k</mi></msub><msub><mi>a</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">a_j\to \sum_k a_k</annotation></semantics></math> is the coproduct <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mi>j</mi></mrow></msub><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\sum_{i=j} a_i</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo>=</mo><mi>j</mi></mrow><annotation encoding="application/x-tex">i=j</annotation></semantics></math> denotes the <a class="existingWikiWord" href="/nlab/show/subsingleton">subsingleton</a> corresponding to the <a class="existingWikiWord" href="/nlab/show/proposition">proposition</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo>=</mo><mi>j</mi></mrow><annotation encoding="application/x-tex">i=j</annotation></semantics></math>, a.k.a. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mo>*</mo><mo lspace="mediummathspace" rspace="mediummathspace">∣</mo><mi>i</mi><mo>=</mo><mi>j</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{ \ast \mid i=j \}</annotation></semantics></math>. (Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub><mo>=</mo><msub><mi>a</mi> <mi>j</mi></msub></mrow><annotation encoding="application/x-tex">a_i=a_j</annotation></semantics></math> as soon as this indexing set is <a class="existingWikiWord" href="/nlab/show/inhabited+set">inhabited</a>, this coproduct could equally be written <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mi>j</mi></mrow></msub><msub><mi>a</mi> <mi>j</mi></msub></mrow><annotation encoding="application/x-tex">\sum_{i=j} a_j</annotation></semantics></math>.)</p> <h3 id="in_a_fibration">In a fibration</h3> <p>Suppose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">\pi:C\to S</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/Grothendieck+fibration">Grothendieck fibration</a>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">u:A\to B</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/indexed+coproduct">indexed coproduct</a>, which is to say an <a class="existingWikiWord" href="/nlab/show/opcartesian+arrow">opcartesian arrow</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> lying over some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f:X\to Y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>. Then this coproduct is <strong>disjoint</strong> if the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><msub><mo>×</mo> <mi>B</mi></msub><mi>A</mi></mrow><annotation encoding="application/x-tex">A\times_B A</annotation></semantics></math> exists in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, is <a class="existingWikiWord" href="/nlab/show/preserved+limit">preserved</a> by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math>, and the induced <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>A</mi><msub><mo>×</mo> <mi>B</mi></msub><mi>A</mi></mrow><annotation encoding="application/x-tex">A\to A\times_B A</annotation></semantics></math> is also opcartesian (over the diagonal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>X</mi><msub><mo>×</mo> <mi>Y</mi></msub><mi>X</mi></mrow><annotation encoding="application/x-tex">X\to X\times_Y X</annotation></semantics></math>).</p> <p>This specializes to the above definition for arbitrary coproducts (in its constructive phrasing) when an ordinary category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is represented by the corresponding <a class="existingWikiWord" href="/nlab/show/family+fibration">family fibration</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>, whose fiber over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">X\in Set</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>X</mi></msup></mrow><annotation encoding="application/x-tex">C^X</annotation></semantics></math>.</p> <h2 id="examples">Examples</h2> <ul> <li> <p>In the category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math> of sets and functions, the coproduct is given by <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a> and is, unsurprisingly, disjoint. In the category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pfn</mi></mrow><annotation encoding="application/x-tex">Pfn</annotation></semantics></math> of sets and <a class="existingWikiWord" href="/nlab/show/partial+function">partial functions</a> the coproduct is equally given by disjoint union and total injections and is disjoint as well.</p> </li> <li> <p>Since having all finitary disjoint coproducts is half of the condition for a category to be <a class="existingWikiWord" href="/nlab/show/extensive+category">extensive</a>, extensive categories provide <a class="existingWikiWord" href="/nlab/show/extensive+category#examples">examples for categories with disjoint finite coproducts</a>. In the preceding discussion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math> instantiates this case whereas <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pfn</mi></mrow><annotation encoding="application/x-tex">Pfn</annotation></semantics></math> does not: since the initial object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>∅</mi></mrow><annotation encoding="application/x-tex">\emptyset</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pfn</mi></mrow><annotation encoding="application/x-tex">Pfn</annotation></semantics></math> is not <a class="existingWikiWord" href="/nlab/show/strict+initial+object">strict</a>, the latter category is not extensive.</p> </li> <li> <p>In the category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Vect</mi></mrow><annotation encoding="application/x-tex">Vect</annotation></semantics></math> of (real) <a class="existingWikiWord" href="/nlab/show/vector+space">vector spaces</a> coproducts are given by <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a> and are disjoint but not <a class="existingWikiWord" href="/nlab/show/pullback-stable+colimit">stable under pullback</a>: pulling back the colimit diagram <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi><mo>⊕</mo><mi>ℝ</mi><mo>←</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}\to\mathbb{R}\oplus\mathbb{R}\leftarrow\mathbb{R}</annotation></semantics></math> along the diagonal morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo>:</mo><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi><mo>⊕</mo><mi>ℝ</mi><mspace width="thickmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mi>x</mi><mo>↦</mo><mi>x</mi><mo>⊕</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">\Delta:\mathbb{R}\to\mathbb{R}\oplus\mathbb{R}\; ,\; x\mapsto x\oplus x</annotation></semantics></math> yields <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>ℝ</mi><mo>←</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0\to\mathbb{R}\leftarrow 0</annotation></semantics></math> which is not a colimit diagram. Whence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Vect</mi></mrow><annotation encoding="application/x-tex">Vect</annotation></semantics></math> is not <a class="existingWikiWord" href="/nlab/show/extensive+category">extensive</a>.</p> </li> <li> <p>Non-example: the <a class="existingWikiWord" href="/nlab/show/interval+category">interval category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mo>{</mo><mn>0</mn><mo>→</mo><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex">\left\{ 0 \to 1 \right\}</annotation></semantics></math> has coproducts but they are not all disjoint: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>+</mo><mn>1</mn><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">1+1=1</annotation></semantics></math>. There are plenty more examples of <a class="existingWikiWord" href="/nlab/show/posets">posets</a> that have non-disjoint coproducts besides this one. In a <a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a>, two elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math> are disjoint in the sense that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∧</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a\wedge b=0</annotation></semantics></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∨</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a\vee b</annotation></semantics></math> is their disjoint coproduct.</p> </li> </ul> <h2 id="properties">Properties</h2> <h3 id="characterization_of_sheaf_toposes">Characterization of sheaf toposes</h3> <p>Having all small disjoint coproducts is one of the conditions in <a class="existingWikiWord" href="/nlab/show/Giraud%27s+theorem">Giraud's theorem</a> characterizing <a class="existingWikiWord" href="/nlab/show/sheaf+toposes">sheaf toposes</a>.</p> <h3 id="in_coherent_categories">In coherent categories</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/coherent+category">coherent category</a>. If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi><mo>↪</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">X, Y \hookrightarrow Z</annotation></semantics></math> are two <a class="existingWikiWord" href="/nlab/show/subobjects">subobjects</a> of some <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">Z \in \mathcal{C}</annotation></semantics></math> and are disjoint, in that their <a class="existingWikiWord" href="/nlab/show/intersection">intersection</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/initial+object">empty</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∩</mo><mi>Y</mi><mo>≃</mo><mi>∅</mi></mrow><annotation encoding="application/x-tex">X \cap Y \simeq\emptyset</annotation></semantics></math>, then their <a class="existingWikiWord" href="/nlab/show/union">union</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∪</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \cup Y</annotation></semantics></math> is their (disjoint) <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a>.</p> </div> <p>This apears as (<a href="#Johnstone">Johnstone, cor. A1.4.4</a>).</p> <div class="num_defn" id="PositiveCategory"> <h6 id="definition_2">Definition</h6> <p>A coherent category in which all coproducts are disjoint is also called a <strong><a class="existingWikiWord" href="/nlab/show/positive+category">positive coherent category</a></strong>.</p> </div> <p>(<a href="#Johnstone">Johnstone, p. 34</a>)</p> <div class="num_example"> <h6 id="example">Example</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/extensive+category">extensive category</a> is in particular positive, by definition.</p> </div> <p>In a positive coherent category, every morphism into a coproduct factors through the coproduct coprojections:</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> be a postive coherent category, def. <a class="maruku-ref" href="#PositiveCategory"></a>, and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>X</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f \colon A \to X \coprod Y</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a>. Then the two <a class="existingWikiWord" href="/nlab/show/subobjects">subobjects</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>↪</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">f^*(X) \hookrightarrow A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo><mo>↪</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f^*(Y) \hookrightarrow Y</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, being the <a class="existingWikiWord" href="/nlab/show/pullbacks">pullbacks</a> in</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msub><mi>i</mi> <mi>X</mi></msub></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><mi>X</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>Y</mi></mtd></mtr></mtable></mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mtable><mtr><mtd><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Y</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msub><mi>i</mi> <mi>Y</mi></msub></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><mi>X</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>Y</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ f^* (X) &amp;\to&amp; X \\ \downarrow &amp;&amp; \downarrow^{\mathrlap{i_X}} \\ A &amp;\stackrel{f}{\to}&amp; X \coprod Y } \;\;\;\; \array{ f^* (Y) &amp;\to&amp; Y \\ \downarrow &amp;&amp; \downarrow^{\mathrlap{i_Y}} \\ A &amp;\stackrel{f}{\to}&amp; X \coprod Y } </annotation></semantics></math></div> <p>are disjoint in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is their disjoint coproduct</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>≃</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> A \simeq f^*(X) \coprod f^*(Y) \,. </annotation></semantics></math></div></div> <p>This appears in (<a href="#Johnstone">Johnstone, p. 34</a>).</p> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>This means that if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">A \in \mathcal{C}</annotation></semantics></math> itself is indecomposable in that it is not a coproduct of two objects in a non-trivial way, for instance if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/extensive+category">extensive category</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">A \in \mathcal{C}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/connected+object">connected object</a>, then every morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>X</mi><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">A \to X \coprod Y</annotation></semantics></math> into a disjoint coproduct factors through one of the two canonical inclusions.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/disjoint+subset">disjoint subset</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/disjunctive+logic">disjunctive logic</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li id="CarboniLackWalters93"> <p><a class="existingWikiWord" href="/nlab/show/Aurelio+Carboni">Aurelio Carboni</a>, <a class="existingWikiWord" href="/nlab/show/Stephen+Lack">Stephen Lack</a>, <a class="existingWikiWord" href="/nlab/show/Bob+Walters">R. F. C. Walters</a>, around Def. 2.5 in: <em>Introduction to extensive and distributive categories</em>, JPAA <strong>84</strong> (1993) pp. 145-158 (<a href="https://doi.org/10.1016/0022-4049(93)90035-R">doi:10.1016/0022-4049(93)90035-R</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, Sec. A1.4.4, p. 34 in: <em><a class="existingWikiWord" href="/nlab/show/Sketches+of+an+Elephant">Sketches of an Elephant</a></em></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 27, 2025 at 18:08:06. See the <a href="/nlab/history/disjoint+coproduct" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/disjoint+coproduct" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/4502/#Item_16">Discuss</a><span class="backintime"><a href="/nlab/revision/disjoint+coproduct/21" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/disjoint+coproduct" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/disjoint+coproduct" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a> <a href="/nlab/show/disjoint+coproduct/cite" style="color: black">Cite</a> <a href="/nlab/print/disjoint+coproduct" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/disjoint+coproduct" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10