CINXE.COM
Search results for: propagation equation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: propagation equation</title> <meta name="description" content="Search results for: propagation equation"> <meta name="keywords" content="propagation equation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="propagation equation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="propagation equation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2685</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: propagation equation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2415</span> Parallelization by Domain Decomposition for 1-D Sugarcane Equation with Message Passing Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewedafe%20Simon%20Uzezi">Ewedafe Simon Uzezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we presented a method based on Domain Decomposition (DD) for parallelization of 1-D Sugarcane Equation on parallel platform with parallel paradigms on Master-Slave platform using Message Passing Interface (MPI). The 1-D Sugarcane Equation was discretized using explicit method of discretization requiring evaluation nof temporal and spatial distribution of temperature. This platform gives better predictions of the effects of temperature distribution of the sugarcane problem. This work presented parallel overheads with overlapping communication and communication across parallel computers with numerical results across different block sizes with scalability. However, performance improvement strategies from the DD on various mesh sizes were compared experimentally and parallel results show speedup and efficiency for the parallel algorithms design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title="sugarcane">sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20method" title=" explicit method"> explicit method</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20decomposition" title=" domain decomposition"> domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=MPI" title=" MPI"> MPI</a> </p> <a href="https://publications.waset.org/abstracts/192206/parallelization-by-domain-decomposition-for-1-d-sugarcane-equation-with-message-passing-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title="discrete sine-Gordon equation">discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20coefficient%20Jacobian%20elliptic%20function%20method" title=" variable coefficient Jacobian elliptic function method"> variable coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a> </p> <a href="https://publications.waset.org/abstracts/12987/the-application-of-variable-coefficient-jacobian-elliptic-function-method-to-differential-difference-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> Localized Meshfree Methods for Solving 3D-Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Mollapourasl">Reza Mollapourasl</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Haghi"> Majid Haghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title="radial basis functions">radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermite%20finite%20difference" title=" Hermite finite difference"> Hermite finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/168736/localized-meshfree-methods-for-solving-3d-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osung%20Im">Osung Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Yadav"> Neha Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui%20Hoon%20Lee"> Eui Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joong%20Hoon%20Kim"> Joong Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20inflow" title=" reservoir inflow"> reservoir inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20depth" title=" sewer depth"> sewer depth</a> </p> <a href="https://publications.waset.org/abstracts/58382/reservoir-inflow-prediction-for-pump-station-using-upstream-sewer-depth-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2411</span> Characteristic Study on Conventional and Soliton Based Transmission System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhupeshwaran%20Mani">Bhupeshwaran Mani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Radha"> S. Radha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jawahar"> A. Jawahar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivasubramanian"> A. Sivasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20length" title="dispersion length">dispersion length</a>, <a href="https://publications.waset.org/abstracts/search?q=retrun-to-zero%20%28rz%29" title=" retrun-to-zero (rz)"> retrun-to-zero (rz)</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20period" title=" soliton period"> soliton period</a>, <a href="https://publications.waset.org/abstracts/search?q=q-factor" title=" q-factor"> q-factor</a> </p> <a href="https://publications.waset.org/abstracts/30789/characteristic-study-on-conventional-and-soliton-based-transmission-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2410</span> The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20W.%20Molo%20Chin">Pius W. Molo Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huxley%20equations" title="Huxley equations">Huxley equations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-standard%20finite%20difference%20method" title=" non-standard finite difference method"> non-standard finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20rate%20of%20convergence" title=" optimal rate of convergence"> optimal rate of convergence</a> </p> <a href="https://publications.waset.org/abstracts/155210/the-analysis-of-the-two-dimensional-huxley-equation-using-the-galerkin-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2409</span> 3D Interactions in Under Water Acoustic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabu%20Duplex">Prabu Duplex</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to stringent emission regulation targets, large-scale transition to renewable energy sources is a global challenge, and wind power plays a significant role in the solution vector. This scenario has led to the construction of offshore wind farms, and several wind farms are planned in the shallow waters where the marine habitat exists. It raises concerns over impacts of underwater noise on marine species, for example bridge constructions in the ocean straits. Dangerous to aquatic life, the environmental organisations say, the bridge would be devastating, since ocean straits are important place of transit for marine mammals. One of the highest concentrations of biodiversity in the world is concentrated these areas. The investigation of ship noise and piling noise that may happen during bridge construction and in operation is therefore vital. Once the source levels are known the receiver levels can be modelled. With this objective this work investigates the key requirement of the software that can model transmission loss in high frequencies that may occur during construction or operation phases. Most propagation models are 2D solutions, calculating the propagation loss along a transect, which does not include horizontal refraction, reflection or diffraction. In many cases, such models provide sufficient accuracy and can provide three-dimensional maps by combining, through interpolation, several two-dimensional (distance and depth) transects. However, in some instances the use of 2D models may not be sufficient to accurately model the sound propagation. A possible example includes a scenario where an island or land mass is situated between the source and receiver. The 2D model will result in a shadow behind the land mass where the modelled transects intersect the land mass. Diffraction will occur causing bending of the sound around the land mass. In such cases, it may be necessary to use a 3D model, which accounts for horizontal diffraction to accurately represent the sound field. Other scenarios where 2D models may not provide sufficient accuracy may be environments characterised by a strong up-sloping or down sloping seabed, such as propagation around continental shelves. In line with these objectives by means of a case study, this work addresses the importance of 3D interactions in underwater acoustics. The methodology used in this study can also be used for other 3D underwater sound propagation studies. This work assumes special significance given the increasing interest in using underwater acoustic modeling for environmental impacts assessments. Future work also includes inter-model comparison in shallow water environments considering more physical processes known to influence sound propagation, such as scattering from the sea surface. Passive acoustic monitoring of the underwater soundscape with distributed hydrophone arrays is also suggested to investigate the 3D propagation effects as discussed in this article. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20acoustics" title="underwater acoustics">underwater acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=naval" title=" naval"> naval</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime" title=" maritime"> maritime</a>, <a href="https://publications.waset.org/abstracts/search?q=cetaceans" title=" cetaceans"> cetaceans</a> </p> <a href="https://publications.waset.org/abstracts/190339/3d-interactions-in-under-water-acoustic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2408</span> A Review on Higher-Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Khazaei%20Pool">Maryam Khazaei Pool</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20Lewis"> Lori Lewis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method, Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper, we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions, including Burgers equation, spline functions, and B-spline functions, are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided, and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burgers%E2%80%99%20equation" title="Burgers’ equation">Burgers’ equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Septic%20B-spline" title=" Septic B-spline"> Septic B-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20cubic%20B-spline%20differential%20quadrature%20method" title=" modified cubic B-spline differential quadrature method"> modified cubic B-spline differential quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20cubic%20B-spline%20technique" title=" exponential cubic B-spline technique"> exponential cubic B-spline technique</a>, <a href="https://publications.waset.org/abstracts/search?q=B-spline%20Galerkin%20method" title=" B-spline Galerkin method"> B-spline Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=quintic%20B-spline%20Galerkin%20method" title=" quintic B-spline Galerkin method"> quintic B-spline Galerkin method</a> </p> <a href="https://publications.waset.org/abstracts/152585/a-review-on-higher-order-spline-techniques-for-solving-burgers-equation-using-b-spline-methods-and-variation-of-b-spline-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2407</span> Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Dedic">Aleksandar Dedic</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusko%20Salemovic"> Dusko Salemovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Milorad%20Danilovic"> Milorad Danilovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Radomir%20Kuzmanovic"> Radomir Kuzmanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20energy" title="bonding energy">bonding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=isosters" title=" isosters"> isosters</a>, <a href="https://publications.waset.org/abstracts/search?q=oak" title=" oak"> oak</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a> </p> <a href="https://publications.waset.org/abstracts/69758/influence-of-vacuum-pressure-on-the-thermal-bonding-energy-of-water-in-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2406</span> Energetics of Photosynthesis with Respect to the Environment and Recently Reported New Balanced Chemical Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suprit%20Pradhan">Suprit Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Pradhan"> Sushil Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photosynthesis is a physiological process where green plants prepare their food from carbon dioxide from the atmosphere and water being absorbed from the soil in presence of sun light and chlorophyll. From this definition it is clear that four reactants (Carbon Dioxide, Water, Light and Chlorophyll) are essential for the process to proceed and the product is a sugar or carbohydrate ultimately stored as starch. The entire process has “Light Reaction” (Photochemical) and “Dark Reaction” (Biochemical). Biochemical reactions are very much complicated being catalysed by various enzymes and the path of carbon is known as “Calvin Cycle” according to the name of its discover. The overall reaction which is now universally accepted can be explained like this. Six molecules of carbon dioxide react with twelve molecules of water in presence of chlorophyll and sun light to give only one molecule of sugar (Carbohydrate) six molecules of water and six molecules of oxygen is being evolved in gaseous form. This is the accepted equation and also chemically balanced. However while teaching the subject the author came across a new balanced equation from among the students who happened to be the daughter of the author. In the new balanced equation in place of twelve water molecules in the reactant side seven molecules can be expressed and accordingly in place of six molecules of water in the product side only one molecule of water is produced. The energetics of the photosynthesis as related to the environment and the newly reported balanced chemical equation has been discussed in detail in the present research paper presentation in this international conference on energy, environmental and chemical engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemistry" title="biochemistry">biochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme "> enzyme </a>, <a href="https://publications.waset.org/abstracts/search?q=isotope" title="isotope">isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a> </p> <a href="https://publications.waset.org/abstracts/24795/energetics-of-photosynthesis-with-respect-to-the-environment-and-recently-reported-new-balanced-chemical-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2405</span> Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyarat%20Parklug">Piyarat Parklug</a>, <a href="https://publications.waset.org/abstracts/search?q=Busaba%20Supawattanaobodee"> Busaba Supawattanaobodee</a>, <a href="https://publications.waset.org/abstracts/search?q=Penpat%20Pinyowattanasilp"> Penpat Pinyowattanasilp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equation" title="equation">equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Graves%E2%80%99disease" title=" Graves’disease"> Graves’disease</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=24-hour%20uptake" title=" 24-hour uptake"> 24-hour uptake</a> </p> <a href="https://publications.waset.org/abstracts/108895/outcome-of-using-penpat-pinyowattanasilp-equation-for-prediction-of-24-hour-uptake-first-and-second-therapeutic-doses-calculation-in-graves-disease-patient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2404</span> Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Ahamefula%20Mba">Samuel Ahamefula Mba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence" title="turbulence">turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equation" title=" Navier-Stokes equation"> Navier-Stokes equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20pressure%20equation" title=" Poisson pressure equation"> Poisson pressure equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation"> numerical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev-finite%20difference" title=" Chebyshev-finite difference"> Chebyshev-finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20computational%20approach" title=" hybrid computational approach"> hybrid computational approach</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20Eddy%20simulation%20with%20wall%20models" title=" large Eddy simulation with wall models"> large Eddy simulation with wall models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/167838/numerical-investigation-of-entropy-signatures-in-fluid-turbulence-poisson-equation-for-pressure-transformation-from-navier-stokes-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2403</span> Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoungjin%20Kim">Kyoungjin Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermite%20reaction" title=" thermite reaction"> thermite reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20wave" title=" combustion wave"> combustion wave</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a> </p> <a href="https://publications.waset.org/abstracts/11318/computational-modeling-of-combustion-wave-in-nanoscale-thermite-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2402</span> Analysis of School Burnout and Academic Motivation through Structural Equation Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Se%C3%A7er">Ismail Seçer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=school%20burnout" title="school burnout">school burnout</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=university" title=" university"> university</a> </p> <a href="https://publications.waset.org/abstracts/53720/analysis-of-school-burnout-and-academic-motivation-through-structural-equation-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2401</span> Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merouane%20Salhi">Merouane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Zebbiche"> Toufik Zebbiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Abada"> Omar Abada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title="supersonic flow">supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20gas%20model" title=" real gas model"> real gas model</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthelot%E2%80%99s%20state%20equation" title=" Berthelot’s state equation"> Berthelot’s state equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%E2%80%99s%20method" title=" Simpson’s method"> Simpson’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20function" title=" condensation function"> condensation function</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/18030/thermal-and-caloric-imperfections-effect-on-the-supersonic-flow-parameters-with-application-for-air-in-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2400</span> Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ebrahimi">Abbas Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zandsalimy"> Mohammad Zandsalimy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerating%20numerical%20solutions" title="accelerating numerical solutions">accelerating numerical solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20definition%20language" title=" hardware definition language"> hardware definition language</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20hardware" title=" reconfigurable hardware"> reconfigurable hardware</a> </p> <a href="https://publications.waset.org/abstracts/68002/numerical-solution-speedup-of-the-laplace-equation-using-fpga-hardware" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2399</span> Numerical Modeling of Air Pollution with PM-Particles and Dust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gigauri">N. Gigauri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Surmava"> A. Surmava</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Intskirveli"> L. Intskirveli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kukhalashvili"> V. Kukhalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mdivani"> S. Mdivani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=dust" title=" dust"> dust</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=PM-particles" title=" PM-particles"> PM-particles</a> </p> <a href="https://publications.waset.org/abstracts/122101/numerical-modeling-of-air-pollution-with-pm-particles-and-dust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2398</span> Analytical Solution of Blassius Equation Using the Kourosh Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Shahnazari">Mohammad Reza Shahnazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Kazemi"> Reza Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Saberi"> Ali Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blasius%20equation" title="Blasius equation">Blasius equation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20method" title=" Kourosh method"> Kourosh method</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a> </p> <a href="https://publications.waset.org/abstracts/49142/analytical-solution-of-blassius-equation-using-the-kourosh-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2397</span> Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Agarwal">Abhishek Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Sarda"> Manoj Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Juhi%20Kaushik"> Juhi Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vatsal%20Sanjay"> Vatsal Sanjay</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20Kumar%20Das"> Arup Kumar Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20dynamics" title="fire dynamics">fire dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20propagation" title=" flame propagation"> flame propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=locomotive%20fire" title=" locomotive fire"> locomotive fire</a>, <a href="https://publications.waset.org/abstracts/search?q=soot%20flow%20pattern" title=" soot flow pattern"> soot flow pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=non-air-conditioned%20coaches" title=" non-air-conditioned coaches"> non-air-conditioned coaches</a> </p> <a href="https://publications.waset.org/abstracts/50482/investigation-of-flame-and-soot-propagation-in-non-air-conditioned-railway-locomotives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2396</span> Infinite Impulse Response Digital Filters Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title="bilinear z-transformation">bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title=" frequency transformation"> frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20bilinear%20z-transformation" title=" inverse bilinear z-transformation"> inverse bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=IIR%20digital%20filters" title=" IIR digital filters"> IIR digital filters</a> </p> <a href="https://publications.waset.org/abstracts/48777/infinite-impulse-response-digital-filters-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2395</span> Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Karami%20Khorramabadi">M. Karami Khorramabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Nezamabadi"> A. R. Nezamabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20beam" title="functionally graded beam">functionally graded beam</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=Engesser-Timoshenko%20beam%20theory" title=" Engesser-Timoshenko beam theory"> Engesser-Timoshenko beam theory</a> </p> <a href="https://publications.waset.org/abstracts/15081/vibration-analysis-of-functionally-graded-engesser-timoshenko-beams-subjected-to-axial-load-located-on-a-continuous-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2394</span> Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiujie%20Cai">Jiujie Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengxia%20LI"> Fengxia LI</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Wang"> Haibo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20propagation" title="fracture propagation">fracture propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20height" title=" fracture height"> fracture height</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20oil%20and%20gas" title=" offshore oil and gas"> offshore oil and gas</a>, <a href="https://publications.waset.org/abstracts/search?q=marine-continental%20transitional%20reservoirs" title=" marine-continental transitional reservoirs"> marine-continental transitional reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mechanics%20experiment" title=" rock mechanics experiment"> rock mechanics experiment</a> </p> <a href="https://publications.waset.org/abstracts/165832/numerical-simulation-of-hydraulic-fracture-propagation-in-marine-continental-transitional-tight-sandstone-reservoirs-by-boundary-element-method-a-case-study-of-shanxi-formation-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2393</span> 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yu">T. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Audibert"> L. Audibert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Chaix"> J. F. Chaix</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Komatitsch"> D. Komatitsch</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Garnier"> V. Garnier</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Henault"> J. M. Henault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-scattering%20medium" title=" multiple-scattering medium"> multiple-scattering medium</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20velocity" title=" phase velocity"> phase velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20measurements" title=" ultrasonic measurements"> ultrasonic measurements</a> </p> <a href="https://publications.waset.org/abstracts/61285/2d-numerical-modeling-of-ultrasonic-measurements-in-concrete-wave-propagation-in-a-multiple-scattering-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2392</span> The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Kumar%20Saharia">Gautam Kumar Saharia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagardeep%20Talukdar"> Sagardeep Talukdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Riki%20Dutta"> Riki Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudipta%20Nandy"> Sudipta Nandy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20Soliton" title=" optical Soliton"> optical Soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a> </p> <a href="https://publications.waset.org/abstracts/165868/the-data-driven-localized-wave-solution-of-the-fokas-lenells-equation-using-pinn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2391</span> Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Shahbazpanahi">Shahriar Shahbazpanahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaleh%20Kamgar"> Alaleh Kamgar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/25999/fracture-mechanics-modeling-of-a-shear-cracked-rc-beams-shear-strengthened-with-frp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2390</span> Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kr.%20Yadav">Vijay Kr. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilam%20Rathi"> Nilam Rathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-propagation" title="back-propagation">back-propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-fuzzy" title=" neuro-fuzzy"> neuro-fuzzy</a> </p> <a href="https://publications.waset.org/abstracts/79054/mathematical-modeling-for-diabetes-prediction-a-neuro-fuzzy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2389</span> Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Ghazaryan">K. B. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Ghazaryan"> R. A. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20waves" title="shear elastic waves">shear elastic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20anisotropic%20media" title=" monoclinic anisotropic media"> monoclinic anisotropic media</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structure" title=" periodic structure"> periodic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20multilayer%20laminae" title=" disordered multilayer laminae"> disordered multilayer laminae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layered%20waveguide" title=" multi-layered waveguide"> multi-layered waveguide</a> </p> <a href="https://publications.waset.org/abstracts/48365/shear-elastic-waves-in-disordered-anisotropic-multi-layered-periodic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2388</span> Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pocholo%20Rodriguez">Pocholo Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Bernadine%20Ocampo"> Anne Bernadine Ocampo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Benedict%20Chan"> Ian Benedict Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Janric%20Micah%20Gray"> Janric Micah Gray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-propagation%20algorithm" title="back-propagation algorithm">back-propagation algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20instability" title=" load instability"> load instability</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20distribution%20system" title=" power distribution system"> power distribution system</a> </p> <a href="https://publications.waset.org/abstracts/65086/designing-an-intelligent-voltage-instability-system-in-power-distribution-systems-in-the-philippines-using-ieee-14-bus-test-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2387</span> Optimal Perturbation in an Impulsively Blocked Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Nayak">Avinash Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Debopam%20Das"> Debopam Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blocked%20channel%20flow" title="blocked channel flow">blocked channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=calculus%20of%20variation" title=" calculus of variation"> calculus of variation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20stability" title=" hydrodynamic stability"> hydrodynamic stability</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20perturbation" title=" optimal perturbation"> optimal perturbation</a> </p> <a href="https://publications.waset.org/abstracts/23334/optimal-perturbation-in-an-impulsively-blocked-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2386</span> 2D RF ICP Torch Modelling with Fluid Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Labiod">Mokhtar Labiod</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Ikhlef"> Nabil Ikhlef</a>, <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Bouherine"> Keltoum Bouherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Leroy"> Olivier Leroy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct-coupled%20model" title="direct-coupled model">direct-coupled model</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20torch%20simulation" title=" plasma torch simulation"> plasma torch simulation</a> </p> <a href="https://publications.waset.org/abstracts/38779/2d-rf-icp-torch-modelling-with-fluid-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=9" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=propagation%20equation&page=11" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>