CINXE.COM
Search results for: R. A. Ghazaryan
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: R. A. Ghazaryan</title> <meta name="description" content="Search results for: R. A. Ghazaryan"> <meta name="keywords" content="R. A. Ghazaryan"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="R. A. Ghazaryan" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="R. A. Ghazaryan"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: R. A. Ghazaryan</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Ghazaryan">K. B. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Ghazaryan"> R. A. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20waves" title="shear elastic waves">shear elastic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20anisotropic%20media" title=" monoclinic anisotropic media"> monoclinic anisotropic media</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structure" title=" periodic structure"> periodic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20multilayer%20laminae" title=" disordered multilayer laminae"> disordered multilayer laminae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layered%20waveguide" title=" multi-layered waveguide"> multi-layered waveguide</a> </p> <a href="https://publications.waset.org/abstracts/48365/shear-elastic-waves-in-disordered-anisotropic-multi-layered-periodic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan"> G. A. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Movsesyan"> H. S. Movsesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Ghazaryan"> N. P. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Grigoryan"> K. V. Grigoryan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zangezur%20copper%20and%20molybdenum%20combine" title=" Zangezur copper and molybdenum combine"> Zangezur copper and molybdenum combine</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution%20degree" title=" heavy metal pollution degree"> heavy metal pollution degree</a> </p> <a href="https://publications.waset.org/abstracts/25256/the-evaluation-of-heavy-metal-pollution-degree-in-the-soils-around-the-zangezur-copper-and-molybdenum-combine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Movsesyan"> H. S. Movsesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Ghazaryan"> N. P. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (<em>Cf</em>), Degree of contamination (<em>Cd</em>), Geoaccumulation index (<em>I-geo</em>) and Enrichment factor (<em>EF</em>). The distribution pattern of trace metals in the soil profile according to <em>Cf, Cd, I-geo </em>and <em>EF</em> values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarak%20copper-molybdenum%20mine%20complex" title="Agarak copper-molybdenum mine complex">Agarak copper-molybdenum mine complex</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor%20%28EF%29" title=" enrichment factor (EF)"> enrichment factor (EF)</a>, <a href="https://publications.waset.org/abstracts/search?q=Armenia" title=" Armenia"> Armenia</a> </p> <a href="https://publications.waset.org/abstracts/48545/application-of-various-methods-for-evaluation-of-heavy-metal-pollution-in-soils-around-agarak-copper-molybdenum-mine-complex-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Assessment of the Soils Pollution Level of the Open Mine and Tailing Dump of Surrounding Territories of Akhtala Ore Processing Combine by Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan"> T. H. Derdzyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For assessment of the soils pollution level of the open mine and tailing dump of surrounding territories of Akhtala ore processing combine by heavy metals in 2013 collected soil samples and analyzed for different heavy metals, such as Cu, Zn, Pb, Ni and Cd. The main soil type in the study sites was the mountain cambisol. To classify soil pollution level contamination indices like Contamination factors (Cf), Degree of contamination (Cd), Pollution load index (PLI) and Geoaccumulation index (I-geo) are calculated. The distribution pattern of trace metals in the soil profile according to I geo, Cf and Cd values shows that the soil is very polluted. And also the PLI values for the 19 sites were >1, which indicates deterioration of site quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soils%20pollution" title="soils pollution">soils pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load%20index" title=" pollution load index"> pollution load index</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/13828/assessment-of-the-soils-pollution-level-of-the-open-mine-and-tailing-dump-of-surrounding-territories-of-akhtala-ore-processing-combine-by-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> High Harmonics Generation in Hexagonal Graphene Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenuhi%20Ghazaryan">Armenuhi Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Qnarik%20Poghosyan"> Qnarik Poghosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadevos%20Markosyan"> Tadevos Markosyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strong%20wave%20field" title="strong wave field">strong wave field</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphoton" title=" multiphoton"> multiphoton</a>, <a href="https://publications.waset.org/abstracts/search?q=bandgap" title=" bandgap"> bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20field%20strength" title=" wave field strength"> wave field strength</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/168632/high-harmonics-generation-in-hexagonal-graphene-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan">G. A. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan"> K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan"> T. H. Derdzyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20mine" title=" copper mine"> copper mine</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution%20of%20soil" title=" heavy metal pollution of soil"> heavy metal pollution of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks "> health risks </a> </p> <a href="https://publications.waset.org/abstracts/25590/heavy-metal-pollution-of-the-soils-around-the-mining-area-near-shamlugh-town-armenia-and-related-risks-to-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan">T. H. Derdzyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan"> K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan"> G. A. Gevorgyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20industrial%20activity" title=" metallurgical industrial activity"> metallurgical industrial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollutionl" title=" heavy metal pollutionl"> heavy metal pollutionl</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzyme%20activity" title=" soil enzyme activity"> soil enzyme activity</a> </p> <a href="https://publications.waset.org/abstracts/25371/the-investigation-of-enzymatic-activity-in-the-soils-under-the-impact-of-metallurgical-industrial-activity-in-lori-marz-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Anti-Angiogenic Effects of the Macrovipera lebetina obtusa Snake Crude Venom and Obtustatin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narine%20Ghazaryan">Narine Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Catarina%20Macedo"> Joana Catarina Macedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Vaz"> Sara Vaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Naira%20Ayvazyan"> Naira Ayvazyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsa%20Logarinho"> Elsa Logarinho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macrovipera lebetina obtusa (MLO) is a poisonous snake in Armenia. Obtustatin represents the shortest known monomeric disintegrin, isolated from the snake venom of MLO, and is known to specifically inhibit α1β1 integrin. Its oncostatic effect is due to the inhibition of angiogenesis, which likely arises from α1β1 integrin inhibition in the endothelial cells. To explore the therapeutic potential of the MLO snake venom and obtustatin, we studied activity of obtustatin and MLO venom in vitro, by testing their efficacy in human dermal microvascular endothelial cells (HMVEC-D) and in vivo, using chick embryo chorioallantoic membrane assay (CAM assay). Our in vitro results showed that obtustatin in comparison with MLO venom did not exhibit cytotoxic activity in HMVEC-D cells in comparison to MLO venom. But in vivo results have shown that 4µg /embryo (90 µM) of obtustatin inhibited angiogenesis induced by FGF2 by 17% while MLO snake venom induced 22% reduction of the angiogenic index. The concentration of obtustatin in the crude MLO venom was 0.3 nM, which is 300.000 times less than the concentration of the obtustatin itself. Given this enormous difference in concentration, it is likely that some components of the crude venom contribute to the observed anti-angiogenic effect. Hypotheses will be ascertained to justify this action: components in the MLO venom may increase obtustatin efficacy or have independent but synergic anti-angiogenic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=alpa1%20beta%201%20integrin" title=" alpa1 beta 1 integrin"> alpa1 beta 1 integrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Macrovipera%20lebetina%20obtusa" title=" Macrovipera lebetina obtusa"> Macrovipera lebetina obtusa</a>, <a href="https://publications.waset.org/abstracts/search?q=obtustatin" title=" obtustatin"> obtustatin</a> </p> <a href="https://publications.waset.org/abstracts/85110/anti-angiogenic-effects-of-the-macrovipera-lebetina-obtusa-snake-crude-venom-and-obtustatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20B.%20Ghazaryan">Karen B. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20shear%20waves" title="surface shear waves">surface shear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-electro-elastic%20composites" title=" magneto-electro-elastic composites"> magneto-electro-elastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoactive%20crystals" title=" piezoactive crystals"> piezoactive crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20elastic%20materials" title=" functionally graded elastic materials"> functionally graded elastic materials</a> </p> <a href="https://publications.waset.org/abstracts/77434/shear-surface-and-localized-waves-in-functionally-graded-piezoactive-electro-magneto-elastic-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Muro">Javier Muro</a>, <a href="https://publications.waset.org/abstracts/search?q=Anja%20Linstadter"> Anja Linstadter</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Manner"> Florian Manner</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Schwarz"> Lisa Schwarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Wollauer"> Stephan Wollauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Magdon"> Paul Magdon</a>, <a href="https://publications.waset.org/abstracts/search?q=Gohar%20Ghazaryan"> Gohar Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Olena%20Dubovyk"> Olena Dubovyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title="ecosystem services">ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=grassland%20management" title=" grassland management"> grassland management</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/139632/modeling-biomass-and-biodiversity-across-environmental-and-management-gradients-in-temperate-grasslands-with-deep-learning-and-sentinel-1-and-2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Study of Oxidative Processes in Blood Serum in Patients with Arterial Hypertension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20M.%20Hovsepyan">Laura M. Hovsepyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayane%20S.%20Ghazaryan"> Gayane S. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasmik%20V.%20Zanginyan"> Hasmik V. Zanginyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypertension (HD) is the most common cardiovascular pathology that causes disability and mortality in the working population. Most often, heart failure (HF), which is based on myocardial remodeling, leads to death in hypertension. Recently, endothelial dysfunction (EDF) or a violation of the functional state of the vascular endothelium has been assigned a significant role in the structural changes in the myocardium and the occurrence of heart failure in patients with hypertension. It has now been established that tissues affected by inflammation form increased amounts of superoxide radical and NO, which play a significant role in the development and pathogenesis of various pathologies. They mediate inflammation, modify proteins and damage nucleic acids. The aim of this work was to study the processes of oxidative modification of proteins (OMP) and the production of nitric oxide in hypertension. In the experimental work, the blood of 30 donors and 33 patients with hypertension was used. For the quantitative determination of OMP products, the based on the reaction of the interaction of oxidized amino acid residues of proteins and 2,4-dinitrophenylhydrazine (DNPH) with the formation of 2,4-dinitrophenylhydrazones, the amount of which was determined spectrophotometrically. The optical density of the formed carbonyl derivatives of dinitrophenylhydrazones was recorded at different wavelengths: 356 nm - aliphatic ketone dinitrophenylhydrazones (KDNPH) of neutral character; 370 nm - aliphatic aldehyde dinirophenylhydrazones (ADNPH) of neutral character; 430 nm - aliphatic KDNFG of the main character; 530 nm - basic aliphatic ADNPH. Nitric oxide was determined by photometry using Grace's solution. Adsorption was measured on a Thermo Scientific Evolution 201 SF at a wavelength of 546 nm. Thus, the results of the studies showed that in patients with arterial hypertension, an increased level of nitric oxide in the blood serum is observed, and there is also a tendency to an increase in the intensity of oxidative modification of proteins at a wavelength of 270 nm and 363 nm, which indicates a statistically significant increase in aliphatic aldehyde and ketone dinitrophenylhydrazones. The increase in the intensity of oxidative modification of blood plasma proteins in the studied patients, revealed by us, actually reflects the general direction of free radical processes and, in particular, the oxidation of proteins throughout the body. A decrease in the activity of the antioxidant system also leads to a violation of protein metabolism. The most important consequence of the oxidative modification of proteins is the inactivation of enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension%20%28HD%29" title="hypertension (HD)">hypertension (HD)</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20modification%20of%20proteins%20%28OMP%29" title=" oxidative modification of proteins (OMP)"> oxidative modification of proteins (OMP)</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide%20%28NO%29" title=" nitric oxide (NO)"> nitric oxide (NO)</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/149757/study-of-oxidative-processes-in-blood-serum-in-patients-with-arterial-hypertension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Study of the Biological Activity of a Ganglioside-Containing Drug (Cronassil) in an Experimental Model of Multiple Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasmik%20V.%20Zanginyan">Hasmik V. Zanginyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayane%20S.%20Ghazaryan"> Gayane S. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20M.%20Hovsepyan"> Laura M. Hovsepyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system that is induced in laboratory animals by developing an immune response against myelin epitopes. The typical clinical course is ascending palsy, which correlates with inflammation and tissue damage in the thoracolumbar spinal cord, although the optic nerves and brain (especially the subpial white matter and brainstem) are also often affected. With multiple sclerosis, there is a violation of lipid metabolism in myelin. When membrane lipids (glycosphingolipids, phospholipids) are disturbed, metabolites not only play a structural role in membranes but are also sources of secondary mediators that transmit multiple cellular signals. The purpose of this study was to investigate the effect of ganglioside as a therapeutic agent in experimental multiple sclerosis. The biological activity of a ganglioside-containing medicinal preparation (Cronassial) was evaluated in an experimental model of multiple sclerosis in laboratory animals. An experimental model of multiple sclerosis in rats was obtained by immunization with myelin basic protein (MBP), as well as homogenization of the spinal cord or brain. EAE was induced by administering a mixture of an encephalitogenic mixture (EGM) with Complete Freund’s Adjuvant. Mitochondrial fraction was isolated in a medium containing 0,25 M saccharose and 0, 01 M tris buffer, pH - 7,4, by a method of differential centrifugation on a K-24 centrifuge. Glutathione peroxidase activity was assessed by reduction reactions of hydrogen peroxide (H₂O₂) and lipid hydroperoxides (ROOH) in the presence of GSH. LPO activity was assessed by the amount of malondialdehyde (MDA) in the total homogenate and mitochondrial fraction of the spinal cord and brain of control and experimental autoimmune encephalomyelitis rats. MDA was assessed by a reaction with Thiobarbituric acid. For statistical data analysis on PNP, SPSS (Statistical Package for Social Science) package was used. The nature of the distribution of the obtained data was determined by the Kolmogorov-Smirnov criterion. The comparative analysis was performed using a nonparametric Mann-Whitney test. The differences were statistically significant when р ≤ 0,05 or р ≤ 0,01. Correlational analysis was conducted using a nonparametric Spearman test. In the work, refrigeratory centrifuge, spectrophotometer LKB Biochrom ULTROSPECII (Sweden), pH-meter PL-600 mrc (Israel), guanosine, and ATP (Sigma). The study of the process of lipid peroxidation in the total homogenate of the brain and spinal cord in experimental animals revealed an increase in the content of malonic dialdehyde. When applied, Cronassial observed normalization of lipid peroxidation processes. Reactive oxygen species, causing lipid peroxidation processes, can be toxic both for neurons and for oligodendrocytes that form myelin, causing a violation of their lipid composition. The high content of lipids in the brain and the uniqueness of their structure determines the nature of the development of LPO processes. The lipid layer of cellular and intracellular membranes performs two main functions -barrier and matrix (structural). Damage to the barrier leads to dysregulation of intracellular processes and severe disorders of cellular functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20autoimmune%20encephalomyelitis" title="experimental autoimmune encephalomyelitis">experimental autoimmune encephalomyelitis</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=therapy" title=" therapy"> therapy</a> </p> <a href="https://publications.waset.org/abstracts/146899/study-of-the-biological-activity-of-a-ganglioside-containing-drug-cronassil-in-an-experimental-model-of-multiple-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>