CINXE.COM

Statistical Computing Research Papers - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Statistical Computing Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="wvCU6ozprJAy0a_5iQ92mWQvVoMRw3hy1EOfVgWm6p9cRSdb4qcc2RA6M98pCy05TRgqGfA2POgtRBfSY_9dIw" /> <link href="/Documents/in/Statistical_Computing?after=50%2C13051742" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="description" content="View Statistical Computing Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = '1e60a92a442ff83025cbe4f252857ee7c49c0bbe'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14008,"monthly_visitors":"108 million","monthly_visitor_count":108476212,"monthly_visitor_count_in_millions":108,"user_count":283765930,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740572189000); window.Aedu.timeDifference = new Date().getTime() - 1740572189000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-63c3b84e278fb86e50772ccc2ac0281a0f74ac7e2f88741ecad58131583d4c47.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-85b27a68dc793256271cea8ce6f178025923f9e7e3c7450780e59eacecf59a75.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Statistical_Computing" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Statistical Computing</h1><div class="u-tcGrayDark">9,700&nbsp;Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in&nbsp;<b>Statistical Computing</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Statistical_Computing">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Statistical_Computing/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Statistical_Computing/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Statistical_Computing/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Statistical_Computing">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_20107825" data-work_id="20107825" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/20107825/Confidence_intervals_for_sensitivity_indices_using_reduced_basis_metamodels">Confidence intervals for sensitivity indices using reduced-basis metamodels</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Global sensitivity analysis is often impracticable for complex and time demanding numerical models, as it requires a large number of runs. The reduced-basis approach provides a way to replace the original model by a much faster to run... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_20107825" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Global sensitivity analysis is often impracticable for complex and time demanding numerical models, as it requires a large number of runs. The reduced-basis approach provides a way to replace the original model by a much faster to run code. In this paper, we are interested in the information loss induced by the approximation on the estimation of sensitivity indices. We present a method to provide a robust error assessment, hence enabling significant time savings without sacrifice on precision and rigourousness. We illustrate our method with an experiment where computation time is divided by a factor of nearly 6. We also give directions on tuning some of the parameters used in our estimation algorithms.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/20107825" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="cf759e19e1e08b6989e3e1e35e9968e3" rel="nofollow" data-download="{&quot;attachment_id&quot;:41011897,&quot;asset_id&quot;:20107825,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41011897/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="41146071" href="https://independent.academia.edu/AlexandreJanon">Alexandre Janon</a><script data-card-contents-for-user="41146071" type="text/json">{"id":41146071,"first_name":"Alexandre","last_name":"Janon","domain_name":"independent","page_name":"AlexandreJanon","display_name":"Alexandre Janon","profile_url":"https://independent.academia.edu/AlexandreJanon?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_20107825 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="20107825"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 20107825, container: ".js-paper-rank-work_20107825", }); });</script></li><li class="js-percentile-work_20107825 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20107825; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_20107825"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_20107825 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="20107825"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20107825; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20107825]").text(description); $(".js-view-count-work_20107825").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_20107825").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="20107825"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="247452" rel="nofollow" href="https://www.academia.edu/Documents/in/Information_Loss">Information Loss</a>,&nbsp;<script data-card-contents-for-ri="247452" type="text/json">{"id":247452,"name":"Information Loss","url":"https://www.academia.edu/Documents/in/Information_Loss?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="470296" rel="nofollow" href="https://www.academia.edu/Documents/in/Global_sensitivity_analysis">Global sensitivity analysis</a>,&nbsp;<script data-card-contents-for-ri="470296" type="text/json">{"id":470296,"name":"Global sensitivity analysis","url":"https://www.academia.edu/Documents/in/Global_sensitivity_analysis?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="497452" rel="nofollow" href="https://www.academia.edu/Documents/in/Numerical_Model">Numerical Model</a><script data-card-contents-for-ri="497452" type="text/json">{"id":497452,"name":"Numerical Model","url":"https://www.academia.edu/Documents/in/Numerical_Model?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=20107825]'), work: {"id":20107825,"title":"Confidence intervals for sensitivity indices using reduced-basis metamodels","created_at":"2016-01-08T11:20:24.863-08:00","url":"https://www.academia.edu/20107825/Confidence_intervals_for_sensitivity_indices_using_reduced_basis_metamodels?f_ri=1351","dom_id":"work_20107825","summary":"Global sensitivity analysis is often impracticable for complex and time demanding numerical models, as it requires a large number of runs. The reduced-basis approach provides a way to replace the original model by a much faster to run code. In this paper, we are interested in the information loss induced by the approximation on the estimation of sensitivity indices. We present a method to provide a robust error assessment, hence enabling significant time savings without sacrifice on precision and rigourousness. We illustrate our method with an experiment where computation time is divided by a factor of nearly 6. We also give directions on tuning some of the parameters used in our estimation algorithms.","downloadable_attachments":[{"id":41011897,"asset_id":20107825,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":41146071,"first_name":"Alexandre","last_name":"Janon","domain_name":"independent","page_name":"AlexandreJanon","display_name":"Alexandre Janon","profile_url":"https://independent.academia.edu/AlexandreJanon?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":247452,"name":"Information Loss","url":"https://www.academia.edu/Documents/in/Information_Loss?f_ri=1351","nofollow":true},{"id":470296,"name":"Global sensitivity analysis","url":"https://www.academia.edu/Documents/in/Global_sensitivity_analysis?f_ri=1351","nofollow":true},{"id":497452,"name":"Numerical Model","url":"https://www.academia.edu/Documents/in/Numerical_Model?f_ri=1351","nofollow":true},{"id":1587858,"name":"Confidence Interval","url":"https://www.academia.edu/Documents/in/Confidence_Interval?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9957287 coauthored" data-work_id="9957287" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/9957287/Classification_of_hyperspectral_data_from_urban_areas_based_on_extended_morphological_profiles">Classification of hyperspectral data from urban areas based on extended morphological profiles</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Classification of hyperspectral data with high spatial resolution from urban areas is investigated. A method based on mathematical morphology for preprocessing of the hyperspectral data is proposed. In this approach, opening and closing... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_9957287" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Classification of hyperspectral data with high spatial resolution from urban areas is investigated. A method based on mathematical morphology for preprocessing of the hyperspectral data is proposed. In this approach, opening and closing morphological transforms are used in order to isolate bright (opening) and dark (closing) structures in images, where bright/dark means brighter/darker than the surrounding features in the images. A morphological profile is constructed based on the repeated use of openings and closings with a structuring element of increasing size, starting with one original image. In order to apply the morphological approach to hyperspectral data, principal components of the hyperspectral imagery are computed. The most significant principal components are used as base images for an extended morphological profile, i.e., a profile based on more than one original image. In experiments, two hyperspectral urban datasets are classified. The proposed method is used as a preprocessing method for a neural network classifier and compared to more conventional classification methods with different types of statistical computations and feature extraction.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9957287" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c1eefe3dc40e4fb1bff9d21a34f3b183" rel="nofollow" data-download="{&quot;attachment_id&quot;:36105083,&quot;asset_id&quot;:9957287,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/36105083/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="24193489" href="https://hi.academia.edu/J%C3%B3nAtliBenediktsson">Jón Atli Benediktsson</a><script data-card-contents-for-user="24193489" type="text/json">{"id":24193489,"first_name":"Jón Atli","last_name":"Benediktsson","domain_name":"hi","page_name":"JónAtliBenediktsson","display_name":"Jón Atli Benediktsson","profile_url":"https://hi.academia.edu/J%C3%B3nAtliBenediktsson?f_ri=1351","photo":"https://0.academia-photos.com/24193489/6530851/7384463/s65_j_n_atli.benediktsson.jpg_oh_6b7b45651424280310b707f4a3840755_oe_55443aaa___gda___1429137018_5a4d9d762f5e62ceca5e42fe2f47fff0"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-9957287">+1</span><div class="hidden js-additional-users-9957287"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://grenoble-inp.academia.edu/JocelynChanussot">Jocelyn Chanussot</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-9957287'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-9957287').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_9957287 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9957287"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9957287, container: ".js-paper-rank-work_9957287", }); });</script></li><li class="js-percentile-work_9957287 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9957287; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9957287"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9957287 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9957287"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9957287; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9957287]").text(description); $(".js-view-count-work_9957287").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9957287").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9957287"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">24</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="409" rel="nofollow" href="https://www.academia.edu/Documents/in/Geophysics">Geophysics</a>,&nbsp;<script data-card-contents-for-ri="409" type="text/json">{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1252" rel="nofollow" href="https://www.academia.edu/Documents/in/Remote_Sensing">Remote Sensing</a>,&nbsp;<script data-card-contents-for-ri="1252" type="text/json">{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="5069" rel="nofollow" href="https://www.academia.edu/Documents/in/Principal_Component_Analysis">Principal Component Analysis</a><script data-card-contents-for-ri="5069" type="text/json">{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9957287]'), work: {"id":9957287,"title":"Classification of hyperspectral data from urban areas based on extended morphological profiles","created_at":"2014-12-30T14:10:57.349-08:00","url":"https://www.academia.edu/9957287/Classification_of_hyperspectral_data_from_urban_areas_based_on_extended_morphological_profiles?f_ri=1351","dom_id":"work_9957287","summary":"Classification of hyperspectral data with high spatial resolution from urban areas is investigated. A method based on mathematical morphology for preprocessing of the hyperspectral data is proposed. In this approach, opening and closing morphological transforms are used in order to isolate bright (opening) and dark (closing) structures in images, where bright/dark means brighter/darker than the surrounding features in the images. A morphological profile is constructed based on the repeated use of openings and closings with a structuring element of increasing size, starting with one original image. In order to apply the morphological approach to hyperspectral data, principal components of the hyperspectral imagery are computed. The most significant principal components are used as base images for an extended morphological profile, i.e., a profile based on more than one original image. In experiments, two hyperspectral urban datasets are classified. The proposed method is used as a preprocessing method for a neural network classifier and compared to more conventional classification methods with different types of statistical computations and feature extraction.","downloadable_attachments":[{"id":36105083,"asset_id":9957287,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":24193489,"first_name":"Jón Atli","last_name":"Benediktsson","domain_name":"hi","page_name":"JónAtliBenediktsson","display_name":"Jón Atli Benediktsson","profile_url":"https://hi.academia.edu/J%C3%B3nAtliBenediktsson?f_ri=1351","photo":"https://0.academia-photos.com/24193489/6530851/7384463/s65_j_n_atli.benediktsson.jpg_oh_6b7b45651424280310b707f4a3840755_oe_55443aaa___gda___1429137018_5a4d9d762f5e62ceca5e42fe2f47fff0"},{"id":33057657,"first_name":"Jocelyn","last_name":"Chanussot","domain_name":"grenoble-inp","page_name":"JocelynChanussot","display_name":"Jocelyn Chanussot","profile_url":"https://grenoble-inp.academia.edu/JocelynChanussot?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics?f_ri=1351","nofollow":true},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351","nofollow":true},{"id":8053,"name":"Independent Component Analysis","url":"https://www.academia.edu/Documents/in/Independent_Component_Analysis?f_ri=1351"},{"id":10866,"name":"Morphology","url":"https://www.academia.edu/Documents/in/Morphology?f_ri=1351"},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=1351"},{"id":16904,"name":"Hyperspectral remote sensing","url":"https://www.academia.edu/Documents/in/Hyperspectral_remote_sensing?f_ri=1351"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=1351"},{"id":36276,"name":"Mathematical Morphology","url":"https://www.academia.edu/Documents/in/Mathematical_Morphology?f_ri=1351"},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=1351"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=1351"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering?f_ri=1351"},{"id":285356,"name":"Hyperspectral Imaging","url":"https://www.academia.edu/Documents/in/Hyperspectral_Imaging?f_ri=1351"},{"id":302692,"name":"Layout","url":"https://www.academia.edu/Documents/in/Layout?f_ri=1351"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution?f_ri=1351"},{"id":599945,"name":"Principal Components","url":"https://www.academia.edu/Documents/in/Principal_Components?f_ri=1351"},{"id":604200,"name":"Spatial resolution","url":"https://www.academia.edu/Documents/in/Spatial_resolution?f_ri=1351"},{"id":920861,"name":"Hyperspectral Data","url":"https://www.academia.edu/Documents/in/Hyperspectral_Data?f_ri=1351"},{"id":972674,"name":"Hyperspectral Imagery","url":"https://www.academia.edu/Documents/in/Hyperspectral_Imagery?f_ri=1351"},{"id":1127444,"name":"High Spatial Resolution","url":"https://www.academia.edu/Documents/in/High_Spatial_Resolution?f_ri=1351"},{"id":1130224,"name":"Hyperspectral Sensors","url":"https://www.academia.edu/Documents/in/Hyperspectral_Sensors?f_ri=1351"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=1351"},{"id":1984794,"name":"Urban Area","url":"https://www.academia.edu/Documents/in/Urban_Area?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_67085960" data-work_id="67085960" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/67085960/Self_Optimizing_Neural_Networks">Self-Optimizing Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The paper is concentrated on two essential problems: neural networks topology optimization and weights parameters computation that are often solved separately. This paper describes new solution of solving both selected problems together.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_67085960" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The paper is concentrated on two essential problems: neural networks topology optimization and weights parameters computation that are often solved separately. This paper describes new solution of solving both selected problems together. According to proposed methodology a special kind of multilayer ontogenic neural networks called Self-Optimizing Neural Networks (SONNs) can simultaneously develop its structure for given training data and compute</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/67085960" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ee4c0f0d423c66b52ddc21373d0f0146" rel="nofollow" data-download="{&quot;attachment_id&quot;:78036115,&quot;asset_id&quot;:67085960,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/78036115/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="87832349" href="https://agh.academia.edu/AdrianHorzyk">Adrian Horzyk</a><script data-card-contents-for-user="87832349" type="text/json">{"id":87832349,"first_name":"Adrian","last_name":"Horzyk","domain_name":"agh","page_name":"AdrianHorzyk","display_name":"Adrian Horzyk","profile_url":"https://agh.academia.edu/AdrianHorzyk?f_ri=1351","photo":"https://0.academia-photos.com/87832349/57696603/45917913/s65_adrian.horzyk.png"}</script></span></span></li><li class="js-paper-rank-work_67085960 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="67085960"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 67085960, container: ".js-paper-rank-work_67085960", }); });</script></li><li class="js-percentile-work_67085960 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67085960; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_67085960"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_67085960 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="67085960"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67085960; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67085960]").text(description); $(".js-view-count-work_67085960").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_67085960").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="67085960"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20097" rel="nofollow" href="https://www.academia.edu/Documents/in/Topology_Optimization">Topology Optimization</a>,&nbsp;<script data-card-contents-for-ri="20097" type="text/json">{"id":20097,"name":"Topology Optimization","url":"https://www.academia.edu/Documents/in/Topology_Optimization?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" rel="nofollow" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=67085960]'), work: {"id":67085960,"title":"Self-Optimizing Neural Networks","created_at":"2022-01-04T07:48:15.434-08:00","url":"https://www.academia.edu/67085960/Self_Optimizing_Neural_Networks?f_ri=1351","dom_id":"work_67085960","summary":"The paper is concentrated on two essential problems: neural networks topology optimization and weights parameters computation that are often solved separately. This paper describes new solution of solving both selected problems together. According to proposed methodology a special kind of multilayer ontogenic neural networks called Self-Optimizing Neural Networks (SONNs) can simultaneously develop its structure for given training data and compute","downloadable_attachments":[{"id":78036115,"asset_id":67085960,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":87832349,"first_name":"Adrian","last_name":"Horzyk","domain_name":"agh","page_name":"AdrianHorzyk","display_name":"Adrian Horzyk","profile_url":"https://agh.academia.edu/AdrianHorzyk?f_ri=1351","photo":"https://0.academia-photos.com/87832349/57696603/45917913/s65_adrian.horzyk.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":20097,"name":"Topology Optimization","url":"https://www.academia.edu/Documents/in/Topology_Optimization?f_ri=1351","nofollow":true},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=1351","nofollow":true},{"id":29073,"name":"Network optimization","url":"https://www.academia.edu/Documents/in/Network_optimization?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_82484990" data-work_id="82484990" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/82484990/Three_parameter_stochastic_lognormal_diffusion_model_statistical_computation_and_simulating_annealing_application_to_real_case">Three-parameter stochastic lognormal diffusion model: statistical computation and simulating annealing – application to real case</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this paper, we propose a new study of a stochastic lognormal diffusion process (SLDP), with three parameters, which can be considered as an extension of the bi-parametric lognormal process with the addition of a threshold parameter.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_82484990" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this paper, we propose a new study of a stochastic lognormal diffusion process (SLDP), with three parameters, which can be considered as an extension of the bi-parametric lognormal process with the addition of a threshold parameter. From the Kolmogorov equation, we obtain the probability density function and the moments of this process. The statistical inference of the parameter is studied by considering discrete sampling of the sample paths of the model and then using the maximum likelihood (ML) method. The estimation of the threshold parameter requires the solution of a nonlinear equation. To do so, we propose two methods: the classical Newton-Raphson (NR) method and one based on simulated annealing (SA). This methodology is applied to an example with simulated data corresponding to the process with known parameters. From this, we obtain the estimators of the parameters by both methods (NR and SA). Finally, the methodology studied is applied to a real case concerning the mean age of males in Spain at the date of their first wedding.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/82484990" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d87f218eed303f4ac1e253b37b55ae7b" rel="nofollow" data-download="{&quot;attachment_id&quot;:88179324,&quot;asset_id&quot;:82484990,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/88179324/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="81938612" href="https://www-ufg.academia.edu/EdgarRamos">Edgar Ramos</a><script data-card-contents-for-user="81938612" type="text/json">{"id":81938612,"first_name":"Edgar","last_name":"Ramos","domain_name":"www-ufg","page_name":"EdgarRamos","display_name":"Edgar Ramos","profile_url":"https://www-ufg.academia.edu/EdgarRamos?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_82484990 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="82484990"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 82484990, container: ".js-paper-rank-work_82484990", }); });</script></li><li class="js-percentile-work_82484990 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82484990; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_82484990"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_82484990 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="82484990"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82484990; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82484990]").text(description); $(".js-view-count-work_82484990").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_82484990").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="82484990"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">11</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="6421" rel="nofollow" href="https://www.academia.edu/Documents/in/Simulated_Annealing">Simulated Annealing</a><script data-card-contents-for-ri="6421" type="text/json">{"id":6421,"name":"Simulated Annealing","url":"https://www.academia.edu/Documents/in/Simulated_Annealing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=82484990]'), work: {"id":82484990,"title":"Three-parameter stochastic lognormal diffusion model: statistical computation and simulating annealing – application to real case","created_at":"2022-07-01T22:51:59.296-07:00","url":"https://www.academia.edu/82484990/Three_parameter_stochastic_lognormal_diffusion_model_statistical_computation_and_simulating_annealing_application_to_real_case?f_ri=1351","dom_id":"work_82484990","summary":"In this paper, we propose a new study of a stochastic lognormal diffusion process (SLDP), with three parameters, which can be considered as an extension of the bi-parametric lognormal process with the addition of a threshold parameter. From the Kolmogorov equation, we obtain the probability density function and the moments of this process. The statistical inference of the parameter is studied by considering discrete sampling of the sample paths of the model and then using the maximum likelihood (ML) method. The estimation of the threshold parameter requires the solution of a nonlinear equation. To do so, we propose two methods: the classical Newton-Raphson (NR) method and one based on simulated annealing (SA). This methodology is applied to an example with simulated data corresponding to the process with known parameters. From this, we obtain the estimators of the parameters by both methods (NR and SA). Finally, the methodology studied is applied to a real case concerning the mean age of males in Spain at the date of their first wedding.","downloadable_attachments":[{"id":88179324,"asset_id":82484990,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":81938612,"first_name":"Edgar","last_name":"Ramos","domain_name":"www-ufg","page_name":"EdgarRamos","display_name":"Edgar Ramos","profile_url":"https://www-ufg.academia.edu/EdgarRamos?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":6421,"name":"Simulated Annealing","url":"https://www.academia.edu/Documents/in/Simulated_Annealing?f_ri=1351","nofollow":true},{"id":27659,"name":"Applied Economics","url":"https://www.academia.edu/Documents/in/Applied_Economics?f_ri=1351"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=1351"},{"id":87364,"name":"Maximum Likelihood","url":"https://www.academia.edu/Documents/in/Maximum_Likelihood?f_ri=1351"},{"id":872399,"name":"Probability Density Function","url":"https://www.academia.edu/Documents/in/Probability_Density_Function?f_ri=1351"},{"id":982614,"name":"Diffusion Model","url":"https://www.academia.edu/Documents/in/Diffusion_Model?f_ri=1351"},{"id":3615220,"name":"Newton Raphson","url":"https://www.academia.edu/Documents/in/Newton_Raphson?f_ri=1351"},{"id":4044434,"name":"nonlinear equation","url":"https://www.academia.edu/Documents/in/nonlinear_equation?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9179977" data-work_id="9179977" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/9179977/Power_grid_analysis_based_on_a_macro_circuit_model">Power grid analysis based on a macro circuit model</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Analysis and design of on-chip power grids are complex problems. A typical grid consists of hundreds of millions of transistors that act as current consumers. Typical algorithms for power grid analysis or power grid automatic design,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_9179977" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Analysis and design of on-chip power grids are complex problems. A typical grid consists of hundreds of millions of transistors that act as current consumers. Typical algorithms for power grid analysis or power grid automatic design, model the current consumers, namely the CMOS logic gates, as ideal current sources. In this study we offer a new methodology for modeling the power-consuming gates on the grid. Our approach is based on the analysis of the total dissipated power by these consumers. We propose a new model for the current consumers, based on effective impedance. In this model, only passive elements are employed. It relies on a calculation of the effective capacitance and effective resistance of the logic gates. Since during each clock period the dissipated power and the stored energy are exactly represented, total energy and power are exactly modeled. Methods from statistical/computational physics can be adopted to represent clusters of consumers on each subgrid as &quot;macro-circuits&quot;. The interaction between the power grid and the current consumers is taken into account in this model and an example for it is presented.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9179977" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="34625fd410c8a3d0ddb9141de582503f" rel="nofollow" data-download="{&quot;attachment_id&quot;:47860212,&quot;asset_id&quot;:9179977,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47860212/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="20975981" href="https://technion.academia.edu/ShaharKvatinsky">Shahar Kvatinsky</a><script data-card-contents-for-user="20975981" type="text/json">{"id":20975981,"first_name":"Shahar","last_name":"Kvatinsky","domain_name":"technion","page_name":"ShaharKvatinsky","display_name":"Shahar Kvatinsky","profile_url":"https://technion.academia.edu/ShaharKvatinsky?f_ri=1351","photo":"https://0.academia-photos.com/20975981/5800308/6591370/s65_shahar.kvatinsky.jpg_oh_5238f56aa54d7a201d9c53df5b50b883_oe_54f64dcc___gda___1423286363_a3c9e605fa704439ec25d8eac573f7a8"}</script></span></span></li><li class="js-paper-rank-work_9179977 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9179977"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9179977, container: ".js-paper-rank-work_9179977", }); });</script></li><li class="js-percentile-work_9179977 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9179977; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9179977"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9179977 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9179977"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9179977; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9179977]").text(description); $(".js-view-count-work_9179977").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9179977").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9179977"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="210120" rel="nofollow" href="https://www.academia.edu/Documents/in/Power_Grid">Power Grid</a>,&nbsp;<script data-card-contents-for-ri="210120" type="text/json">{"id":210120,"name":"Power Grid","url":"https://www.academia.edu/Documents/in/Power_Grid?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="238198" rel="nofollow" href="https://www.academia.edu/Documents/in/Seismic_analysis_and_design">Seismic analysis and design</a>,&nbsp;<script data-card-contents-for-ri="238198" type="text/json">{"id":238198,"name":"Seismic analysis and design","url":"https://www.academia.edu/Documents/in/Seismic_analysis_and_design?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="322954" rel="nofollow" href="https://www.academia.edu/Documents/in/Chip">Chip</a><script data-card-contents-for-ri="322954" type="text/json">{"id":322954,"name":"Chip","url":"https://www.academia.edu/Documents/in/Chip?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9179977]'), work: {"id":9179977,"title":"Power grid analysis based on a macro circuit model","created_at":"2014-11-07T07:38:01.635-08:00","url":"https://www.academia.edu/9179977/Power_grid_analysis_based_on_a_macro_circuit_model?f_ri=1351","dom_id":"work_9179977","summary":"Analysis and design of on-chip power grids are complex problems. A typical grid consists of hundreds of millions of transistors that act as current consumers. Typical algorithms for power grid analysis or power grid automatic design, model the current consumers, namely the CMOS logic gates, as ideal current sources. In this study we offer a new methodology for modeling the power-consuming gates on the grid. Our approach is based on the analysis of the total dissipated power by these consumers. We propose a new model for the current consumers, based on effective impedance. In this model, only passive elements are employed. It relies on a calculation of the effective capacitance and effective resistance of the logic gates. Since during each clock period the dissipated power and the stored energy are exactly represented, total energy and power are exactly modeled. Methods from statistical/computational physics can be adopted to represent clusters of consumers on each subgrid as \"macro-circuits\". The interaction between the power grid and the current consumers is taken into account in this model and an example for it is presented.","downloadable_attachments":[{"id":47860212,"asset_id":9179977,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":20975981,"first_name":"Shahar","last_name":"Kvatinsky","domain_name":"technion","page_name":"ShaharKvatinsky","display_name":"Shahar Kvatinsky","profile_url":"https://technion.academia.edu/ShaharKvatinsky?f_ri=1351","photo":"https://0.academia-photos.com/20975981/5800308/6591370/s65_shahar.kvatinsky.jpg_oh_5238f56aa54d7a201d9c53df5b50b883_oe_54f64dcc___gda___1423286363_a3c9e605fa704439ec25d8eac573f7a8"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":210120,"name":"Power Grid","url":"https://www.academia.edu/Documents/in/Power_Grid?f_ri=1351","nofollow":true},{"id":238198,"name":"Seismic analysis and design","url":"https://www.academia.edu/Documents/in/Seismic_analysis_and_design?f_ri=1351","nofollow":true},{"id":322954,"name":"Chip","url":"https://www.academia.edu/Documents/in/Chip?f_ri=1351","nofollow":true},{"id":389570,"name":"Capacitance","url":"https://www.academia.edu/Documents/in/Capacitance?f_ri=1351"},{"id":628286,"name":"Logic Gates","url":"https://www.academia.edu/Documents/in/Logic_Gates?f_ri=1351"},{"id":808173,"name":"Logic Gate","url":"https://www.academia.edu/Documents/in/Logic_Gate?f_ri=1351"},{"id":1247826,"name":"Electric Resistance","url":"https://www.academia.edu/Documents/in/Electric_Resistance?f_ri=1351"},{"id":1935769,"name":"Design Model","url":"https://www.academia.edu/Documents/in/Design_Model?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_66535760" data-work_id="66535760" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/66535760/General_results_for_the_Kumaraswamy_G_distribution">General results for the Kumaraswamy-G distribution</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_66535760" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/66535760" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2878c30b37dad0d2db0132f6aad615ce" rel="nofollow" data-download="{&quot;attachment_id&quot;:77689108,&quot;asset_id&quot;:66535760,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77689108/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28215650" href="https://independent.academia.edu/GaussCordeiro">Gauss Cordeiro</a><script data-card-contents-for-user="28215650" type="text/json">{"id":28215650,"first_name":"Gauss","last_name":"Cordeiro","domain_name":"independent","page_name":"GaussCordeiro","display_name":"Gauss Cordeiro","profile_url":"https://independent.academia.edu/GaussCordeiro?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_66535760 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="66535760"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 66535760, container: ".js-paper-rank-work_66535760", }); });</script></li><li class="js-percentile-work_66535760 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66535760; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_66535760"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_66535760 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="66535760"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66535760; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66535760]").text(description); $(".js-view-count-work_66535760").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_66535760").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="66535760"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="17395" rel="nofollow" href="https://www.academia.edu/Documents/in/Density-functional_theory">Density-functional theory</a><script data-card-contents-for-ri="17395" type="text/json">{"id":17395,"name":"Density-functional theory","url":"https://www.academia.edu/Documents/in/Density-functional_theory?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=66535760]'), work: {"id":66535760,"title":"General results for the Kumaraswamy-G distribution","created_at":"2021-12-30T03:30:43.338-08:00","url":"https://www.academia.edu/66535760/General_results_for_the_Kumaraswamy_G_distribution?f_ri=1351","dom_id":"work_66535760","summary":"This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.","downloadable_attachments":[{"id":77689108,"asset_id":66535760,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28215650,"first_name":"Gauss","last_name":"Cordeiro","domain_name":"independent","page_name":"GaussCordeiro","display_name":"Gauss Cordeiro","profile_url":"https://independent.academia.edu/GaussCordeiro?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":17395,"name":"Density-functional theory","url":"https://www.academia.edu/Documents/in/Density-functional_theory?f_ri=1351","nofollow":true},{"id":27659,"name":"Applied Economics","url":"https://www.academia.edu/Documents/in/Applied_Economics?f_ri=1351"},{"id":80308,"name":"Extreme Value Theory","url":"https://www.academia.edu/Documents/in/Extreme_Value_Theory?f_ri=1351"},{"id":87364,"name":"Maximum Likelihood","url":"https://www.academia.edu/Documents/in/Maximum_Likelihood?f_ri=1351"},{"id":132898,"name":"Estimation","url":"https://www.academia.edu/Documents/in/Estimation?f_ri=1351"},{"id":382710,"name":"System Safety","url":"https://www.academia.edu/Documents/in/System_Safety?f_ri=1351"},{"id":543432,"name":"Exponential distribution","url":"https://www.academia.edu/Documents/in/Exponential_distribution?f_ri=1351"},{"id":570113,"name":"EXTREME VALUES","url":"https://www.academia.edu/Documents/in/EXTREME_VALUES?f_ri=1351"},{"id":700548,"name":"Shannon entropy","url":"https://www.academia.edu/Documents/in/Shannon_entropy?f_ri=1351"},{"id":1969222,"name":"Lorenz Curve","url":"https://www.academia.edu/Documents/in/Lorenz_Curve?f_ri=1351"},{"id":2202802,"name":"Moment generating function method","url":"https://www.academia.edu/Documents/in/Moment_generating_function_method?f_ri=1351"},{"id":2519645,"name":"Order statistic","url":"https://www.academia.edu/Documents/in/Order_statistic?f_ri=1351"},{"id":2560659,"name":"Failure rate","url":"https://www.academia.edu/Documents/in/Failure_rate?f_ri=1351"},{"id":2759436,"name":"Mean Deviation","url":"https://www.academia.edu/Documents/in/Mean_Deviation?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_19842445" data-work_id="19842445" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/19842445/ISEA_Discrete_Global_Grids">ISEA Discrete Global Grids</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This article describes a recently proposed standard, ISEA discrete global grids, for gridding information on the surface of the earth. The acronym ISEA stands for icosahedral Snyder equal area. The grid cells not only have equal areas,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_19842445" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This article describes a recently proposed standard, ISEA discrete global grids, for gridding information on the surface of the earth. The acronym ISEA stands for icosahedral Snyder equal area. The grid cells not only have equal areas, they are hexagons when projected ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/19842445" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="de50ef5f8eae560929e47bdb8b283489" rel="nofollow" data-download="{&quot;attachment_id&quot;:42006953,&quot;asset_id&quot;:19842445,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42006953/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="40621953" href="https://independent.academia.edu/KevinSahr">Kevin Sahr</a><script data-card-contents-for-user="40621953" type="text/json">{"id":40621953,"first_name":"Kevin","last_name":"Sahr","domain_name":"independent","page_name":"KevinSahr","display_name":"Kevin Sahr","profile_url":"https://independent.academia.edu/KevinSahr?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_19842445 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="19842445"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 19842445, container: ".js-paper-rank-work_19842445", }); });</script></li><li class="js-percentile-work_19842445 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19842445; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_19842445"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_19842445 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="19842445"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19842445; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19842445]").text(description); $(".js-view-count-work_19842445").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_19842445").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="19842445"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a><script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=19842445]'), work: {"id":19842445,"title":"ISEA Discrete Global Grids","created_at":"2015-12-26T12:00:08.582-08:00","url":"https://www.academia.edu/19842445/ISEA_Discrete_Global_Grids?f_ri=1351","dom_id":"work_19842445","summary":"This article describes a recently proposed standard, ISEA discrete global grids, for gridding information on the surface of the earth. The acronym ISEA stands for icosahedral Snyder equal area. The grid cells not only have equal areas, they are hexagons when projected ...","downloadable_attachments":[{"id":42006953,"asset_id":19842445,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":40621953,"first_name":"Kevin","last_name":"Sahr","domain_name":"independent","page_name":"KevinSahr","display_name":"Kevin Sahr","profile_url":"https://independent.academia.edu/KevinSahr?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_20731233" data-work_id="20731233" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/20731233/Causal_Mediation_Analysis_Using_R">Causal Mediation Analysis Using R</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Causal mediation analysis is widely used across many disciplines to investigate possible causal mechanisms. Such an analysis allows researchers to explore various causal pathways, going beyond the estimation of simple causal effects.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_20731233" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Causal mediation analysis is widely used across many disciplines to investigate possible causal mechanisms. Such an analysis allows researchers to explore various causal pathways, going beyond the estimation of simple causal effects. Recently, Imai, Keele, and Yamamoto (2010c) and developed general algorithms to estimate causal mediation effects with the variety of data types that are often encountered in practice. The new algorithms can estimate causal mediation effects for linear and nonlinear relationships, with parametric and nonparametric models, with continuous and discrete mediators, and various types of outcome variables. In this paper, we show how to implement these algorithms in the statistical computing language R. Our easy-to-use software, mediation, takes advantage of the object-oriented programming nature of the R language and allows researchers to estimate causal mediation effects in a straightforward manner. Finally, mediation also implements sensitivity analyses which can be used to formally assess the robustness of findings to the potential violations of the key identifying assumption. After describing the basic structure of the software, we illustrate its use with several empirical examples. * This paper is an updated version of the tutorial for package mediation which was previously published in an edited volume: Imai et al. (2010a). The description is based on version 3.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/20731233" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a23506720382ca0618371ec077196e19" rel="nofollow" data-download="{&quot;attachment_id&quot;:41530736,&quot;asset_id&quot;:20731233,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41530736/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="42027051" href="https://pennstate.academia.edu/LKeele">L. Keele</a><script data-card-contents-for-user="42027051" type="text/json">{"id":42027051,"first_name":"L.","last_name":"Keele","domain_name":"pennstate","page_name":"LKeele","display_name":"L. Keele","profile_url":"https://pennstate.academia.edu/LKeele?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_20731233 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="20731233"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 20731233, container: ".js-paper-rank-work_20731233", }); });</script></li><li class="js-percentile-work_20731233 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20731233; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_20731233"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_20731233 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="20731233"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20731233; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20731233]").text(description); $(".js-view-count-work_20731233").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_20731233").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="20731233"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="453" rel="nofollow" href="https://www.academia.edu/Documents/in/Object_Oriented_Programming">Object Oriented Programming</a>,&nbsp;<script data-card-contents-for-ri="453" type="text/json">{"id":453,"name":"Object Oriented Programming","url":"https://www.academia.edu/Documents/in/Object_Oriented_Programming?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1197942" rel="nofollow" href="https://www.academia.edu/Documents/in/Social_Science">Social Science</a>,&nbsp;<script data-card-contents-for-ri="1197942" type="text/json">{"id":1197942,"name":"Social Science","url":"https://www.academia.edu/Documents/in/Social_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1547415" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Type">Data Type</a><script data-card-contents-for-ri="1547415" type="text/json">{"id":1547415,"name":"Data Type","url":"https://www.academia.edu/Documents/in/Data_Type?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=20731233]'), work: {"id":20731233,"title":"Causal Mediation Analysis Using R","created_at":"2016-01-24T17:33:44.481-08:00","url":"https://www.academia.edu/20731233/Causal_Mediation_Analysis_Using_R?f_ri=1351","dom_id":"work_20731233","summary":"Causal mediation analysis is widely used across many disciplines to investigate possible causal mechanisms. Such an analysis allows researchers to explore various causal pathways, going beyond the estimation of simple causal effects. Recently, Imai, Keele, and Yamamoto (2010c) and developed general algorithms to estimate causal mediation effects with the variety of data types that are often encountered in practice. The new algorithms can estimate causal mediation effects for linear and nonlinear relationships, with parametric and nonparametric models, with continuous and discrete mediators, and various types of outcome variables. In this paper, we show how to implement these algorithms in the statistical computing language R. Our easy-to-use software, mediation, takes advantage of the object-oriented programming nature of the R language and allows researchers to estimate causal mediation effects in a straightforward manner. Finally, mediation also implements sensitivity analyses which can be used to formally assess the robustness of findings to the potential violations of the key identifying assumption. After describing the basic structure of the software, we illustrate its use with several empirical examples. * This paper is an updated version of the tutorial for package mediation which was previously published in an edited volume: Imai et al. (2010a). The description is based on version 3.","downloadable_attachments":[{"id":41530736,"asset_id":20731233,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":42027051,"first_name":"L.","last_name":"Keele","domain_name":"pennstate","page_name":"LKeele","display_name":"L. Keele","profile_url":"https://pennstate.academia.edu/LKeele?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":453,"name":"Object Oriented Programming","url":"https://www.academia.edu/Documents/in/Object_Oriented_Programming?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":1197942,"name":"Social Science","url":"https://www.academia.edu/Documents/in/Social_Science?f_ri=1351","nofollow":true},{"id":1547415,"name":"Data Type","url":"https://www.academia.edu/Documents/in/Data_Type?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4886362" data-work_id="4886362" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4886362/Assessing_the_aesthetic_quality_of_photographs_using_generic_image_descriptors">Assessing the aesthetic quality of photographs using generic image descriptors</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We propose a novel framework for visual saliency detection based on a simple principle: images sharing their global visual appearances are likely to share similar salience. Assuming that an annotated image database is available, we first... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4886362" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We propose a novel framework for visual saliency detection based on a simple principle: images sharing their global visual appearances are likely to share similar salience. Assuming that an annotated image database is available, we first retrieve the most similar images to the target image; secondly, we build a simple classifier and we use it to generate saliency maps. Finally, we refine the maps and we extract thumbnails. We show that in spite of its simplicity, our framework outperforms state-of-the-art approaches. Another advantage is its ability to deal with visual pop-up and application/task-driven saliency, if appropriately annotated images are available.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4886362" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e192bbd878b2bb985a3312a65fb489a5" rel="nofollow" data-download="{&quot;attachment_id&quot;:49578926,&quot;asset_id&quot;:4886362,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49578926/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="6365931" href="https://independent.academia.edu/CsurkaGabriela">Csurka Gabriela</a><script data-card-contents-for-user="6365931" type="text/json">{"id":6365931,"first_name":"Csurka","last_name":"Gabriela","domain_name":"independent","page_name":"CsurkaGabriela","display_name":"Csurka Gabriela","profile_url":"https://independent.academia.edu/CsurkaGabriela?f_ri=1351","photo":"https://0.academia-photos.com/6365931/2590965/3009657/s65_csurka.gabriela.jpg"}</script></span></span></li><li class="js-paper-rank-work_4886362 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4886362"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4886362, container: ".js-paper-rank-work_4886362", }); });</script></li><li class="js-percentile-work_4886362 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4886362; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4886362"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4886362 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4886362"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4886362; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4886362]").text(description); $(".js-view-count-work_4886362").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4886362").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4886362"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1589" rel="nofollow" href="https://www.academia.edu/Documents/in/Photography">Photography</a>,&nbsp;<script data-card-contents-for-ri="1589" type="text/json">{"id":1589,"name":"Photography","url":"https://www.academia.edu/Documents/in/Photography?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="5187" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Analysis">Statistical Analysis</a>,&nbsp;<script data-card-contents-for-ri="5187" type="text/json">{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="56368" rel="nofollow" href="https://www.academia.edu/Documents/in/Image_Classification">Image Classification</a><script data-card-contents-for-ri="56368" type="text/json">{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4886362]'), work: {"id":4886362,"title":"Assessing the aesthetic quality of photographs using generic image descriptors","created_at":"2013-10-25T02:51:47.654-07:00","url":"https://www.academia.edu/4886362/Assessing_the_aesthetic_quality_of_photographs_using_generic_image_descriptors?f_ri=1351","dom_id":"work_4886362","summary":"We propose a novel framework for visual saliency detection based on a simple principle: images sharing their global visual appearances are likely to share similar salience. Assuming that an annotated image database is available, we first retrieve the most similar images to the target image; secondly, we build a simple classifier and we use it to generate saliency maps. Finally, we refine the maps and we extract thumbnails. We show that in spite of its simplicity, our framework outperforms state-of-the-art approaches. Another advantage is its ability to deal with visual pop-up and application/task-driven saliency, if appropriately annotated images are available.","downloadable_attachments":[{"id":49578926,"asset_id":4886362,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":6365931,"first_name":"Csurka","last_name":"Gabriela","domain_name":"independent","page_name":"CsurkaGabriela","display_name":"Csurka Gabriela","profile_url":"https://independent.academia.edu/CsurkaGabriela?f_ri=1351","photo":"https://0.academia-photos.com/6365931/2590965/3009657/s65_csurka.gabriela.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":1589,"name":"Photography","url":"https://www.academia.edu/Documents/in/Photography?f_ri=1351","nofollow":true},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351","nofollow":true},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=1351","nofollow":true},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=1351"},{"id":571921,"name":"Automatic Assessment","url":"https://www.academia.edu/Documents/in/Automatic_Assessment?f_ri=1351"},{"id":965056,"name":"Local Features","url":"https://www.academia.edu/Documents/in/Local_Features?f_ri=1351"},{"id":1800837,"name":"Image Color Analysis","url":"https://www.academia.edu/Documents/in/Image_Color_Analysis?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5873222" data-work_id="5873222" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5873222/Nonparametric_quality_control_charts_based_on_the_sign_statistic">Nonparametric quality control charts based on the sign statistic</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Nonparametric procedures are presented for the problem of detecting changes in the process median (or mean), or changes in the process variability when samples are taken at regular time intervals. The proposed procedures are based on... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_5873222" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Nonparametric procedures are presented for the problem of detecting changes in the process median (or mean), or changes in the process variability when samples are taken at regular time intervals. The proposed procedures are based on sign-test statistics computed for each sample, and are used in Shewhart and cumulative sum control charts. When the process is in control the run length distributions for the proposed nonparametric control charts do not depend on the distribution of the observations. An additional advantage of the non-parametric control charts is that the variance of the process does not need to be established in order to set up a control chart for the mean. Comparisons with the corresponding parametric control charts are presented. It is also shown that curtailed sampling plans can considerably reduce the expected number of observations used in the Shewhart control schemes based on the sign statistic.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5873222" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="969c02d610a5dd1b5f9c35652aec08ca" rel="nofollow" data-download="{&quot;attachment_id&quot;:49102369,&quot;asset_id&quot;:5873222,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49102369/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1254969" href="https://independent.academia.edu/RaidAmin">Raid Amin</a><script data-card-contents-for-user="1254969" type="text/json">{"id":1254969,"first_name":"Raid","last_name":"Amin","domain_name":"independent","page_name":"RaidAmin","display_name":"Raid Amin","profile_url":"https://independent.academia.edu/RaidAmin?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_5873222 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5873222"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5873222, container: ".js-paper-rank-work_5873222", }); });</script></li><li class="js-percentile-work_5873222 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5873222; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5873222"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5873222 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5873222"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5873222; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5873222]").text(description); $(".js-view-count-work_5873222").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5873222").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5873222"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="6540" rel="nofollow" href="https://www.academia.edu/Documents/in/Process_Control">Process Control</a>,&nbsp;<script data-card-contents-for-ri="6540" type="text/json">{"id":6540,"name":"Process Control","url":"https://www.academia.edu/Documents/in/Process_Control?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="26691" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Process_Control">Statistical Process Control</a><script data-card-contents-for-ri="26691" type="text/json">{"id":26691,"name":"Statistical Process Control","url":"https://www.academia.edu/Documents/in/Statistical_Process_Control?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5873222]'), work: {"id":5873222,"title":"Nonparametric quality control charts based on the sign statistic","created_at":"2014-01-28T11:52:44.464-08:00","url":"https://www.academia.edu/5873222/Nonparametric_quality_control_charts_based_on_the_sign_statistic?f_ri=1351","dom_id":"work_5873222","summary":"Nonparametric procedures are presented for the problem of detecting changes in the process median (or mean), or changes in the process variability when samples are taken at regular time intervals. The proposed procedures are based on sign-test statistics computed for each sample, and are used in Shewhart and cumulative sum control charts. When the process is in control the run length distributions for the proposed nonparametric control charts do not depend on the distribution of the observations. An additional advantage of the non-parametric control charts is that the variance of the process does not need to be established in order to set up a control chart for the mean. Comparisons with the corresponding parametric control charts are presented. It is also shown that curtailed sampling plans can considerably reduce the expected number of observations used in the Shewhart control schemes based on the sign statistic.","downloadable_attachments":[{"id":49102369,"asset_id":5873222,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1254969,"first_name":"Raid","last_name":"Amin","domain_name":"independent","page_name":"RaidAmin","display_name":"Raid Amin","profile_url":"https://independent.academia.edu/RaidAmin?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":6540,"name":"Process Control","url":"https://www.academia.edu/Documents/in/Process_Control?f_ri=1351","nofollow":true},{"id":26691,"name":"Statistical Process Control","url":"https://www.academia.edu/Documents/in/Statistical_Process_Control?f_ri=1351","nofollow":true},{"id":37306,"name":"Quality Control","url":"https://www.academia.edu/Documents/in/Quality_Control?f_ri=1351"},{"id":483305,"name":"Control chart","url":"https://www.academia.edu/Documents/in/Control_chart?f_ri=1351"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14966820" data-work_id="14966820" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14966820/Bayesian_inference_with_optimal_maps">Bayesian inference with optimal maps</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_14966820" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving map is established by formulating the problem in the context of optimal transport theory. We discuss various means of explicitly parameterizing the map and computing it efficiently through solution of an optimization problem, exploiting gradient information from the forward model when possible. The resulting algorithm overcomes many of the computational bottlenecks associated with Markov chain Monte Carlo. Advantages of a map-based representation of the posterior include analytical expressions for posterior moments and the ability to generate arbitrary numbers of independent posterior samples without additional likelihood evaluations or forward solves. The optimization approach also provides clear convergence criteria for posterior approximation and facilitates model selection through automatic evaluation of the marginal likelihood. We demonstrate the accuracy and efficiency of the approach on nonlinear inverse problems of varying dimension, involving the inference of parameters appearing in ordinary and partial differential equations.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14966820" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1301571ab285dfe4c4c256727db29ad3" rel="nofollow" data-download="{&quot;attachment_id&quot;:43692711,&quot;asset_id&quot;:14966820,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43692711/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33960992" href="https://mit.academia.edu/YoussefMarzouk">Youssef Marzouk</a><script data-card-contents-for-user="33960992" type="text/json">{"id":33960992,"first_name":"Youssef","last_name":"Marzouk","domain_name":"mit","page_name":"YoussefMarzouk","display_name":"Youssef Marzouk","profile_url":"https://mit.academia.edu/YoussefMarzouk?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_14966820 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14966820"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14966820, container: ".js-paper-rank-work_14966820", }); });</script></li><li class="js-percentile-work_14966820 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14966820; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14966820"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14966820 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14966820"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14966820; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14966820]").text(description); $(".js-view-count-work_14966820").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14966820").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14966820"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">16</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" rel="nofollow" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="504" rel="nofollow" href="https://www.academia.edu/Documents/in/Computational_Physics">Computational Physics</a>,&nbsp;<script data-card-contents-for-ri="504" type="text/json">{"id":504,"name":"Computational Physics","url":"https://www.academia.edu/Documents/in/Computational_Physics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="12022" rel="nofollow" href="https://www.academia.edu/Documents/in/Numerical_Analysis">Numerical Analysis</a><script data-card-contents-for-ri="12022" type="text/json">{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14966820]'), work: {"id":14966820,"title":"Bayesian inference with optimal maps","created_at":"2015-08-16T16:59:36.484-07:00","url":"https://www.academia.edu/14966820/Bayesian_inference_with_optimal_maps?f_ri=1351","dom_id":"work_14966820","summary":"We present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving map is established by formulating the problem in the context of optimal transport theory. We discuss various means of explicitly parameterizing the map and computing it efficiently through solution of an optimization problem, exploiting gradient information from the forward model when possible. The resulting algorithm overcomes many of the computational bottlenecks associated with Markov chain Monte Carlo. Advantages of a map-based representation of the posterior include analytical expressions for posterior moments and the ability to generate arbitrary numbers of independent posterior samples without additional likelihood evaluations or forward solves. The optimization approach also provides clear convergence criteria for posterior approximation and facilitates model selection through automatic evaluation of the marginal likelihood. We demonstrate the accuracy and efficiency of the approach on nonlinear inverse problems of varying dimension, involving the inference of parameters appearing in ordinary and partial differential equations.","downloadable_attachments":[{"id":43692711,"asset_id":14966820,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33960992,"first_name":"Youssef","last_name":"Marzouk","domain_name":"mit","page_name":"YoussefMarzouk","display_name":"Youssef Marzouk","profile_url":"https://mit.academia.edu/YoussefMarzouk?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=1351","nofollow":true},{"id":504,"name":"Computational Physics","url":"https://www.academia.edu/Documents/in/Computational_Physics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis?f_ri=1351","nofollow":true},{"id":46254,"name":"Optimization Problem","url":"https://www.academia.edu/Documents/in/Optimization_Problem?f_ri=1351"},{"id":51529,"name":"Bayesian Inference","url":"https://www.academia.edu/Documents/in/Bayesian_Inference?f_ri=1351"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences?f_ri=1351"},{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo?f_ri=1351"},{"id":85344,"name":"Model Selection","url":"https://www.academia.edu/Documents/in/Model_Selection?f_ri=1351"},{"id":85345,"name":"Marginal Likelihood","url":"https://www.academia.edu/Documents/in/Marginal_Likelihood?f_ri=1351"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=1351"},{"id":194130,"name":"PARTIAL DIFFERENTIAL EQUATION","url":"https://www.academia.edu/Documents/in/PARTIAL_DIFFERENTIAL_EQUATION?f_ri=1351"},{"id":249561,"name":"Automatic Evaluation","url":"https://www.academia.edu/Documents/in/Automatic_Evaluation?f_ri=1351"},{"id":595993,"name":"Markov chain","url":"https://www.academia.edu/Documents/in/Markov_chain?f_ri=1351"},{"id":1245129,"name":"Nonlinear Inverse Problem","url":"https://www.academia.edu/Documents/in/Nonlinear_Inverse_Problem?f_ri=1351"},{"id":2147708,"name":"Optimal Transportation","url":"https://www.academia.edu/Documents/in/Optimal_Transportation?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9900402" data-work_id="9900402" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/9900402/R_package_onlinePCA_Online_Principal_Component_Analysis">R package &#39;onlinePCA&#39;: Online Principal Component Analysis</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Online PCA for multivariate and functional data using perturbation, incremental, and stochastic gradient methods.</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9900402" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="676eb79dbaeb657be1bc4f8ed3a3227e" rel="nofollow" data-download="{&quot;attachment_id&quot;:36057480,&quot;asset_id&quot;:9900402,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/36057480/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="150063" href="https://um-boston.academia.edu/DavidDegras">David Degras</a><script data-card-contents-for-user="150063" type="text/json">{"id":150063,"first_name":"David","last_name":"Degras","domain_name":"um-boston","page_name":"DavidDegras","display_name":"David Degras","profile_url":"https://um-boston.academia.edu/DavidDegras?f_ri=1351","photo":"https://0.academia-photos.com/150063/39608/282384/s65_david.degras.jpg"}</script></span></span></li><li class="js-paper-rank-work_9900402 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9900402"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9900402, container: ".js-paper-rank-work_9900402", }); });</script></li><li class="js-percentile-work_9900402 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9900402; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9900402"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9900402 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9900402"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9900402; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9900402]").text(description); $(".js-view-count-work_9900402").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9900402").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9900402"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="5069" rel="nofollow" href="https://www.academia.edu/Documents/in/Principal_Component_Analysis">Principal Component Analysis</a>,&nbsp;<script data-card-contents-for-ri="5069" type="text/json">{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="55815" rel="nofollow" href="https://www.academia.edu/Documents/in/R_softwar">R softwar</a>,&nbsp;<script data-card-contents-for-ri="55815" type="text/json">{"id":55815,"name":"R softwar","url":"https://www.academia.edu/Documents/in/R_softwar?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="976616" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing_In_R">Statistical Computing In R</a><script data-card-contents-for-ri="976616" type="text/json">{"id":976616,"name":"Statistical Computing In R","url":"https://www.academia.edu/Documents/in/Statistical_Computing_In_R?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9900402]'), work: {"id":9900402,"title":"R package 'onlinePCA': Online Principal Component Analysis","created_at":"2014-12-25T16:28:40.904-08:00","url":"https://www.academia.edu/9900402/R_package_onlinePCA_Online_Principal_Component_Analysis?f_ri=1351","dom_id":"work_9900402","summary":"Online PCA for multivariate and functional data using perturbation, incremental, and stochastic gradient methods.","downloadable_attachments":[{"id":36057480,"asset_id":9900402,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":150063,"first_name":"David","last_name":"Degras","domain_name":"um-boston","page_name":"DavidDegras","display_name":"David Degras","profile_url":"https://um-boston.academia.edu/DavidDegras?f_ri=1351","photo":"https://0.academia-photos.com/150063/39608/282384/s65_david.degras.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351","nofollow":true},{"id":55815,"name":"R softwar","url":"https://www.academia.edu/Documents/in/R_softwar?f_ri=1351","nofollow":true},{"id":976616,"name":"Statistical Computing In R","url":"https://www.academia.edu/Documents/in/Statistical_Computing_In_R?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45312275" data-work_id="45312275" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45312275/Blockchain_Technology_in_the_Automotive_Industry_Use_Cases_and_Statistical_Evaluation">Blockchain Technology in the Automotive Industry Use Cases and Statistical Evaluation</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Even though the automotive industry was among the key players of the industrial revolution in the last century, striking transformations experienced in other sectors did not have significant repercussions on this industry until a few... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45312275" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Even though the automotive industry was among the key players of the industrial revolution in the last century, striking transformations experienced in other sectors did not have significant repercussions on this industry until a few years ago. However, general advancements in technology and Industry 4.0 have presented new opportunities for the reconfiguration of the business environment. Developments in cryptocurrencies such as bitcoin, in particular, have attracted the attention to what is known as block-chain technology. Several successful examples of blockchain applications in different industries have tempted the automotive industry to be rapidly involved with efforts in this direction. As a consequence, the application of the blockchain technology to highly diverse areas in the automotive industry was set in motion. The purpose of this chapter is to explore the application of blockchain technology in the automotive industry, to analyse its advantages and disadvantages, and to demonstrate its successful in general.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45312275" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6979657aae1d534b890780d74e9115e2" rel="nofollow" data-download="{&quot;attachment_id&quot;:65859967,&quot;asset_id&quot;:45312275,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65859967/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="14503440" href="https://deu.academia.edu/AtakanGerger">Atakan Gerger</a><script data-card-contents-for-user="14503440" type="text/json">{"id":14503440,"first_name":"Atakan","last_name":"Gerger","domain_name":"deu","page_name":"AtakanGerger","display_name":"Atakan Gerger","profile_url":"https://deu.academia.edu/AtakanGerger?f_ri=1351","photo":"https://0.academia-photos.com/14503440/3952765/30020182/s65_atakan.gerger.jpg"}</script></span></span></li><li class="js-paper-rank-work_45312275 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45312275"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45312275, container: ".js-paper-rank-work_45312275", }); });</script></li><li class="js-percentile-work_45312275 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45312275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45312275"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45312275 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45312275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45312275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45312275]").text(description); $(".js-view-count-work_45312275").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45312275").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45312275"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="258385" rel="nofollow" href="https://www.academia.edu/Documents/in/Automotive_Technology">Automotive Technology</a>,&nbsp;<script data-card-contents-for-ri="258385" type="text/json">{"id":258385,"name":"Automotive Technology","url":"https://www.academia.edu/Documents/in/Automotive_Technology?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2199949" rel="nofollow" href="https://www.academia.edu/Documents/in/Blockchain">Blockchain</a><script data-card-contents-for-ri="2199949" type="text/json">{"id":2199949,"name":"Blockchain","url":"https://www.academia.edu/Documents/in/Blockchain?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45312275]'), work: {"id":45312275,"title":"Blockchain Technology in the Automotive Industry Use Cases and Statistical Evaluation","created_at":"2021-03-02T10:58:15.451-08:00","url":"https://www.academia.edu/45312275/Blockchain_Technology_in_the_Automotive_Industry_Use_Cases_and_Statistical_Evaluation?f_ri=1351","dom_id":"work_45312275","summary":"Even though the automotive industry was among the key players of the industrial revolution in the last century, striking transformations experienced in other sectors did not have significant repercussions on this industry until a few years ago. However, general advancements in technology and Industry 4.0 have presented new opportunities for the reconfiguration of the business environment. Developments in cryptocurrencies such as bitcoin, in particular, have attracted the attention to what is known as block-chain technology. Several successful examples of blockchain applications in different industries have tempted the automotive industry to be rapidly involved with efforts in this direction. As a consequence, the application of the blockchain technology to highly diverse areas in the automotive industry was set in motion. The purpose of this chapter is to explore the application of blockchain technology in the automotive industry, to analyse its advantages and disadvantages, and to demonstrate its successful in general.","downloadable_attachments":[{"id":65859967,"asset_id":45312275,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":14503440,"first_name":"Atakan","last_name":"Gerger","domain_name":"deu","page_name":"AtakanGerger","display_name":"Atakan Gerger","profile_url":"https://deu.academia.edu/AtakanGerger?f_ri=1351","photo":"https://0.academia-photos.com/14503440/3952765/30020182/s65_atakan.gerger.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":258385,"name":"Automotive Technology","url":"https://www.academia.edu/Documents/in/Automotive_Technology?f_ri=1351","nofollow":true},{"id":2199949,"name":"Blockchain","url":"https://www.academia.edu/Documents/in/Blockchain?f_ri=1351","nofollow":true},{"id":2199951,"name":"Blockchain Technologies","url":"https://www.academia.edu/Documents/in/Blockchain_Technologies?f_ri=1351"},{"id":3820724,"name":"Statistical evaluation","url":"https://www.academia.edu/Documents/in/Statistical_evaluation?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15121941 coauthored" data-work_id="15121941" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15121941/Parametric_texture_model_based_on_joint_statistics_of_complex_wavelet_coefficients">Parametric texture model based on joint statistics of complex wavelet coefficients</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_15121941" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn from a diverse collection of artificial and natural textures.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15121941" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="323107cab15e36e3d197e40ddf1cbe48" rel="nofollow" data-download="{&quot;attachment_id&quot;:43565034,&quot;asset_id&quot;:15121941,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43565034/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34343989" href="https://nyu.academia.edu/EeroSimoncelli">Eero P Simoncelli</a><script data-card-contents-for-user="34343989" type="text/json">{"id":34343989,"first_name":"Eero","last_name":"Simoncelli","domain_name":"nyu","page_name":"EeroSimoncelli","display_name":"Eero P Simoncelli","profile_url":"https://nyu.academia.edu/EeroSimoncelli?f_ri=1351","photo":"https://0.academia-photos.com/34343989/29269344/27260979/s65_eero.simoncelli.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-15121941">+1</span><div class="hidden js-additional-users-15121941"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://csic.academia.edu/JavierPortilla">Javier Portilla</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-15121941'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-15121941').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_15121941 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15121941"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15121941, container: ".js-paper-rank-work_15121941", }); });</script></li><li class="js-percentile-work_15121941 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15121941; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15121941"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15121941 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15121941"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15121941; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15121941]").text(description); $(".js-view-count-work_15121941").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15121941").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15121941"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="854" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="149059" rel="nofollow" href="https://www.academia.edu/Documents/in/Efficient_Algorithm_for_ECG_Coding">Efficient Algorithm for ECG Coding</a>,&nbsp;<script data-card-contents-for-ri="149059" type="text/json">{"id":149059,"name":"Efficient Algorithm for ECG Coding","url":"https://www.academia.edu/Documents/in/Efficient_Algorithm_for_ECG_Coding?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="191309" rel="nofollow" href="https://www.academia.edu/Documents/in/Texture_Synthesis">Texture Synthesis</a><script data-card-contents-for-ri="191309" type="text/json">{"id":191309,"name":"Texture Synthesis","url":"https://www.academia.edu/Documents/in/Texture_Synthesis?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15121941]'), work: {"id":15121941,"title":"Parametric texture model based on joint statistics of complex wavelet coefficients","created_at":"2015-08-23T13:16:57.699-07:00","url":"https://www.academia.edu/15121941/Parametric_texture_model_based_on_joint_statistics_of_complex_wavelet_coefficients?f_ri=1351","dom_id":"work_15121941","summary":"We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn from a diverse collection of artificial and natural textures.","downloadable_attachments":[{"id":43565034,"asset_id":15121941,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34343989,"first_name":"Eero","last_name":"Simoncelli","domain_name":"nyu","page_name":"EeroSimoncelli","display_name":"Eero P Simoncelli","profile_url":"https://nyu.academia.edu/EeroSimoncelli?f_ri=1351","photo":"https://0.academia-photos.com/34343989/29269344/27260979/s65_eero.simoncelli.jpg"},{"id":34159787,"first_name":"Javier","last_name":"Portilla","domain_name":"csic","page_name":"JavierPortilla","display_name":"Javier Portilla","profile_url":"https://csic.academia.edu/JavierPortilla?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":149059,"name":"Efficient Algorithm for ECG Coding","url":"https://www.academia.edu/Documents/in/Efficient_Algorithm_for_ECG_Coding?f_ri=1351","nofollow":true},{"id":191309,"name":"Texture Synthesis","url":"https://www.academia.edu/Documents/in/Texture_Synthesis?f_ri=1351","nofollow":true},{"id":217116,"name":"Complex wavelet transform","url":"https://www.academia.edu/Documents/in/Complex_wavelet_transform?f_ri=1351"},{"id":664700,"name":"Statistical Model","url":"https://www.academia.edu/Documents/in/Statistical_Model?f_ri=1351"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability?f_ri=1351"},{"id":2287400,"name":"Markov Random Field","url":"https://www.academia.edu/Documents/in/Markov_Random_Field?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_11590137" data-work_id="11590137" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/11590137/Beta_Regression_in_R">Beta Regression in R</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This introduction to the R package betareg is a (slightly) modified version of Cribari-Neto and Zeileis (2010), published in the Journal of Statistical Software. A follow-up paper with various extensions is Grün, Kosmidis, and Zeileis... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_11590137" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This introduction to the R package betareg is a (slightly) modified version of Cribari-Neto and Zeileis (2010), published in the Journal of Statistical Software. A follow-up paper with various extensions is Grün, Kosmidis, and Zeileis (2012) -a slightly modified version of which is also provided within the package as vignette(&quot;betareg-ext&quot;, package = &quot;betareg&quot;)</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/11590137" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3312cf701696892ca10529064e44881f" rel="nofollow" data-download="{&quot;attachment_id&quot;:46617139,&quot;asset_id&quot;:11590137,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46617139/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28299739" href="https://independent.academia.edu/FranciscoCribarineto">Francisco Cribari-neto</a><script data-card-contents-for-user="28299739" type="text/json">{"id":28299739,"first_name":"Francisco","last_name":"Cribari-neto","domain_name":"independent","page_name":"FranciscoCribarineto","display_name":"Francisco Cribari-neto","profile_url":"https://independent.academia.edu/FranciscoCribarineto?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_11590137 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="11590137"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 11590137, container: ".js-paper-rank-work_11590137", }); });</script></li><li class="js-percentile-work_11590137 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11590137; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_11590137"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_11590137 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="11590137"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11590137; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11590137]").text(description); $(".js-view-count-work_11590137").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_11590137").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="11590137"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="198462" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_software">Statistical software</a>,&nbsp;<script data-card-contents-for-ri="198462" type="text/json">{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="406051" rel="nofollow" href="https://www.academia.edu/Documents/in/Regression_Model">Regression Model</a><script data-card-contents-for-ri="406051" type="text/json">{"id":406051,"name":"Regression Model","url":"https://www.academia.edu/Documents/in/Regression_Model?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=11590137]'), work: {"id":11590137,"title":"Beta Regression in R","created_at":"2015-03-22T13:07:03.192-07:00","url":"https://www.academia.edu/11590137/Beta_Regression_in_R?f_ri=1351","dom_id":"work_11590137","summary":"This introduction to the R package betareg is a (slightly) modified version of Cribari-Neto and Zeileis (2010), published in the Journal of Statistical Software. A follow-up paper with various extensions is Grün, Kosmidis, and Zeileis (2012) -a slightly modified version of which is also provided within the package as vignette(\"betareg-ext\", package = \"betareg\")","downloadable_attachments":[{"id":46617139,"asset_id":11590137,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28299739,"first_name":"Francisco","last_name":"Cribari-neto","domain_name":"independent","page_name":"FranciscoCribarineto","display_name":"Francisco Cribari-neto","profile_url":"https://independent.academia.edu/FranciscoCribarineto?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351","nofollow":true},{"id":406051,"name":"Regression Model","url":"https://www.academia.edu/Documents/in/Regression_Model?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_50957248" data-work_id="50957248" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/50957248/movecost_R_package_vignette">movecost (R package) vignette</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This vignette aims at showing the use of the current version of the movecost package and of its functions. To hopefully enhance clarity, it is organised as a sequence of tasks. In-built datasets will be used throughout this document. For... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_50957248" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This vignette aims at showing the use of the current version of the movecost package and of its functions. To hopefully enhance clarity, it is organised as a sequence of tasks. In-built datasets will be used throughout this document. For more details about each function’s parameter, for the values returned by each function, and for relevant literature, see the package’s help documentation. <br /> <br />For an updated version of the vignette, please visit <a href="https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view" rel="nofollow">https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view</a></div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/50957248" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="19442b3c1d5dda7b830ef484a319b7a2" rel="nofollow" data-download="{&quot;attachment_id&quot;:100010281,&quot;asset_id&quot;:50957248,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/100010281/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="149398" href="https://malta.academia.edu/GianmarcoAlberti">Gianmarco Alberti</a><script data-card-contents-for-user="149398" type="text/json">{"id":149398,"first_name":"Gianmarco","last_name":"Alberti","domain_name":"malta","page_name":"GianmarcoAlberti","display_name":"Gianmarco Alberti","profile_url":"https://malta.academia.edu/GianmarcoAlberti?f_ri=1351","photo":"https://0.academia-photos.com/149398/39450/2677620/s65_gianmarco.alberti.jpg"}</script></span></span></li><li class="js-paper-rank-work_50957248 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="50957248"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 50957248, container: ".js-paper-rank-work_50957248", }); });</script></li><li class="js-percentile-work_50957248 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50957248; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_50957248"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_50957248 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="50957248"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50957248; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50957248]").text(description); $(".js-view-count-work_50957248").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_50957248").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="50957248"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="47625" rel="nofollow" href="https://www.academia.edu/Documents/in/GIS_and_Landscape_Archaeology">GIS and Landscape Archaeology</a>,&nbsp;<script data-card-contents-for-ri="47625" type="text/json">{"id":47625,"name":"GIS and Landscape Archaeology","url":"https://www.academia.edu/Documents/in/GIS_and_Landscape_Archaeology?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="63954" rel="nofollow" href="https://www.academia.edu/Documents/in/Least_Cost_Path_Analysis">Least Cost Path Analysis</a>,&nbsp;<script data-card-contents-for-ri="63954" type="text/json">{"id":63954,"name":"Least Cost Path Analysis","url":"https://www.academia.edu/Documents/in/Least_Cost_Path_Analysis?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1009312" rel="nofollow" href="https://www.academia.edu/Documents/in/Geographic_Information_Systems_GIS_">Geographic Information Systems (GIS)</a><script data-card-contents-for-ri="1009312" type="text/json">{"id":1009312,"name":"Geographic Information Systems (GIS)","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems_GIS_?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=50957248]'), work: {"id":50957248,"title":"movecost (R package) vignette","created_at":"2021-08-21T10:25:15.748-07:00","url":"https://www.academia.edu/50957248/movecost_R_package_vignette?f_ri=1351","dom_id":"work_50957248","summary":"This vignette aims at showing the use of the current version of the movecost package and of its functions. To hopefully enhance clarity, it is organised as a sequence of tasks. In-built datasets will be used throughout this document. For more details about each function’s parameter, for the values returned by each function, and for relevant literature, see the package’s help documentation.\r\n\r\nFor an updated version of the vignette, please visit https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view","downloadable_attachments":[{"id":100010281,"asset_id":50957248,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":149398,"first_name":"Gianmarco","last_name":"Alberti","domain_name":"malta","page_name":"GianmarcoAlberti","display_name":"Gianmarco Alberti","profile_url":"https://malta.academia.edu/GianmarcoAlberti?f_ri=1351","photo":"https://0.academia-photos.com/149398/39450/2677620/s65_gianmarco.alberti.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":47625,"name":"GIS and Landscape Archaeology","url":"https://www.academia.edu/Documents/in/GIS_and_Landscape_Archaeology?f_ri=1351","nofollow":true},{"id":63954,"name":"Least Cost Path Analysis","url":"https://www.academia.edu/Documents/in/Least_Cost_Path_Analysis?f_ri=1351","nofollow":true},{"id":1009312,"name":"Geographic Information Systems (GIS)","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems_GIS_?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1743401" data-work_id="1743401" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1743401/R_lista_de_fun%C3%A7%C3%B5es">R - lista de funções</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1743401" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="acbf018cf14111024238e16078c67c3f" rel="nofollow" data-download="{&quot;attachment_id&quot;:6115505,&quot;asset_id&quot;:1743401,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/6115505/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="831860" href="https://up-pt.academia.edu/JGon%C3%A7alves">João Gonçalves</a><script data-card-contents-for-user="831860" type="text/json">{"id":831860,"first_name":"João","last_name":"Gonçalves","domain_name":"up-pt","page_name":"JGonçalves","display_name":"João Gonçalves","profile_url":"https://up-pt.academia.edu/JGon%C3%A7alves?f_ri=1351","photo":"https://0.academia-photos.com/831860/896824/19797793/s65_jo_o.gon_alves.jpg"}</script></span></span></li><li class="js-paper-rank-work_1743401 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1743401"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1743401, container: ".js-paper-rank-work_1743401", }); });</script></li><li class="js-percentile-work_1743401 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1743401; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1743401"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1743401 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1743401"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1743401; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1743401]").text(description); $(".js-view-count-work_1743401").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1743401").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1743401"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="84155" rel="nofollow" href="https://www.academia.edu/Documents/in/R_statistics">R statistics</a>,&nbsp;<script data-card-contents-for-ri="84155" type="text/json">{"id":84155,"name":"R statistics","url":"https://www.academia.edu/Documents/in/R_statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="198462" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_software">Statistical software</a><script data-card-contents-for-ri="198462" type="text/json">{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1743401]'), work: {"id":1743401,"title":"R - lista de funções","created_at":"2011-10-11T06:29:12.888-07:00","url":"https://www.academia.edu/1743401/R_lista_de_fun%C3%A7%C3%B5es?f_ri=1351","dom_id":"work_1743401","summary":null,"downloadable_attachments":[{"id":6115505,"asset_id":1743401,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":831860,"first_name":"João","last_name":"Gonçalves","domain_name":"up-pt","page_name":"JGonçalves","display_name":"João Gonçalves","profile_url":"https://up-pt.academia.edu/JGon%C3%A7alves?f_ri=1351","photo":"https://0.academia-photos.com/831860/896824/19797793/s65_jo_o.gon_alves.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":84155,"name":"R statistics","url":"https://www.academia.edu/Documents/in/R_statistics?f_ri=1351","nofollow":true},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_37099343" data-work_id="37099343" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/37099343/Co_eventum_mechanics_revised_version_">Co∼eventum mechanics (revised version)</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">You yourself, or what is the same, your experience is such ``coin&#39;&#39; that, while you aren&#39;t questioned, it rotates all the time in ``free flight&#39;&#39;. And only when you answer the question the ``coin&#39;&#39; falls on one of the sides: ``Yes&#39;&#39; or... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_37099343" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">You yourself, or what is the same, your experience is such ``coin&#39;&#39; that, while you aren&#39;t questioned, it rotates all the time in ``free flight&#39;&#39;. And only when you answer the question the ``coin&#39;&#39; falls on one of the sides: ``Yes&#39;&#39; or ``No&#39;&#39; with the believability that your experience tells you.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/37099343" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6ae1be838d556ec669e39ab8f2d0f2c3" rel="nofollow" data-download="{&quot;attachment_id&quot;:57425031,&quot;asset_id&quot;:37099343,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/57425031/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38890" href="https://sfu-kras.academia.edu/OlegVorobyev">Oleg Yu Vorobyev</a><script data-card-contents-for-user="38890" type="text/json">{"id":38890,"first_name":"Oleg Yu","last_name":"Vorobyev","domain_name":"sfu-kras","page_name":"OlegVorobyev","display_name":"Oleg Yu Vorobyev","profile_url":"https://sfu-kras.academia.edu/OlegVorobyev?f_ri=1351","photo":"https://0.academia-photos.com/38890/12977/347919/s65_oleg.vorobyev.gif"}</script></span></span></li><li class="js-paper-rank-work_37099343 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="37099343"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 37099343, container: ".js-paper-rank-work_37099343", }); });</script></li><li class="js-percentile-work_37099343 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 37099343; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_37099343"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_37099343 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="37099343"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 37099343; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=37099343]").text(description); $(".js-view-count-work_37099343").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_37099343").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="37099343"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">154</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="307" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematical_Statistics">Mathematical Statistics</a>,&nbsp;<script data-card-contents-for-ri="307" type="text/json">{"id":307,"name":"Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Mathematical_Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="344" rel="nofollow" href="https://www.academia.edu/Documents/in/Probability_Theory">Probability Theory</a>,&nbsp;<script data-card-contents-for-ri="344" type="text/json">{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="518" rel="nofollow" href="https://www.academia.edu/Documents/in/Quantum_Physics">Quantum Physics</a>,&nbsp;<script data-card-contents-for-ri="518" type="text/json">{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="520" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Mechanics">Statistical Mechanics</a><script data-card-contents-for-ri="520" type="text/json">{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=37099343]'), work: {"id":37099343,"title":"Co∼eventum mechanics (revised version)","created_at":"2018-07-22T20:03:57.562-07:00","url":"https://www.academia.edu/37099343/Co_eventum_mechanics_revised_version_?f_ri=1351","dom_id":"work_37099343","summary":"You yourself, or what is the same, your experience is such ``coin'' that, while you aren't questioned, it rotates all the time in ``free flight''. And only when you answer the question the ``coin'' falls on one of the sides: ``Yes'' or ``No'' with the believability that your experience tells you.","downloadable_attachments":[{"id":57425031,"asset_id":37099343,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38890,"first_name":"Oleg Yu","last_name":"Vorobyev","domain_name":"sfu-kras","page_name":"OlegVorobyev","display_name":"Oleg Yu Vorobyev","profile_url":"https://sfu-kras.academia.edu/OlegVorobyev?f_ri=1351","photo":"https://0.academia-photos.com/38890/12977/347919/s65_oleg.vorobyev.gif"}],"research_interests":[{"id":307,"name":"Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Mathematical_Statistics?f_ri=1351","nofollow":true},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=1351","nofollow":true},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=1351","nofollow":true},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351","nofollow":true},{"id":821,"name":"Philosophy of Science","url":"https://www.academia.edu/Documents/in/Philosophy_of_Science?f_ri=1351"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351"},{"id":2445,"name":"Statistical Signal Processing","url":"https://www.academia.edu/Documents/in/Statistical_Signal_Processing?f_ri=1351"},{"id":2560,"name":"Probabilistic Networks","url":"https://www.academia.edu/Documents/in/Probabilistic_Networks?f_ri=1351"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics?f_ri=1351"},{"id":3206,"name":"Social Statistics","url":"https://www.academia.edu/Documents/in/Social_Statistics?f_ri=1351"},{"id":3243,"name":"Nonparametric Statistics","url":"https://www.academia.edu/Documents/in/Nonparametric_Statistics?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4061,"name":"Theoretical Statistics","url":"https://www.academia.edu/Documents/in/Theoretical_Statistics?f_ri=1351"},{"id":4384,"name":"Medical Statistics","url":"https://www.academia.edu/Documents/in/Medical_Statistics?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":4840,"name":"Statistics Education","url":"https://www.academia.edu/Documents/in/Statistics_Education?f_ri=1351"},{"id":4886,"name":"Meta-Analysis (Statistics)","url":"https://www.academia.edu/Documents/in/Meta-Analysis_Statistics_?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":5714,"name":"Spatial statistics (Mathematics)","url":"https://www.academia.edu/Documents/in/Spatial_statistics_Mathematics_?f_ri=1351"},{"id":6114,"name":"Statistical Genetics","url":"https://www.academia.edu/Documents/in/Statistical_Genetics?f_ri=1351"},{"id":9739,"name":"Probabilistic Markov Modeling","url":"https://www.academia.edu/Documents/in/Probabilistic_Markov_Modeling?f_ri=1351"},{"id":9796,"name":"Philosophy Of Probability","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Probability?f_ri=1351"},{"id":11373,"name":"Sports Statistics","url":"https://www.academia.edu/Documents/in/Sports_Statistics?f_ri=1351"},{"id":12853,"name":"Robust Statistics","url":"https://www.academia.edu/Documents/in/Robust_Statistics?f_ri=1351"},{"id":12884,"name":"Brain behavior from statistical analysis of eeg signals","url":"https://www.academia.edu/Documents/in/Brain_behavior_from_statistical_analysis_of_eeg_signals?f_ri=1351"},{"id":13645,"name":"Quantum Optics \u0026 Statistical Physics","url":"https://www.academia.edu/Documents/in/Quantum_Optics_and_Statistical_Physics?f_ri=1351"},{"id":14040,"name":"Statistical Literacy","url":"https://www.academia.edu/Documents/in/Statistical_Literacy?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":15044,"name":"Bootstrap (Statistics)","url":"https://www.academia.edu/Documents/in/Bootstrap_Statistics_?f_ri=1351"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351"},{"id":15198,"name":"Spatial Statistics","url":"https://www.academia.edu/Documents/in/Spatial_Statistics?f_ri=1351"},{"id":15550,"name":"Statistical Probability","url":"https://www.academia.edu/Documents/in/Statistical_Probability?f_ri=1351"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics?f_ri=1351"},{"id":17183,"name":"Mathematical Psychology and Statistics","url":"https://www.academia.edu/Documents/in/Mathematical_Psychology_and_Statistics?f_ri=1351"},{"id":17553,"name":"Statistical Machine Translation","url":"https://www.academia.edu/Documents/in/Statistical_Machine_Translation?f_ri=1351"},{"id":19204,"name":"Nonequilibrium statistical mechanics","url":"https://www.academia.edu/Documents/in/Nonequilibrium_statistical_mechanics?f_ri=1351"},{"id":21565,"name":"Statistical Physics Of Complex Systems","url":"https://www.academia.edu/Documents/in/Statistical_Physics_Of_Complex_Systems?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":26691,"name":"Statistical Process Control","url":"https://www.academia.edu/Documents/in/Statistical_Process_Control?f_ri=1351"},{"id":26957,"name":"Statistical Modelling","url":"https://www.academia.edu/Documents/in/Statistical_Modelling?f_ri=1351"},{"id":27371,"name":"Statistical Thermodynamics","url":"https://www.academia.edu/Documents/in/Statistical_Thermodynamics?f_ri=1351"},{"id":27550,"name":"History of Statistics and Statistical Agencies","url":"https://www.academia.edu/Documents/in/History_of_Statistics_and_Statistical_Agencies?f_ri=1351"},{"id":27770,"name":"Statistics education (Education)","url":"https://www.academia.edu/Documents/in/Statistics_education_Education_?f_ri=1351"},{"id":27926,"name":"Statistical Methods in Archaeology","url":"https://www.academia.edu/Documents/in/Statistical_Methods_in_Archaeology?f_ri=1351"},{"id":31401,"name":"R (Statistics)","url":"https://www.academia.edu/Documents/in/R_Statistics_?f_ri=1351"},{"id":31412,"name":"Probability and Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics?f_ri=1351"},{"id":31826,"name":"Sampling (Mathematical Statistics)","url":"https://www.academia.edu/Documents/in/Sampling_Mathematical_Statistics_?f_ri=1351"},{"id":32815,"name":"Probability and Mathematical Statistics in power systems","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics_in_power_systems?f_ri=1351"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=1351"},{"id":33408,"name":"Algebraic Statistics","url":"https://www.academia.edu/Documents/in/Algebraic_Statistics?f_ri=1351"},{"id":33479,"name":"Statistical Hydrology","url":"https://www.academia.edu/Documents/in/Statistical_Hydrology?f_ri=1351"},{"id":35966,"name":"Statistical Design of Experiment (DoE)","url":"https://www.academia.edu/Documents/in/Statistical_Design_of_Experiment_DoE_?f_ri=1351"},{"id":37305,"name":"Statistical Quality Control","url":"https://www.academia.edu/Documents/in/Statistical_Quality_Control?f_ri=1351"},{"id":37316,"name":"Statistical Learning Theory","url":"https://www.academia.edu/Documents/in/Statistical_Learning_Theory?f_ri=1351"},{"id":38246,"name":"Statistical Learning","url":"https://www.academia.edu/Documents/in/Statistical_Learning?f_ri=1351"},{"id":39699,"name":"Probabilistic Graphical Models","url":"https://www.academia.edu/Documents/in/Probabilistic_Graphical_Models?f_ri=1351"},{"id":40174,"name":"Business statistics","url":"https://www.academia.edu/Documents/in/Business_statistics?f_ri=1351"},{"id":41239,"name":"Bayesian statistics \u0026 modelling","url":"https://www.academia.edu/Documents/in/Bayesian_statistics_and_modelling?f_ri=1351"},{"id":41481,"name":"Experimental Statistics","url":"https://www.academia.edu/Documents/in/Experimental_Statistics?f_ri=1351"},{"id":41815,"name":"Applied Probability","url":"https://www.academia.edu/Documents/in/Applied_Probability?f_ri=1351"},{"id":48641,"name":"Applied Bayesian Statistics","url":"https://www.academia.edu/Documents/in/Applied_Bayesian_Statistics?f_ri=1351"},{"id":51105,"name":"Official Statistics","url":"https://www.academia.edu/Documents/in/Official_Statistics?f_ri=1351"},{"id":52054,"name":"Predictive Modeling Using Statistical programs","url":"https://www.academia.edu/Documents/in/Predictive_Modeling_Using_Statistical_programs?f_ri=1351"},{"id":53778,"name":"Inferential Statistics","url":"https://www.academia.edu/Documents/in/Inferential_Statistics?f_ri=1351"},{"id":53779,"name":"statistics with SPSS and Excel","url":"https://www.academia.edu/Documents/in/statistics_with_SPSS_and_Excel?f_ri=1351"},{"id":55333,"name":"Teaching and Learning of Statistics","url":"https://www.academia.edu/Documents/in/Teaching_and_Learning_of_Statistics?f_ri=1351"},{"id":56080,"name":"Agricultural Statistics","url":"https://www.academia.edu/Documents/in/Agricultural_Statistics?f_ri=1351"},{"id":56502,"name":"Order Statistics","url":"https://www.academia.edu/Documents/in/Order_Statistics?f_ri=1351"},{"id":59959,"name":"Research methods and Statistics","url":"https://www.academia.edu/Documents/in/Research_methods_and_Statistics?f_ri=1351"},{"id":60140,"name":"Probabilistic group theory","url":"https://www.academia.edu/Documents/in/Probabilistic_group_theory?f_ri=1351"},{"id":60399,"name":"Statistical analysis of elite sport performance","url":"https://www.academia.edu/Documents/in/Statistical_analysis_of_elite_sport_performance?f_ri=1351"},{"id":64346,"name":"History of statistics","url":"https://www.academia.edu/Documents/in/History_of_statistics?f_ri=1351"},{"id":65150,"name":"Climate statistics","url":"https://www.academia.edu/Documents/in/Climate_statistics?f_ri=1351"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=1351"},{"id":83635,"name":"OPerations research and statistics","url":"https://www.academia.edu/Documents/in/OPerations_research_and_statistics?f_ri=1351"},{"id":84155,"name":"R statistics","url":"https://www.academia.edu/Documents/in/R_statistics?f_ri=1351"},{"id":85362,"name":"Descriptive Statistics","url":"https://www.academia.edu/Documents/in/Descriptive_Statistics?f_ri=1351"},{"id":86967,"name":"STATISTICA","url":"https://www.academia.edu/Documents/in/STATISTICA?f_ri=1351"},{"id":94117,"name":"Basic Statistics","url":"https://www.academia.edu/Documents/in/Basic_Statistics?f_ri=1351"},{"id":98593,"name":"Statistical Climatology","url":"https://www.academia.edu/Documents/in/Statistical_Climatology?f_ri=1351"},{"id":98682,"name":"Economic Statistics","url":"https://www.academia.edu/Documents/in/Economic_Statistics?f_ri=1351"},{"id":98937,"name":"Statistic","url":"https://www.academia.edu/Documents/in/Statistic?f_ri=1351"},{"id":100094,"name":"Bayesian statistics","url":"https://www.academia.edu/Documents/in/Bayesian_statistics?f_ri=1351"},{"id":104834,"name":"Statistical Techniques in Spatial Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Techniques_in_Spatial_Analysis?f_ri=1351"},{"id":105930,"name":"Statistical Downscaling","url":"https://www.academia.edu/Documents/in/Statistical_Downscaling?f_ri=1351"},{"id":119313,"name":"Statistics, Actuarial Science, Risk Managemen","url":"https://www.academia.edu/Documents/in/Statistics_Actuarial_Science_Risk_Managemen?f_ri=1351"},{"id":125564,"name":"Statistical Significance","url":"https://www.academia.edu/Documents/in/Statistical_Significance?f_ri=1351"},{"id":125797,"name":"Circular Statistics","url":"https://www.academia.edu/Documents/in/Circular_Statistics?f_ri=1351"},{"id":129810,"name":"Experimental Research Design and Statistical Data Analysis","url":"https://www.academia.edu/Documents/in/Experimental_Research_Design_and_Statistical_Data_Analysis?f_ri=1351"},{"id":131077,"name":"Statistical systems analysis","url":"https://www.academia.edu/Documents/in/Statistical_systems_analysis?f_ri=1351"},{"id":134705,"name":"Sports Management \u0026 Statistics","url":"https://www.academia.edu/Documents/in/Sports_Management_and_Statistics?f_ri=1351"},{"id":140022,"name":"Statistical Reasoning","url":"https://www.academia.edu/Documents/in/Statistical_Reasoning?f_ri=1351"},{"id":144104,"name":"Statistics, Econometrics, Economics, Marketing searching and adjusting, Management methods, Demography, Projects with foreign financing, Price universe and interpret indices, Physics, Econophysics.","url":"https://www.academia.edu/Documents/in/Statistics_Econometrics_Economics_Marketing_searching_and_adjusting_Management_methods_Demograp?f_ri=1351"},{"id":149462,"name":"Statistical","url":"https://www.academia.edu/Documents/in/Statistical?f_ri=1351"},{"id":152694,"name":"Statistical Methods","url":"https://www.academia.edu/Documents/in/Statistical_Methods?f_ri=1351"},{"id":162763,"name":"Probability Sampling","url":"https://www.academia.edu/Documents/in/Probability_Sampling?f_ri=1351"},{"id":178403,"name":"Probabilistic reasoning","url":"https://www.academia.edu/Documents/in/Probabilistic_reasoning?f_ri=1351"},{"id":183211,"name":"Experimental Archaeology x Lithics x Lithic Technology x Quartz industries x Typology x Archaeology x Archaeometry x Archaeological Method \u0026 Theory x Archaeological Science x Statistical Methods in Archaeology x","url":"https://www.academia.edu/Documents/in/Experimental_Archaeology_x_Lithics_x_Lithic_Technology_x_Quartz_industries_x_Typology_x_Archaeology_?f_ri=1351"},{"id":188474,"name":"Applied Statistics and Statistical Modelling","url":"https://www.academia.edu/Documents/in/Applied_Statistics_and_Statistical_Modelling?f_ri=1351"},{"id":192618,"name":"Non-Parametric Parametric Statistics","url":"https://www.academia.edu/Documents/in/Non-Parametric_Parametric_Statistics?f_ri=1351"},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351"},{"id":230995,"name":"Crime Statistics","url":"https://www.academia.edu/Documents/in/Crime_Statistics?f_ri=1351"},{"id":236116,"name":"Demography and Social Statistics","url":"https://www.academia.edu/Documents/in/Demography_and_Social_Statistics?f_ri=1351"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics?f_ri=1351"},{"id":273724,"name":"Statistics and Mathematics","url":"https://www.academia.edu/Documents/in/Statistics_and_Mathematics?f_ri=1351"},{"id":277776,"name":"Quantum and classical statistical mechanics","url":"https://www.academia.edu/Documents/in/Quantum_and_classical_statistical_mechanics?f_ri=1351"},{"id":315908,"name":"Probability distributions to model air pollutant data","url":"https://www.academia.edu/Documents/in/Probability_distributions_to_model_air_pollutant_data?f_ri=1351"},{"id":328408,"name":"Agrofood Economics and Statistics","url":"https://www.academia.edu/Documents/in/Agrofood_Economics_and_Statistics?f_ri=1351"},{"id":332914,"name":"Financial Statistics","url":"https://www.academia.edu/Documents/in/Financial_Statistics?f_ri=1351"},{"id":334913,"name":"Education Statistics","url":"https://www.academia.edu/Documents/in/Education_Statistics?f_ri=1351"},{"id":343413,"name":"Applied Probability and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Probability_and_Statistics?f_ri=1351"},{"id":368423,"name":"Educational statistics","url":"https://www.academia.edu/Documents/in/Educational_statistics?f_ri=1351"},{"id":385362,"name":"Estadística y probabilidad","url":"https://www.academia.edu/Documents/in/Estadistica_y_probabilidad?f_ri=1351"},{"id":387554,"name":"Microarray Data Analysis using Statistical Computing and R Programming","url":"https://www.academia.edu/Documents/in/Microarray_Data_Analysis_using_Statistical_Computing_and_R_Programming?f_ri=1351"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics?f_ri=1351"},{"id":420825,"name":"Manual -en español- IBM SPSS Statistics Base 20","url":"https://www.academia.edu/Documents/in/Manual_-en_espanol-_IBM_SPSS_Statistics_Base_20?f_ri=1351"},{"id":463912,"name":"Probabilidade e Estatística","url":"https://www.academia.edu/Documents/in/Probabilidade_e_Estatistica?f_ri=1351"},{"id":516330,"name":"Psychological Statistics","url":"https://www.academia.edu/Documents/in/Psychological_Statistics?f_ri=1351"},{"id":571797,"name":"Introduction to Probability","url":"https://www.academia.edu/Documents/in/Introduction_to_Probability?f_ri=1351"},{"id":579837,"name":"Experimental Statistics: Planning of experiments","url":"https://www.academia.edu/Documents/in/Experimental_Statistics_Planning_of_experiments?f_ri=1351"},{"id":579838,"name":"Experimental Statistics: Statistical Analysis of Experiments","url":"https://www.academia.edu/Documents/in/Experimental_Statistics_Statistical_Analysis_of_Experiments?f_ri=1351"},{"id":582439,"name":"History of Statistics and Probability","url":"https://www.academia.edu/Documents/in/History_of_Statistics_and_Probability?f_ri=1351"},{"id":596654,"name":"Computer Science and Statistics","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Statistics?f_ri=1351"},{"id":643412,"name":"Statistical Analysis Techniques for Geography and Environmental Science","url":"https://www.academia.edu/Documents/in/Statistical_Analysis_Techniques_for_Geography_and_Environmental_Science?f_ri=1351"},{"id":653891,"name":"Probabilistic risk modeling","url":"https://www.academia.edu/Documents/in/Probabilistic_risk_modeling?f_ri=1351"},{"id":654552,"name":"Statistical Softwares","url":"https://www.academia.edu/Documents/in/Statistical_Softwares?f_ri=1351"},{"id":674235,"name":"Combinatorics \u0026 Statistics","url":"https://www.academia.edu/Documents/in/Combinatorics_and_Statistics?f_ri=1351"},{"id":765384,"name":"Economics \u0026 Statistics","url":"https://www.academia.edu/Documents/in/Economics_and_Statistics?f_ri=1351"},{"id":805000,"name":"Poisson statistics","url":"https://www.academia.edu/Documents/in/Poisson_statistics?f_ri=1351"},{"id":849389,"name":"Probabilidad","url":"https://www.academia.edu/Documents/in/Probabilidad?f_ri=1351"},{"id":853315,"name":"Calculo De Probabilidades","url":"https://www.academia.edu/Documents/in/Calculo_De_Probabilidades?f_ri=1351"},{"id":862259,"name":"Multivariate Statistical Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Analysis?f_ri=1351"},{"id":872399,"name":"Probability Density Function","url":"https://www.academia.edu/Documents/in/Probability_Density_Function?f_ri=1351"},{"id":957044,"name":"Public Health. Mathematics \u0026 Statistics Education","url":"https://www.academia.edu/Documents/in/Public_Health._Mathematics_and_Statistics_Education?f_ri=1351"},{"id":966253,"name":"Multivariate Statistical Methods","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Methods?f_ri=1351"},{"id":967876,"name":"Statistical Treatments In Biology","url":"https://www.academia.edu/Documents/in/Statistical_Treatments_In_Biology?f_ri=1351"},{"id":976616,"name":"Statistical Computing In R","url":"https://www.academia.edu/Documents/in/Statistical_Computing_In_R?f_ri=1351"},{"id":983203,"name":"Advanced Statistical Analsis","url":"https://www.academia.edu/Documents/in/Advanced_Statistical_Analsis?f_ri=1351"},{"id":990736,"name":"Statistical and Quantitative Modelling Methods","url":"https://www.academia.edu/Documents/in/Statistical_and_Quantitative_Modelling_Methods?f_ri=1351"},{"id":991025,"name":"Economics and Statistics","url":"https://www.academia.edu/Documents/in/Economics_and_Statistics-1?f_ri=1351"},{"id":1003611,"name":"Business Analytics; Data Mining; Statistical Learning","url":"https://www.academia.edu/Documents/in/Business_Analytics_Data_Mining_Statistical_Learning?f_ri=1351"},{"id":1007285,"name":"Probability Theory and Statistics","url":"https://www.academia.edu/Documents/in/Probability_Theory_and_Statistics?f_ri=1351"},{"id":1129465,"name":"Probabilidades ejercicios","url":"https://www.academia.edu/Documents/in/Probabilidades_ejercicios?f_ri=1351"},{"id":1163024,"name":"Statistical Quality Control Tools","url":"https://www.academia.edu/Documents/in/Statistical_Quality_Control_Tools?f_ri=1351"},{"id":1255971,"name":"Analyzing Educational Data With IBM SPSS Statistics","url":"https://www.academia.edu/Documents/in/Analyzing_Educational_Data_With_IBM_SPSS_Statistics?f_ri=1351"},{"id":1279852,"name":"Lista de formulas de probabilidade e estatistica.","url":"https://www.academia.edu/Documents/in/Lista_de_formulas_de_probabilidade_e_estatistica?f_ri=1351"},{"id":1306008,"name":"Probabilidade Condicional","url":"https://www.academia.edu/Documents/in/Probabilidade_Condicional?f_ri=1351"},{"id":1322090,"name":"Konsep Dasar Probabilitas","url":"https://www.academia.edu/Documents/in/Konsep_Dasar_Probabilitas?f_ri=1351"},{"id":1331793,"name":"Financial Accounting, Economics, Marketing, Business Strategy and Public Relations, Business Consulting, Statistical Analysis, Brand Development, and Project Management, Human Resource, Management, Human Resources, Administration, and International HRM","url":"https://www.academia.edu/Documents/in/Financial_Accounting_Economics_Marketing_Business_Strategy_and_Public_Relations_Business_Consult?f_ri=1351"},{"id":1361680,"name":"Statistika dan Probabilitas","url":"https://www.academia.edu/Documents/in/Statistika_dan_Probabilitas?f_ri=1351"},{"id":1445633,"name":"Introductory of Statistics","url":"https://www.academia.edu/Documents/in/Introductory_of_Statistics?f_ri=1351"},{"id":1733909,"name":"Of Statistics","url":"https://www.academia.edu/Documents/in/Of_Statistics?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1887808" data-work_id="1887808" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1887808/Multivariate_data_analysis_in_R">Multivariate data analysis in R</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1887808" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="305ee055142a7dd992166c1e8494af85" rel="nofollow" data-download="{&quot;attachment_id&quot;:87258817,&quot;asset_id&quot;:1887808,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/87258817/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="71523" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">Μιχαήλ Τσαγρής</a><script data-card-contents-for-user="71523" type="text/json">{"id":71523,"first_name":"Μιχαήλ","last_name":"Τσαγρής","domain_name":"crete","page_name":"ΜιχαήλΤσαγρής","display_name":"Μιχαήλ Τσαγρής","profile_url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_1887808 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1887808"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1887808, container: ".js-paper-rank-work_1887808", }); });</script></li><li class="js-percentile-work_1887808 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1887808; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1887808"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1887808 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1887808"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1887808; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1887808]").text(description); $(".js-view-count-work_1887808").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1887808").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1887808"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">62</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1352" rel="nofollow" href="https://www.academia.edu/Documents/in/Multivariate_Statistics">Multivariate Statistics</a>,&nbsp;<script data-card-contents-for-ri="1352" type="text/json">{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" rel="nofollow" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1887808]'), work: {"id":1887808,"title":"Multivariate data analysis in R","created_at":"2012-08-27T00:39:04.033-07:00","url":"https://www.academia.edu/1887808/Multivariate_data_analysis_in_R?f_ri=1351","dom_id":"work_1887808","summary":null,"downloadable_attachments":[{"id":87258817,"asset_id":1887808,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":71523,"first_name":"Μιχαήλ","last_name":"Τσαγρής","domain_name":"crete","page_name":"ΜιχαήλΤσαγρής","display_name":"Μιχαήλ Τσαγρής","profile_url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351","nofollow":true},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=1351","nofollow":true},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning?f_ri=1351"},{"id":11820,"name":"Modeling and Simulation","url":"https://www.academia.edu/Documents/in/Modeling_and_Simulation?f_ri=1351"},{"id":12853,"name":"Robust Statistics","url":"https://www.academia.edu/Documents/in/Robust_Statistics?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351"},{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models?f_ri=1351"},{"id":22173,"name":"Non-parametric methods","url":"https://www.academia.edu/Documents/in/Non-parametric_methods?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":23892,"name":"Multivariate Data Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Data_Analysis?f_ri=1351"},{"id":25078,"name":"Compositional Data Statistical Analysis","url":"https://www.academia.edu/Documents/in/Compositional_Data_Statistical_Analysis?f_ri=1351"},{"id":29831,"name":"Cluster Analysis (Multivariate Data Analysis)","url":"https://www.academia.edu/Documents/in/Cluster_Analysis_Multivariate_Data_Analysis_?f_ri=1351"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis?f_ri=1351"},{"id":49920,"name":"Multivariate methods","url":"https://www.academia.edu/Documents/in/Multivariate_methods?f_ri=1351"},{"id":63360,"name":"Discriminant Analysis","url":"https://www.academia.edu/Documents/in/Discriminant_Analysis?f_ri=1351"},{"id":85880,"name":"Singular value decomposition","url":"https://www.academia.edu/Documents/in/Singular_value_decomposition?f_ri=1351"},{"id":86986,"name":"Kullback-Leibler distance","url":"https://www.academia.edu/Documents/in/Kullback-Leibler_distance?f_ri=1351"},{"id":103319,"name":"Statistical Distributions, Statistical Estimation, Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Statistical_Distributions_Statistical_Estimation_Multivariate_Statistics?f_ri=1351"},{"id":113749,"name":"Multivariate","url":"https://www.academia.edu/Documents/in/Multivariate?f_ri=1351"},{"id":114528,"name":"Directional Data Analysis","url":"https://www.academia.edu/Documents/in/Directional_Data_Analysis?f_ri=1351"},{"id":123155,"name":"Non Parametric Estimation","url":"https://www.academia.edu/Documents/in/Non_Parametric_Estimation?f_ri=1351"},{"id":134068,"name":"ESTATÍSTICA MULTIVARIADA","url":"https://www.academia.edu/Documents/in/ESTATISTICA_MULTIVARIADA?f_ri=1351"},{"id":143038,"name":"Machine Learning and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Pattern_Recognition?f_ri=1351"},{"id":174778,"name":"Principal Components Analysis","url":"https://www.academia.edu/Documents/in/Principal_Components_Analysis?f_ri=1351"},{"id":192618,"name":"Non-Parametric Parametric Statistics","url":"https://www.academia.edu/Documents/in/Non-Parametric_Parametric_Statistics?f_ri=1351"},{"id":198417,"name":"Analisis multivariados","url":"https://www.academia.edu/Documents/in/Analisis_multivariados?f_ri=1351"},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351"},{"id":220328,"name":"Kernel Density Estimation","url":"https://www.academia.edu/Documents/in/Kernel_Density_Estimation?f_ri=1351"},{"id":227476,"name":"Multivariate Statistics in Education","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics_in_Education?f_ri=1351"},{"id":260865,"name":"Applied Statisitcs,Spatial Econometrics, Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statisitcs_Spatial_Econometrics_Multivariate_Statistics?f_ri=1351"},{"id":337526,"name":"Statistical Modeling and Machine Learning Algorithms for Data Mining, Inference, Prediction and Classification Problems","url":"https://www.academia.edu/Documents/in/Statistical_Modeling_and_Machine_Learning_Algorithms_for_Data_Mining_Inference_Prediction_and_Clas?f_ri=1351"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics?f_ri=1351"},{"id":468342,"name":"Multivariate Data Mining and Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Data_Mining_and_Analysis?f_ri=1351"},{"id":503369,"name":"Principal component analysis (PCA)","url":"https://www.academia.edu/Documents/in/Principal_component_analysis_PCA_?f_ri=1351"},{"id":534154,"name":"Statistik","url":"https://www.academia.edu/Documents/in/Statistik?f_ri=1351"},{"id":579838,"name":"Experimental Statistics: Statistical Analysis of Experiments","url":"https://www.academia.edu/Documents/in/Experimental_Statistics_Statistical_Analysis_of_Experiments?f_ri=1351"},{"id":599945,"name":"Principal Components","url":"https://www.academia.edu/Documents/in/Principal_Components?f_ri=1351"},{"id":756715,"name":"Robust Regression","url":"https://www.academia.edu/Documents/in/Robust_Regression?f_ri=1351"},{"id":839955,"name":"Robust Statistical Methods","url":"https://www.academia.edu/Documents/in/Robust_Statistical_Methods?f_ri=1351"},{"id":862259,"name":"Multivariate Statistical Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Analysis?f_ri=1351"},{"id":891011,"name":"Eigenvalues and Eigenvectors","url":"https://www.academia.edu/Documents/in/Eigenvalues_and_Eigenvectors?f_ri=1351"},{"id":959007,"name":"Principal Componente Analysis","url":"https://www.academia.edu/Documents/in/Principal_Componente_Analysis?f_ri=1351"},{"id":965508,"name":"Compositional Data","url":"https://www.academia.edu/Documents/in/Compositional_Data?f_ri=1351"},{"id":966253,"name":"Multivariate Statistical Methods","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Methods?f_ri=1351"},{"id":976616,"name":"Statistical Computing In R","url":"https://www.academia.edu/Documents/in/Statistical_Computing_In_R?f_ri=1351"},{"id":983070,"name":"Analisys Multivariate","url":"https://www.academia.edu/Documents/in/Analisys_Multivariate?f_ri=1351"},{"id":1002225,"name":"Directional Data","url":"https://www.academia.edu/Documents/in/Directional_Data?f_ri=1351"},{"id":1128697,"name":"Multivariate Normal Distribution","url":"https://www.academia.edu/Documents/in/Multivariate_Normal_Distribution?f_ri=1351"},{"id":1190911,"name":"R","url":"https://www.academia.edu/Documents/in/R?f_ri=1351"},{"id":1206063,"name":"Estadística Multivariada","url":"https://www.academia.edu/Documents/in/Estadistica_Multivariada?f_ri=1351"},{"id":1303945,"name":"CoDA Compositional Data Analysis","url":"https://www.academia.edu/Documents/in/CoDA_Compositional_Data_Analysis?f_ri=1351"},{"id":1340986,"name":"Multivariate Regression Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Regression_Analysis?f_ri=1351"},{"id":1449631,"name":"Analisis Multivariante","url":"https://www.academia.edu/Documents/in/Analisis_Multivariante?f_ri=1351"},{"id":1818925,"name":"von mises-Fisher distribution","url":"https://www.academia.edu/Documents/in/von_mises-Fisher_distribution?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14151835" data-work_id="14151835" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14151835/Numerical_issues_in_statistical_computing_for_the_social_scientist">Numerical issues in statistical computing for the social scientist</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A great many empirical researchers in the social sciences take computational factors for granted: For the social scientist, software is a tool, not an end in itself. Although there is an extensive literature on statistical computing in... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_14151835" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A great many empirical researchers in the social sciences take computational factors for granted: For the social scientist, software is a tool, not an end in itself. Although there is an extensive literature on statistical computing in statistics, applied mathematics, and embedded within various natural science fields, there is currently no such guide tailored directly to the needs of the</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14151835" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d9f3f39f5cccfde24c1a4594b73efdcf" rel="nofollow" data-download="{&quot;attachment_id&quot;:44560033,&quot;asset_id&quot;:14151835,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44560033/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33141428" href="https://independent.academia.edu/AltmanMicah">Micah Altman</a><script data-card-contents-for-user="33141428" type="text/json">{"id":33141428,"first_name":"Micah","last_name":"Altman","domain_name":"independent","page_name":"AltmanMicah","display_name":"Micah Altman","profile_url":"https://independent.academia.edu/AltmanMicah?f_ri=1351","photo":"https://0.academia-photos.com/33141428/10810672/12066017/s65_micah.altman.jpg"}</script></span></span></li><li class="js-paper-rank-work_14151835 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14151835"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14151835, container: ".js-paper-rank-work_14151835", }); });</script></li><li class="js-percentile-work_14151835 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14151835; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14151835"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14151835 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14151835"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14151835; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14151835]").text(description); $(".js-view-count-work_14151835").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14151835").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14151835"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="305" rel="nofollow" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="747" rel="nofollow" href="https://www.academia.edu/Documents/in/Econometrics">Econometrics</a>,&nbsp;<script data-card-contents-for-ri="747" type="text/json">{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a><script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14151835]'), work: {"id":14151835,"title":"Numerical issues in statistical computing for the social scientist","created_at":"2015-07-17T09:18:29.649-07:00","url":"https://www.academia.edu/14151835/Numerical_issues_in_statistical_computing_for_the_social_scientist?f_ri=1351","dom_id":"work_14151835","summary":"A great many empirical researchers in the social sciences take computational factors for granted: For the social scientist, software is a tool, not an end in itself. Although there is an extensive literature on statistical computing in statistics, applied mathematics, and embedded within various natural science fields, there is currently no such guide tailored directly to the needs of the","downloadable_attachments":[{"id":44560033,"asset_id":14151835,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33141428,"first_name":"Micah","last_name":"Altman","domain_name":"independent","page_name":"AltmanMicah","display_name":"Micah Altman","profile_url":"https://independent.academia.edu/AltmanMicah?f_ri=1351","photo":"https://0.academia-photos.com/33141428/10810672/12066017/s65_micah.altman.jpg"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=1351","nofollow":true},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":11847,"name":"Quantitative Research","url":"https://www.academia.edu/Documents/in/Quantitative_Research?f_ri=1351"},{"id":18987,"name":"Natural Science","url":"https://www.academia.edu/Documents/in/Natural_Science?f_ri=1351"},{"id":37828,"name":"Behavioral Science","url":"https://www.academia.edu/Documents/in/Behavioral_Science?f_ri=1351"},{"id":186492,"name":"Empirical Research","url":"https://www.academia.edu/Documents/in/Empirical_Research?f_ri=1351"},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351"},{"id":765148,"name":"Numerical computation","url":"https://www.academia.edu/Documents/in/Numerical_computation?f_ri=1351"},{"id":1172727,"name":"Discrete Applied Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Applied_Mathematics?f_ri=1351"},{"id":1197942,"name":"Social Science","url":"https://www.academia.edu/Documents/in/Social_Science?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14151765" data-work_id="14151765" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14151765/Numerical_issues_in_statistical_computing_for_the_social_scientist">Numerical issues in statistical computing for the social scientist</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14151765" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c2388b0283b3ebe071725bebc8ac8480" rel="nofollow" data-download="{&quot;attachment_id&quot;:44560034,&quot;asset_id&quot;:14151765,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44560034/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33141428" href="https://independent.academia.edu/AltmanMicah">Micah Altman</a><script data-card-contents-for-user="33141428" type="text/json">{"id":33141428,"first_name":"Micah","last_name":"Altman","domain_name":"independent","page_name":"AltmanMicah","display_name":"Micah Altman","profile_url":"https://independent.academia.edu/AltmanMicah?f_ri=1351","photo":"https://0.academia-photos.com/33141428/10810672/12066017/s65_micah.altman.jpg"}</script></span></span></li><li class="js-paper-rank-work_14151765 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14151765"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14151765, container: ".js-paper-rank-work_14151765", }); });</script></li><li class="js-percentile-work_14151765 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14151765; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14151765"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14151765 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14151765"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14151765; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14151765]").text(description); $(".js-view-count-work_14151765").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14151765").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14151765"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="305" rel="nofollow" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="747" rel="nofollow" href="https://www.academia.edu/Documents/in/Econometrics">Econometrics</a>,&nbsp;<script data-card-contents-for-ri="747" type="text/json">{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a><script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14151765]'), work: {"id":14151765,"title":"Numerical issues in statistical computing for the social scientist","created_at":"2015-07-17T09:18:22.157-07:00","url":"https://www.academia.edu/14151765/Numerical_issues_in_statistical_computing_for_the_social_scientist?f_ri=1351","dom_id":"work_14151765","summary":null,"downloadable_attachments":[{"id":44560034,"asset_id":14151765,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33141428,"first_name":"Micah","last_name":"Altman","domain_name":"independent","page_name":"AltmanMicah","display_name":"Micah Altman","profile_url":"https://independent.academia.edu/AltmanMicah?f_ri=1351","photo":"https://0.academia-photos.com/33141428/10810672/12066017/s65_micah.altman.jpg"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=1351","nofollow":true},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":11847,"name":"Quantitative Research","url":"https://www.academia.edu/Documents/in/Quantitative_Research?f_ri=1351"},{"id":18987,"name":"Natural Science","url":"https://www.academia.edu/Documents/in/Natural_Science?f_ri=1351"},{"id":37828,"name":"Behavioral Science","url":"https://www.academia.edu/Documents/in/Behavioral_Science?f_ri=1351"},{"id":186492,"name":"Empirical Research","url":"https://www.academia.edu/Documents/in/Empirical_Research?f_ri=1351"},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351"},{"id":765148,"name":"Numerical computation","url":"https://www.academia.edu/Documents/in/Numerical_computation?f_ri=1351"},{"id":1172727,"name":"Discrete Applied Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Applied_Mathematics?f_ri=1351"},{"id":1197942,"name":"Social Science","url":"https://www.academia.edu/Documents/in/Social_Science?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_328210" data-work_id="328210" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/328210/Sample_Quantiles_In_Statistical_Packages">Sample Quantiles In Statistical Packages</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/328210" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="452c9d4f9f7c0be2794f9e14378b31e0" rel="nofollow" data-download="{&quot;attachment_id&quot;:51448589,&quot;asset_id&quot;:328210,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/51448589/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="45275" href="https://monash.academia.edu/robjhyndman">Rob Hyndman</a><script data-card-contents-for-user="45275" type="text/json">{"id":45275,"first_name":"Rob","last_name":"Hyndman","domain_name":"monash","page_name":"robjhyndman","display_name":"Rob Hyndman","profile_url":"https://monash.academia.edu/robjhyndman?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_328210 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="328210"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 328210, container: ".js-paper-rank-work_328210", }); });</script></li><li class="js-percentile-work_328210 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 328210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_328210"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_328210 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="328210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 328210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=328210]").text(description); $(".js-view-count-work_328210").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_328210").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="328210"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a><script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=328210]'), work: {"id":328210,"title":"Sample Quantiles In Statistical Packages","created_at":"2010-09-15T22:03:17.288-07:00","url":"https://www.academia.edu/328210/Sample_Quantiles_In_Statistical_Packages?f_ri=1351","dom_id":"work_328210","summary":null,"downloadable_attachments":[{"id":51448589,"asset_id":328210,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":45275,"first_name":"Rob","last_name":"Hyndman","domain_name":"monash","page_name":"robjhyndman","display_name":"Rob Hyndman","profile_url":"https://monash.academia.edu/robjhyndman?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_21355912" data-work_id="21355912" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/21355912/XLR_A_Free_Excel_Add_In_for_Introductory_Business_Statistics">XLR: A Free Excel Add-In for Introductory Business Statistics</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">XLR is an Excel add-in that unifies the user friendly, widely popular interface of Excel with the powerful and robust computational capability of the GNU statistical and graphical language R. The add-in attempts to address the American... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_21355912" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">XLR is an Excel add-in that unifies the user friendly, widely popular interface of Excel with the powerful and robust computational capability of the GNU statistical and graphical language R. The add-in attempts to address the American Statistical Association&#39;s comment that &quot;Generic packages such as Excel are not sufficient even for the teaching of statistics, let alone for research and consulting.&quot; R is the program of choice for researchers in statistical methodology that is freely available under the Free Software Foundation&#39;s GNU General Public License (GPL) Agreement. By wedding the interactive mode of Excel with the power of statistical computing of R, XLR provides a solution to the problem of numerical inaccuracy of using Excel and its various internal statistical functions and procedures by harnessing the computational power of R. XLR will be distributed under the GNU GPL Agreement. The GPL puts students, instructors and researchers in control of their usage of the software by providing them with the freedom to run, copy, distribute, study, change and improve the software, thus, freeing them from the bondage of proprietary software. The creation of XLR will not only have a significant impact on the teaching of an Introductory Business Statistics course by providing a free alternative to the commercial proprietary software but also provide researchers in all disciplines who require sophisticated and cutting edge statistical and graphical procedures with a user-friendly interactive data analysis tool when the current set of available commands is expanded to include more advance procedures.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/21355912" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3331222e3f05ec43e6ed90f65716f036" rel="nofollow" data-download="{&quot;attachment_id&quot;:41831169,&quot;asset_id&quot;:21355912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41831169/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5658716" href="https://nau.academia.edu/PinNg">Pin Ng</a><script data-card-contents-for-user="5658716" type="text/json">{"id":5658716,"first_name":"Pin","last_name":"Ng","domain_name":"nau","page_name":"PinNg","display_name":"Pin Ng","profile_url":"https://nau.academia.edu/PinNg?f_ri=1351","photo":"https://0.academia-photos.com/5658716/2460747/2859976/s65_pin.ng.jpg"}</script></span></span></li><li class="js-paper-rank-work_21355912 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="21355912"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 21355912, container: ".js-paper-rank-work_21355912", }); });</script></li><li class="js-percentile-work_21355912 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21355912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_21355912"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_21355912 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="21355912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21355912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21355912]").text(description); $(".js-view-count-work_21355912").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_21355912").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="21355912"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1190911" href="https://www.academia.edu/Documents/in/R">R</a><script data-card-contents-for-ri="1190911" type="text/json">{"id":1190911,"name":"R","url":"https://www.academia.edu/Documents/in/R?f_ri=1351","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=21355912]'), work: {"id":21355912,"title":"XLR: A Free Excel Add-In for Introductory Business Statistics","created_at":"2016-01-31T21:23:35.567-08:00","url":"https://www.academia.edu/21355912/XLR_A_Free_Excel_Add_In_for_Introductory_Business_Statistics?f_ri=1351","dom_id":"work_21355912","summary":"XLR is an Excel add-in that unifies the user friendly, widely popular interface of Excel with the powerful and robust computational capability of the GNU statistical and graphical language R. The add-in attempts to address the American Statistical Association's comment that \"Generic packages such as Excel are not sufficient even for the teaching of statistics, let alone for research and consulting.\" R is the program of choice for researchers in statistical methodology that is freely available under the Free Software Foundation's GNU General Public License (GPL) Agreement. By wedding the interactive mode of Excel with the power of statistical computing of R, XLR provides a solution to the problem of numerical inaccuracy of using Excel and its various internal statistical functions and procedures by harnessing the computational power of R. XLR will be distributed under the GNU GPL Agreement. The GPL puts students, instructors and researchers in control of their usage of the software by providing them with the freedom to run, copy, distribute, study, change and improve the software, thus, freeing them from the bondage of proprietary software. The creation of XLR will not only have a significant impact on the teaching of an Introductory Business Statistics course by providing a free alternative to the commercial proprietary software but also provide researchers in all disciplines who require sophisticated and cutting edge statistical and graphical procedures with a user-friendly interactive data analysis tool when the current set of available commands is expanded to include more advance procedures.","downloadable_attachments":[{"id":41831169,"asset_id":21355912,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5658716,"first_name":"Pin","last_name":"Ng","domain_name":"nau","page_name":"PinNg","display_name":"Pin Ng","profile_url":"https://nau.academia.edu/PinNg?f_ri=1351","photo":"https://0.academia-photos.com/5658716/2460747/2859976/s65_pin.ng.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":1190911,"name":"R","url":"https://www.academia.edu/Documents/in/R?f_ri=1351","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_38655607" data-work_id="38655607" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/38655607/Introduction_to_Structural_Macroeconometrics_Structural_Macroeconometrics_">Introduction to Structural Macroeconometrics [Structural Macroeconometrics]</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/38655607" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5d9f8a7b8625ef8c05fa21a1fe054555" rel="nofollow" data-download="{&quot;attachment_id&quot;:58735462,&quot;asset_id&quot;:38655607,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/58735462/download_file?st=MTc0MDU3MjE4OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="37355" href="https://ualberta.academia.edu/ChetanDave">Chetan Dave</a><script data-card-contents-for-user="37355" type="text/json">{"id":37355,"first_name":"Chetan","last_name":"Dave","domain_name":"ualberta","page_name":"ChetanDave","display_name":"Chetan Dave","profile_url":"https://ualberta.academia.edu/ChetanDave?f_ri=1351","photo":"https://0.academia-photos.com/37355/12371/23539512/s65_chetan.dave.jpg"}</script></span></span></li><li class="js-paper-rank-work_38655607 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="38655607"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 38655607, container: ".js-paper-rank-work_38655607", }); });</script></li><li class="js-percentile-work_38655607 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38655607; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_38655607"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_38655607 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="38655607"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38655607; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38655607]").text(description); $(".js-view-count-work_38655607").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_38655607").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="38655607"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="345" rel="nofollow" href="https://www.academia.edu/Documents/in/Measure_Theory">Measure Theory</a>,&nbsp;<script data-card-contents-for-ri="345" type="text/json">{"id":345,"name":"Measure Theory","url":"https://www.academia.edu/Documents/in/Measure_Theory?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4456" rel="nofollow" href="https://www.academia.edu/Documents/in/Time_Series">Time Series</a>,&nbsp;<script data-card-contents-for-ri="4456" type="text/json">{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="6002" rel="nofollow" href="https://www.academia.edu/Documents/in/Theory">Theory</a><script data-card-contents-for-ri="6002" type="text/json">{"id":6002,"name":"Theory","url":"https://www.academia.edu/Documents/in/Theory?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=38655607]'), work: {"id":38655607,"title":"Introduction to Structural Macroeconometrics [Structural Macroeconometrics]","created_at":"2019-03-28T10:52:24.686-07:00","url":"https://www.academia.edu/38655607/Introduction_to_Structural_Macroeconometrics_Structural_Macroeconometrics_?f_ri=1351","dom_id":"work_38655607","summary":null,"downloadable_attachments":[{"id":58735462,"asset_id":38655607,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":37355,"first_name":"Chetan","last_name":"Dave","domain_name":"ualberta","page_name":"ChetanDave","display_name":"Chetan Dave","profile_url":"https://ualberta.academia.edu/ChetanDave?f_ri=1351","photo":"https://0.academia-photos.com/37355/12371/23539512/s65_chetan.dave.jpg"}],"research_interests":[{"id":345,"name":"Measure Theory","url":"https://www.academia.edu/Documents/in/Measure_Theory?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=1351","nofollow":true},{"id":6002,"name":"Theory","url":"https://www.academia.edu/Documents/in/Theory?f_ri=1351","nofollow":true},{"id":9697,"name":"Applied Research","url":"https://www.academia.edu/Documents/in/Applied_Research?f_ri=1351"},{"id":53132,"name":"Analysis","url":"https://www.academia.edu/Documents/in/Analysis?f_ri=1351"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models?f_ri=1351"},{"id":96446,"name":"Measurement","url":"https://www.academia.edu/Documents/in/Measurement?f_ri=1351"},{"id":116526,"name":"Graduate Student","url":"https://www.academia.edu/Documents/in/Graduate_Student?f_ri=1351"},{"id":121939,"name":"Technique","url":"https://www.academia.edu/Documents/in/Technique?f_ri=1351"},{"id":153169,"name":"Methodologies","url":"https://www.academia.edu/Documents/in/Methodologies?f_ri=1351"},{"id":156874,"name":"Empirical","url":"https://www.academia.edu/Documents/in/Empirical?f_ri=1351"},{"id":186492,"name":"Empirical Research","url":"https://www.academia.edu/Documents/in/Empirical_Research?f_ri=1351"},{"id":664700,"name":"Statistical Model","url":"https://www.academia.edu/Documents/in/Statistical_Model?f_ri=1351"},{"id":1154248,"name":"Theoretical Model","url":"https://www.academia.edu/Documents/in/Theoretical_Model?f_ri=1351"},{"id":1198057,"name":"Computer","url":"https://www.academia.edu/Documents/in/Computer?f_ri=1351"},{"id":1643503,"name":"Structural model","url":"https://www.academia.edu/Documents/in/Structural_model?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9805499" data-work_id="9805499" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/9805499/Quantitative_and_Population_Genetics_with_R_Statistical_Package">Quantitative and Population Genetics with R Statistical Package</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Answer: Based on the presentation on page 665, by &quot;frequency distribution&quot; Pierce means a histogram. And this procedure can be done with the hist() function in R. I created a vector called &quot;digits&quot; and graphed the histogram. The argument... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_9805499" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Answer: Based on the presentation on page 665, by &quot;frequency distribution&quot; Pierce means a histogram. And this procedure can be done with the hist() function in R. I created a vector called &quot;digits&quot; and graphed the histogram. The argument main denotes the title of the graph. The other arguments inside the function are self-explanatory.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9805499" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="657b15d7002bb3d9971df2f3aaa56981" rel="nofollow" data-download="{&quot;attachment_id&quot;:35977446,&quot;asset_id&quot;:9805499,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/35977446/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1203765" href="https://independent.academia.edu/NChung">Nelson Chung</a><script data-card-contents-for-user="1203765" type="text/json">{"id":1203765,"first_name":"Nelson","last_name":"Chung","domain_name":"independent","page_name":"NChung","display_name":"Nelson Chung","profile_url":"https://independent.academia.edu/NChung?f_ri=1351","photo":"https://0.academia-photos.com/1203765/432590/535662/s65_nelson.chung.jpg"}</script></span></span></li><li class="js-paper-rank-work_9805499 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9805499"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9805499, container: ".js-paper-rank-work_9805499", }); });</script></li><li class="js-percentile-work_9805499 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9805499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9805499"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9805499 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9805499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9805499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9805499]").text(description); $(".js-view-count-work_9805499").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9805499").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9805499"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="156" rel="nofollow" href="https://www.academia.edu/Documents/in/Genetics">Genetics</a>,&nbsp;<script data-card-contents-for-ri="156" type="text/json">{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4480" rel="nofollow" href="https://www.academia.edu/Documents/in/Population_Genetics">Population Genetics</a>,&nbsp;<script data-card-contents-for-ri="4480" type="text/json">{"id":4480,"name":"Population Genetics","url":"https://www.academia.edu/Documents/in/Population_Genetics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="17564" rel="nofollow" href="https://www.academia.edu/Documents/in/Quantitative_Genetics">Quantitative Genetics</a><script data-card-contents-for-ri="17564" type="text/json">{"id":17564,"name":"Quantitative Genetics","url":"https://www.academia.edu/Documents/in/Quantitative_Genetics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9805499]'), work: {"id":9805499,"title":"Quantitative and Population Genetics with R Statistical Package","created_at":"2014-12-16T21:25:52.327-08:00","url":"https://www.academia.edu/9805499/Quantitative_and_Population_Genetics_with_R_Statistical_Package?f_ri=1351","dom_id":"work_9805499","summary":"Answer: Based on the presentation on page 665, by \"frequency distribution\" Pierce means a histogram. And this procedure can be done with the hist() function in R. I created a vector called \"digits\" and graphed the histogram. The argument main denotes the title of the graph. The other arguments inside the function are self-explanatory.","downloadable_attachments":[{"id":35977446,"asset_id":9805499,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1203765,"first_name":"Nelson","last_name":"Chung","domain_name":"independent","page_name":"NChung","display_name":"Nelson Chung","profile_url":"https://independent.academia.edu/NChung?f_ri=1351","photo":"https://0.academia-photos.com/1203765/432590/535662/s65_nelson.chung.jpg"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":4480,"name":"Population Genetics","url":"https://www.academia.edu/Documents/in/Population_Genetics?f_ri=1351","nofollow":true},{"id":17564,"name":"Quantitative Genetics","url":"https://www.academia.edu/Documents/in/Quantitative_Genetics?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_16348963 coauthored" data-work_id="16348963" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/16348963/MXM_reference_manual">MXM reference manual</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">MXM is an R package which offers variable selection for high-dimensional data in cases of regression and classification. Many regression models are offered. In addition some functions for Bayesian Networks and graphical models are... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_16348963" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">MXM is an R package which offers variable selection for high-dimensional data in cases of regression and classification. Many regression models are offered. In addition some functions for Bayesian Networks and graphical models are offered.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/16348963" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8cd52d65d252b57bdca5bf8ca512ec4d" rel="nofollow" data-download="{&quot;attachment_id&quot;:57450645,&quot;asset_id&quot;:16348963,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/57450645/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="6338583" href="https://forth.academia.edu/GiorgosAthineou">Giorgos Athineou</a><script data-card-contents-for-user="6338583" type="text/json">{"id":6338583,"first_name":"Giorgos","last_name":"Athineou","domain_name":"forth","page_name":"GiorgosAthineou","display_name":"Giorgos Athineou","profile_url":"https://forth.academia.edu/GiorgosAthineou?f_ri=1351","photo":"https://0.academia-photos.com/6338583/3094240/3803047/s65_giorgos.athinaiou.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-16348963">+2</span><div class="hidden js-additional-users-16348963"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">Μιχαήλ Τσαγρής</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-16348963'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-16348963').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_16348963 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="16348963"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 16348963, container: ".js-paper-rank-work_16348963", }); });</script></li><li class="js-percentile-work_16348963 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16348963; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_16348963"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_16348963 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="16348963"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16348963; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16348963]").text(description); $(".js-view-count-work_16348963").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_16348963").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="16348963"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">81</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" rel="nofollow" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>,&nbsp;<script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="422" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="520" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Mechanics">Statistical Mechanics</a>,&nbsp;<script data-card-contents-for-ri="520" type="text/json">{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a><script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=16348963]'), work: {"id":16348963,"title":"MXM reference manual","created_at":"2015-10-01T00:48:43.441-07:00","url":"https://www.academia.edu/16348963/MXM_reference_manual?f_ri=1351","dom_id":"work_16348963","summary":"MXM is an R package which offers variable selection for high-dimensional data in cases of regression and classification. Many regression models are offered. In addition some functions for Bayesian Networks and graphical models are offered. \r\n\r\n","downloadable_attachments":[{"id":57450645,"asset_id":16348963,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":6338583,"first_name":"Giorgos","last_name":"Athineou","domain_name":"forth","page_name":"GiorgosAthineou","display_name":"Giorgos Athineou","profile_url":"https://forth.academia.edu/GiorgosAthineou?f_ri=1351","photo":"https://0.academia-photos.com/6338583/3094240/3803047/s65_giorgos.athinaiou.jpg"},{"id":71523,"first_name":"Μιχαήλ","last_name":"Τσαγρής","domain_name":"crete","page_name":"ΜιχαήλΤσαγρής","display_name":"Μιχαήλ Τσαγρής","profile_url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82?f_ri=1351","photo":"/images/s65_no_pic.png"},{"id":24434052,"first_name":"Ioannis","last_name":"Tsamardinos","domain_name":"crete","page_name":"IoannisTsamardinos","display_name":"Ioannis Tsamardinos","profile_url":"https://crete.academia.edu/IoannisTsamardinos?f_ri=1351","photo":"https://0.academia-photos.com/24434052/12783404/14207327/s65_ioannis.tsamardinos.jpg"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=1351","nofollow":true},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351"},{"id":1380,"name":"Computer Engineering","url":"https://www.academia.edu/Documents/in/Computer_Engineering?f_ri=1351"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=1351"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_?f_ri=1351"},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":4955,"name":"Computational Modelling","url":"https://www.academia.edu/Documents/in/Computational_Modelling?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=1351"},{"id":6114,"name":"Statistical Genetics","url":"https://www.academia.edu/Documents/in/Statistical_Genetics?f_ri=1351"},{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning?f_ri=1351"},{"id":12853,"name":"Robust Statistics","url":"https://www.academia.edu/Documents/in/Robust_Statistics?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=1351"},{"id":16895,"name":"Modelling","url":"https://www.academia.edu/Documents/in/Modelling?f_ri=1351"},{"id":17429,"name":"Structural Bioinformatics","url":"https://www.academia.edu/Documents/in/Structural_Bioinformatics?f_ri=1351"},{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models?f_ri=1351"},{"id":19297,"name":"Microarray Data Analysis","url":"https://www.academia.edu/Documents/in/Microarray_Data_Analysis?f_ri=1351"},{"id":23892,"name":"Multivariate Data Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Data_Analysis?f_ri=1351"},{"id":24538,"name":"Computing","url":"https://www.academia.edu/Documents/in/Computing?f_ri=1351"},{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks?f_ri=1351"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=1351"},{"id":32701,"name":"Data Mining in Bioinformatics","url":"https://www.academia.edu/Documents/in/Data_Mining_in_Bioinformatics?f_ri=1351"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis?f_ri=1351"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection?f_ri=1351"},{"id":57644,"name":"Automatic Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Automatic_Classification_Machine_Learning_?f_ri=1351"},{"id":59726,"name":"Bioinfomatics","url":"https://www.academia.edu/Documents/in/Bioinfomatics?f_ri=1351"},{"id":63857,"name":"Categorical data analysis","url":"https://www.academia.edu/Documents/in/Categorical_data_analysis?f_ri=1351"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=1351"},{"id":75348,"name":"Cox Regression","url":"https://www.academia.edu/Documents/in/Cox_Regression?f_ri=1351"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation?f_ri=1351"},{"id":85344,"name":"Model Selection","url":"https://www.academia.edu/Documents/in/Model_Selection?f_ri=1351"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection?f_ri=1351"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification?f_ri=1351"},{"id":113749,"name":"Multivariate","url":"https://www.academia.edu/Documents/in/Multivariate?f_ri=1351"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=1351"},{"id":129502,"name":"Poisson regression","url":"https://www.academia.edu/Documents/in/Poisson_regression?f_ri=1351"},{"id":135987,"name":"Hypothesis testing","url":"https://www.academia.edu/Documents/in/Hypothesis_testing?f_ri=1351"},{"id":143038,"name":"Machine Learning and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Pattern_Recognition?f_ri=1351"},{"id":161594,"name":"High Dimensional Data","url":"https://www.academia.edu/Documents/in/High_Dimensional_Data?f_ri=1351"},{"id":188474,"name":"Applied Statistics and Statistical Modelling","url":"https://www.academia.edu/Documents/in/Applied_Statistics_and_Statistical_Modelling?f_ri=1351"},{"id":199316,"name":"Multiple Linear Regression","url":"https://www.academia.edu/Documents/in/Multiple_Linear_Regression?f_ri=1351"},{"id":224578,"name":"Multiple Regression","url":"https://www.academia.edu/Documents/in/Multiple_Regression?f_ri=1351"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics?f_ri=1351"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics?f_ri=1351"},{"id":371716,"name":"Pearson Correlation","url":"https://www.academia.edu/Documents/in/Pearson_Correlation?f_ri=1351"},{"id":382620,"name":"Multinomial logit models","url":"https://www.academia.edu/Documents/in/Multinomial_logit_models?f_ri=1351"},{"id":388661,"name":"Statistical method in gene expression","url":"https://www.academia.edu/Documents/in/Statistical_method_in_gene_expression?f_ri=1351"},{"id":404238,"name":"Chi-Square","url":"https://www.academia.edu/Documents/in/Chi-Square?f_ri=1351"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining?f_ri=1351"},{"id":484415,"name":"Multiple regression analysis","url":"https://www.academia.edu/Documents/in/Multiple_regression_analysis?f_ri=1351"},{"id":534154,"name":"Statistik","url":"https://www.academia.edu/Documents/in/Statistik?f_ri=1351"},{"id":559503,"name":"Machine Learning Big Data","url":"https://www.academia.edu/Documents/in/Machine_Learning_Big_Data?f_ri=1351"},{"id":579838,"name":"Experimental Statistics: Statistical Analysis of Experiments","url":"https://www.academia.edu/Documents/in/Experimental_Statistics_Statistical_Analysis_of_Experiments?f_ri=1351"},{"id":582369,"name":"Ordinal Regression","url":"https://www.academia.edu/Documents/in/Ordinal_Regression?f_ri=1351"},{"id":611814,"name":"Correlation coefficient","url":"https://www.academia.edu/Documents/in/Correlation_coefficient?f_ri=1351"},{"id":742501,"name":"Multinomial Logistic Regression","url":"https://www.academia.edu/Documents/in/Multinomial_Logistic_Regression?f_ri=1351"},{"id":753505,"name":"Chi Square Test","url":"https://www.academia.edu/Documents/in/Chi_Square_Test?f_ri=1351"},{"id":756715,"name":"Robust Regression","url":"https://www.academia.edu/Documents/in/Robust_Regression?f_ri=1351"},{"id":795003,"name":"Linear Regression","url":"https://www.academia.edu/Documents/in/Linear_Regression?f_ri=1351"},{"id":795013,"name":"Test of Independence","url":"https://www.academia.edu/Documents/in/Test_of_Independence?f_ri=1351"},{"id":839342,"name":"Binary Logistic Regression","url":"https://www.academia.edu/Documents/in/Binary_Logistic_Regression?f_ri=1351"},{"id":839955,"name":"Robust Statistical Methods","url":"https://www.academia.edu/Documents/in/Robust_Statistical_Methods?f_ri=1351"},{"id":862259,"name":"Multivariate Statistical Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Analysis?f_ri=1351"},{"id":966253,"name":"Multivariate Statistical Methods","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Methods?f_ri=1351"},{"id":976616,"name":"Statistical Computing In R","url":"https://www.academia.edu/Documents/in/Statistical_Computing_In_R?f_ri=1351"},{"id":1007210,"name":"High Dimensional Inference","url":"https://www.academia.edu/Documents/in/High_Dimensional_Inference?f_ri=1351"},{"id":1181584,"name":"Beta Regression","url":"https://www.academia.edu/Documents/in/Beta_Regression?f_ri=1351"},{"id":1181591,"name":"Regresión Beta","url":"https://www.academia.edu/Documents/in/Regresion_Beta?f_ri=1351"},{"id":1340986,"name":"Multivariate Regression Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Regression_Analysis?f_ri=1351"},{"id":1496485,"name":"Computational Statistics and Data Analysis","url":"https://www.academia.edu/Documents/in/Computational_Statistics_and_Data_Analysis?f_ri=1351"},{"id":1583936,"name":"Robust variable selection for high dimensional data","url":"https://www.academia.edu/Documents/in/Robust_variable_selection_for_high_dimensional_data?f_ri=1351"},{"id":2010416,"name":"Conditional Independence","url":"https://www.academia.edu/Documents/in/Conditional_Independence?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_13794192 coauthored" data-work_id="13794192" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/13794192/Accelerated_strength_and_testing_of_concrete_using_blended_cement">Accelerated strength and testing of concrete using blended cement</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Accelerated strength testing using the boiling water procedure of ASTM C 684 was performed to evaluate this test method for use in the routine quality control of concrete made of local materials with particular emphasis on the use of... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_13794192" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Accelerated strength testing using the boiling water procedure of ASTM C 684 was performed to evaluate this test method for use in the routine quality control of concrete made of local materials with particular emphasis on the use of blended cements, and in the prediction of potential quality and strength of concrete at later ages. Large number of groups of standard concrete specimens are sampled;</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/13794192" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7530e2a1299f1034085b267954071ee2" rel="nofollow" data-download="{&quot;attachment_id&quot;:44941560,&quot;asset_id&quot;:13794192,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44941560/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32897224" href="https://independent.academia.edu/MResheidat">Musa Resheidat</a><script data-card-contents-for-user="32897224" type="text/json">{"id":32897224,"first_name":"Musa","last_name":"Resheidat","domain_name":"independent","page_name":"MResheidat","display_name":"Musa Resheidat","profile_url":"https://independent.academia.edu/MResheidat?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-13794192">+1</span><div class="hidden js-additional-users-13794192"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MwafagGhanma">Mwafag Ghanma</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-13794192'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-13794192').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_13794192 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="13794192"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 13794192, container: ".js-paper-rank-work_13794192", }); });</script></li><li class="js-percentile-work_13794192 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13794192; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_13794192"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_13794192 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="13794192"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13794192; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13794192]").text(description); $(".js-view-count-work_13794192").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_13794192").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="13794192"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="37306" rel="nofollow" href="https://www.academia.edu/Documents/in/Quality_Control">Quality Control</a>,&nbsp;<script data-card-contents-for-ri="37306" type="text/json">{"id":37306,"name":"Quality Control","url":"https://www.academia.edu/Documents/in/Quality_Control?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="97641" rel="nofollow" href="https://www.academia.edu/Documents/in/Compressive_Strength">Compressive Strength</a>,&nbsp;<script data-card-contents-for-ri="97641" type="text/json">{"id":97641,"name":"Compressive Strength","url":"https://www.academia.edu/Documents/in/Compressive_Strength?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="123230" rel="nofollow" href="https://www.academia.edu/Documents/in/Regression_Analysis">Regression Analysis</a><script data-card-contents-for-ri="123230" type="text/json">{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=13794192]'), work: {"id":13794192,"title":"Accelerated strength and testing of concrete using blended cement","created_at":"2015-07-08T04:31:02.285-07:00","url":"https://www.academia.edu/13794192/Accelerated_strength_and_testing_of_concrete_using_blended_cement?f_ri=1351","dom_id":"work_13794192","summary":"Accelerated strength testing using the boiling water procedure of ASTM C 684 was performed to evaluate this test method for use in the routine quality control of concrete made of local materials with particular emphasis on the use of blended cements, and in the prediction of potential quality and strength of concrete at later ages. Large number of groups of standard concrete specimens are sampled;","downloadable_attachments":[{"id":44941560,"asset_id":13794192,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32897224,"first_name":"Musa","last_name":"Resheidat","domain_name":"independent","page_name":"MResheidat","display_name":"Musa Resheidat","profile_url":"https://independent.academia.edu/MResheidat?f_ri=1351","photo":"/images/s65_no_pic.png"},{"id":6392043,"first_name":"Mwafag","last_name":"Ghanma","domain_name":"independent","page_name":"MwafagGhanma","display_name":"Mwafag Ghanma","profile_url":"https://independent.academia.edu/MwafagGhanma?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":37306,"name":"Quality Control","url":"https://www.academia.edu/Documents/in/Quality_Control?f_ri=1351","nofollow":true},{"id":97641,"name":"Compressive Strength","url":"https://www.academia.edu/Documents/in/Compressive_Strength?f_ri=1351","nofollow":true},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis?f_ri=1351","nofollow":true},{"id":224767,"name":"Prediction Model","url":"https://www.academia.edu/Documents/in/Prediction_Model?f_ri=1351"},{"id":472309,"name":"Advanced cement-based materials","url":"https://www.academia.edu/Documents/in/Advanced_cement-based_materials?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1513798" data-work_id="1513798" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1513798/Survey_of_clustering_algorithms">Survey of clustering algorithms</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_1513798" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1513798" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bf0352c865c5283e008badda88ba2435" rel="nofollow" data-download="{&quot;attachment_id&quot;:12173759,&quot;asset_id&quot;:1513798,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/12173759/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1534432" href="https://atbunet.academia.edu/IbitoyeAdeniyiFrancis">Ibitoye Adeniyi Francis</a><script data-card-contents-for-user="1534432" type="text/json">{"id":1534432,"first_name":"Ibitoye","last_name":"Adeniyi Francis","domain_name":"atbunet","page_name":"IbitoyeAdeniyiFrancis","display_name":"Ibitoye Adeniyi Francis","profile_url":"https://atbunet.academia.edu/IbitoyeAdeniyiFrancis?f_ri=1351","photo":"https://0.academia-photos.com/1534432/542740/678017/s65_ibitoye.adeniyi_francis.jpg"}</script></span></span></li><li class="js-paper-rank-work_1513798 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1513798"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1513798, container: ".js-paper-rank-work_1513798", }); });</script></li><li class="js-percentile-work_1513798 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1513798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1513798"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1513798 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1513798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1513798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1513798]").text(description); $(".js-view-count-work_1513798").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1513798").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1513798"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">22</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" rel="nofollow" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>,&nbsp;<script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="422" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="428" rel="nofollow" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a><script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1513798]'), work: {"id":1513798,"title":"Survey of clustering algorithms","created_at":"2012-04-17T21:26:47.117-07:00","url":"https://www.academia.edu/1513798/Survey_of_clustering_algorithms?f_ri=1351","dom_id":"work_1513798","summary":"Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.","downloadable_attachments":[{"id":12173759,"asset_id":1513798,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1534432,"first_name":"Ibitoye","last_name":"Adeniyi Francis","domain_name":"atbunet","page_name":"IbitoyeAdeniyiFrancis","display_name":"Ibitoye Adeniyi Francis","profile_url":"https://atbunet.academia.edu/IbitoyeAdeniyiFrancis?f_ri=1351","photo":"https://0.academia-photos.com/1534432/542740/678017/s65_ibitoye.adeniyi_francis.jpg"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=1351","nofollow":true},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=1351"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=1351"},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=1351"},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=1351"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=1351"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=1351"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes?f_ri=1351"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation?f_ri=1351"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=1351"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis?f_ri=1351"},{"id":160328,"name":"Prior Knowledge","url":"https://www.academia.edu/Documents/in/Prior_Knowledge?f_ri=1351"},{"id":202672,"name":"Adaptive Resonance Theory","url":"https://www.academia.edu/Documents/in/Adaptive_Resonance_Theory?f_ri=1351"},{"id":217153,"name":"Traveling Salesman Problem","url":"https://www.academia.edu/Documents/in/Traveling_Salesman_Problem?f_ri=1351"},{"id":254626,"name":"Cluster","url":"https://www.academia.edu/Documents/in/Cluster?f_ri=1351"},{"id":533928,"name":"Proximity","url":"https://www.academia.edu/Documents/in/Proximity?f_ri=1351"},{"id":852989,"name":"Clustering Algorithm","url":"https://www.academia.edu/Documents/in/Clustering_Algorithm?f_ri=1351"},{"id":1931321,"name":"Application Software","url":"https://www.academia.edu/Documents/in/Application_Software?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15702317 coauthored" data-work_id="15702317" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15702317/Calibration_and_Filtering_for_Multi_Factor_Commodity_Models_with_Seasonality_Incorporating_Panel_Data_from_Futures_Contracts">Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We examine a general multi-factor model for commodity spot prices and futures valuation. We extend the multi-factor long-short model in [1] and [2] in two important aspects: firstly we allow for both the long and short term dynamic... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_15702317" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We examine a general multi-factor model for commodity spot prices and futures valuation. We extend the multi-factor long-short model in [1] and [2] in two important aspects: firstly we allow for both the long and short term dynamic factors to be mean reverting incorporating stochastic volatility factors and secondly we develop an additive structural seasonality model. Then a Milstein discretized non-linear stochastic volatility state space representation for the model is developed which allows for futures and options contracts in the observation equation. We then develop numerical methodology based on an advanced Sequential Monte Carlo algorithm utilising Particle Markov chain Monte Carlo to perform calibration of the model jointly with the filtering of the latent processes for the long-short dynamics and volatility factors. In this regard we explore and develop a novel methodology based on an adaptive Rao-Blackwellised version of the Particle Markov chain Monte Carlo methodology. In doing this we deal accurately with the non-linearities in the state-space model which are therefore introduced into the filtering framework. We perform analysis on synthetic and real data for oil commodities.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15702317" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="757f5cf322d9dadae22be81838669569" rel="nofollow" data-download="{&quot;attachment_id&quot;:42954669,&quot;asset_id&quot;:15702317,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42954669/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34891141" href="https://ucsb.academia.edu/GarethPeters">Gareth Peters</a><script data-card-contents-for-user="34891141" type="text/json">{"id":34891141,"first_name":"Gareth","last_name":"Peters","domain_name":"ucsb","page_name":"GarethPeters","display_name":"Gareth Peters","profile_url":"https://ucsb.academia.edu/GarethPeters?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-15702317">+1</span><div class="hidden js-additional-users-15702317"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/PavelShevchenko">Pavel Shevchenko</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-15702317'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-15702317').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_15702317 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15702317"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15702317, container: ".js-paper-rank-work_15702317", }); });</script></li><li class="js-percentile-work_15702317 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15702317; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15702317"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15702317 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15702317"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15702317; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15702317]").text(description); $(".js-view-count-work_15702317").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15702317").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15702317"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="305" rel="nofollow" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="3527" rel="nofollow" href="https://www.academia.edu/Documents/in/Computational_Finance">Computational Finance</a><script data-card-contents-for-ri="3527" type="text/json">{"id":3527,"name":"Computational Finance","url":"https://www.academia.edu/Documents/in/Computational_Finance?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15702317]'), work: {"id":15702317,"title":"Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts","created_at":"2015-09-14T18:47:14.855-07:00","url":"https://www.academia.edu/15702317/Calibration_and_Filtering_for_Multi_Factor_Commodity_Models_with_Seasonality_Incorporating_Panel_Data_from_Futures_Contracts?f_ri=1351","dom_id":"work_15702317","summary":"We examine a general multi-factor model for commodity spot prices and futures valuation. We extend the multi-factor long-short model in [1] and [2] in two important aspects: firstly we allow for both the long and short term dynamic factors to be mean reverting incorporating stochastic volatility factors and secondly we develop an additive structural seasonality model. Then a Milstein discretized non-linear stochastic volatility state space representation for the model is developed which allows for futures and options contracts in the observation equation. We then develop numerical methodology based on an advanced Sequential Monte Carlo algorithm utilising Particle Markov chain Monte Carlo to perform calibration of the model jointly with the filtering of the latent processes for the long-short dynamics and volatility factors. In this regard we explore and develop a novel methodology based on an adaptive Rao-Blackwellised version of the Particle Markov chain Monte Carlo methodology. In doing this we deal accurately with the non-linearities in the state-space model which are therefore introduced into the filtering framework. We perform analysis on synthetic and real data for oil commodities.","downloadable_attachments":[{"id":42954669,"asset_id":15702317,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34891141,"first_name":"Gareth","last_name":"Peters","domain_name":"ucsb","page_name":"GarethPeters","display_name":"Gareth Peters","profile_url":"https://ucsb.academia.edu/GarethPeters?f_ri=1351","photo":"/images/s65_no_pic.png"},{"id":35099821,"first_name":"Pavel","last_name":"Shevchenko","domain_name":"independent","page_name":"PavelShevchenko","display_name":"Pavel Shevchenko","profile_url":"https://independent.academia.edu/PavelShevchenko?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":3527,"name":"Computational Finance","url":"https://www.academia.edu/Documents/in/Computational_Finance?f_ri=1351","nofollow":true},{"id":10552,"name":"Sequential Monte Carlo","url":"https://www.academia.edu/Documents/in/Sequential_Monte_Carlo?f_ri=1351"},{"id":40860,"name":"Panel Data","url":"https://www.academia.edu/Documents/in/Panel_Data?f_ri=1351"},{"id":51212,"name":"Performance Analysis","url":"https://www.academia.edu/Documents/in/Performance_Analysis?f_ri=1351"},{"id":57433,"name":"Seasonality","url":"https://www.academia.edu/Documents/in/Seasonality?f_ri=1351"},{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo?f_ri=1351"},{"id":87533,"name":"Stochastic Volatility","url":"https://www.academia.edu/Documents/in/Stochastic_Volatility?f_ri=1351"},{"id":514741,"name":"Five Factor Model","url":"https://www.academia.edu/Documents/in/Five_Factor_Model?f_ri=1351"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_11946435" data-work_id="11946435" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/11946435/GENERATING_SIMPLIFIED_STATISTICAL_POPULATION_PROFILES_TO_INFORM_LOCAL_GOVERNMENT_POLICIES_AND_PLANNING">GENERATING SIMPLIFIED STATISTICAL POPULATION PROFILES TO INFORM LOCAL GOVERNMENT POLICIES AND PLANNING</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The paper reports on both methodological and substantive findings. It presents a method for generating simplified representations for regional urban populations, their geographical sub-populations and communities. the method generates... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_11946435" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The paper reports on both methodological and substantive findings. It presents a method for generating simplified representations for regional urban populations, their geographical sub-populations and communities. the method generates greatly simplified high-resolution socio-economic profiles of populated geographical areas from complex large census data sets.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/11946435" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6516d7b27ec904f6dab89df533e09f69" rel="nofollow" data-download="{&quot;attachment_id&quot;:37306419,&quot;asset_id&quot;:11946435,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/37306419/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="18878088" href="https://independent.academia.edu/trevorwren">Trevor Wren BSc MA MPhil PhD MBA</a><script data-card-contents-for-user="18878088" type="text/json">{"id":18878088,"first_name":"Trevor","last_name":"Wren BSc MA MPhil PhD MBA","domain_name":"independent","page_name":"trevorwren","display_name":"Trevor Wren BSc MA MPhil PhD MBA","profile_url":"https://independent.academia.edu/trevorwren?f_ri=1351","photo":"https://0.academia-photos.com/18878088/5247911/6001811/s65_trevor.wren.jpg_oh_12adb13cb0c446279d6b0139cd929fbc_oe_54f03f51___gda___1425507246_85468fc3920de1b4fce8638dfb1ba988"}</script></span></span></li><li class="js-paper-rank-work_11946435 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="11946435"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 11946435, container: ".js-paper-rank-work_11946435", }); });</script></li><li class="js-percentile-work_11946435 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11946435; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_11946435"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_11946435 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="11946435"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11946435; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11946435]").text(description); $(".js-view-count-work_11946435").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_11946435").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="11946435"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">726</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="37" rel="nofollow" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>,&nbsp;<script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="38" rel="nofollow" href="https://www.academia.edu/Documents/in/Management">Management</a>,&nbsp;<script data-card-contents-for-ri="38" type="text/json">{"id":38,"name":"Management","url":"https://www.academia.edu/Documents/in/Management?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="39" rel="nofollow" href="https://www.academia.edu/Documents/in/Marketing">Marketing</a>,&nbsp;<script data-card-contents-for-ri="39" type="text/json">{"id":39,"name":"Marketing","url":"https://www.academia.edu/Documents/in/Marketing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="184" rel="nofollow" href="https://www.academia.edu/Documents/in/Sociology">Sociology</a><script data-card-contents-for-ri="184" type="text/json">{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=11946435]'), work: {"id":11946435,"title":"GENERATING SIMPLIFIED STATISTICAL POPULATION PROFILES TO INFORM LOCAL GOVERNMENT POLICIES AND PLANNING","created_at":"2015-04-14T11:41:19.199-07:00","url":"https://www.academia.edu/11946435/GENERATING_SIMPLIFIED_STATISTICAL_POPULATION_PROFILES_TO_INFORM_LOCAL_GOVERNMENT_POLICIES_AND_PLANNING?f_ri=1351","dom_id":"work_11946435","summary":"The paper reports on both methodological and substantive findings. It presents a method for generating simplified representations for regional urban populations, their geographical sub-populations and communities. the method generates greatly simplified high-resolution socio-economic profiles of populated geographical areas from complex large census data sets. ","downloadable_attachments":[{"id":37306419,"asset_id":11946435,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":18878088,"first_name":"Trevor","last_name":"Wren BSc MA MPhil PhD MBA","domain_name":"independent","page_name":"trevorwren","display_name":"Trevor Wren BSc MA MPhil PhD MBA","profile_url":"https://independent.academia.edu/trevorwren?f_ri=1351","photo":"https://0.academia-photos.com/18878088/5247911/6001811/s65_trevor.wren.jpg_oh_12adb13cb0c446279d6b0139cd929fbc_oe_54f03f51___gda___1425507246_85468fc3920de1b4fce8638dfb1ba988"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=1351","nofollow":true},{"id":38,"name":"Management","url":"https://www.academia.edu/Documents/in/Management?f_ri=1351","nofollow":true},{"id":39,"name":"Marketing","url":"https://www.academia.edu/Documents/in/Marketing?f_ri=1351","nofollow":true},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology?f_ri=1351","nofollow":true},{"id":190,"name":"Environmental Sociology","url":"https://www.academia.edu/Documents/in/Environmental_Sociology?f_ri=1351"},{"id":193,"name":"Economic Sociology","url":"https://www.academia.edu/Documents/in/Economic_Sociology?f_ri=1351"},{"id":201,"name":"Political Sociology","url":"https://www.academia.edu/Documents/in/Political_Sociology?f_ri=1351"},{"id":202,"name":"Program Evaluation","url":"https://www.academia.edu/Documents/in/Program_Evaluation?f_ri=1351"},{"id":203,"name":"Public Sociology","url":"https://www.academia.edu/Documents/in/Public_Sociology?f_ri=1351"},{"id":206,"name":"Social Change","url":"https://www.academia.edu/Documents/in/Social_Change?f_ri=1351"},{"id":207,"name":"Social Demography","url":"https://www.academia.edu/Documents/in/Social_Demography?f_ri=1351"},{"id":208,"name":"Social Movements","url":"https://www.academia.edu/Documents/in/Social_Movements?f_ri=1351"},{"id":209,"name":"Social Theory","url":"https://www.academia.edu/Documents/in/Social_Theory?f_ri=1351"},{"id":211,"name":"Sociology of Culture","url":"https://www.academia.edu/Documents/in/Sociology_of_Culture?f_ri=1351"},{"id":215,"name":"Sociology of Families","url":"https://www.academia.edu/Documents/in/Sociology_of_Families?f_ri=1351"},{"id":216,"name":"Sociology Of Markets","url":"https://www.academia.edu/Documents/in/Sociology_Of_Markets?f_ri=1351"},{"id":220,"name":"Visual Sociology","url":"https://www.academia.edu/Documents/in/Visual_Sociology?f_ri=1351"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography?f_ri=1351"},{"id":262,"name":"Human Geography","url":"https://www.academia.edu/Documents/in/Human_Geography?f_ri=1351"},{"id":263,"name":"Cultural Geography","url":"https://www.academia.edu/Documents/in/Cultural_Geography?f_ri=1351"},{"id":266,"name":"Historical Geography","url":"https://www.academia.edu/Documents/in/Historical_Geography?f_ri=1351"},{"id":268,"name":"Political Geography and Geopolitics","url":"https://www.academia.edu/Documents/in/Political_Geography_and_Geopolitics?f_ri=1351"},{"id":271,"name":"Population Geography","url":"https://www.academia.edu/Documents/in/Population_Geography?f_ri=1351"},{"id":272,"name":"Social Geography","url":"https://www.academia.edu/Documents/in/Social_Geography?f_ri=1351"},{"id":277,"name":"Urban Geography","url":"https://www.academia.edu/Documents/in/Urban_Geography?f_ri=1351"},{"id":278,"name":"Environmental Geography","url":"https://www.academia.edu/Documents/in/Environmental_Geography?f_ri=1351"},{"id":279,"name":"Regional Geography","url":"https://www.academia.edu/Documents/in/Regional_Geography?f_ri=1351"},{"id":310,"name":"Demography","url":"https://www.academia.edu/Documents/in/Demography?f_ri=1351"},{"id":370,"name":"Complex Analysis","url":"https://www.academia.edu/Documents/in/Complex_Analysis?f_ri=1351"},{"id":378,"name":"Area Studies","url":"https://www.academia.edu/Documents/in/Area_Studies?f_ri=1351"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science?f_ri=1351"},{"id":459,"name":"Information Science","url":"https://www.academia.edu/Documents/in/Information_Science?f_ri=1351"},{"id":470,"name":"Expert Systems","url":"https://www.academia.edu/Documents/in/Expert_Systems?f_ri=1351"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=1351"},{"id":492,"name":"Management Information Systems","url":"https://www.academia.edu/Documents/in/Management_Information_Systems?f_ri=1351"},{"id":586,"name":"Health Sciences","url":"https://www.academia.edu/Documents/in/Health_Sciences?f_ri=1351"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics?f_ri=1351"},{"id":727,"name":"Development Economics","url":"https://www.academia.edu/Documents/in/Development_Economics?f_ri=1351"},{"id":728,"name":"Economic Geography","url":"https://www.academia.edu/Documents/in/Economic_Geography?f_ri=1351"},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=1351"},{"id":749,"name":"Mathematical Economics","url":"https://www.academia.edu/Documents/in/Mathematical_Economics?f_ri=1351"},{"id":761,"name":"Public Economics","url":"https://www.academia.edu/Documents/in/Public_Economics?f_ri=1351"},{"id":765,"name":"Managerial Economics","url":"https://www.academia.edu/Documents/in/Managerial_Economics?f_ri=1351"},{"id":798,"name":"Policy Analysis/Policy Studies","url":"https://www.academia.edu/Documents/in/Policy_Analysis_Policy_Studies?f_ri=1351"},{"id":799,"name":"Public Administration","url":"https://www.academia.edu/Documents/in/Public_Administration?f_ri=1351"},{"id":802,"name":"Political Economy","url":"https://www.academia.edu/Documents/in/Political_Economy?f_ri=1351"},{"id":851,"name":"Complex Systems Science","url":"https://www.academia.edu/Documents/in/Complex_Systems_Science?f_ri=1351"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351"},{"id":940,"name":"Social Work","url":"https://www.academia.edu/Documents/in/Social_Work?f_ri=1351"},{"id":941,"name":"Social Policy","url":"https://www.academia.edu/Documents/in/Social_Policy?f_ri=1351"},{"id":948,"name":"Historical Sociology","url":"https://www.academia.edu/Documents/in/Historical_Sociology?f_ri=1351"},{"id":954,"name":"Social Anthropology","url":"https://www.academia.edu/Documents/in/Social_Anthropology?f_ri=1351"},{"id":957,"name":"Cultural Sociology","url":"https://www.academia.edu/Documents/in/Cultural_Sociology?f_ri=1351"},{"id":1073,"name":"Public Management","url":"https://www.academia.edu/Documents/in/Public_Management?f_ri=1351"},{"id":1113,"name":"Quantitative Methods (Political Science)","url":"https://www.academia.edu/Documents/in/Quantitative_Methods_Political_Science_?f_ri=1351"},{"id":1125,"name":"Cultural Policy","url":"https://www.academia.edu/Documents/in/Cultural_Policy?f_ri=1351"},{"id":1230,"name":"Social Research Methods and Methodology","url":"https://www.academia.edu/Documents/in/Social_Research_Methods_and_Methodology?f_ri=1351"},{"id":1235,"name":"Sociology of Work","url":"https://www.academia.edu/Documents/in/Sociology_of_Work?f_ri=1351"},{"id":1237,"name":"Social Sciences","url":"https://www.academia.edu/Documents/in/Social_Sciences?f_ri=1351"},{"id":1241,"name":"Knowledge Management","url":"https://www.academia.edu/Documents/in/Knowledge_Management?f_ri=1351"},{"id":1292,"name":"Health Economics","url":"https://www.academia.edu/Documents/in/Health_Economics?f_ri=1351"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351"},{"id":1362,"name":"Spatial Analysis","url":"https://www.academia.edu/Documents/in/Spatial_Analysis?f_ri=1351"},{"id":1363,"name":"Spatial Modeling","url":"https://www.academia.edu/Documents/in/Spatial_Modeling?f_ri=1351"},{"id":1401,"name":"City-fications: How We Urbanize Places We Are","url":"https://www.academia.edu/Documents/in/City-fications_How_We_Urbanize_Places_We_Are?f_ri=1351"},{"id":1453,"name":"Information Management","url":"https://www.academia.edu/Documents/in/Information_Management?f_ri=1351"},{"id":1495,"name":"Location Based Services","url":"https://www.academia.edu/Documents/in/Location_Based_Services?f_ri=1351"},{"id":1599,"name":"Reflective Practice","url":"https://www.academia.edu/Documents/in/Reflective_Practice?f_ri=1351"},{"id":1661,"name":"Fire and Emergency Services","url":"https://www.academia.edu/Documents/in/Fire_and_Emergency_Services?f_ri=1351"},{"id":1696,"name":"Political Theory","url":"https://www.academia.edu/Documents/in/Political_Theory?f_ri=1351"},{"id":1714,"name":"Regional Sciences","url":"https://www.academia.edu/Documents/in/Regional_Sciences?f_ri=1351"},{"id":1717,"name":"Economic Policy Evaluation","url":"https://www.academia.edu/Documents/in/Economic_Policy_Evaluation?f_ri=1351"},{"id":1725,"name":"Historical Demography","url":"https://www.academia.edu/Documents/in/Historical_Demography?f_ri=1351"},{"id":1786,"name":"Social Marketing","url":"https://www.academia.edu/Documents/in/Social_Marketing?f_ri=1351"},{"id":1910,"name":"Marital research","url":"https://www.academia.edu/Documents/in/Marital_research?f_ri=1351"},{"id":1935,"name":"Place promotion and marketing","url":"https://www.academia.edu/Documents/in/Place_promotion_and_marketing?f_ri=1351"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=1351"},{"id":2089,"name":"Social Identity","url":"https://www.academia.edu/Documents/in/Social_Identity?f_ri=1351"},{"id":2099,"name":"Information Society","url":"https://www.academia.edu/Documents/in/Information_Society?f_ri=1351"},{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity?f_ri=1351"},{"id":2193,"name":"Spatial Practices","url":"https://www.academia.edu/Documents/in/Spatial_Practices?f_ri=1351"},{"id":2431,"name":"Urban Politics","url":"https://www.academia.edu/Documents/in/Urban_Politics?f_ri=1351"},{"id":2433,"name":"Place and Identity","url":"https://www.academia.edu/Documents/in/Place_and_Identity?f_ri=1351"},{"id":2486,"name":"Urban management","url":"https://www.academia.edu/Documents/in/Urban_management?f_ri=1351"},{"id":2489,"name":"Policy Analysis and Decision Making","url":"https://www.academia.edu/Documents/in/Policy_Analysis_and_Decision_Making?f_ri=1351"},{"id":2582,"name":"Interdisciplinarity","url":"https://www.academia.edu/Documents/in/Interdisciplinarity?f_ri=1351"},{"id":2727,"name":"Welfare State","url":"https://www.academia.edu/Documents/in/Welfare_State?f_ri=1351"},{"id":2789,"name":"Government","url":"https://www.academia.edu/Documents/in/Government?f_ri=1351"},{"id":2807,"name":"Evaluation Research","url":"https://www.academia.edu/Documents/in/Evaluation_Research?f_ri=1351"},{"id":2824,"name":"Working Classes","url":"https://www.academia.edu/Documents/in/Working_Classes?f_ri=1351"},{"id":2826,"name":"Social sciences and values","url":"https://www.academia.edu/Documents/in/Social_sciences_and_values?f_ri=1351"},{"id":2933,"name":"Democratic Theory","url":"https://www.academia.edu/Documents/in/Democratic_Theory?f_ri=1351"},{"id":2973,"name":"Spatial cognition","url":"https://www.academia.edu/Documents/in/Spatial_cognition?f_ri=1351"},{"id":2993,"name":"Sociology of Knowledge","url":"https://www.academia.edu/Documents/in/Sociology_of_Knowledge?f_ri=1351"},{"id":2994,"name":"Sociology of Economic Knowledge","url":"https://www.academia.edu/Documents/in/Sociology_of_Economic_Knowledge?f_ri=1351"},{"id":3060,"name":"Management Learning","url":"https://www.academia.edu/Documents/in/Management_Learning?f_ri=1351"},{"id":3100,"name":"Flood Risk Management","url":"https://www.academia.edu/Documents/in/Flood_Risk_Management?f_ri=1351"},{"id":3101,"name":"Community Resilience","url":"https://www.academia.edu/Documents/in/Community_Resilience?f_ri=1351"},{"id":3116,"name":"Space and Place","url":"https://www.academia.edu/Documents/in/Space_and_Place?f_ri=1351"},{"id":3155,"name":"Complexity Theory","url":"https://www.academia.edu/Documents/in/Complexity_Theory?f_ri=1351"},{"id":3174,"name":"Quality of Life Studies","url":"https://www.academia.edu/Documents/in/Quality_of_Life_Studies?f_ri=1351"},{"id":3206,"name":"Social Statistics","url":"https://www.academia.edu/Documents/in/Social_Statistics?f_ri=1351"},{"id":3219,"name":"Regional policy","url":"https://www.academia.edu/Documents/in/Regional_policy?f_ri=1351"},{"id":3231,"name":"Governmentality","url":"https://www.academia.edu/Documents/in/Governmentality?f_ri=1351"},{"id":3243,"name":"Nonparametric Statistics","url":"https://www.academia.edu/Documents/in/Nonparametric_Statistics?f_ri=1351"},{"id":3265,"name":"Regional Science","url":"https://www.academia.edu/Documents/in/Regional_Science?f_ri=1351"},{"id":3282,"name":"Service Design","url":"https://www.academia.edu/Documents/in/Service_Design?f_ri=1351"},{"id":3287,"name":"Regulation And Governance","url":"https://www.academia.edu/Documents/in/Regulation_And_Governance?f_ri=1351"},{"id":3305,"name":"Quantitative Methods (Sociology)","url":"https://www.academia.edu/Documents/in/Quantitative_Methods_Sociology_?f_ri=1351"},{"id":3386,"name":"Design for Social Innovation","url":"https://www.academia.edu/Documents/in/Design_for_Social_Innovation?f_ri=1351"},{"id":3407,"name":"Environmental Studies","url":"https://www.academia.edu/Documents/in/Environmental_Studies?f_ri=1351"},{"id":3410,"name":"Urban History","url":"https://www.academia.edu/Documents/in/Urban_History?f_ri=1351"},{"id":3424,"name":"Information Visualization","url":"https://www.academia.edu/Documents/in/Information_Visualization?f_ri=1351"},{"id":3455,"name":"Third Sector","url":"https://www.academia.edu/Documents/in/Third_Sector?f_ri=1351"},{"id":3461,"name":"Services Marketing and Management","url":"https://www.academia.edu/Documents/in/Services_Marketing_and_Management?f_ri=1351"},{"id":3470,"name":"Community Engagement \u0026 Participation","url":"https://www.academia.edu/Documents/in/Community_Engagement_and_Participation?f_ri=1351"},{"id":3474,"name":"Community Development","url":"https://www.academia.edu/Documents/in/Community_Development?f_ri=1351"},{"id":3477,"name":"Strategic Foresight","url":"https://www.academia.edu/Documents/in/Strategic_Foresight?f_ri=1351"},{"id":3488,"name":"Social Studies Education","url":"https://www.academia.edu/Documents/in/Social_Studies_Education?f_ri=1351"},{"id":3499,"name":"Social and Cultural Anthropology","url":"https://www.academia.edu/Documents/in/Social_and_Cultural_Anthropology?f_ri=1351"},{"id":3646,"name":"Social Representations","url":"https://www.academia.edu/Documents/in/Social_Representations?f_ri=1351"},{"id":3671,"name":"Applied Econometrics","url":"https://www.academia.edu/Documents/in/Applied_Econometrics?f_ri=1351"},{"id":3708,"name":"Social-Ecological Systems","url":"https://www.academia.edu/Documents/in/Social-Ecological_Systems?f_ri=1351"},{"id":3737,"name":"European Urbanization","url":"https://www.academia.edu/Documents/in/European_Urbanization?f_ri=1351"},{"id":3741,"name":"Urban Anthropology","url":"https://www.academia.edu/Documents/in/Urban_Anthropology?f_ri=1351"},{"id":3873,"name":"Strategic Studies","url":"https://www.academia.edu/Documents/in/Strategic_Studies?f_ri=1351"},{"id":3874,"name":"Community Organizing","url":"https://www.academia.edu/Documents/in/Community_Organizing?f_ri=1351"},{"id":3995,"name":"Disaster risk management","url":"https://www.academia.edu/Documents/in/Disaster_risk_management?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4195,"name":"Cultural Theory","url":"https://www.academia.edu/Documents/in/Cultural_Theory?f_ri=1351"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=1351"},{"id":4367,"name":"Infrastructure Planning","url":"https://www.academia.edu/Documents/in/Infrastructure_Planning?f_ri=1351"},{"id":4375,"name":"Social Movement","url":"https://www.academia.edu/Documents/in/Social_Movement?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":4419,"name":"Situated Cognition","url":"https://www.academia.edu/Documents/in/Situated_Cognition?f_ri=1351"},{"id":4423,"name":"Monitoring And Evaluation","url":"https://www.academia.edu/Documents/in/Monitoring_And_Evaluation?f_ri=1351"},{"id":4484,"name":"Economic Growth","url":"https://www.academia.edu/Documents/in/Economic_Growth?f_ri=1351"},{"id":4486,"name":"Political Science","url":"https://www.academia.edu/Documents/in/Political_Science?f_ri=1351"},{"id":4589,"name":"Environmental Planning and Design","url":"https://www.academia.edu/Documents/in/Environmental_Planning_and_Design?f_ri=1351"},{"id":4620,"name":"Urban Education","url":"https://www.academia.edu/Documents/in/Urban_Education?f_ri=1351"},{"id":4626,"name":"Social Cognition","url":"https://www.academia.edu/Documents/in/Social_Cognition?f_ri=1351"},{"id":4701,"name":"Grounded Theory (Research Methodology)","url":"https://www.academia.edu/Documents/in/Grounded_Theory_Research_Methodology_?f_ri=1351"},{"id":4808,"name":"Urban Planning","url":"https://www.academia.edu/Documents/in/Urban_Planning?f_ri=1351"},{"id":4830,"name":"Sociocultural Theory","url":"https://www.academia.edu/Documents/in/Sociocultural_Theory?f_ri=1351"},{"id":4840,"name":"Statistics Education","url":"https://www.academia.edu/Documents/in/Statistics_Education?f_ri=1351"},{"id":4901,"name":"Service Learning","url":"https://www.academia.edu/Documents/in/Service_Learning?f_ri=1351"},{"id":4965,"name":"Performance Management","url":"https://www.academia.edu/Documents/in/Performance_Management?f_ri=1351"},{"id":5009,"name":"Strategic Management","url":"https://www.academia.edu/Documents/in/Strategic_Management?f_ri=1351"},{"id":5045,"name":"Critical Social Theory","url":"https://www.academia.edu/Documents/in/Critical_Social_Theory?f_ri=1351"},{"id":5102,"name":"Regional and Local Governance","url":"https://www.academia.edu/Documents/in/Regional_and_Local_Governance?f_ri=1351"},{"id":5103,"name":"Integrated Spatial Development","url":"https://www.academia.edu/Documents/in/Integrated_Spatial_Development?f_ri=1351"},{"id":5167,"name":"Governance","url":"https://www.academia.edu/Documents/in/Governance?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":5277,"name":"Sociology of Identity","url":"https://www.academia.edu/Documents/in/Sociology_of_Identity?f_ri=1351"},{"id":5453,"name":"Race and Ethnicity","url":"https://www.academia.edu/Documents/in/Race_and_Ethnicity?f_ri=1351"},{"id":5469,"name":"Public and Political Communication","url":"https://www.academia.edu/Documents/in/Public_and_Political_Communication?f_ri=1351"},{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=1351"},{"id":5597,"name":"Land management","url":"https://www.academia.edu/Documents/in/Land_management?f_ri=1351"},{"id":5628,"name":"Service Quality","url":"https://www.academia.edu/Documents/in/Service_Quality?f_ri=1351"},{"id":5724,"name":"R\u0026D Management","url":"https://www.academia.edu/Documents/in/R_and_D_Management?f_ri=1351"},{"id":5746,"name":"Neighbourhood Development","url":"https://www.academia.edu/Documents/in/Neighbourhood_Development?f_ri=1351"},{"id":5792,"name":"Social Justice","url":"https://www.academia.edu/Documents/in/Social_Justice?f_ri=1351"},{"id":5868,"name":"Spatial econometrics","url":"https://www.academia.edu/Documents/in/Spatial_econometrics?f_ri=1351"},{"id":5938,"name":"Local Government","url":"https://www.academia.edu/Documents/in/Local_Government?f_ri=1351"},{"id":5968,"name":"Services Science","url":"https://www.academia.edu/Documents/in/Services_Science?f_ri=1351"},{"id":6007,"name":"Transport Planning","url":"https://www.academia.edu/Documents/in/Transport_Planning?f_ri=1351"},{"id":6010,"name":"Sustainable Urbanism","url":"https://www.academia.edu/Documents/in/Sustainable_Urbanism?f_ri=1351"},{"id":6177,"name":"Modeling","url":"https://www.academia.edu/Documents/in/Modeling?f_ri=1351"},{"id":6208,"name":"Economic Theory","url":"https://www.academia.edu/Documents/in/Economic_Theory?f_ri=1351"},{"id":6285,"name":"Federalism","url":"https://www.academia.edu/Documents/in/Federalism?f_ri=1351"},{"id":6288,"name":"Measurement and Evaluation","url":"https://www.academia.edu/Documents/in/Measurement_and_Evaluation?f_ri=1351"},{"id":6314,"name":"Health Information Systems","url":"https://www.academia.edu/Documents/in/Health_Information_Systems?f_ri=1351"},{"id":6359,"name":"Comparative Political Economy","url":"https://www.academia.edu/Documents/in/Comparative_Political_Economy?f_ri=1351"},{"id":6422,"name":"Urban Regeneration","url":"https://www.academia.edu/Documents/in/Urban_Regeneration?f_ri=1351"},{"id":6467,"name":"Non-profit Management","url":"https://www.academia.edu/Documents/in/Non-profit_Management?f_ri=1351"},{"id":6519,"name":"Cultural Landscapes","url":"https://www.academia.edu/Documents/in/Cultural_Landscapes?f_ri=1351"},{"id":6636,"name":"Metrics","url":"https://www.academia.edu/Documents/in/Metrics?f_ri=1351"},{"id":6810,"name":"Public Health Policy","url":"https://www.academia.edu/Documents/in/Public_Health_Policy?f_ri=1351"},{"id":6936,"name":"Rhetoric and Social Theory","url":"https://www.academia.edu/Documents/in/Rhetoric_and_Social_Theory?f_ri=1351"},{"id":6938,"name":"Rhetoric and Public Culture","url":"https://www.academia.edu/Documents/in/Rhetoric_and_Public_Culture?f_ri=1351"},{"id":6953,"name":"Household Studies","url":"https://www.academia.edu/Documents/in/Household_Studies?f_ri=1351"},{"id":7116,"name":"Urban land economics","url":"https://www.academia.edu/Documents/in/Urban_land_economics?f_ri=1351"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems?f_ri=1351"},{"id":7235,"name":"Social Economy","url":"https://www.academia.edu/Documents/in/Social_Economy?f_ri=1351"},{"id":7272,"name":"Social Determinants of Health","url":"https://www.academia.edu/Documents/in/Social_Determinants_of_Health?f_ri=1351"},{"id":7357,"name":"Business Intelligence","url":"https://www.academia.edu/Documents/in/Business_Intelligence?f_ri=1351"},{"id":7369,"name":"Political communication","url":"https://www.academia.edu/Documents/in/Political_communication?f_ri=1351"},{"id":7451,"name":"Information Policy","url":"https://www.academia.edu/Documents/in/Information_Policy?f_ri=1351"},{"id":7465,"name":"Impact Evaluation","url":"https://www.academia.edu/Documents/in/Impact_Evaluation?f_ri=1351"},{"id":7470,"name":"Quality of life","url":"https://www.academia.edu/Documents/in/Quality_of_life?f_ri=1351"},{"id":7601,"name":"Municipal Solid Waste Management","url":"https://www.academia.edu/Documents/in/Municipal_Solid_Waste_Management?f_ri=1351"},{"id":7609,"name":"Environmental Management","url":"https://www.academia.edu/Documents/in/Environmental_Management?f_ri=1351"},{"id":7616,"name":"Sustainable Urban Environments","url":"https://www.academia.edu/Documents/in/Sustainable_Urban_Environments?f_ri=1351"},{"id":7628,"name":"Urban Morphology","url":"https://www.academia.edu/Documents/in/Urban_Morphology?f_ri=1351"},{"id":7725,"name":"Urban Studies","url":"https://www.academia.edu/Documents/in/Urban_Studies?f_ri=1351"},{"id":7739,"name":"Strategic Planning","url":"https://www.academia.edu/Documents/in/Strategic_Planning?f_ri=1351"},{"id":7740,"name":"Strategy (Strategic Planning)","url":"https://www.academia.edu/Documents/in/Strategy_Strategic_Planning_?f_ri=1351"},{"id":7819,"name":"Practitioner Inquiry","url":"https://www.academia.edu/Documents/in/Practitioner_Inquiry?f_ri=1351"},{"id":8131,"name":"Data Management","url":"https://www.academia.edu/Documents/in/Data_Management?f_ri=1351"},{"id":8211,"name":"Local Economic Development","url":"https://www.academia.edu/Documents/in/Local_Economic_Development?f_ri=1351"},{"id":8315,"name":"Local Government and Local Development","url":"https://www.academia.edu/Documents/in/Local_Government_and_Local_Development?f_ri=1351"},{"id":8367,"name":"Complexity","url":"https://www.academia.edu/Documents/in/Complexity?f_ri=1351"},{"id":8577,"name":"Social Stratification","url":"https://www.academia.edu/Documents/in/Social_Stratification?f_ri=1351"},{"id":8607,"name":"Information organisation","url":"https://www.academia.edu/Documents/in/Information_organisation?f_ri=1351"},{"id":8620,"name":"Poverty Reduction Strategies","url":"https://www.academia.edu/Documents/in/Poverty_Reduction_Strategies?f_ri=1351"},{"id":8699,"name":"European Neighbourhood Policy","url":"https://www.academia.edu/Documents/in/European_Neighbourhood_Policy?f_ri=1351"},{"id":8731,"name":"Meta-analysis (Social Sciences)","url":"https://www.academia.edu/Documents/in/Meta-analysis_Social_Sciences_?f_ri=1351"},{"id":8875,"name":"Civil Society and the Public Sphere","url":"https://www.academia.edu/Documents/in/Civil_Society_and_the_Public_Sphere?f_ri=1351"},{"id":8888,"name":"Regional Planning/Development","url":"https://www.academia.edu/Documents/in/Regional_Planning_Development?f_ri=1351"},{"id":8910,"name":"Evaluation","url":"https://www.academia.edu/Documents/in/Evaluation?f_ri=1351"},{"id":8994,"name":"Social Activism","url":"https://www.academia.edu/Documents/in/Social_Activism?f_ri=1351"},{"id":9060,"name":"Strategic Human Resource Management","url":"https://www.academia.edu/Documents/in/Strategic_Human_Resource_Management?f_ri=1351"},{"id":9252,"name":"Housing Policy","url":"https://www.academia.edu/Documents/in/Housing_Policy?f_ri=1351"},{"id":9399,"name":"Portfolio Management","url":"https://www.academia.edu/Documents/in/Portfolio_Management?f_ri=1351"},{"id":9437,"name":"Urbanism","url":"https://www.academia.edu/Documents/in/Urbanism?f_ri=1351"},{"id":9468,"name":"Policy Studies","url":"https://www.academia.edu/Documents/in/Policy_Studies?f_ri=1351"},{"id":9490,"name":"Education for Citizenship","url":"https://www.academia.edu/Documents/in/Education_for_Citizenship?f_ri=1351"},{"id":9521,"name":"Housing","url":"https://www.academia.edu/Documents/in/Housing?f_ri=1351"},{"id":9787,"name":"Environmental Policy and Governance","url":"https://www.academia.edu/Documents/in/Environmental_Policy_and_Governance?f_ri=1351"},{"id":9822,"name":"Education Policy","url":"https://www.academia.edu/Documents/in/Education_Policy?f_ri=1351"},{"id":10011,"name":"Sociology of Health","url":"https://www.academia.edu/Documents/in/Sociology_of_Health?f_ri=1351"},{"id":10212,"name":"Interpretive research methodology","url":"https://www.academia.edu/Documents/in/Interpretive_research_methodology?f_ri=1351"},{"id":10214,"name":"Interpretive policy analysis","url":"https://www.academia.edu/Documents/in/Interpretive_policy_analysis?f_ri=1351"},{"id":10495,"name":"Nationalism And State Building","url":"https://www.academia.edu/Documents/in/Nationalism_And_State_Building?f_ri=1351"},{"id":10871,"name":"Regionalism","url":"https://www.academia.edu/Documents/in/Regionalism?f_ri=1351"},{"id":11035,"name":"Regulation","url":"https://www.academia.edu/Documents/in/Regulation?f_ri=1351"},{"id":11087,"name":"Multiscale Modelling","url":"https://www.academia.edu/Documents/in/Multiscale_Modelling?f_ri=1351"},{"id":11128,"name":"Information Extraction","url":"https://www.academia.edu/Documents/in/Information_Extraction?f_ri=1351"},{"id":11210,"name":"Comparative Methods","url":"https://www.academia.edu/Documents/in/Comparative_Methods?f_ri=1351"},{"id":11278,"name":"Urban Ecology","url":"https://www.academia.edu/Documents/in/Urban_Ecology?f_ri=1351"},{"id":11395,"name":"Economic Development","url":"https://www.academia.edu/Documents/in/Economic_Development?f_ri=1351"},{"id":11435,"name":"Community Health","url":"https://www.academia.edu/Documents/in/Community_Health?f_ri=1351"},{"id":11680,"name":"Social Systems Theory","url":"https://www.academia.edu/Documents/in/Social_Systems_Theory?f_ri=1351"},{"id":11820,"name":"Modeling and Simulation","url":"https://www.academia.edu/Documents/in/Modeling_and_Simulation?f_ri=1351"},{"id":11847,"name":"Quantitative Research","url":"https://www.academia.edu/Documents/in/Quantitative_Research?f_ri=1351"},{"id":12047,"name":"Regional development","url":"https://www.academia.edu/Documents/in/Regional_development?f_ri=1351"},{"id":12061,"name":"Risk Management","url":"https://www.academia.edu/Documents/in/Risk_Management?f_ri=1351"},{"id":12620,"name":"Quantitative Methods","url":"https://www.academia.edu/Documents/in/Quantitative_Methods?f_ri=1351"},{"id":12621,"name":"Quantitative methodology","url":"https://www.academia.edu/Documents/in/Quantitative_methodology?f_ri=1351"},{"id":12639,"name":"Development Theories And Policies","url":"https://www.academia.edu/Documents/in/Development_Theories_And_Policies?f_ri=1351"},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=1351"},{"id":13258,"name":"Marketing Research","url":"https://www.academia.edu/Documents/in/Marketing_Research?f_ri=1351"},{"id":13350,"name":"Spatial Data Analysis","url":"https://www.academia.edu/Documents/in/Spatial_Data_Analysis?f_ri=1351"},{"id":13430,"name":"Social Exclusion","url":"https://www.academia.edu/Documents/in/Social_Exclusion?f_ri=1351"},{"id":13673,"name":"Socio Economic Rights","url":"https://www.academia.edu/Documents/in/Socio_Economic_Rights?f_ri=1351"},{"id":13675,"name":"Grounded Theory","url":"https://www.academia.edu/Documents/in/Grounded_Theory?f_ri=1351"},{"id":13860,"name":"Sociology of the Middle Classes","url":"https://www.academia.edu/Documents/in/Sociology_of_the_Middle_Classes?f_ri=1351"},{"id":13868,"name":"Education and Labor Markets","url":"https://www.academia.edu/Documents/in/Education_and_Labor_Markets?f_ri=1351"},{"id":14001,"name":"Urban Open Space Design","url":"https://www.academia.edu/Documents/in/Urban_Open_Space_Design?f_ri=1351"},{"id":14028,"name":"Integrated Planning And Management","url":"https://www.academia.edu/Documents/in/Integrated_Planning_And_Management?f_ri=1351"},{"id":14085,"name":"Waste Management","url":"https://www.academia.edu/Documents/in/Waste_Management?f_ri=1351"},{"id":14150,"name":"Urban Culture","url":"https://www.academia.edu/Documents/in/Urban_Culture?f_ri=1351"},{"id":14216,"name":"Multi-level Analysis","url":"https://www.academia.edu/Documents/in/Multi-level_Analysis?f_ri=1351"},{"id":14236,"name":"SPSS","url":"https://www.academia.edu/Documents/in/SPSS?f_ri=1351"},{"id":14239,"name":"Quality of Life (Social Sciences)","url":"https://www.academia.edu/Documents/in/Quality_of_Life_Social_Sciences_?f_ri=1351"},{"id":14327,"name":"Retail Marketing","url":"https://www.academia.edu/Documents/in/Retail_Marketing?f_ri=1351"},{"id":14406,"name":"Health","url":"https://www.academia.edu/Documents/in/Health?f_ri=1351"},{"id":14464,"name":"Marginalized Identities","url":"https://www.academia.edu/Documents/in/Marginalized_Identities?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":14640,"name":"Architectural Theory","url":"https://www.academia.edu/Documents/in/Architectural_Theory?f_ri=1351"},{"id":14782,"name":"Sociological Theory","url":"https://www.academia.edu/Documents/in/Sociological_Theory?f_ri=1351"},{"id":14943,"name":"Social Norms","url":"https://www.academia.edu/Documents/in/Social_Norms?f_ri=1351"},{"id":15092,"name":"Evidence","url":"https://www.academia.edu/Documents/in/Evidence?f_ri=1351"},{"id":15198,"name":"Spatial Statistics","url":"https://www.academia.edu/Documents/in/Spatial_Statistics?f_ri=1351"},{"id":15588,"name":"Social History","url":"https://www.academia.edu/Documents/in/Social_History?f_ri=1351"},{"id":16288,"name":"Public Health","url":"https://www.academia.edu/Documents/in/Public_Health?f_ri=1351"},{"id":16457,"name":"Public sector","url":"https://www.academia.edu/Documents/in/Public_sector?f_ri=1351"},{"id":16635,"name":"Health Services Research","url":"https://www.academia.edu/Documents/in/Health_Services_Research?f_ri=1351"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=1351"},{"id":16742,"name":"Urban Sociology","url":"https://www.academia.edu/Documents/in/Urban_Sociology?f_ri=1351"},{"id":16801,"name":"Urban Economics","url":"https://www.academia.edu/Documents/in/Urban_Economics?f_ri=1351"},{"id":16895,"name":"Modelling","url":"https://www.academia.edu/Documents/in/Modelling?f_ri=1351"},{"id":16968,"name":"Social Production of Space","url":"https://www.academia.edu/Documents/in/Social_Production_of_Space?f_ri=1351"},{"id":17125,"name":"Public Participation In Governance","url":"https://www.academia.edu/Documents/in/Public_Participation_In_Governance?f_ri=1351"},{"id":17126,"name":"Citizenship And Governance","url":"https://www.academia.edu/Documents/in/Citizenship_And_Governance?f_ri=1351"},{"id":17497,"name":"Sociology of Everyday Life","url":"https://www.academia.edu/Documents/in/Sociology_of_Everyday_Life?f_ri=1351"},{"id":17597,"name":"Consumer Culture Theory","url":"https://www.academia.edu/Documents/in/Consumer_Culture_Theory?f_ri=1351"},{"id":17656,"name":"Community","url":"https://www.academia.edu/Documents/in/Community?f_ri=1351"},{"id":17688,"name":"Environmental Planning","url":"https://www.academia.edu/Documents/in/Environmental_Planning?f_ri=1351"},{"id":17784,"name":"Socio-cultural theory","url":"https://www.academia.edu/Documents/in/Socio-cultural_theory?f_ri=1351"},{"id":17969,"name":"Health Policy","url":"https://www.academia.edu/Documents/in/Health_Policy?f_ri=1351"},{"id":18102,"name":"Landscape Urbanism","url":"https://www.academia.edu/Documents/in/Landscape_Urbanism?f_ri=1351"},{"id":18338,"name":"Attitudes (Social Psychology)","url":"https://www.academia.edu/Documents/in/Attitudes_Social_Psychology_?f_ri=1351"},{"id":18406,"name":"Service Science","url":"https://www.academia.edu/Documents/in/Service_Science?f_ri=1351"},{"id":18817,"name":"Third Sector Studies","url":"https://www.academia.edu/Documents/in/Third_Sector_Studies?f_ri=1351"},{"id":18845,"name":"Environmental Sustainability","url":"https://www.academia.edu/Documents/in/Environmental_Sustainability?f_ri=1351"},{"id":18886,"name":"Urban Policy","url":"https://www.academia.edu/Documents/in/Urban_Policy?f_ri=1351"},{"id":18961,"name":"Social learning","url":"https://www.academia.edu/Documents/in/Social_learning?f_ri=1351"},{"id":18965,"name":"Regional governance","url":"https://www.academia.edu/Documents/in/Regional_governance?f_ri=1351"},{"id":18984,"name":"Social Evolution","url":"https://www.academia.edu/Documents/in/Social_Evolution?f_ri=1351"},{"id":19030,"name":"Political Geography","url":"https://www.academia.edu/Documents/in/Political_Geography?f_ri=1351"},{"id":19298,"name":"Community Participation","url":"https://www.academia.edu/Documents/in/Community_Participation?f_ri=1351"},{"id":19376,"name":"Program Evaluation (Social Work)","url":"https://www.academia.edu/Documents/in/Program_Evaluation_Social_Work_?f_ri=1351"},{"id":19408,"name":"Urban Poverty","url":"https://www.academia.edu/Documents/in/Urban_Poverty?f_ri=1351"},{"id":19646,"name":"Social Policies","url":"https://www.academia.edu/Documents/in/Social_Policies?f_ri=1351"},{"id":19666,"name":"Freedom of Information","url":"https://www.academia.edu/Documents/in/Freedom_of_Information?f_ri=1351"},{"id":19707,"name":"Social Inclusion","url":"https://www.academia.edu/Documents/in/Social_Inclusion?f_ri=1351"},{"id":20082,"name":"Urban Political Economy","url":"https://www.academia.edu/Documents/in/Urban_Political_Economy?f_ri=1351"},{"id":20436,"name":"Urban And Regional Planning","url":"https://www.academia.edu/Documents/in/Urban_And_Regional_Planning?f_ri=1351"},{"id":20481,"name":"Information Visualisation","url":"https://www.academia.edu/Documents/in/Information_Visualisation?f_ri=1351"},{"id":20805,"name":"Land-use planning","url":"https://www.academia.edu/Documents/in/Land-use_planning?f_ri=1351"},{"id":20883,"name":"Community \u0026 Rural level governance","url":"https://www.academia.edu/Documents/in/Community_and_Rural_level_governance?f_ri=1351"},{"id":21168,"name":"Strategy (Business)","url":"https://www.academia.edu/Documents/in/Strategy_Business_?f_ri=1351"},{"id":21310,"name":"Urbanization","url":"https://www.academia.edu/Documents/in/Urbanization?f_ri=1351"},{"id":21559,"name":"Health Care Management","url":"https://www.academia.edu/Documents/in/Health_Care_Management?f_ri=1351"},{"id":21840,"name":"Socio-Economic Status","url":"https://www.academia.edu/Documents/in/Socio-Economic_Status?f_ri=1351"},{"id":21852,"name":"Governance and Civil Society","url":"https://www.academia.edu/Documents/in/Governance_and_Civil_Society?f_ri=1351"},{"id":21994,"name":"Spatial Theory","url":"https://www.academia.edu/Documents/in/Spatial_Theory?f_ri=1351"},{"id":22067,"name":"Institutions (Political Science)","url":"https://www.academia.edu/Documents/in/Institutions_Political_Science_?f_ri=1351"},{"id":22258,"name":"Urban Transformation","url":"https://www.academia.edu/Documents/in/Urban_Transformation?f_ri=1351"},{"id":22543,"name":"Economic geography (Geography) (Geography)","url":"https://www.academia.edu/Documents/in/Economic_geography_Geography_Geography_?f_ri=1351"},{"id":22544,"name":"Regional Studies","url":"https://www.academia.edu/Documents/in/Regional_Studies?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":22772,"name":"Urban Health","url":"https://www.academia.edu/Documents/in/Urban_Health?f_ri=1351"},{"id":22903,"name":"Cultural Economy","url":"https://www.academia.edu/Documents/in/Cultural_Economy?f_ri=1351"},{"id":23056,"name":"Geo-spatial analysis with GIS and GPS","url":"https://www.academia.edu/Documents/in/Geo-spatial_analysis_with_GIS_and_GPS?f_ri=1351"},{"id":23199,"name":"Social Ecology","url":"https://www.academia.edu/Documents/in/Social_Ecology?f_ri=1351"},{"id":23311,"name":"Marketing Strategy","url":"https://www.academia.edu/Documents/in/Marketing_Strategy?f_ri=1351"},{"id":23565,"name":"Regional Economics","url":"https://www.academia.edu/Documents/in/Regional_Economics?f_ri=1351"},{"id":23892,"name":"Multivariate Data Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Data_Analysis?f_ri=1351"},{"id":23918,"name":"Culture and Cognition","url":"https://www.academia.edu/Documents/in/Culture_and_Cognition?f_ri=1351"},{"id":24135,"name":"Experiences of Place and Space","url":"https://www.academia.edu/Documents/in/Experiences_of_Place_and_Space?f_ri=1351"},{"id":24536,"name":"Consumer Research","url":"https://www.academia.edu/Documents/in/Consumer_Research?f_ri=1351"},{"id":24748,"name":"Ethnicity","url":"https://www.academia.edu/Documents/in/Ethnicity?f_ri=1351"},{"id":24750,"name":"Program Evaluation (Research Methodology)","url":"https://www.academia.edu/Documents/in/Program_Evaluation_Research_Methodology_?f_ri=1351"},{"id":24769,"name":"Chaos/Complexity Theory","url":"https://www.academia.edu/Documents/in/Chaos_Complexity_Theory?f_ri=1351"},{"id":24849,"name":"Sociology of consumption","url":"https://www.academia.edu/Documents/in/Sociology_of_consumption?f_ri=1351"},{"id":24922,"name":"Poverty (Sociology)","url":"https://www.academia.edu/Documents/in/Poverty_Sociology_?f_ri=1351"},{"id":25618,"name":"Phenomenology of Space and Place","url":"https://www.academia.edu/Documents/in/Phenomenology_of_Space_and_Place?f_ri=1351"},{"id":25963,"name":"Housing Policies","url":"https://www.academia.edu/Documents/in/Housing_Policies?f_ri=1351"},{"id":26510,"name":"Interdisciplinary Studies","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Studies?f_ri=1351"},{"id":26879,"name":"Social Class","url":"https://www.academia.edu/Documents/in/Social_Class?f_ri=1351"},{"id":26903,"name":"Quantitative Methods in Economics","url":"https://www.academia.edu/Documents/in/Quantitative_Methods_in_Economics?f_ri=1351"},{"id":26957,"name":"Statistical Modelling","url":"https://www.academia.edu/Documents/in/Statistical_Modelling?f_ri=1351"},{"id":27181,"name":"Urban Design (Urban Studies)","url":"https://www.academia.edu/Documents/in/Urban_Design_Urban_Studies_?f_ri=1351"},{"id":27208,"name":"Social Studies","url":"https://www.academia.edu/Documents/in/Social_Studies?f_ri=1351"},{"id":27594,"name":"Strategic Analysis of Markets","url":"https://www.academia.edu/Documents/in/Strategic_Analysis_of_Markets?f_ri=1351"},{"id":27659,"name":"Applied Economics","url":"https://www.academia.edu/Documents/in/Applied_Economics?f_ri=1351"},{"id":28046,"name":"Regional Integration","url":"https://www.academia.edu/Documents/in/Regional_Integration?f_ri=1351"},{"id":28129,"name":"Urban Landscape","url":"https://www.academia.edu/Documents/in/Urban_Landscape?f_ri=1351"},{"id":28849,"name":"Urban Development","url":"https://www.academia.edu/Documents/in/Urban_Development?f_ri=1351"},{"id":29722,"name":"Surveying","url":"https://www.academia.edu/Documents/in/Surveying?f_ri=1351"},{"id":29831,"name":"Cluster Analysis (Multivariate Data Analysis)","url":"https://www.academia.edu/Documents/in/Cluster_Analysis_Multivariate_Data_Analysis_?f_ri=1351"},{"id":29840,"name":"Public Policy Development","url":"https://www.academia.edu/Documents/in/Public_Policy_Development?f_ri=1351"},{"id":29841,"name":"Public Policy Analysis","url":"https://www.academia.edu/Documents/in/Public_Policy_Analysis?f_ri=1351"},{"id":30151,"name":"Policy Analysis","url":"https://www.academia.edu/Documents/in/Policy_Analysis?f_ri=1351"},{"id":30632,"name":"Public Space","url":"https://www.academia.edu/Documents/in/Public_Space?f_ri=1351"},{"id":31115,"name":"Structuration Theory","url":"https://www.academia.edu/Documents/in/Structuration_Theory?f_ri=1351"},{"id":31308,"name":"Strategic Marketing","url":"https://www.academia.edu/Documents/in/Strategic_Marketing?f_ri=1351"},{"id":31588,"name":"Urban Sprawl","url":"https://www.academia.edu/Documents/in/Urban_Sprawl?f_ri=1351"},{"id":31589,"name":"Urban Social Movements","url":"https://www.academia.edu/Documents/in/Urban_Social_Movements?f_ri=1351"},{"id":31935,"name":"Neighborhood Effects","url":"https://www.academia.edu/Documents/in/Neighborhood_Effects?f_ri=1351"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=1351"},{"id":32577,"name":"Public Health Systems \u0026 Services Research","url":"https://www.academia.edu/Documents/in/Public_Health_Systems_and_Services_Research?f_ri=1351"},{"id":32655,"name":"Urban Social Geography","url":"https://www.academia.edu/Documents/in/Urban_Social_Geography?f_ri=1351"},{"id":32680,"name":"Urban Governance","url":"https://www.academia.edu/Documents/in/Urban_Governance?f_ri=1351"},{"id":33086,"name":"New Urbanism","url":"https://www.academia.edu/Documents/in/New_Urbanism?f_ri=1351"},{"id":33618,"name":"Multi-level governance","url":"https://www.academia.edu/Documents/in/Multi-level_governance?f_ri=1351"},{"id":33691,"name":"Interdisciplinary research (Social Sciences)","url":"https://www.academia.edu/Documents/in/Interdisciplinary_research_Social_Sciences_?f_ri=1351"},{"id":33980,"name":"Uses of research and analysis by public policy advocacy organizations","url":"https://www.academia.edu/Documents/in/Uses_of_research_and_analysis_by_public_policy_advocacy_organizations?f_ri=1351"},{"id":34344,"name":"Data mining (Data Analysis)","url":"https://www.academia.edu/Documents/in/Data_mining_Data_Analysis_?f_ri=1351"},{"id":34511,"name":"Quantitative Research Methods","url":"https://www.academia.edu/Documents/in/Quantitative_Research_Methods?f_ri=1351"},{"id":34628,"name":"Metropolitan Planning","url":"https://www.academia.edu/Documents/in/Metropolitan_Planning?f_ri=1351"},{"id":36602,"name":"Regional Planning","url":"https://www.academia.edu/Documents/in/Regional_Planning?f_ri=1351"},{"id":37318,"name":"Public Policy - Social Welfare Policy","url":"https://www.academia.edu/Documents/in/Public_Policy_-_Social_Welfare_Policy?f_ri=1351"},{"id":37434,"name":"Quantitative analysis","url":"https://www.academia.edu/Documents/in/Quantitative_analysis?f_ri=1351"},{"id":37723,"name":"Geography Education","url":"https://www.academia.edu/Documents/in/Geography_Education?f_ri=1351"},{"id":37930,"name":"Human Services \u0026 Social Work","url":"https://www.academia.edu/Documents/in/Human_Services_and_Social_Work?f_ri=1351"},{"id":37997,"name":"Management (Economics)","url":"https://www.academia.edu/Documents/in/Management_Economics_?f_ri=1351"},{"id":38246,"name":"Statistical Learning","url":"https://www.academia.edu/Documents/in/Statistical_Learning?f_ri=1351"},{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=1351"},{"id":39236,"name":"History of Social Policy and the Welfare State","url":"https://www.academia.edu/Documents/in/History_of_Social_Policy_and_the_Welfare_State?f_ri=1351"},{"id":40172,"name":"Generalized Linear models","url":"https://www.academia.edu/Documents/in/Generalized_Linear_models?f_ri=1351"},{"id":40606,"name":"Town planning","url":"https://www.academia.edu/Documents/in/Town_planning?f_ri=1351"},{"id":40756,"name":"Historia Social","url":"https://www.academia.edu/Documents/in/Historia_Social?f_ri=1351"},{"id":41239,"name":"Bayesian statistics \u0026 modelling","url":"https://www.academia.edu/Documents/in/Bayesian_statistics_and_modelling?f_ri=1351"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis?f_ri=1351"},{"id":41571,"name":"Open Government","url":"https://www.academia.edu/Documents/in/Open_Government?f_ri=1351"},{"id":41599,"name":"Social Democracy","url":"https://www.academia.edu/Documents/in/Social_Democracy?f_ri=1351"},{"id":41608,"name":"Citizenship","url":"https://www.academia.edu/Documents/in/Citizenship?f_ri=1351"},{"id":41637,"name":"Public Sector Management","url":"https://www.academia.edu/Documents/in/Public_Sector_Management?f_ri=1351"},{"id":41804,"name":"Epistemology of the Social Sciences","url":"https://www.academia.edu/Documents/in/Epistemology_of_the_Social_Sciences?f_ri=1351"},{"id":43017,"name":"Civil Society","url":"https://www.academia.edu/Documents/in/Civil_Society?f_ri=1351"},{"id":43316,"name":"Strategic Analysis","url":"https://www.academia.edu/Documents/in/Strategic_Analysis?f_ri=1351"},{"id":43330,"name":"Regional economic development","url":"https://www.academia.edu/Documents/in/Regional_economic_development?f_ri=1351"},{"id":43412,"name":"Social and cultural geography","url":"https://www.academia.edu/Documents/in/Social_and_cultural_geography?f_ri=1351"},{"id":43599,"name":"Community and Social Services","url":"https://www.academia.edu/Documents/in/Community_and_Social_Services?f_ri=1351"},{"id":43681,"name":"New Public Management and Governance","url":"https://www.academia.edu/Documents/in/New_Public_Management_and_Governance?f_ri=1351"},{"id":44059,"name":"Social Complexity","url":"https://www.academia.edu/Documents/in/Social_Complexity?f_ri=1351"},{"id":44406,"name":"Organization and Strategy","url":"https://www.academia.edu/Documents/in/Organization_and_Strategy?f_ri=1351"},{"id":44575,"name":"Service Marketing","url":"https://www.academia.edu/Documents/in/Service_Marketing?f_ri=1351"},{"id":45376,"name":"Landuse Planning","url":"https://www.academia.edu/Documents/in/Landuse_Planning?f_ri=1351"},{"id":45661,"name":"Information Engineering","url":"https://www.academia.edu/Documents/in/Information_Engineering?f_ri=1351"},{"id":46271,"name":"Strategy","url":"https://www.academia.edu/Documents/in/Strategy?f_ri=1351"},{"id":46429,"name":"Economy","url":"https://www.academia.edu/Documents/in/Economy?f_ri=1351"},{"id":46474,"name":"Territoriality","url":"https://www.academia.edu/Documents/in/Territoriality?f_ri=1351"},{"id":46644,"name":"Social Inequality","url":"https://www.academia.edu/Documents/in/Social_Inequality?f_ri=1351"},{"id":47281,"name":"Social Housing","url":"https://www.academia.edu/Documents/in/Social_Housing?f_ri=1351"},{"id":47307,"name":"City planning","url":"https://www.academia.edu/Documents/in/City_planning?f_ri=1351"},{"id":47452,"name":"Public Engagement","url":"https://www.academia.edu/Documents/in/Public_Engagement?f_ri=1351"},{"id":47570,"name":"Public Sector Accountability","url":"https://www.academia.edu/Documents/in/Public_Sector_Accountability?f_ri=1351"},{"id":47813,"name":"Planning","url":"https://www.academia.edu/Documents/in/Planning?f_ri=1351"},{"id":47980,"name":"Data Visualization","url":"https://www.academia.edu/Documents/in/Data_Visualization?f_ri=1351"},{"id":48273,"name":"Impact evaluation, causality and evaluation methodologies for public policies, programs, and development projects","url":"https://www.academia.edu/Documents/in/Impact_evaluation_causality_and_evaluation_methodologies_for_public_policies_programs_and_develop?f_ri=1351"},{"id":48703,"name":"Urban Transportation","url":"https://www.academia.edu/Documents/in/Urban_Transportation?f_ri=1351"},{"id":49403,"name":"Journal of architecture and planning","url":"https://www.academia.edu/Documents/in/Journal_of_architecture_and_planning?f_ri=1351"},{"id":49648,"name":"Livelihood","url":"https://www.academia.edu/Documents/in/Livelihood?f_ri=1351"},{"id":49890,"name":"Rural Planning and Development","url":"https://www.academia.edu/Documents/in/Rural_Planning_and_Development?f_ri=1351"},{"id":50013,"name":"Place","url":"https://www.academia.edu/Documents/in/Place?f_ri=1351"},{"id":50195,"name":"Public policies","url":"https://www.academia.edu/Documents/in/Public_policies?f_ri=1351"},{"id":50197,"name":"New Public Management","url":"https://www.academia.edu/Documents/in/New_Public_Management?f_ri=1351"},{"id":50564,"name":"Vocational Training","url":"https://www.academia.edu/Documents/in/Vocational_Training?f_ri=1351"},{"id":51105,"name":"Official Statistics","url":"https://www.academia.edu/Documents/in/Official_Statistics?f_ri=1351"},{"id":51360,"name":"Economia","url":"https://www.academia.edu/Documents/in/Economia?f_ri=1351"},{"id":52480,"name":"Sociologia","url":"https://www.academia.edu/Documents/in/Sociologia?f_ri=1351"},{"id":52986,"name":"Sociology and Economics","url":"https://www.academia.edu/Documents/in/Sociology_and_Economics?f_ri=1351"},{"id":53342,"name":"Strategic Thinking","url":"https://www.academia.edu/Documents/in/Strategic_Thinking?f_ri=1351"},{"id":53343,"name":"Social Welfare","url":"https://www.academia.edu/Documents/in/Social_Welfare?f_ri=1351"},{"id":53396,"name":"Local and regional history","url":"https://www.academia.edu/Documents/in/Local_and_regional_history?f_ri=1351"},{"id":53760,"name":"Sociology of Health and Illness","url":"https://www.academia.edu/Documents/in/Sociology_of_Health_and_Illness?f_ri=1351"},{"id":53779,"name":"statistics with SPSS and Excel","url":"https://www.academia.edu/Documents/in/statistics_with_SPSS_and_Excel?f_ri=1351"},{"id":54410,"name":"Urban Renewal","url":"https://www.academia.edu/Documents/in/Urban_Renewal?f_ri=1351"},{"id":54580,"name":"Multilevel governance","url":"https://www.academia.edu/Documents/in/Multilevel_governance?f_ri=1351"},{"id":54698,"name":"Management Consulting","url":"https://www.academia.edu/Documents/in/Management_Consulting?f_ri=1351"},{"id":55333,"name":"Teaching and Learning of Statistics","url":"https://www.academia.edu/Documents/in/Teaching_and_Learning_of_Statistics?f_ri=1351"},{"id":55427,"name":"Social Structure","url":"https://www.academia.edu/Documents/in/Social_Structure?f_ri=1351"},{"id":55489,"name":"Public Policy and Management","url":"https://www.academia.edu/Documents/in/Public_Policy_and_Management?f_ri=1351"},{"id":55840,"name":"Business Management","url":"https://www.academia.edu/Documents/in/Business_Management?f_ri=1351"},{"id":55966,"name":"Good Governance","url":"https://www.academia.edu/Documents/in/Good_Governance?f_ri=1351"},{"id":56371,"name":"Applied sociology","url":"https://www.academia.edu/Documents/in/Applied_sociology?f_ri=1351"},{"id":58952,"name":"Territorial politics","url":"https://www.academia.edu/Documents/in/Territorial_politics?f_ri=1351"},{"id":59098,"name":"Demografía","url":"https://www.academia.edu/Documents/in/Demograf%C3%ADa?f_ri=1351"},{"id":59864,"name":"Public Services","url":"https://www.academia.edu/Documents/in/Public_Services?f_ri=1351"},{"id":59902,"name":"Applied Social Science","url":"https://www.academia.edu/Documents/in/Applied_Social_Science?f_ri=1351"},{"id":59959,"name":"Research methods and Statistics","url":"https://www.academia.edu/Documents/in/Research_methods_and_Statistics?f_ri=1351"},{"id":59986,"name":"Socio-Enviromental Management","url":"https://www.academia.edu/Documents/in/Socio-Enviromental_Management?f_ri=1351"},{"id":60118,"name":"Complejidad / Complexity","url":"https://www.academia.edu/Documents/in/Complejidad_Complexity?f_ri=1351"},{"id":60533,"name":"Local and Regional Economic Development","url":"https://www.academia.edu/Documents/in/Local_and_Regional_Economic_Development?f_ri=1351"},{"id":60757,"name":"Visual Research Methods","url":"https://www.academia.edu/Documents/in/Visual_Research_Methods?f_ri=1351"},{"id":60827,"name":"Social cohesion","url":"https://www.academia.edu/Documents/in/Social_cohesion?f_ri=1351"},{"id":61038,"name":"Democracy and Good Governance","url":"https://www.academia.edu/Documents/in/Democracy_and_Good_Governance?f_ri=1351"},{"id":61404,"name":"Gestão Pública","url":"https://www.academia.edu/Documents/in/Gest%C3%A3o_P%C3%BAblica?f_ri=1351"},{"id":61835,"name":"Urban Design","url":"https://www.academia.edu/Documents/in/Urban_Design?f_ri=1351"},{"id":62223,"name":"Working-Class History","url":"https://www.academia.edu/Documents/in/Working-Class_History?f_ri=1351"},{"id":62403,"name":"Urban form","url":"https://www.academia.edu/Documents/in/Urban_form?f_ri=1351"},{"id":62839,"name":"Thesis","url":"https://www.academia.edu/Documents/in/Thesis?f_ri=1351"},{"id":63857,"name":"Categorical data analysis","url":"https://www.academia.edu/Documents/in/Categorical_data_analysis?f_ri=1351"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population?f_ri=1351"},{"id":64621,"name":"Information Needs","url":"https://www.academia.edu/Documents/in/Information_Needs?f_ri=1351"},{"id":64633,"name":"Society","url":"https://www.academia.edu/Documents/in/Society?f_ri=1351"},{"id":64654,"name":"Social Research","url":"https://www.academia.edu/Documents/in/Social_Research?f_ri=1351"},{"id":64987,"name":"Social Development","url":"https://www.academia.edu/Documents/in/Social_Development?f_ri=1351"},{"id":65241,"name":"Sociologia Urbana","url":"https://www.academia.edu/Documents/in/Sociologia_Urbana?f_ri=1351"},{"id":65470,"name":"City and Regional Planning","url":"https://www.academia.edu/Documents/in/City_and_Regional_Planning?f_ri=1351"},{"id":65713,"name":"Políticas Públicas","url":"https://www.academia.edu/Documents/in/Pol%C3%ADticas_P%C3%BAblicas?f_ri=1351"},{"id":67731,"name":"Sustainable Livelihoods","url":"https://www.academia.edu/Documents/in/Sustainable_Livelihoods?f_ri=1351"},{"id":67757,"name":"Demographics","url":"https://www.academia.edu/Documents/in/Demographics?f_ri=1351"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=1351"},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science?f_ri=1351"},{"id":69218,"name":"Place Marketing","url":"https://www.academia.edu/Documents/in/Place_Marketing?f_ri=1351"},{"id":69285,"name":"Urban Planning, Public Health, Land Use, Transportation, Social Equity","url":"https://www.academia.edu/Documents/in/Urban_Planning_Public_Health_Land_Use_Transportation_Social_Equity?f_ri=1351"},{"id":69471,"name":"Master's Thesis","url":"https://www.academia.edu/Documents/in/Masters_Thesis-1?f_ri=1351"},{"id":70030,"name":"Land Use Planning","url":"https://www.academia.edu/Documents/in/Land_Use_Planning?f_ri=1351"},{"id":71868,"name":"Sustainable Urban Planning","url":"https://www.academia.edu/Documents/in/Sustainable_Urban_Planning?f_ri=1351"},{"id":72627,"name":"Spatial planning","url":"https://www.academia.edu/Documents/in/Spatial_planning?f_ri=1351"},{"id":73149,"name":"Business and Management","url":"https://www.academia.edu/Documents/in/Business_and_Management?f_ri=1351"},{"id":73569,"name":"Geografia","url":"https://www.academia.edu/Documents/in/Geografia?f_ri=1351"},{"id":74226,"name":"Micro Economics","url":"https://www.academia.edu/Documents/in/Micro_Economics?f_ri=1351"},{"id":75316,"name":"Open Government Data","url":"https://www.academia.edu/Documents/in/Open_Government_Data?f_ri=1351"},{"id":75323,"name":"Regionalization","url":"https://www.academia.edu/Documents/in/Regionalization?f_ri=1351"},{"id":75355,"name":"Urban design and planning","url":"https://www.academia.edu/Documents/in/Urban_design_and_planning-1?f_ri=1351"},{"id":77342,"name":"Infrastructure","url":"https://www.academia.edu/Documents/in/Infrastructure?f_ri=1351"},{"id":77365,"name":"Urban Marginality","url":"https://www.academia.edu/Documents/in/Urban_Marginality?f_ri=1351"},{"id":78401,"name":"Cultural Landscape","url":"https://www.academia.edu/Documents/in/Cultural_Landscape?f_ri=1351"},{"id":78429,"name":"Matemáticas y estadistica","url":"https://www.academia.edu/Documents/in/Matem%C3%A1ticas_y_estadistica?f_ri=1351"},{"id":78445,"name":"Local Governments","url":"https://www.academia.edu/Documents/in/Local_Governments?f_ri=1351"},{"id":78658,"name":"Landscape Planning","url":"https://www.academia.edu/Documents/in/Landscape_Planning?f_ri=1351"},{"id":79548,"name":"Arquitetura e Urbanismo","url":"https://www.academia.edu/Documents/in/Arquitetura_e_Urbanismo?f_ri=1351"},{"id":79985,"name":"Urban and rural development planning","url":"https://www.academia.edu/Documents/in/Urban_and_rural_development_planning?f_ri=1351"},{"id":79986,"name":"Spatial demography","url":"https://www.academia.edu/Documents/in/Spatial_demography?f_ri=1351"},{"id":79988,"name":"Applied GIS for Urban Planning and Demographic Studies","url":"https://www.academia.edu/Documents/in/Applied_GIS_for_Urban_Planning_and_Demographic_Studies?f_ri=1351"},{"id":80810,"name":"Public Policy Implementation","url":"https://www.academia.edu/Documents/in/Public_Policy_Implementation?f_ri=1351"},{"id":81213,"name":"Geographical Method and Theory","url":"https://www.academia.edu/Documents/in/Geographical_Method_and_Theory?f_ri=1351"},{"id":82549,"name":"GIS and Spatial Planning","url":"https://www.academia.edu/Documents/in/GIS_and_Spatial_Planning?f_ri=1351"},{"id":83471,"name":"Health Services","url":"https://www.academia.edu/Documents/in/Health_Services?f_ri=1351"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=1351"},{"id":85069,"name":"Spatial Decision Support Systems","url":"https://www.academia.edu/Documents/in/Spatial_Decision_Support_Systems?f_ri=1351"},{"id":85129,"name":"Estado y políticas públicas","url":"https://www.academia.edu/Documents/in/Estado_y_politicas_publicas?f_ri=1351"},{"id":85362,"name":"Descriptive Statistics","url":"https://www.academia.edu/Documents/in/Descriptive_Statistics?f_ri=1351"},{"id":85366,"name":"ANOVA","url":"https://www.academia.edu/Documents/in/ANOVA?f_ri=1351"},{"id":85416,"name":"Administrative Science and Policy Studies","url":"https://www.academia.edu/Documents/in/Administrative_Science_and_Policy_Studies?f_ri=1351"},{"id":85471,"name":"Citizen participation","url":"https://www.academia.edu/Documents/in/Citizen_participation?f_ri=1351"},{"id":85722,"name":"Demografia","url":"https://www.academia.edu/Documents/in/Demografia?f_ri=1351"},{"id":86107,"name":"Multilevel modelling","url":"https://www.academia.edu/Documents/in/Multilevel_modelling?f_ri=1351"},{"id":86505,"name":"Management Business","url":"https://www.academia.edu/Documents/in/Management_Business?f_ri=1351"},{"id":88935,"name":"Sociología","url":"https://www.academia.edu/Documents/in/Sociolog%C3%ADa?f_ri=1351"},{"id":89455,"name":"Services Marketing","url":"https://www.academia.edu/Documents/in/Services_Marketing-5?f_ri=1351"},{"id":89664,"name":"Sociología de la Cultura","url":"https://www.academia.edu/Documents/in/Sociolog%C3%ADa_de_la_Cultura?f_ri=1351"},{"id":92912,"name":"Statistical modelling with logistic and linear regression","url":"https://www.academia.edu/Documents/in/Statistical_modelling_with_logistic_and_linear_regression?f_ri=1351"},{"id":93395,"name":"Geografía Humana","url":"https://www.academia.edu/Documents/in/Geograf%C3%ADa_Humana?f_ri=1351"},{"id":94496,"name":"Secondary Research","url":"https://www.academia.edu/Documents/in/Secondary_Research?f_ri=1351"},{"id":95372,"name":"Land Administration, land governance","url":"https://www.academia.edu/Documents/in/Land_Administration_land_governance?f_ri=1351"},{"id":95657,"name":"Management and societal Development","url":"https://www.academia.edu/Documents/in/Management_and_societal_Development?f_ri=1351"},{"id":95929,"name":"Longitudinal data analysis","url":"https://www.academia.edu/Documents/in/Longitudinal_data_analysis?f_ri=1351"},{"id":96230,"name":"Urbanismo","url":"https://www.academia.edu/Documents/in/Urbanismo?f_ri=1351"},{"id":96555,"name":"Sociology and Anthropology","url":"https://www.academia.edu/Documents/in/Sociology_and_Anthropology?f_ri=1351"},{"id":97257,"name":"Comparative Regionalism","url":"https://www.academia.edu/Documents/in/Comparative_Regionalism?f_ri=1351"},{"id":98937,"name":"Statistic","url":"https://www.academia.edu/Documents/in/Statistic?f_ri=1351"},{"id":99487,"name":"Local governance","url":"https://www.academia.edu/Documents/in/Local_governance?f_ri=1351"},{"id":100465,"name":"General Sociology","url":"https://www.academia.edu/Documents/in/General_Sociology?f_ri=1351"},{"id":104056,"name":"Social Business","url":"https://www.academia.edu/Documents/in/Social_Business?f_ri=1351"},{"id":104538,"name":"ArcGIS","url":"https://www.academia.edu/Documents/in/ArcGIS?f_ri=1351"},{"id":104834,"name":"Statistical Techniques in Spatial Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Techniques_in_Spatial_Analysis?f_ri=1351"},{"id":105072,"name":"Local Government and Regional Administration","url":"https://www.academia.edu/Documents/in/Local_Government_and_Regional_Administration?f_ri=1351"},{"id":105213,"name":"Local Goverment and Local Development","url":"https://www.academia.edu/Documents/in/Local_Goverment_and_Local_Development?f_ri=1351"},{"id":105406,"name":"Geographical Economics","url":"https://www.academia.edu/Documents/in/Geographical_Economics?f_ri=1351"},{"id":105704,"name":"Social economics","url":"https://www.academia.edu/Documents/in/Social_economics?f_ri=1351"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification?f_ri=1351"},{"id":107973,"name":"Social Housing Design","url":"https://www.academia.edu/Documents/in/Social_Housing_Design?f_ri=1351"},{"id":113749,"name":"Multivariate","url":"https://www.academia.edu/Documents/in/Multivariate?f_ri=1351"},{"id":113886,"name":"Social and Political Sciences","url":"https://www.academia.edu/Documents/in/Social_and_Political_Sciences?f_ri=1351"},{"id":114055,"name":"Management and Social Sciences","url":"https://www.academia.edu/Documents/in/Management_and_Social_Sciences?f_ri=1351"},{"id":114144,"name":"Administración Pública","url":"https://www.academia.edu/Documents/in/Administraci%C3%B3n_P%C3%BAblica?f_ri=1351"},{"id":117626,"name":"Research, Monitoring, Evaluation and Impact Assessment Studies","url":"https://www.academia.edu/Documents/in/Research_Monitoring_Evaluation_and_Impact_Assessment_Studies?f_ri=1351"},{"id":119168,"name":"Public Policy and Administration","url":"https://www.academia.edu/Documents/in/Public_Policy_and_Administration?f_ri=1351"},{"id":119419,"name":"Administração Pública","url":"https://www.academia.edu/Documents/in/Administra%C3%A7%C3%A3o_P%C3%BAblica?f_ri=1351"},{"id":119563,"name":"Political Analysis -Public Policy Analysis","url":"https://www.academia.edu/Documents/in/Political_Analysis_-Public_Policy_Analysis?f_ri=1351"},{"id":120075,"name":"Anthropology of Space, Urban Sociology, Cultural Geography","url":"https://www.academia.edu/Documents/in/Anthropology_of_Space_Urban_Sociology_Cultural_Geography?f_ri=1351"},{"id":120250,"name":"Management Information System","url":"https://www.academia.edu/Documents/in/Management_Information_System?f_ri=1351"},{"id":121555,"name":"Territorial Development and Planning","url":"https://www.academia.edu/Documents/in/Territorial_Development_and_Planning?f_ri=1351"},{"id":121913,"name":"Management Studies","url":"https://www.academia.edu/Documents/in/Management_Studies?f_ri=1351"},{"id":123293,"name":"Public Financial Administration and Policy Analysis","url":"https://www.academia.edu/Documents/in/Public_Financial_Administration_and_Policy_Analysis?f_ri=1351"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=1351"},{"id":127169,"name":"Estadistica","url":"https://www.academia.edu/Documents/in/Estadistica?f_ri=1351"},{"id":127262,"name":"Social Change, Community Economic Development, Public Management, Policy Analysis and Evaluation Research, Project/program Management, Strategic Management","url":"https://www.academia.edu/Documents/in/Social_Change_Community_Economic_Development_Public_Management_Policy_Analysis_and_Evaluation_Res?f_ri=1351"},{"id":127286,"name":"Policy Analysis and Evaluation Research","url":"https://www.academia.edu/Documents/in/Policy_Analysis_and_Evaluation_Research?f_ri=1351"},{"id":128151,"name":"Public Sector Auditing","url":"https://www.academia.edu/Documents/in/Public_Sector_Auditing?f_ri=1351"},{"id":129257,"name":"Critical Social Research","url":"https://www.academia.edu/Documents/in/Critical_Social_Research?f_ri=1351"},{"id":129876,"name":"Local Governance \u0026 Participatory Planning","url":"https://www.academia.edu/Documents/in/Local_Governance_and_Participatory_Planning?f_ri=1351"},{"id":130134,"name":"Human Services","url":"https://www.academia.edu/Documents/in/Human_Services?f_ri=1351"},{"id":130221,"name":"Economia Política","url":"https://www.academia.edu/Documents/in/Economia_Pol%C3%ADtica?f_ri=1351"},{"id":130721,"name":"Municipal Planning","url":"https://www.academia.edu/Documents/in/Municipal_Planning?f_ri=1351"},{"id":131226,"name":"Population Economics","url":"https://www.academia.edu/Documents/in/Population_Economics?f_ri=1351"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis?f_ri=1351"},{"id":131991,"name":"Government transparency","url":"https://www.academia.edu/Documents/in/Government_transparency?f_ri=1351"},{"id":134887,"name":"Census","url":"https://www.academia.edu/Documents/in/Census?f_ri=1351"},{"id":136883,"name":"Sociological theory/analysis, qualitative research methods, social anthropology, political sociology, social movements, democratization, State-society relations, civil society role in developing countries","url":"https://www.academia.edu/Documents/in/Sociological_theory_analysis_qualitative_research_methods_social_anthropology_political_sociology?f_ri=1351"},{"id":141578,"name":"Strategic Information System Planning","url":"https://www.academia.edu/Documents/in/Strategic_Information_System_Planning?f_ri=1351"},{"id":142121,"name":"Development Studies and Public Policy","url":"https://www.academia.edu/Documents/in/Development_Studies_and_Public_Policy?f_ri=1351"},{"id":144104,"name":"Statistics, Econometrics, Economics, Marketing searching and adjusting, Management methods, Demography, Projects with foreign financing, Price universe and interpret indices, Physics, Econophysics.","url":"https://www.academia.edu/Documents/in/Statistics_Econometrics_Economics_Marketing_searching_and_adjusting_Management_methods_Demograp?f_ri=1351"},{"id":144919,"name":"Non Profit Marketing","url":"https://www.academia.edu/Documents/in/Non_Profit_Marketing?f_ri=1351"},{"id":144997,"name":"Metropolitan Governance","url":"https://www.academia.edu/Documents/in/Metropolitan_Governance?f_ri=1351"},{"id":145448,"name":"Population Studies","url":"https://www.academia.edu/Documents/in/Population_Studies?f_ri=1351"},{"id":148419,"name":"Sociology of power and knowledge","url":"https://www.academia.edu/Documents/in/Sociology_of_power_and_knowledge?f_ri=1351"},{"id":148984,"name":"Strategic Operations Management","url":"https://www.academia.edu/Documents/in/Strategic_Operations_Management?f_ri=1351"},{"id":150370,"name":"Geografía","url":"https://www.academia.edu/Documents/in/Geograf%C3%ADa?f_ri=1351"},{"id":152694,"name":"Statistical Methods","url":"https://www.academia.edu/Documents/in/Statistical_Methods?f_ri=1351"},{"id":152751,"name":"Humanities and Social Sciences","url":"https://www.academia.edu/Documents/in/Humanities_and_Social_Sciences?f_ri=1351"},{"id":155378,"name":"Sociologie Urbaine","url":"https://www.academia.edu/Documents/in/Sociologie_Urbaine?f_ri=1351"},{"id":157189,"name":"Development of complex societies","url":"https://www.academia.edu/Documents/in/Development_of_complex_societies?f_ri=1351"},{"id":157784,"name":"Space, place and culture; geography of lifeworlds; Soundscape Studies","url":"https://www.academia.edu/Documents/in/Space_place_and_culture_geography_of_lifeworlds_Soundscape_Studies?f_ri=1351"},{"id":160098,"name":"Spatial dynamics and Urban core","url":"https://www.academia.edu/Documents/in/Spatial_dynamics_and_Urban_core?f_ri=1351"},{"id":160208,"name":"Geografía Económica","url":"https://www.academia.edu/Documents/in/Geograf%C3%ADa_Econ%C3%B3mica?f_ri=1351"},{"id":161504,"name":"Metodology of social research","url":"https://www.academia.edu/Documents/in/Metodology_of_social_research?f_ri=1351"},{"id":162515,"name":"New Economic Sociology","url":"https://www.academia.edu/Documents/in/New_Economic_Sociology?f_ri=1351"},{"id":166373,"name":"Health Information Management","url":"https://www.academia.edu/Documents/in/Health_Information_Management?f_ri=1351"},{"id":167291,"name":"Visual Research","url":"https://www.academia.edu/Documents/in/Visual_Research?f_ri=1351"},{"id":173836,"name":"Urban theory","url":"https://www.academia.edu/Documents/in/Urban_theory?f_ri=1351"},{"id":174951,"name":"Geografia Urbana","url":"https://www.academia.edu/Documents/in/Geografia_Urbana?f_ri=1351"},{"id":180915,"name":"Internal Controls and Corporate Governance in the Public Sector","url":"https://www.academia.edu/Documents/in/Internal_Controls_and_Corporate_Governance_in_the_Public_Sector?f_ri=1351"},{"id":181744,"name":"Understanding the Publicness of Public Places, Urban Regeneration and The Future of Cities, Cultural Spaces in The Contemporary Urban Landscape","url":"https://www.academia.edu/Documents/in/Understanding_the_Publicness_of_Public_Places_Urban_Regeneration_and_The_Future_of_Cities_Cultural?f_ri=1351"},{"id":187277,"name":"Understanding Architectural Space","url":"https://www.academia.edu/Documents/in/Understanding_Architectural_Space?f_ri=1351"},{"id":187536,"name":"Town and Regional planning","url":"https://www.academia.edu/Documents/in/Town_and_Regional_planning?f_ri=1351"},{"id":188474,"name":"Applied Statistics and Statistical Modelling","url":"https://www.academia.edu/Documents/in/Applied_Statistics_and_Statistical_Modelling?f_ri=1351"},{"id":190219,"name":"Economic activity","url":"https://www.academia.edu/Documents/in/Economic_activity?f_ri=1351"},{"id":192692,"name":"Planning Theory","url":"https://www.academia.edu/Documents/in/Planning_Theory?f_ri=1351"},{"id":195217,"name":"Public Adminstration","url":"https://www.academia.edu/Documents/in/Public_Adminstration?f_ri=1351"},{"id":195480,"name":"Geografía Política","url":"https://www.academia.edu/Documents/in/Geograf%C3%ADa_Pol%C3%ADtica?f_ri=1351"},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351"},{"id":207567,"name":"Public Service Delivery","url":"https://www.academia.edu/Documents/in/Public_Service_Delivery?f_ri=1351"},{"id":208034,"name":"Integración Regional","url":"https://www.academia.edu/Documents/in/Integraci%C3%B3n_Regional?f_ri=1351"},{"id":211531,"name":"Municipios","url":"https://www.academia.edu/Documents/in/Municipios?f_ri=1351"},{"id":212586,"name":"Census data","url":"https://www.academia.edu/Documents/in/Census_data?f_ri=1351"},{"id":214378,"name":"Quantitative Methods for Risk analysis","url":"https://www.academia.edu/Documents/in/Quantitative_Methods_for_Risk_analysis?f_ri=1351"},{"id":218270,"name":"Municipalities","url":"https://www.academia.edu/Documents/in/Municipalities?f_ri=1351"},{"id":226711,"name":"Log linear models","url":"https://www.academia.edu/Documents/in/Log_linear_models?f_ri=1351"},{"id":236116,"name":"Demography and Social Statistics","url":"https://www.academia.edu/Documents/in/Demography_and_Social_Statistics?f_ri=1351"},{"id":236522,"name":"Government Data","url":"https://www.academia.edu/Documents/in/Government_Data?f_ri=1351"},{"id":238030,"name":"Urban Memory","url":"https://www.academia.edu/Documents/in/Urban_Memory?f_ri=1351"},{"id":238094,"name":"The Role of Information and Communication Technology (ICT) in Achieving Sustainable Socio-Economic Development (e-Commerce, e-Business \u0026 e-Government)","url":"https://www.academia.edu/Documents/in/The_Role_of_Information_and_Communication_Technology_ICT_in_Achieving_Sustainable_Socio-Economic_D?f_ri=1351"},{"id":242073,"name":"DEMOGRAPHY AND HEALTH","url":"https://www.academia.edu/Documents/in/DEMOGRAPHY_AND_HEALTH?f_ri=1351"},{"id":242197,"name":"Sector Public","url":"https://www.academia.edu/Documents/in/Sector_Public?f_ri=1351"},{"id":243366,"name":"Impact of government expenditure on the economy","url":"https://www.academia.edu/Documents/in/Impact_of_government_expenditure_on_the_economy?f_ri=1351"},{"id":247656,"name":"Municipal Government","url":"https://www.academia.edu/Documents/in/Municipal_Government?f_ri=1351"},{"id":254626,"name":"Cluster","url":"https://www.academia.edu/Documents/in/Cluster?f_ri=1351"},{"id":255999,"name":"Stats","url":"https://www.academia.edu/Documents/in/Stats?f_ri=1351"},{"id":257285,"name":"Social and political science","url":"https://www.academia.edu/Documents/in/Social_and_political_science?f_ri=1351"},{"id":259414,"name":"Administracion Publica","url":"https://www.academia.edu/Documents/in/Administracion_Publica?f_ri=1351"},{"id":259913,"name":"Public Consultations and Social Dialogue","url":"https://www.academia.edu/Documents/in/Public_Consultations_and_Social_Dialogue?f_ri=1351"},{"id":263448,"name":"Complexity theory in social systems","url":"https://www.academia.edu/Documents/in/Complexity_theory_in_social_systems?f_ri=1351"},{"id":264797,"name":"Impact evaluation, causality and evaluation methodologies for public policies, programs, and development projects, EU policy","url":"https://www.academia.edu/Documents/in/Impact_evaluation_causality_and_evaluation_methodologies_for_public_policies_programs_and_develop-1?f_ri=1351"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics?f_ri=1351"},{"id":267110,"name":"Economics and Public Policy","url":"https://www.academia.edu/Documents/in/Economics_and_Public_Policy?f_ri=1351"},{"id":267549,"name":"Urban Environmental Management","url":"https://www.academia.edu/Documents/in/Urban_Environmental_Management?f_ri=1351"},{"id":268489,"name":"Economics and management","url":"https://www.academia.edu/Documents/in/Economics_and_management?f_ri=1351"},{"id":270341,"name":"Architecture and Urban Planning","url":"https://www.academia.edu/Documents/in/Architecture_and_Urban_Planning?f_ri=1351"},{"id":272023,"name":"Accountability and Governance Issues","url":"https://www.academia.edu/Documents/in/Accountability_and_Governance_Issues?f_ri=1351"},{"id":273724,"name":"Statistics and Mathematics","url":"https://www.academia.edu/Documents/in/Statistics_and_Mathematics?f_ri=1351"},{"id":276226,"name":"Urban Sociology and Social Policy","url":"https://www.academia.edu/Documents/in/Urban_Sociology_and_Social_Policy?f_ri=1351"},{"id":282544,"name":"Urban and Regional Development, Social geography, History of Geography","url":"https://www.academia.edu/Documents/in/Urban_and_Regional_Development_Social_geography_History_of_Geography?f_ri=1351"},{"id":284246,"name":"Knowledge Management System","url":"https://www.academia.edu/Documents/in/Knowledge_Management_System?f_ri=1351"},{"id":287530,"name":"Bussiness management","url":"https://www.academia.edu/Documents/in/Bussiness_management?f_ri=1351"},{"id":288581,"name":"Community Engagement, Empowerment and Development * People Based Regeneration * Community Action Research * Group and Event Facilitation * Strategic Planning and Evaluation","url":"https://www.academia.edu/Documents/in/Community_Engagement_Empowerment_and_Development_People_Based_Regeneration_Community_Action_Res?f_ri=1351"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics?f_ri=1351"},{"id":296128,"name":"Geospatial Information Science","url":"https://www.academia.edu/Documents/in/Geospatial_Information_Science?f_ri=1351"},{"id":298440,"name":"Public Service","url":"https://www.academia.edu/Documents/in/Public_Service?f_ri=1351"},{"id":306987,"name":"Spatial Statistics, Geostatistics, Environmental Statistics","url":"https://www.academia.edu/Documents/in/Spatial_Statistics_Geostatistics_Environmental_Statistics?f_ri=1351"},{"id":313252,"name":"Policy Evaluation","url":"https://www.academia.edu/Documents/in/Policy_Evaluation?f_ri=1351"},{"id":328349,"name":"Public Service Management","url":"https://www.academia.edu/Documents/in/Public_Service_Management?f_ri=1351"},{"id":334379,"name":"Land Governance","url":"https://www.academia.edu/Documents/in/Land_Governance?f_ri=1351"},{"id":347138,"name":"Public sector economics","url":"https://www.academia.edu/Documents/in/Public_sector_economics?f_ri=1351"},{"id":355567,"name":"Political Science and public administration","url":"https://www.academia.edu/Documents/in/Political_Science_and_public_administration-1?f_ri=1351"},{"id":359986,"name":"Customer services quality","url":"https://www.academia.edu/Documents/in/Customer_services_quality?f_ri=1351"},{"id":366010,"name":"Classical and Contemporary Social Theory","url":"https://www.academia.edu/Documents/in/Classical_and_Contemporary_Social_Theory?f_ri=1351"},{"id":374844,"name":"Democracy and Citizenship Education","url":"https://www.academia.edu/Documents/in/Democracy_and_Citizenship_Education?f_ri=1351"},{"id":378175,"name":"Urban Planning, Urban Governance, Cities and Climate Change","url":"https://www.academia.edu/Documents/in/Urban_Planning_Urban_Governance_Cities_and_Climate_Change?f_ri=1351"},{"id":379264,"name":"SPSS Programming","url":"https://www.academia.edu/Documents/in/SPSS_Programming?f_ri=1351"},{"id":380315,"name":"Public Administration and Policy","url":"https://www.academia.edu/Documents/in/Public_Administration_and_Policy?f_ri=1351"},{"id":380822,"name":"Societal Marketing","url":"https://www.academia.edu/Documents/in/Societal_Marketing?f_ri=1351"},{"id":382001,"name":"Social Policy and Social Work","url":"https://www.academia.edu/Documents/in/Social_Policy_and_Social_Work?f_ri=1351"},{"id":383222,"name":"Historical and Comparative Sociology","url":"https://www.academia.edu/Documents/in/Historical_and_Comparative_Sociology?f_ri=1351"},{"id":385234,"name":"Political Economy and History","url":"https://www.academia.edu/Documents/in/Political_Economy_and_History?f_ri=1351"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics?f_ri=1351"},{"id":389919,"name":"Performance Evaluation and Management","url":"https://www.academia.edu/Documents/in/Performance_Evaluation_and_Management?f_ri=1351"},{"id":391715,"name":"Ethnicity and National Identity","url":"https://www.academia.edu/Documents/in/Ethnicity_and_National_Identity?f_ri=1351"},{"id":396232,"name":"Geospatial Information","url":"https://www.academia.edu/Documents/in/Geospatial_Information?f_ri=1351"},{"id":400393,"name":"Theories of Socialism","url":"https://www.academia.edu/Documents/in/Theories_of_Socialism?f_ri=1351"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining?f_ri=1351"},{"id":413165,"name":"Gestión Pública","url":"https://www.academia.edu/Documents/in/Gesti%C3%B3n_P%C3%BAblica?f_ri=1351"},{"id":417566,"name":"Local/Municipal government","url":"https://www.academia.edu/Documents/in/Local_Municipal_government?f_ri=1351"},{"id":427740,"name":"Géographie","url":"https://www.academia.edu/Documents/in/G%C3%A9ographie?f_ri=1351"},{"id":430376,"name":"International Journal of Contemporary Economics and Administration Sciences","url":"https://www.academia.edu/Documents/in/International_Journal_of_Contemporary_Economics_and_Administration_Sciences?f_ri=1351"},{"id":449423,"name":"Master Planning","url":"https://www.academia.edu/Documents/in/Master_Planning?f_ri=1351"},{"id":450098,"name":"Local government, Performance Management","url":"https://www.academia.edu/Documents/in/Local_government_Performance_Management?f_ri=1351"},{"id":458802,"name":"Politics and Governance Studies","url":"https://www.academia.edu/Documents/in/Politics_and_Governance_Studies?f_ri=1351"},{"id":463772,"name":"North-East of England","url":"https://www.academia.edu/Documents/in/North-East_of_England?f_ri=1351"},{"id":488689,"name":"Geografia Social","url":"https://www.academia.edu/Documents/in/Geografia_Social?f_ri=1351"},{"id":499314,"name":"Sociology of the Family","url":"https://www.academia.edu/Documents/in/Sociology_of_the_Family?f_ri=1351"},{"id":501009,"name":"Community participation and engagement","url":"https://www.academia.edu/Documents/in/Community_participation_and_engagement?f_ri=1351"},{"id":502714,"name":"Reflective Practices","url":"https://www.academia.edu/Documents/in/Reflective_Practices?f_ri=1351"},{"id":512543,"name":"Urban Cohesion","url":"https://www.academia.edu/Documents/in/Urban_Cohesion?f_ri=1351"},{"id":530270,"name":"Management and Organization Theory","url":"https://www.academia.edu/Documents/in/Management_and_Organization_Theory?f_ri=1351"},{"id":532817,"name":"Urban and Regional Planning Engineering","url":"https://www.academia.edu/Documents/in/Urban_and_Regional_Planning_Engineering?f_ri=1351"},{"id":534154,"name":"Statistik","url":"https://www.academia.edu/Documents/in/Statistik?f_ri=1351"},{"id":536015,"name":"Applied Geography","url":"https://www.academia.edu/Documents/in/Applied_Geography?f_ri=1351"},{"id":541793,"name":"National government","url":"https://www.academia.edu/Documents/in/National_government?f_ri=1351"},{"id":542065,"name":"Spatial Story Telling","url":"https://www.academia.edu/Documents/in/Spatial_Story_Telling?f_ri=1351"},{"id":564432,"name":"Urban Planning and Management","url":"https://www.academia.edu/Documents/in/Urban_Planning_and_Management?f_ri=1351"},{"id":577915,"name":"Advanced Research Methodology in Social Sciences","url":"https://www.academia.edu/Documents/in/Advanced_Research_Methodology_in_Social_Sciences?f_ri=1351"},{"id":602128,"name":"Sociology of the State","url":"https://www.academia.edu/Documents/in/Sociology_of_the_State?f_ri=1351"},{"id":633024,"name":"Relationship Between Urbanism and Sociology (Interaction Between Architecture \u0026 Society)","url":"https://www.academia.edu/Documents/in/Relationship_Between_Urbanism_and_Sociology_Interaction_Between_Architecture_and_Society_?f_ri=1351"},{"id":635610,"name":"Social and Economic Geography","url":"https://www.academia.edu/Documents/in/Social_and_Economic_Geography?f_ri=1351"},{"id":643412,"name":"Statistical Analysis Techniques for Geography and Environmental Science","url":"https://www.academia.edu/Documents/in/Statistical_Analysis_Techniques_for_Geography_and_Environmental_Science?f_ri=1351"},{"id":647561,"name":"Visual Research and Mapping","url":"https://www.academia.edu/Documents/in/Visual_Research_and_Mapping?f_ri=1351"},{"id":649356,"name":"Statistical Analysis In Geography","url":"https://www.academia.edu/Documents/in/Statistical_Analysis_In_Geography?f_ri=1351"},{"id":652497,"name":"Public Administration and Management","url":"https://www.academia.edu/Documents/in/Public_Administration_and_Management?f_ri=1351"},{"id":671592,"name":"Knowledge management in public sector","url":"https://www.academia.edu/Documents/in/Knowledge_management_in_public_sector?f_ri=1351"},{"id":676370,"name":"Estudios De Postgrados","url":"https://www.academia.edu/Documents/in/Estudios_De_Postgrados?f_ri=1351"},{"id":677126,"name":"Social Policy \u0026 Development","url":"https://www.academia.edu/Documents/in/Social_Policy_and_Development-1?f_ri=1351"},{"id":679090,"name":"Demografia Histórica","url":"https://www.academia.edu/Documents/in/Demografia_Hist%C3%B3rica?f_ri=1351"},{"id":680257,"name":"System Modeling and Simulation","url":"https://www.academia.edu/Documents/in/System_Modeling_and_Simulation?f_ri=1351"},{"id":689279,"name":"Impact Evaluation of Development Programs","url":"https://www.academia.edu/Documents/in/Impact_Evaluation_of_Development_Programs?f_ri=1351"},{"id":692041,"name":"Surveying and Geoinformatics","url":"https://www.academia.edu/Documents/in/Surveying_and_Geoinformatics?f_ri=1351"},{"id":701337,"name":"Master's Degree Dissertation","url":"https://www.academia.edu/Documents/in/Masters_Degree_Dissertation?f_ri=1351"},{"id":744920,"name":"Local authorities","url":"https://www.academia.edu/Documents/in/Local_authorities?f_ri=1351"},{"id":793405,"name":"Social Data Analytics for Business Intelligence","url":"https://www.academia.edu/Documents/in/Social_Data_Analytics_for_Business_Intelligence?f_ri=1351"},{"id":796122,"name":"Complex System Modeling","url":"https://www.academia.edu/Documents/in/Complex_System_Modeling?f_ri=1351"},{"id":803566,"name":"Métodos Estadísticosw","url":"https://www.academia.edu/Documents/in/Metodos_Estadisticosw?f_ri=1351"},{"id":806995,"name":"Neighborhood and Community Planning","url":"https://www.academia.edu/Documents/in/Neighborhood_and_Community_Planning?f_ri=1351"},{"id":830632,"name":"Public Policy, Planning and Governance","url":"https://www.academia.edu/Documents/in/Public_Policy_Planning_and_Governance?f_ri=1351"},{"id":847661,"name":"Research Reports","url":"https://www.academia.edu/Documents/in/Research_Reports?f_ri=1351"},{"id":862174,"name":"Urban Planning and Governance","url":"https://www.academia.edu/Documents/in/Urban_Planning_and_Governance?f_ri=1351"},{"id":882034,"name":"Economía y sociedad","url":"https://www.academia.edu/Documents/in/Economia_y_sociedad?f_ri=1351"},{"id":902344,"name":"Knowledge Management Strategy","url":"https://www.academia.edu/Documents/in/Knowledge_Management_Strategy?f_ri=1351"},{"id":905403,"name":"Governmentality Studies","url":"https://www.academia.edu/Documents/in/Governmentality_Studies?f_ri=1351"},{"id":910066,"name":"Demography and Population Studies","url":"https://www.academia.edu/Documents/in/Demography_and_Population_Studies?f_ri=1351"},{"id":911605,"name":"Geography and planning","url":"https://www.academia.edu/Documents/in/Geography_and_planning?f_ri=1351"},{"id":913996,"name":"Public Policy \u0026 Administration","url":"https://www.academia.edu/Documents/in/Public_Policy_and_Administration-1?f_ri=1351"},{"id":914472,"name":"Executive Information Systems","url":"https://www.academia.edu/Documents/in/Executive_Information_Systems?f_ri=1351"},{"id":919141,"name":"Social Knowledge Construction","url":"https://www.academia.edu/Documents/in/Social_Knowledge_Construction?f_ri=1351"},{"id":923190,"name":"Land Planning","url":"https://www.academia.edu/Documents/in/Land_Planning?f_ri=1351"},{"id":925032,"name":"Metropolitan Planning and Governance","url":"https://www.academia.edu/Documents/in/Metropolitan_Planning_and_Governance?f_ri=1351"},{"id":931697,"name":"Innovation \u0026 Change Management","url":"https://www.academia.edu/Documents/in/Innovation_and_Change_Management-1?f_ri=1351"},{"id":939054,"name":"Information Systems Development And Management","url":"https://www.academia.edu/Documents/in/Information_Systems_Development_And_Management?f_ri=1351"},{"id":939103,"name":"Quantiative Economics","url":"https://www.academia.edu/Documents/in/Quantiative_Economics?f_ri=1351"},{"id":939198,"name":"Governance and State Capacity","url":"https://www.academia.edu/Documents/in/Governance_and_State_Capacity?f_ri=1351"},{"id":952348,"name":"Society of Consumers","url":"https://www.academia.edu/Documents/in/Society_of_Consumers?f_ri=1351"},{"id":957295,"name":"Integração Regional","url":"https://www.academia.edu/Documents/in/Integracao_Regional?f_ri=1351"},{"id":962916,"name":"Estadistica Aplicada","url":"https://www.academia.edu/Documents/in/Estadistica_Aplicada?f_ri=1351"},{"id":966253,"name":"Multivariate Statistical Methods","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Methods?f_ri=1351"},{"id":969804,"name":"Strategic Consultancy","url":"https://www.academia.edu/Documents/in/Strategic_Consultancy?f_ri=1351"},{"id":973139,"name":"Philosophy of Urban and Regional Planning","url":"https://www.academia.edu/Documents/in/Philosophy_of_Urban_and_Regional_Planning?f_ri=1351"},{"id":974323,"name":"Visualizing Research Information","url":"https://www.academia.edu/Documents/in/Visualizing_Research_Information?f_ri=1351"},{"id":975127,"name":"Urbanizastion","url":"https://www.academia.edu/Documents/in/Urbanizastion?f_ri=1351"},{"id":975586,"name":"Local Goverment","url":"https://www.academia.edu/Documents/in/Local_Goverment?f_ri=1351"},{"id":986648,"name":"Basic Service Provision","url":"https://www.academia.edu/Documents/in/Basic_Service_Provision?f_ri=1351"},{"id":990736,"name":"Statistical and Quantitative Modelling Methods","url":"https://www.academia.edu/Documents/in/Statistical_and_Quantitative_Modelling_Methods?f_ri=1351"},{"id":1001781,"name":"Governance and Democracy","url":"https://www.academia.edu/Documents/in/Governance_and_Democracy-1?f_ri=1351"},{"id":1009086,"name":"Local Government Management","url":"https://www.academia.edu/Documents/in/Local_Government_Management?f_ri=1351"},{"id":1009312,"name":"Geographic Information Systems (GIS)","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems_GIS_?f_ri=1351"},{"id":1023313,"name":"Knowledgement Management","url":"https://www.academia.edu/Documents/in/Knowledgement_Management?f_ri=1351"},{"id":1024423,"name":"Comparative Government Developmental Economics","url":"https://www.academia.edu/Documents/in/Comparative_Government_Developmental_Economics?f_ri=1351"},{"id":1032324,"name":"K means Clustering","url":"https://www.academia.edu/Documents/in/K_means_Clustering?f_ri=1351"},{"id":1063745,"name":"Complexity and Contradiction In Architecture","url":"https://www.academia.edu/Documents/in/Complexity_and_Contradiction_In_Architecture?f_ri=1351"},{"id":1117206,"name":"Economic","url":"https://www.academia.edu/Documents/in/Economic?f_ri=1351"},{"id":1150797,"name":"Demografía Social","url":"https://www.academia.edu/Documents/in/Demografia_Social?f_ri=1351"},{"id":1194814,"name":"Geografia Economica","url":"https://www.academia.edu/Documents/in/Geografia_Economica-1?f_ri=1351"},{"id":1195931,"name":"Geographic Information Systems GIS)","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems_GIS_-2?f_ri=1351"},{"id":1211138,"name":"Geographic Information System","url":"https://www.academia.edu/Documents/in/Geographic_Information_System?f_ri=1351"},{"id":1223646,"name":"Governance and Risk Management","url":"https://www.academia.edu/Documents/in/Governance_and_Risk_Management?f_ri=1351"},{"id":1236189,"name":"Strategic Planning in Government","url":"https://www.academia.edu/Documents/in/Strategic_Planning_in_Government?f_ri=1351"},{"id":1247453,"name":"Economic Geography","url":"https://www.academia.edu/Documents/in/Economic_Geography-2016?f_ri=1351"},{"id":1723635,"name":"Public Policy","url":"https://www.academia.edu/Documents/in/Public_Policy?f_ri=1351"},{"id":1853074,"name":"Master's Degree","url":"https://www.academia.edu/Documents/in/Masters_Degree-1?f_ri=1351"},{"id":1891306,"name":"Cross-Tabulations","url":"https://www.academia.edu/Documents/in/Cross-Tabulations?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_8331727" data-work_id="8331727" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/8331727/A_general_framework_for_parametric_survival_analysis">A general framework for parametric survival analysis</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_8331727" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley &amp; Sons, Ltd.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/8331727" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="67bbb1a65023f5cc23b12708633d3f69" rel="nofollow" data-download="{&quot;attachment_id&quot;:38798797,&quot;asset_id&quot;:8331727,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38798797/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="643825" href="https://leicester.academia.edu/MichaelCrowther">Michael Crowther</a><script data-card-contents-for-user="643825" type="text/json">{"id":643825,"first_name":"Michael","last_name":"Crowther","domain_name":"leicester","page_name":"MichaelCrowther","display_name":"Michael Crowther","profile_url":"https://leicester.academia.edu/MichaelCrowther?f_ri=1351","photo":"https://0.academia-photos.com/643825/679823/10890579/s65_michael.crowther.jpg"}</script></span></span></li><li class="js-paper-rank-work_8331727 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="8331727"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 8331727, container: ".js-paper-rank-work_8331727", }); });</script></li><li class="js-percentile-work_8331727 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8331727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_8331727"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_8331727 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="8331727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8331727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8331727]").text(description); $(".js-view-count-work_8331727").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_8331727").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="8331727"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="3058" rel="nofollow" href="https://www.academia.edu/Documents/in/Biostatistics">Biostatistics</a>,&nbsp;<script data-card-contents-for-ri="3058" type="text/json">{"id":3058,"name":"Biostatistics","url":"https://www.academia.edu/Documents/in/Biostatistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="10610" rel="nofollow" href="https://www.academia.edu/Documents/in/Survival_Analysis">Survival Analysis</a><script data-card-contents-for-ri="10610" type="text/json">{"id":10610,"name":"Survival Analysis","url":"https://www.academia.edu/Documents/in/Survival_Analysis?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=8331727]'), work: {"id":8331727,"title":"A general framework for parametric survival analysis","created_at":"2014-09-15T01:04:27.390-07:00","url":"https://www.academia.edu/8331727/A_general_framework_for_parametric_survival_analysis?f_ri=1351","dom_id":"work_8331727","summary":"Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley \u0026 Sons, Ltd.","downloadable_attachments":[{"id":38798797,"asset_id":8331727,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":643825,"first_name":"Michael","last_name":"Crowther","domain_name":"leicester","page_name":"MichaelCrowther","display_name":"Michael Crowther","profile_url":"https://leicester.academia.edu/MichaelCrowther?f_ri=1351","photo":"https://0.academia-photos.com/643825/679823/10890579/s65_michael.crowther.jpg"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":3058,"name":"Biostatistics","url":"https://www.academia.edu/Documents/in/Biostatistics?f_ri=1351","nofollow":true},{"id":10610,"name":"Survival Analysis","url":"https://www.academia.edu/Documents/in/Survival_Analysis?f_ri=1351","nofollow":true},{"id":63359,"name":"Stata","url":"https://www.academia.edu/Documents/in/Stata?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12797474 coauthored" data-work_id="12797474" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12797474/An_introduction_to_recursive_partitioning_Rationale_application_and_characteristics_of_classification_and_regression_trees_bagging_and_random_forests">An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_12797474" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and bioinformatics within the past few years. High-dimensional problems are common not only in genetics, but also in some areas of psychological research, where only a few subjects can be measured because of time or cost constraints, yet a large amount of data is generated for each subject. Random forests have been shown to achieve a high prediction accuracy in such applications and to provide descriptive variable importance measures reflecting the impact of each variable in both main effects and interactions. The aim of this work is to introduce the principles of the standard recursive partitioning methods as well as recent methodological improvements, to illustrate their usage for low and high-dimensional data exploration, but also to point out limitations of the methods and potential pitfalls in their practical application. Application of the methods is illustrated with freely available implementations in the R system for statistical computing.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12797474" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c4fd39e28445d7e604d265e44cea7cdc" rel="nofollow" data-download="{&quot;attachment_id&quot;:45928625,&quot;asset_id&quot;:12797474,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/45928625/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31870355" href="https://independent.academia.edu/GerhardTutz">Gerhard Tutz</a><script data-card-contents-for-user="31870355" type="text/json">{"id":31870355,"first_name":"Gerhard","last_name":"Tutz","domain_name":"independent","page_name":"GerhardTutz","display_name":"Gerhard Tutz","profile_url":"https://independent.academia.edu/GerhardTutz?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-12797474">+1</span><div class="hidden js-additional-users-12797474"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/JamesMalley1">James Malley</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-12797474'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-12797474').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_12797474 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12797474"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12797474, container: ".js-paper-rank-work_12797474", }); });</script></li><li class="js-percentile-work_12797474 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12797474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12797474"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12797474 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12797474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12797474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12797474]").text(description); $(".js-view-count-work_12797474").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12797474").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12797474"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">26</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="156" rel="nofollow" href="https://www.academia.edu/Documents/in/Genetics">Genetics</a>,&nbsp;<script data-card-contents-for-ri="156" type="text/json">{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="221" rel="nofollow" href="https://www.academia.edu/Documents/in/Psychology">Psychology</a>,&nbsp;<script data-card-contents-for-ri="221" type="text/json">{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="237" rel="nofollow" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="465" rel="nofollow" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a><script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12797474]'), work: {"id":12797474,"title":"An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests","created_at":"2015-06-04T08:15:21.786-07:00","url":"https://www.academia.edu/12797474/An_introduction_to_recursive_partitioning_Rationale_application_and_characteristics_of_classification_and_regression_trees_bagging_and_random_forests?f_ri=1351","dom_id":"work_12797474","summary":"Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and bioinformatics within the past few years. High-dimensional problems are common not only in genetics, but also in some areas of psychological research, where only a few subjects can be measured because of time or cost constraints, yet a large amount of data is generated for each subject. Random forests have been shown to achieve a high prediction accuracy in such applications and to provide descriptive variable importance measures reflecting the impact of each variable in both main effects and interactions. The aim of this work is to introduce the principles of the standard recursive partitioning methods as well as recent methodological improvements, to illustrate their usage for low and high-dimensional data exploration, but also to point out limitations of the methods and potential pitfalls in their practical application. Application of the methods is illustrated with freely available implementations in the R system for statistical computing.","downloadable_attachments":[{"id":45928625,"asset_id":12797474,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31870355,"first_name":"Gerhard","last_name":"Tutz","domain_name":"independent","page_name":"GerhardTutz","display_name":"Gerhard Tutz","profile_url":"https://independent.academia.edu/GerhardTutz?f_ri=1351","photo":"/images/s65_no_pic.png"},{"id":41133904,"first_name":"James","last_name":"Malley","domain_name":"independent","page_name":"JamesMalley1","display_name":"James Malley","profile_url":"https://independent.academia.edu/JamesMalley1?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics?f_ri=1351","nofollow":true},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=1351","nofollow":true},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=1351","nofollow":true},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":2065,"name":"Research Methodology","url":"https://www.academia.edu/Documents/in/Research_Methodology?f_ri=1351"},{"id":3243,"name":"Nonparametric Statistics","url":"https://www.academia.edu/Documents/in/Nonparametric_Statistics?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction?f_ri=1351"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis?f_ri=1351"},{"id":70995,"name":"Random Forest","url":"https://www.academia.edu/Documents/in/Random_Forest?f_ri=1351"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification?f_ri=1351"},{"id":107672,"name":"Regression","url":"https://www.academia.edu/Documents/in/Regression?f_ri=1351"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis?f_ri=1351"},{"id":161594,"name":"High Dimensional Data","url":"https://www.academia.edu/Documents/in/High_Dimensional_Data?f_ri=1351"},{"id":180204,"name":"Nonparametric Regression","url":"https://www.academia.edu/Documents/in/Nonparametric_Regression?f_ri=1351"},{"id":263097,"name":"Application","url":"https://www.academia.edu/Documents/in/Application?f_ri=1351"},{"id":339534,"name":"Classification and Regression Tree","url":"https://www.academia.edu/Documents/in/Classification_and_Regression_Tree?f_ri=1351"},{"id":493224,"name":"Recursivity","url":"https://www.academia.edu/Documents/in/Recursivity?f_ri=1351"},{"id":557801,"name":"High Dimensionality","url":"https://www.academia.edu/Documents/in/High_Dimensionality?f_ri=1351"},{"id":816819,"name":"Psychological Models","url":"https://www.academia.edu/Documents/in/Psychological_Models?f_ri=1351"},{"id":1092441,"name":"Psychological Methods","url":"https://www.academia.edu/Documents/in/Psychological_Methods?f_ri=1351"},{"id":1293408,"name":"Tree Graph","url":"https://www.academia.edu/Documents/in/Tree_Graph?f_ri=1351"},{"id":1553926,"name":"Statistical Regression","url":"https://www.academia.edu/Documents/in/Statistical_Regression?f_ri=1351"},{"id":1671808,"name":"Prediction Accuracy","url":"https://www.academia.edu/Documents/in/Prediction_Accuracy?f_ri=1351"},{"id":2435000,"name":"Subdivision","url":"https://www.academia.edu/Documents/in/Subdivision?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5575983" data-work_id="5575983" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5575983/MODIFIED_MEDIAN_TEST_INTRINSICALLY_ADJUSTED_FOR_TIES">MODIFIED MEDIAN TEST INTRINSICALLY ADJUSTED FOR TIES</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper proposes a modified median test that intrinsically adjusts for the possible presence of ties in observations in two sample data. The propose method is illustrated with some data and the test statistics is shown to perform at... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_5575983" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper proposes a modified median test that intrinsically adjusts for the possible presence of ties in observations in two sample data. The propose method is illustrated with some data and the test statistics is shown to perform at least in terms of power and efficiency. The method also enables the easy isolation of any ties in the data and the estimation of their probabilities of occurrence</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5575983" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b49cb25c67e0c3535518a813222a5feb" rel="nofollow" data-download="{&quot;attachment_id&quot;:32662868,&quot;asset_id&quot;:5575983,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/32662868/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="7941589" href="https://manchester.academia.edu/EmmanuelAfuecheta">Emmanuel Afuecheta</a><script data-card-contents-for-user="7941589" type="text/json">{"id":7941589,"first_name":"Emmanuel","last_name":"Afuecheta","domain_name":"manchester","page_name":"EmmanuelAfuecheta","display_name":"Emmanuel Afuecheta","profile_url":"https://manchester.academia.edu/EmmanuelAfuecheta?f_ri=1351","photo":"https://0.academia-photos.com/7941589/2790292/3253148/s65_emmanuel.afuecheta.jpg"}</script></span></span></li><li class="js-paper-rank-work_5575983 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5575983"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5575983, container: ".js-paper-rank-work_5575983", }); });</script></li><li class="js-percentile-work_5575983 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5575983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5575983"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5575983 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5575983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5575983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5575983]").text(description); $(".js-view-count-work_5575983").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5575983").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5575983"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4060" rel="nofollow" href="https://www.academia.edu/Documents/in/Applied_Statistics">Applied Statistics</a>,&nbsp;<script data-card-contents-for-ri="4060" type="text/json">{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="9961" rel="nofollow" href="https://www.academia.edu/Documents/in/Time_series_Econometrics">Time series Econometrics</a><script data-card-contents-for-ri="9961" type="text/json">{"id":9961,"name":"Time series Econometrics","url":"https://www.academia.edu/Documents/in/Time_series_Econometrics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5575983]'), work: {"id":5575983,"title":"MODIFIED MEDIAN TEST INTRINSICALLY ADJUSTED FOR TIES","created_at":"2014-01-01T17:08:50.633-08:00","url":"https://www.academia.edu/5575983/MODIFIED_MEDIAN_TEST_INTRINSICALLY_ADJUSTED_FOR_TIES?f_ri=1351","dom_id":"work_5575983","summary":"This paper proposes a modified median test that intrinsically adjusts for the possible presence of ties in observations in two sample data. The propose method is illustrated with some data and the test statistics is shown to perform at least in terms of power and efficiency. The method also enables the easy isolation of any ties in the data and the estimation of their probabilities of occurrence","downloadable_attachments":[{"id":32662868,"asset_id":5575983,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":7941589,"first_name":"Emmanuel","last_name":"Afuecheta","domain_name":"manchester","page_name":"EmmanuelAfuecheta","display_name":"Emmanuel Afuecheta","profile_url":"https://manchester.academia.edu/EmmanuelAfuecheta?f_ri=1351","photo":"https://0.academia-photos.com/7941589/2790292/3253148/s65_emmanuel.afuecheta.jpg"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351","nofollow":true},{"id":9961,"name":"Time series Econometrics","url":"https://www.academia.edu/Documents/in/Time_series_Econometrics?f_ri=1351","nofollow":true},{"id":30485,"name":"Time series analysis","url":"https://www.academia.edu/Documents/in/Time_series_analysis?f_ri=1351"},{"id":80308,"name":"Extreme Value Theory","url":"https://www.academia.edu/Documents/in/Extreme_Value_Theory?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1224736" data-work_id="1224736" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1224736/Engineering_optimisation_by_cuckoo_search">Engineering optimisation by cuckoo search</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A new metaheuristic optimisation algorithm, called Cuckoo Search (CS), was developed recently by . This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_1224736" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A new metaheuristic optimisation algorithm, called Cuckoo Search (CS), was developed recently by . This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We then apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures. The optimal solutions obtained by CS are far better than the best solutions obtained by an efficient particle swarm optimiser. We will discuss the unique search features used in CS and the implications for further research.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1224736" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b0afe6f6e438facd03937f6a4b738720" rel="nofollow" data-download="{&quot;attachment_id&quot;:7629802,&quot;asset_id&quot;:1224736,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/7629802/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1129740" href="https://annauniv.academia.edu/balamonica">bala monica</a><script data-card-contents-for-user="1129740" type="text/json">{"id":1129740,"first_name":"bala","last_name":"monica","domain_name":"annauniv","page_name":"balamonica","display_name":"bala monica","profile_url":"https://annauniv.academia.edu/balamonica?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_1224736 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1224736"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1224736, container: ".js-paper-rank-work_1224736", }); });</script></li><li class="js-percentile-work_1224736 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1224736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1224736"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1224736 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1224736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1224736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1224736]").text(description); $(".js-view-count-work_1224736").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1224736").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1224736"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="7947" rel="nofollow" href="https://www.academia.edu/Documents/in/Engineering_Design">Engineering Design</a>,&nbsp;<script data-card-contents-for-ri="7947" type="text/json">{"id":7947,"name":"Engineering Design","url":"https://www.academia.edu/Documents/in/Engineering_Design?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="16682" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematical_Modelling">Mathematical Modelling</a>,&nbsp;<script data-card-contents-for-ri="16682" type="text/json">{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="29417" rel="nofollow" href="https://www.academia.edu/Documents/in/Particle_Swarm_Optimisation">Particle Swarm Optimisation</a><script data-card-contents-for-ri="29417" type="text/json">{"id":29417,"name":"Particle Swarm Optimisation","url":"https://www.academia.edu/Documents/in/Particle_Swarm_Optimisation?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1224736]'), work: {"id":1224736,"title":"Engineering optimisation by cuckoo search","created_at":"2012-01-16T23:03:32.107-08:00","url":"https://www.academia.edu/1224736/Engineering_optimisation_by_cuckoo_search?f_ri=1351","dom_id":"work_1224736","summary":"A new metaheuristic optimisation algorithm, called Cuckoo Search (CS), was developed recently by . This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We then apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures. The optimal solutions obtained by CS are far better than the best solutions obtained by an efficient particle swarm optimiser. We will discuss the unique search features used in CS and the implications for further research.","downloadable_attachments":[{"id":7629802,"asset_id":1224736,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1129740,"first_name":"bala","last_name":"monica","domain_name":"annauniv","page_name":"balamonica","display_name":"bala monica","profile_url":"https://annauniv.academia.edu/balamonica?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":7947,"name":"Engineering Design","url":"https://www.academia.edu/Documents/in/Engineering_Design?f_ri=1351","nofollow":true},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=1351","nofollow":true},{"id":29417,"name":"Particle Swarm Optimisation","url":"https://www.academia.edu/Documents/in/Particle_Swarm_Optimisation?f_ri=1351","nofollow":true},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics?f_ri=1351"},{"id":1993320,"name":"Optimal Solution","url":"https://www.academia.edu/Documents/in/Optimal_Solution?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12652354" data-work_id="12652354" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12652354/snp_plotter_an_R_based_SNP_haplotype_association_and_linkage_disequilibrium_plotting_package">snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">snp.plotter is a newly developed R package which produces high-quality plots of results from genetic association studies. The main features of the package include options to display a linkage disequilibrium (LD) plot below the P-value... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_12652354" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">snp.plotter is a newly developed R package which produces high-quality plots of results from genetic association studies. The main features of the package include options to display a linkage disequilibrium (LD) plot below the P-value plot using either the r 2 or D 0 LD metric, to set the X-axis to equal spacing or to use the physical map of markers, and to specify plot labels, colors, symbols and LD heatmap color scheme. snp.plotter can plot single SNP and/ or haplotype data and simultaneously plot multiple sets of results. R is a free software environment for statistical computing and graphics available for most platforms. The proposed package provides a simple way to convey both association and LD information in a single appealing graphic for genetic association studies. Availability: Downloadable R package and example datasets are available at <a href="http://cbdb.nimh.nih.gov/~kristin/snp.plotter.html" rel="nofollow">http://cbdb.nimh.nih.gov/~kristin/snp.plotter.html</a> and <a href="http://www.r-project.org" rel="nofollow">http://www.r-project.org</a> Contact: <a href="mailto:nicodemusk@mail.nih.gov" rel="nofollow">nicodemusk@mail.nih.gov</a></div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12652354" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4fca21883a1882510c5c36c5f8ed0654" rel="nofollow" data-download="{&quot;attachment_id&quot;:46026749,&quot;asset_id&quot;:12652354,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46026749/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31637977" href="https://independent.academia.edu/KristinNicodemus">Kristin Nicodemus</a><script data-card-contents-for-user="31637977" type="text/json">{"id":31637977,"first_name":"Kristin","last_name":"Nicodemus","domain_name":"independent","page_name":"KristinNicodemus","display_name":"Kristin Nicodemus","profile_url":"https://independent.academia.edu/KristinNicodemus?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_12652354 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12652354"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12652354, container: ".js-paper-rank-work_12652354", }); });</script></li><li class="js-percentile-work_12652354 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12652354; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12652354"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12652354 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12652354"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12652354; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12652354]").text(description); $(".js-view-count-work_12652354").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12652354").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12652354"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" rel="nofollow" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>,&nbsp;<script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="428" rel="nofollow" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="445" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Graphics">Computer Graphics</a>,&nbsp;<script data-card-contents-for-ri="445" type="text/json">{"id":445,"name":"Computer Graphics","url":"https://www.academia.edu/Documents/in/Computer_Graphics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="451" rel="nofollow" href="https://www.academia.edu/Documents/in/Programming_Languages">Programming Languages</a><script data-card-contents-for-ri="451" type="text/json">{"id":451,"name":"Programming Languages","url":"https://www.academia.edu/Documents/in/Programming_Languages?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12652354]'), work: {"id":12652354,"title":"snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package","created_at":"2015-05-28T08:29:22.152-07:00","url":"https://www.academia.edu/12652354/snp_plotter_an_R_based_SNP_haplotype_association_and_linkage_disequilibrium_plotting_package?f_ri=1351","dom_id":"work_12652354","summary":"snp.plotter is a newly developed R package which produces high-quality plots of results from genetic association studies. The main features of the package include options to display a linkage disequilibrium (LD) plot below the P-value plot using either the r 2 or D 0 LD metric, to set the X-axis to equal spacing or to use the physical map of markers, and to specify plot labels, colors, symbols and LD heatmap color scheme. snp.plotter can plot single SNP and/ or haplotype data and simultaneously plot multiple sets of results. R is a free software environment for statistical computing and graphics available for most platforms. The proposed package provides a simple way to convey both association and LD information in a single appealing graphic for genetic association studies. Availability: Downloadable R package and example datasets are available at http://cbdb.nimh.nih.gov/~kristin/snp.plotter.html and http://www.r-project.org Contact: nicodemusk@mail.nih.gov","downloadable_attachments":[{"id":46026749,"asset_id":12652354,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31637977,"first_name":"Kristin","last_name":"Nicodemus","domain_name":"independent","page_name":"KristinNicodemus","display_name":"Kristin Nicodemus","profile_url":"https://independent.academia.edu/KristinNicodemus?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=1351","nofollow":true},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=1351","nofollow":true},{"id":445,"name":"Computer Graphics","url":"https://www.academia.edu/Documents/in/Computer_Graphics?f_ri=1351","nofollow":true},{"id":451,"name":"Programming Languages","url":"https://www.academia.edu/Documents/in/Programming_Languages?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":31408,"name":"Free Software","url":"https://www.academia.edu/Documents/in/Free_Software?f_ri=1351"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences?f_ri=1351"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software?f_ri=1351"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences?f_ri=1351"},{"id":86952,"name":"Haplotypes","url":"https://www.academia.edu/Documents/in/Haplotypes?f_ri=1351"},{"id":255094,"name":"Computer User Interface Design","url":"https://www.academia.edu/Documents/in/Computer_User_Interface_Design?f_ri=1351"},{"id":486793,"name":"Physical Map","url":"https://www.academia.edu/Documents/in/Physical_Map?f_ri=1351"},{"id":489736,"name":"Linkage Disequilibrium","url":"https://www.academia.edu/Documents/in/Linkage_Disequilibrium?f_ri=1351"},{"id":735504,"name":"Genetic Association","url":"https://www.academia.edu/Documents/in/Genetic_Association?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_23197269" data-work_id="23197269" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/23197269/A_Study_of_Efficient_Estimation_Methods_for_the_parameters_of_Extreme_Value_Distribution_by_Utilizing_Monte_Carlo_Sampling">A Study of Efficient Estimation Methods for the parameters of Extreme Value Distribution by Utilizing Monte Carlo Sampling</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this thesis, we consider the extreme value distn. of two parameters for the reason of its appearance in many statistical fields of applications. Mathematical and statistical properties of the distribution. such as moments and higher... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_23197269" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this thesis, we consider the extreme value distn. of two parameters for the reason of its appearance in many statistical fields of applications. Mathematical and statistical properties of the distribution. such as moments and higher moments are collected and unified and the properties of reliability and hazard functions of the distribution are illustrated.<br />The chi-square goodness - of - fit is used to test whether the generated samples from the standardized extreme value distribution by Monte Carlo simulation are acceptable for use.<br />These samples are used to estimate the distribution parameters by four methods of estimation, namely moments method, maximum likelihood method, order statistic method and least squares method.<br />These methods are discussed theoretically and assessed practically in estimating the reliability and hazard functions. The properties of the estimator, reliability and hazard functions, such as bias, variance, skewness, kurtosis, and mean square error are tabled.<br />The computer programs are listed in three appendices and the run is made by using &quot;MathCAD 14&quot;.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/23197269" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0a644cda12923d92be24c18c7ada63a0" rel="nofollow" data-download="{&quot;attachment_id&quot;:43686363,&quot;asset_id&quot;:23197269,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43686363/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="8050147" href="https://independent.academia.edu/FadiShabo">Fadi Shaayo</a><script data-card-contents-for-user="8050147" type="text/json">{"id":8050147,"first_name":"Fadi","last_name":"Shaayo","domain_name":"independent","page_name":"FadiShabo","display_name":"Fadi Shaayo","profile_url":"https://independent.academia.edu/FadiShabo?f_ri=1351","photo":"https://0.academia-photos.com/8050147/11949082/13314669/s65_fadi.shabo.jpg"}</script></span></span></li><li class="js-paper-rank-work_23197269 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="23197269"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 23197269, container: ".js-paper-rank-work_23197269", }); });</script></li><li class="js-percentile-work_23197269 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23197269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_23197269"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_23197269 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="23197269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23197269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23197269]").text(description); $(".js-view-count-work_23197269").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_23197269").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="23197269"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="520" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Mechanics">Statistical Mechanics</a>,&nbsp;<script data-card-contents-for-ri="520" type="text/json">{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1352" rel="nofollow" href="https://www.academia.edu/Documents/in/Multivariate_Statistics">Multivariate Statistics</a><script data-card-contents-for-ri="1352" type="text/json">{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=23197269]'), work: {"id":23197269,"title":"A Study of Efficient Estimation Methods for the parameters of Extreme Value Distribution by Utilizing Monte Carlo Sampling","created_at":"2016-03-13T09:21:28.988-07:00","url":"https://www.academia.edu/23197269/A_Study_of_Efficient_Estimation_Methods_for_the_parameters_of_Extreme_Value_Distribution_by_Utilizing_Monte_Carlo_Sampling?f_ri=1351","dom_id":"work_23197269","summary":"In this thesis, we consider the extreme value distn. of two parameters for the reason of its appearance in many statistical fields of applications. Mathematical and statistical properties of the distribution. such as moments and higher moments are collected and unified and the properties of reliability and hazard functions of the distribution are illustrated.\nThe chi-square goodness - of - fit is used to test whether the generated samples from the standardized extreme value distribution by Monte Carlo simulation are acceptable for use.\nThese samples are used to estimate the distribution parameters by four methods of estimation, namely moments method, maximum likelihood method, order statistic method and least squares method.\nThese methods are discussed theoretically and assessed practically in estimating the reliability and hazard functions. The properties of the estimator, reliability and hazard functions, such as bias, variance, skewness, kurtosis, and mean square error are tabled.\nThe computer programs are listed in three appendices and the run is made by using \"MathCAD 14\".","downloadable_attachments":[{"id":43686363,"asset_id":23197269,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":8050147,"first_name":"Fadi","last_name":"Shaayo","domain_name":"independent","page_name":"FadiShabo","display_name":"Fadi Shaayo","profile_url":"https://independent.academia.edu/FadiShabo?f_ri=1351","photo":"https://0.academia-photos.com/8050147/11949082/13314669/s65_fadi.shabo.jpg"}],"research_interests":[{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351","nofollow":true},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":41239,"name":"Bayesian statistics \u0026 modelling","url":"https://www.academia.edu/Documents/in/Bayesian_statistics_and_modelling?f_ri=1351"},{"id":83635,"name":"OPerations research and statistics","url":"https://www.academia.edu/Documents/in/OPerations_research_and_statistics?f_ri=1351"},{"id":98937,"name":"Statistic","url":"https://www.academia.edu/Documents/in/Statistic?f_ri=1351"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics?f_ri=1351"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics?f_ri=1351"},{"id":471955,"name":"Statics and Dynamics","url":"https://www.academia.edu/Documents/in/Statics_and_Dynamics?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_32796983" data-work_id="32796983" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/32796983/Clustering_using_Unsupervised_Binary_Trees_CUBT">Clustering using Unsupervised Binary Trees: CUBT</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_32796983" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/32796983" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2d455b7050c911ec04455493602ab405" rel="nofollow" data-download="{&quot;attachment_id&quot;:52949489,&quot;asset_id&quot;:32796983,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/52949489/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32220926" href="https://independent.academia.edu/MarcelaSvarc">Marcela Svarc</a><script data-card-contents-for-user="32220926" type="text/json">{"id":32220926,"first_name":"Marcela","last_name":"Svarc","domain_name":"independent","page_name":"MarcelaSvarc","display_name":"Marcela Svarc","profile_url":"https://independent.academia.edu/MarcelaSvarc?f_ri=1351","photo":"https://0.academia-photos.com/32220926/28787766/26881427/s65_marcela.svarc.jpg"}</script></span></span></li><li class="js-paper-rank-work_32796983 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="32796983"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 32796983, container: ".js-paper-rank-work_32796983", }); });</script></li><li class="js-percentile-work_32796983 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 32796983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_32796983"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_32796983 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="32796983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 32796983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=32796983]").text(description); $(".js-view-count-work_32796983").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_32796983").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="32796983"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="102722" rel="nofollow" href="https://www.academia.edu/Documents/in/Science_Learning">Science Learning</a>,&nbsp;<script data-card-contents-for-ri="102722" type="text/json">{"id":102722,"name":"Science Learning","url":"https://www.academia.edu/Documents/in/Science_Learning?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="327126" rel="nofollow" href="https://www.academia.edu/Documents/in/Clustering_Method">Clustering Method</a>,&nbsp;<script data-card-contents-for-ri="327126" type="text/json">{"id":327126,"name":"Clustering Method","url":"https://www.academia.edu/Documents/in/Clustering_Method?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="550543" rel="nofollow" href="https://www.academia.edu/Documents/in/Binary_Tree">Binary Tree</a><script data-card-contents-for-ri="550543" type="text/json">{"id":550543,"name":"Binary Tree","url":"https://www.academia.edu/Documents/in/Binary_Tree?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=32796983]'), work: {"id":32796983,"title":"Clustering using Unsupervised Binary Trees: CUBT","created_at":"2017-05-03T04:51:51.304-07:00","url":"https://www.academia.edu/32796983/Clustering_using_Unsupervised_Binary_Trees_CUBT?f_ri=1351","dom_id":"work_32796983","summary":"We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.","downloadable_attachments":[{"id":52949489,"asset_id":32796983,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32220926,"first_name":"Marcela","last_name":"Svarc","domain_name":"independent","page_name":"MarcelaSvarc","display_name":"Marcela Svarc","profile_url":"https://independent.academia.edu/MarcelaSvarc?f_ri=1351","photo":"https://0.academia-photos.com/32220926/28787766/26881427/s65_marcela.svarc.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":102722,"name":"Science Learning","url":"https://www.academia.edu/Documents/in/Science_Learning?f_ri=1351","nofollow":true},{"id":327126,"name":"Clustering Method","url":"https://www.academia.edu/Documents/in/Clustering_Method?f_ri=1351","nofollow":true},{"id":550543,"name":"Binary Tree","url":"https://www.academia.edu/Documents/in/Binary_Tree?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_7435814" data-work_id="7435814" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/7435814/Basic_Concepts_for_Documenting_SAS_Projects_Documentation_Styles_for_SAS_Projects_Programs_and_Variables">Basic Concepts for Documenting SAS® Projects: Documentation Styles for SAS Projects, Programs, and Variables. </a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper kicks off a project to write a comprehensive book of best practices for documenting SAS® projects. The presenter’s existing documentation styles are explained. The presenter wants to discuss and gather current best practices... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_7435814" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper kicks off a project to write a comprehensive book of best practices for documenting SAS® projects. The presenter’s existing documentation styles are explained. The presenter wants to discuss and gather current best practices used by the SAS user community. The presenter shows documentation styles at three different levels of scope. The first is a style used for project documentation, the second a style for program documentation, and the third a style for variable documentation. This third style enables researchers to repeat the modeling in SAS research, in an alternative language, or conceptually.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/7435814" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="38c4abf8dfdd950449afc5a3901957cc" rel="nofollow" data-download="{&quot;attachment_id&quot;:34018949,&quot;asset_id&quot;:7435814,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/34018949/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2196" href="https://uottawa.academia.edu/PeterTimusk">Peter Timusk</a><script data-card-contents-for-user="2196" type="text/json">{"id":2196,"first_name":"Peter","last_name":"Timusk","domain_name":"uottawa","page_name":"PeterTimusk","display_name":"Peter Timusk","profile_url":"https://uottawa.academia.edu/PeterTimusk?f_ri=1351","photo":"https://0.academia-photos.com/2196/1039/1142/s65_peter.timusk.jpg"}</script></span></span></li><li class="js-paper-rank-work_7435814 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="7435814"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 7435814, container: ".js-paper-rank-work_7435814", }); });</script></li><li class="js-percentile-work_7435814 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7435814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_7435814"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_7435814 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="7435814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7435814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7435814]").text(description); $(".js-view-count-work_7435814").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_7435814").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="7435814"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2725" rel="nofollow" href="https://www.academia.edu/Documents/in/Documentation">Documentation</a>,&nbsp;<script data-card-contents-for-ri="2725" type="text/json">{"id":2725,"name":"Documentation","url":"https://www.academia.edu/Documents/in/Documentation?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4060" rel="nofollow" href="https://www.academia.edu/Documents/in/Applied_Statistics">Applied Statistics</a><script data-card-contents-for-ri="4060" type="text/json">{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=7435814]'), work: {"id":7435814,"title":"Basic Concepts for Documenting SAS® Projects: Documentation Styles for SAS Projects, Programs, and Variables. ","created_at":"2014-06-23T09:50:00.162-07:00","url":"https://www.academia.edu/7435814/Basic_Concepts_for_Documenting_SAS_Projects_Documentation_Styles_for_SAS_Projects_Programs_and_Variables?f_ri=1351","dom_id":"work_7435814","summary":"This paper kicks off a project to write a comprehensive book of best practices for documenting SAS® projects. The presenter’s existing documentation styles are explained. The presenter wants to discuss and gather current best practices used by the SAS user community. The presenter shows documentation styles at three different levels of scope. The first is a style used for project documentation, the second a style for program documentation, and the third a style for variable documentation. This third style enables researchers to repeat the modeling in SAS research, in an alternative language, or conceptually.","downloadable_attachments":[{"id":34018949,"asset_id":7435814,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2196,"first_name":"Peter","last_name":"Timusk","domain_name":"uottawa","page_name":"PeterTimusk","display_name":"Peter Timusk","profile_url":"https://uottawa.academia.edu/PeterTimusk?f_ri=1351","photo":"https://0.academia-photos.com/2196/1039/1142/s65_peter.timusk.jpg"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":2725,"name":"Documentation","url":"https://www.academia.edu/Documents/in/Documentation?f_ri=1351","nofollow":true},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_36086369" data-work_id="36086369" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/36086369/We_exist_in_the_world_of_uncertainties_introductory_version_">We exist in the world of uncertainties (introductory version)</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We exist in the world of uncertainties. Any uncertainty always arises from a conflict of experience and chance, more precisely, from a conflict between the observer&#39;s experience and the chance observation. In other words, this indivisible... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_36086369" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We exist in the world of uncertainties.<br />Any uncertainty always arises from a conflict of experience and chance, more precisely, from a conflict between the observer&#39;s experience and the chance observation. In other words, this indivisible pair, ``experience and chance&#39;&#39;, is the source of any uncertainty.<br />Other sources of uncertainty simply do not exist.<br />A theory that describes this conflict strictly mathematically is the new theory, called theory of co~events, or the theory of experience and chance. Now we can say that this theory is a theory of uncertainty in its broadest sense.<br /><br />The eventology approach gave impetus to the development of a theory that turned out to be broader than the theory of probabilities.<br />This new theory is a dual combination of two theories - Kolmogorov&#39;s theory of probabilities of ket-events (k-e.&#39;s) and its dual reflection - a new theory of believabilities of bra-events (b-e.&#39;s). Today, the theory of co~events has a strict axiomatics, in which Kolmogorov k-e.&#39;s describing the future case of observation are dually reflected in b-e.&#39;s describing the past experience of the observer, and a co~event is defined as a measurable binary relation on the Cartesian product: ``a set of bra-events X a set of terraced ket-events&#39;&#39;.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/36086369" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="573086e5ff90ed8041585d0dcdfb28fe" rel="nofollow" data-download="{&quot;attachment_id&quot;:56089129,&quot;asset_id&quot;:36086369,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/56089129/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38890" href="https://sfu-kras.academia.edu/OlegVorobyev">Oleg Yu Vorobyev</a><script data-card-contents-for-user="38890" type="text/json">{"id":38890,"first_name":"Oleg Yu","last_name":"Vorobyev","domain_name":"sfu-kras","page_name":"OlegVorobyev","display_name":"Oleg Yu Vorobyev","profile_url":"https://sfu-kras.academia.edu/OlegVorobyev?f_ri=1351","photo":"https://0.academia-photos.com/38890/12977/347919/s65_oleg.vorobyev.gif"}</script></span></span></li><li class="js-paper-rank-work_36086369 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="36086369"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 36086369, container: ".js-paper-rank-work_36086369", }); });</script></li><li class="js-percentile-work_36086369 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36086369; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_36086369"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_36086369 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="36086369"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36086369; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36086369]").text(description); $(".js-view-count-work_36086369").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_36086369").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="36086369"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">80</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="307" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematical_Statistics">Mathematical Statistics</a>,&nbsp;<script data-card-contents-for-ri="307" type="text/json">{"id":307,"name":"Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Mathematical_Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="344" rel="nofollow" href="https://www.academia.edu/Documents/in/Probability_Theory">Probability Theory</a>,&nbsp;<script data-card-contents-for-ri="344" type="text/json">{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="444" rel="nofollow" href="https://www.academia.edu/Documents/in/Quantum_Computing">Quantum Computing</a>,&nbsp;<script data-card-contents-for-ri="444" type="text/json">{"id":444,"name":"Quantum Computing","url":"https://www.academia.edu/Documents/in/Quantum_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="465" rel="nofollow" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a><script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=36086369]'), work: {"id":36086369,"title":"We exist in the world of uncertainties (introductory version)","created_at":"2018-03-05T21:39:02.340-08:00","url":"https://www.academia.edu/36086369/We_exist_in_the_world_of_uncertainties_introductory_version_?f_ri=1351","dom_id":"work_36086369","summary":"We exist in the world of uncertainties.\nAny uncertainty always arises from a conflict of experience and chance, more precisely, from a conflict between the observer's experience and the chance observation. In other words, this indivisible pair, ``experience and chance'', is the source of any uncertainty.\nOther sources of uncertainty simply do not exist.\nA theory that describes this conflict strictly mathematically is the new theory, called theory of co~events, or the theory of experience and chance. Now we can say that this theory is a theory of uncertainty in its broadest sense.\n\nThe eventology approach gave impetus to the development of a theory that turned out to be broader than the theory of probabilities.\nThis new theory is a dual combination of two theories - Kolmogorov's theory of probabilities of ket-events (k-e.'s) and its dual reflection - a new theory of believabilities of bra-events (b-e.'s). Today, the theory of co~events has a strict axiomatics, in which Kolmogorov k-e.'s describing the future case of observation are dually reflected in b-e.'s describing the past experience of the observer, and a co~event is defined as a measurable binary relation on the Cartesian product: ``a set of bra-events X a set of terraced ket-events''.","downloadable_attachments":[{"id":56089129,"asset_id":36086369,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38890,"first_name":"Oleg Yu","last_name":"Vorobyev","domain_name":"sfu-kras","page_name":"OlegVorobyev","display_name":"Oleg Yu Vorobyev","profile_url":"https://sfu-kras.academia.edu/OlegVorobyev?f_ri=1351","photo":"https://0.academia-photos.com/38890/12977/347919/s65_oleg.vorobyev.gif"}],"research_interests":[{"id":307,"name":"Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Mathematical_Statistics?f_ri=1351","nofollow":true},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=1351","nofollow":true},{"id":444,"name":"Quantum Computing","url":"https://www.academia.edu/Documents/in/Quantum_Computing?f_ri=1351","nofollow":true},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=1351","nofollow":true},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=1351"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=1351"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351"},{"id":1081,"name":"Food Safety","url":"https://www.academia.edu/Documents/in/Food_Safety?f_ri=1351"},{"id":1117,"name":"Voting Behavior","url":"https://www.academia.edu/Documents/in/Voting_Behavior?f_ri=1351"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics?f_ri=1351"},{"id":2640,"name":"Quantum Information","url":"https://www.academia.edu/Documents/in/Quantum_Information?f_ri=1351"},{"id":3206,"name":"Social Statistics","url":"https://www.academia.edu/Documents/in/Social_Statistics?f_ri=1351"},{"id":3243,"name":"Nonparametric Statistics","url":"https://www.academia.edu/Documents/in/Nonparametric_Statistics?f_ri=1351"},{"id":3244,"name":"Bayesian","url":"https://www.academia.edu/Documents/in/Bayesian?f_ri=1351"},{"id":3286,"name":"Patient Safety","url":"https://www.academia.edu/Documents/in/Patient_Safety?f_ri=1351"},{"id":3396,"name":"Foundations of Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Foundations_of_Quantum_Mechanics?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4384,"name":"Medical Statistics","url":"https://www.academia.edu/Documents/in/Medical_Statistics?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":5457,"name":"Artificial Life","url":"https://www.academia.edu/Documents/in/Artificial_Life?f_ri=1351"},{"id":6811,"name":"Quantum Theory","url":"https://www.academia.edu/Documents/in/Quantum_Theory?f_ri=1351"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics?f_ri=1351"},{"id":9740,"name":"Bayesian Evidence Synthesis","url":"https://www.academia.edu/Documents/in/Bayesian_Evidence_Synthesis?f_ri=1351"},{"id":9796,"name":"Philosophy Of Probability","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Probability?f_ri=1351"},{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory?f_ri=1351"},{"id":13940,"name":"Fire Behaviour","url":"https://www.academia.edu/Documents/in/Fire_Behaviour?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":14773,"name":"Bayesian Econometrics","url":"https://www.academia.edu/Documents/in/Bayesian_Econometrics?f_ri=1351"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351"},{"id":15198,"name":"Spatial Statistics","url":"https://www.academia.edu/Documents/in/Spatial_Statistics?f_ri=1351"},{"id":16412,"name":"Structural Fire Safety","url":"https://www.academia.edu/Documents/in/Structural_Fire_Safety?f_ri=1351"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics?f_ri=1351"},{"id":17183,"name":"Mathematical Psychology and Statistics","url":"https://www.academia.edu/Documents/in/Mathematical_Psychology_and_Statistics?f_ri=1351"},{"id":18420,"name":"Philosophy of Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Philosophy_of_Quantum_Mechanics?f_ri=1351"},{"id":20324,"name":"Voting Theory","url":"https://www.academia.edu/Documents/in/Voting_Theory?f_ri=1351"},{"id":21593,"name":"Artificial Inteligence","url":"https://www.academia.edu/Documents/in/Artificial_Inteligence?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":26959,"name":"Bayesian Models","url":"https://www.academia.edu/Documents/in/Bayesian_Models?f_ri=1351"},{"id":28226,"name":"Bayesian Radiocarbon Dating","url":"https://www.academia.edu/Documents/in/Bayesian_Radiocarbon_Dating?f_ri=1351"},{"id":28422,"name":"Quantum Computation","url":"https://www.academia.edu/Documents/in/Quantum_Computation?f_ri=1351"},{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks?f_ri=1351"},{"id":30006,"name":"Voting","url":"https://www.academia.edu/Documents/in/Voting?f_ri=1351"},{"id":30936,"name":"Elections and Voting Behavior","url":"https://www.academia.edu/Documents/in/Elections_and_Voting_Behavior?f_ri=1351"},{"id":31139,"name":"Forest fire","url":"https://www.academia.edu/Documents/in/Forest_fire?f_ri=1351"},{"id":31401,"name":"R (Statistics)","url":"https://www.academia.edu/Documents/in/R_Statistics_?f_ri=1351"},{"id":31412,"name":"Probability and Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics?f_ri=1351"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=1351"},{"id":38701,"name":"Bayesian Analysis","url":"https://www.academia.edu/Documents/in/Bayesian_Analysis?f_ri=1351"},{"id":41239,"name":"Bayesian statistics \u0026 modelling","url":"https://www.academia.edu/Documents/in/Bayesian_statistics_and_modelling?f_ri=1351"},{"id":41815,"name":"Applied Probability","url":"https://www.academia.edu/Documents/in/Applied_Probability?f_ri=1351"},{"id":43591,"name":"Quantum entanglement","url":"https://www.academia.edu/Documents/in/Quantum_entanglement?f_ri=1351"},{"id":48641,"name":"Applied Bayesian Statistics","url":"https://www.academia.edu/Documents/in/Applied_Bayesian_Statistics?f_ri=1351"},{"id":49161,"name":"Safety","url":"https://www.academia.edu/Documents/in/Safety?f_ri=1351"},{"id":51529,"name":"Bayesian Inference","url":"https://www.academia.edu/Documents/in/Bayesian_Inference?f_ri=1351"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=1351"},{"id":55451,"name":"Environmental Health and Safety","url":"https://www.academia.edu/Documents/in/Environmental_Health_and_Safety?f_ri=1351"},{"id":64464,"name":"Food Quality and Safety","url":"https://www.academia.edu/Documents/in/Food_Quality_and_Safety?f_ri=1351"},{"id":74262,"name":"Philosophy of Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Philosophy_of_Artificial_Intelligence?f_ri=1351"},{"id":76958,"name":"Artificial Inteligent","url":"https://www.academia.edu/Documents/in/Artificial_Inteligent?f_ri=1351"},{"id":83635,"name":"OPerations research and statistics","url":"https://www.academia.edu/Documents/in/OPerations_research_and_statistics?f_ri=1351"},{"id":100094,"name":"Bayesian statistics","url":"https://www.academia.edu/Documents/in/Bayesian_statistics?f_ri=1351"},{"id":109147,"name":"Bayesian methods","url":"https://www.academia.edu/Documents/in/Bayesian_methods?f_ri=1351"},{"id":131732,"name":"Voting Systems","url":"https://www.academia.edu/Documents/in/Voting_Systems?f_ri=1351"},{"id":141502,"name":"Inteligencia artificial","url":"https://www.academia.edu/Documents/in/Inteligencia_artificial-1?f_ri=1351"},{"id":241365,"name":"Fire safety","url":"https://www.academia.edu/Documents/in/Fire_safety?f_ri=1351"},{"id":251903,"name":"Artificial Intelligence And Techniques","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_And_Techniques?f_ri=1351"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics?f_ri=1351"},{"id":339532,"name":"Bayesian hierarchical model","url":"https://www.academia.edu/Documents/in/Bayesian_hierarchical_model?f_ri=1351"},{"id":343413,"name":"Applied Probability and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Probability_and_Statistics?f_ri=1351"},{"id":345767,"name":"Naive Bayes","url":"https://www.academia.edu/Documents/in/Naive_Bayes?f_ri=1351"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics?f_ri=1351"},{"id":571797,"name":"Introduction to Probability","url":"https://www.academia.edu/Documents/in/Introduction_to_Probability?f_ri=1351"},{"id":605181,"name":"Bayesian Belief Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Belief_Networks?f_ri=1351"},{"id":653891,"name":"Probabilistic risk modeling","url":"https://www.academia.edu/Documents/in/Probabilistic_risk_modeling?f_ri=1351"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=1351"},{"id":1223686,"name":"Artificial Intelligent and Soft Computing Methodologies","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent_and_Soft_Computing_Methodologies?f_ri=1351"},{"id":1317759,"name":"Metode Naive Bayes","url":"https://www.academia.edu/Documents/in/Metode_Naive_Bayes?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_26832102" data-work_id="26832102" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/26832102/Single_layer_solar_drying_behaviour_of_Citrus_aurantium_leaves_under_forced_convection">Single layer solar drying behaviour of Citrus aurantium leaves under forced convection</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Convective solar drying experiments in thin layers of Citrus aurantium leaves grown in Marrakech, morocco, were conducted. An indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_26832102" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Convective solar drying experiments in thin layers of Citrus aurantium leaves grown in Marrakech, morocco, were conducted. An indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for the experiments. The air temperature was varied from 50 to 60°C; the relative humidity from 41% to 53%; and the drying air flow rate from 0.0277 to 0.0833 m 3 /s. Thirteen statistical models, which are semi-theoretical and/or empirical, were tested for fitting the experimental data. A nonlinear regression analysis using a statistical computer program was used to evaluate the constants of the models. The Midilli-Kucuk drying model was found to be the most suitable for describing the solar drying curves of Citrus aurantium leaves with a correlation coefficient (r) of 0.99998, chi-square (v 2 ) of 4.664 · 10 À6 and MBE of 4.8381 · 10 À4 .</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/26832102" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7bdce892759632772cad4453a00f8b7f" rel="nofollow" data-download="{&quot;attachment_id&quot;:47104669,&quot;asset_id&quot;:26832102,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47104669/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31473" href="https://king-saud.academia.edu/SihamLahsasni">Siham Lahsasni</a><script data-card-contents-for-user="31473" type="text/json">{"id":31473,"first_name":"Siham","last_name":"Lahsasni","domain_name":"king-saud","page_name":"SihamLahsasni","display_name":"Siham Lahsasni","profile_url":"https://king-saud.academia.edu/SihamLahsasni?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_26832102 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="26832102"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 26832102, container: ".js-paper-rank-work_26832102", }); });</script></li><li class="js-percentile-work_26832102 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26832102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_26832102"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_26832102 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="26832102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26832102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26832102]").text(description); $(".js-view-count-work_26832102").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_26832102").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="26832102"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="16682" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematical_Modelling">Mathematical Modelling</a>,&nbsp;<script data-card-contents-for-ri="16682" type="text/json">{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="62729" rel="nofollow" href="https://www.academia.edu/Documents/in/Air_flow">Air flow</a>,&nbsp;<script data-card-contents-for-ri="62729" type="text/json">{"id":62729,"name":"Air flow","url":"https://www.academia.edu/Documents/in/Air_flow?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="86410" rel="nofollow" href="https://www.academia.edu/Documents/in/Nonlinear_Regression">Nonlinear Regression</a><script data-card-contents-for-ri="86410" type="text/json">{"id":86410,"name":"Nonlinear Regression","url":"https://www.academia.edu/Documents/in/Nonlinear_Regression?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=26832102]'), work: {"id":26832102,"title":"Single layer solar drying behaviour of Citrus aurantium leaves under forced convection","created_at":"2016-07-08T05:09:06.116-07:00","url":"https://www.academia.edu/26832102/Single_layer_solar_drying_behaviour_of_Citrus_aurantium_leaves_under_forced_convection?f_ri=1351","dom_id":"work_26832102","summary":"Convective solar drying experiments in thin layers of Citrus aurantium leaves grown in Marrakech, morocco, were conducted. An indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for the experiments. The air temperature was varied from 50 to 60°C; the relative humidity from 41% to 53%; and the drying air flow rate from 0.0277 to 0.0833 m 3 /s. Thirteen statistical models, which are semi-theoretical and/or empirical, were tested for fitting the experimental data. A nonlinear regression analysis using a statistical computer program was used to evaluate the constants of the models. The Midilli-Kucuk drying model was found to be the most suitable for describing the solar drying curves of Citrus aurantium leaves with a correlation coefficient (r) of 0.99998, chi-square (v 2 ) of 4.664 · 10 À6 and MBE of 4.8381 · 10 À4 .","downloadable_attachments":[{"id":47104669,"asset_id":26832102,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31473,"first_name":"Siham","last_name":"Lahsasni","domain_name":"king-saud","page_name":"SihamLahsasni","display_name":"Siham Lahsasni","profile_url":"https://king-saud.academia.edu/SihamLahsasni?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=1351","nofollow":true},{"id":62729,"name":"Air flow","url":"https://www.academia.edu/Documents/in/Air_flow?f_ri=1351","nofollow":true},{"id":86410,"name":"Nonlinear Regression","url":"https://www.academia.edu/Documents/in/Nonlinear_Regression?f_ri=1351","nofollow":true},{"id":230744,"name":"Relative Humidity","url":"https://www.academia.edu/Documents/in/Relative_Humidity?f_ri=1351"},{"id":444096,"name":"Air Temperature","url":"https://www.academia.edu/Documents/in/Air_Temperature?f_ri=1351"},{"id":611814,"name":"Correlation coefficient","url":"https://www.academia.edu/Documents/in/Correlation_coefficient?f_ri=1351"},{"id":664700,"name":"Statistical Model","url":"https://www.academia.edu/Documents/in/Statistical_Model?f_ri=1351"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection?f_ri=1351"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data?f_ri=1351"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=1351"},{"id":2463717,"name":"Thin Layer","url":"https://www.academia.edu/Documents/in/Thin_Layer?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_50633887" data-work_id="50633887" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/50633887/General_Purpose_Convolution_Algorithm_in_S_4_Classes_by_Means_of_FFT">General Purpose Convolution Algorithm in S 4 Classes by Means of FFT</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Object orientation provides a flexible framework for the implementation of the convolution of arbitrary distributions of real-valued random variables. We discuss an algorithm which is based on the Discrete Fourier Transformation and its... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_50633887" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Object orientation provides a flexible framework for the implementation of the convolution of arbitrary distributions of real-valued random variables. We discuss an algorithm which is based on the Discrete Fourier Transformation and its fast computability via the Fast Fourier Transformation. It directly applies to lattice-supported distributions. In the case of continuous distributions an additional discretization to a linear lattice is necessary and the resulting lattice-supported distributions are suitably smoothed after convolution. Our focus is on R package distr which includes an implementation of this approach. Several checks in situations where the exact results are known confirm a high accuracy of the proposed algorithm.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/50633887" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9b00692b21cd42cb97f4e15e80fb8e83" rel="nofollow" data-download="{&quot;attachment_id&quot;:68542670,&quot;asset_id&quot;:50633887,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68542670/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="197431157" href="https://independent.academia.edu/kohlmatthias">matthias kohl</a><script data-card-contents-for-user="197431157" type="text/json">{"id":197431157,"first_name":"matthias","last_name":"kohl","domain_name":"independent","page_name":"kohlmatthias","display_name":"matthias kohl","profile_url":"https://independent.academia.edu/kohlmatthias?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_50633887 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="50633887"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 50633887, container: ".js-paper-rank-work_50633887", }); });</script></li><li class="js-percentile-work_50633887 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50633887; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_50633887"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_50633887 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="50633887"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50633887; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50633887]").text(description); $(".js-view-count-work_50633887").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_50633887").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="50633887"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="198462" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_software">Statistical software</a>,&nbsp;<script data-card-contents-for-ri="198462" type="text/json">{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="588226" rel="nofollow" href="https://www.academia.edu/Documents/in/Fast_Fourier_Transform">Fast Fourier Transform</a><script data-card-contents-for-ri="588226" type="text/json">{"id":588226,"name":"Fast Fourier Transform","url":"https://www.academia.edu/Documents/in/Fast_Fourier_Transform?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=50633887]'), work: {"id":50633887,"title":"General Purpose Convolution Algorithm in S 4 Classes by Means of FFT","created_at":"2021-08-03T04:30:10.429-07:00","url":"https://www.academia.edu/50633887/General_Purpose_Convolution_Algorithm_in_S_4_Classes_by_Means_of_FFT?f_ri=1351","dom_id":"work_50633887","summary":"Object orientation provides a flexible framework for the implementation of the convolution of arbitrary distributions of real-valued random variables. We discuss an algorithm which is based on the Discrete Fourier Transformation and its fast computability via the Fast Fourier Transformation. It directly applies to lattice-supported distributions. In the case of continuous distributions an additional discretization to a linear lattice is necessary and the resulting lattice-supported distributions are suitably smoothed after convolution. Our focus is on R package distr which includes an implementation of this approach. Several checks in situations where the exact results are known confirm a high accuracy of the proposed algorithm.","downloadable_attachments":[{"id":68542670,"asset_id":50633887,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":197431157,"first_name":"matthias","last_name":"kohl","domain_name":"independent","page_name":"kohlmatthias","display_name":"matthias kohl","profile_url":"https://independent.academia.edu/kohlmatthias?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":198462,"name":"Statistical software","url":"https://www.academia.edu/Documents/in/Statistical_software?f_ri=1351","nofollow":true},{"id":588226,"name":"Fast Fourier Transform","url":"https://www.academia.edu/Documents/in/Fast_Fourier_Transform?f_ri=1351","nofollow":true},{"id":611819,"name":"Discrete random variable","url":"https://www.academia.edu/Documents/in/Discrete_random_variable?f_ri=1351"},{"id":1121048,"name":"Object Oriented","url":"https://www.academia.edu/Documents/in/Object_Oriented?f_ri=1351"},{"id":1800838,"name":"Discrete Fourier Transform","url":"https://www.academia.edu/Documents/in/Discrete_Fourier_Transform?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_34434980 coauthored" data-work_id="34434980" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/34434980/Short_Term_Wind_Power_Forecasting_Based_On_Quantile_Regression">Short-Term Wind Power Forecasting Based On Quantile Regression</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Short-term wind power forecasts are fundamental information for the safe and economic integration of wind farms into an electric power system. In this work we present a Generalized Additive Model to predict the wind power quantiles... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_34434980" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Short-term wind power forecasts are fundamental information for the safe and economic integration of wind farms into an electric power system. In this work we present a Generalized Additive Model to predict the wind power quantiles (Quantile Regression) from which we obtain a prediction of the wind power production probability density function in a wind farm. The methodology was implemented in the VENTOS Program. In order to illustrate the application of the methodology as well as the VENTOS Program this work presents the results achieved by a computational experiment based on real data from a wind farm located in Galicia, Spain.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/34434980" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c2496635ca6ac28ca165b44915c13f5b" rel="nofollow" data-download="{&quot;attachment_id&quot;:54310413,&quot;asset_id&quot;:34434980,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/54310413/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1957474" href="https://uerj.academia.edu/Jos%C3%A9Pessanha">José Francisco Pessanha</a><script data-card-contents-for-user="1957474" type="text/json">{"id":1957474,"first_name":"José Francisco","last_name":"Pessanha","domain_name":"uerj","page_name":"JoséPessanha","display_name":"José Francisco Pessanha","profile_url":"https://uerj.academia.edu/Jos%C3%A9Pessanha?f_ri=1351","photo":"https://0.academia-photos.com/1957474/2757869/14606900/s65_jos_francisco.pessanha.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-34434980">+2</span><div class="hidden js-additional-users-34434980"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/ValkCastellani">Valk Castellani</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/VictorAAlmeida">Victor. A. Almeida</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-34434980'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-34434980').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_34434980 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="34434980"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 34434980, container: ".js-paper-rank-work_34434980", }); });</script></li><li class="js-percentile-work_34434980 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34434980; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_34434980"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_34434980 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="34434980"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34434980; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34434980]").text(description); $(".js-view-count-work_34434980").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_34434980").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="34434980"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">40</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="49" rel="nofollow" href="https://www.academia.edu/Documents/in/Electrical_Engineering">Electrical Engineering</a>,&nbsp;<script data-card-contents-for-ri="49" type="text/json">{"id":49,"name":"Electrical Engineering","url":"https://www.academia.edu/Documents/in/Electrical_Engineering?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2738" rel="nofollow" href="https://www.academia.edu/Documents/in/Renewable_Energy">Renewable Energy</a><script data-card-contents-for-ri="2738" type="text/json">{"id":2738,"name":"Renewable Energy","url":"https://www.academia.edu/Documents/in/Renewable_Energy?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=34434980]'), work: {"id":34434980,"title":"Short-Term Wind Power Forecasting Based On Quantile Regression","created_at":"2017-09-01T06:01:51.309-07:00","url":"https://www.academia.edu/34434980/Short_Term_Wind_Power_Forecasting_Based_On_Quantile_Regression?f_ri=1351","dom_id":"work_34434980","summary":"Short-term wind power forecasts are fundamental information for the safe and economic integration of wind farms into an electric power system. In this work we present a Generalized Additive Model to predict the wind power quantiles (Quantile Regression) from which we obtain a prediction of the wind power production probability density function in a wind farm. The methodology was implemented in the VENTOS Program. In order to illustrate the application of the methodology as well as the VENTOS Program this work presents the results achieved by a computational experiment based on real data from a wind farm located in Galicia, Spain.","downloadable_attachments":[{"id":54310413,"asset_id":34434980,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1957474,"first_name":"José Francisco","last_name":"Pessanha","domain_name":"uerj","page_name":"JoséPessanha","display_name":"José Francisco Pessanha","profile_url":"https://uerj.academia.edu/Jos%C3%A9Pessanha?f_ri=1351","photo":"https://0.academia-photos.com/1957474/2757869/14606900/s65_jos_francisco.pessanha.jpg"},{"id":13530943,"first_name":"Valk","last_name":"Castellani","domain_name":"independent","page_name":"ValkCastellani","display_name":"Valk Castellani","profile_url":"https://independent.academia.edu/ValkCastellani?f_ri=1351","photo":"https://0.academia-photos.com/13530943/13082482/14410144/s65_valk.castellani.jpg"},{"id":59707239,"first_name":"Victor. A.","last_name":"Almeida","domain_name":"independent","page_name":"VictorAAlmeida","display_name":"Victor. A. Almeida","profile_url":"https://independent.academia.edu/VictorAAlmeida?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":49,"name":"Electrical Engineering","url":"https://www.academia.edu/Documents/in/Electrical_Engineering?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":2738,"name":"Renewable Energy","url":"https://www.academia.edu/Documents/in/Renewable_Energy?f_ri=1351","nofollow":true},{"id":2798,"name":"Wind Energy","url":"https://www.academia.edu/Documents/in/Wind_Energy?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":5351,"name":"Wind Engineering","url":"https://www.academia.edu/Documents/in/Wind_Engineering?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351"},{"id":18186,"name":"Renewable energy resources","url":"https://www.academia.edu/Documents/in/Renewable_energy_resources?f_ri=1351"},{"id":21179,"name":"Wind Energy (Engineering)","url":"https://www.academia.edu/Documents/in/Wind_Energy_Engineering_?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":28631,"name":"Renewable Energy Systems","url":"https://www.academia.edu/Documents/in/Renewable_Energy_Systems?f_ri=1351"},{"id":30485,"name":"Time series analysis","url":"https://www.academia.edu/Documents/in/Time_series_analysis?f_ri=1351"},{"id":38642,"name":"Renewable Energies","url":"https://www.academia.edu/Documents/in/Renewable_Energies?f_ri=1351"},{"id":38660,"name":"Operational Research","url":"https://www.academia.edu/Documents/in/Operational_Research?f_ri=1351"},{"id":53223,"name":"renewable Energy sources","url":"https://www.academia.edu/Documents/in/renewable_Energy_sources?f_ri=1351"},{"id":57254,"name":"Wind Power","url":"https://www.academia.edu/Documents/in/Wind_Power?f_ri=1351"},{"id":61323,"name":"Estatística","url":"https://www.academia.edu/Documents/in/Estat%C3%ADstica?f_ri=1351"},{"id":78429,"name":"Matemáticas y estadistica","url":"https://www.academia.edu/Documents/in/Matem%C3%A1ticas_y_estadistica?f_ri=1351"},{"id":83635,"name":"OPerations research and statistics","url":"https://www.academia.edu/Documents/in/OPerations_research_and_statistics?f_ri=1351"},{"id":125190,"name":"Engenharia de Produção","url":"https://www.academia.edu/Documents/in/Engenharia_de_Producao?f_ri=1351"},{"id":126247,"name":"Soft Operational Research","url":"https://www.academia.edu/Documents/in/Soft_Operational_Research?f_ri=1351"},{"id":127169,"name":"Estadistica","url":"https://www.academia.edu/Documents/in/Estadistica?f_ri=1351"},{"id":172568,"name":"Renewable Energy Technologies","url":"https://www.academia.edu/Documents/in/Renewable_Energy_Technologies?f_ri=1351"},{"id":181785,"name":"Time Series Data","url":"https://www.academia.edu/Documents/in/Time_Series_Data?f_ri=1351"},{"id":218661,"name":"Wind energy integration and PowerSystems analysis","url":"https://www.academia.edu/Documents/in/Wind_energy_integration_and_PowerSystems_analysis?f_ri=1351"},{"id":238620,"name":"Engenharia Elétrica","url":"https://www.academia.edu/Documents/in/Engenharia_El%C3%A9trica?f_ri=1351"},{"id":366369,"name":"Time Series Forecasting","url":"https://www.academia.edu/Documents/in/Time_Series_Forecasting?f_ri=1351"},{"id":423089,"name":"Engenharia da Computação","url":"https://www.academia.edu/Documents/in/Engenharia_da_Computa%C3%A7%C3%A3o?f_ri=1351"},{"id":748461,"name":"Génie électrique","url":"https://www.academia.edu/Documents/in/G%C3%A9nie_%C3%A9lectrique?f_ri=1351"},{"id":858447,"name":"WIND POWER FORECASTING TECHNIQUES","url":"https://www.academia.edu/Documents/in/WIND_POWER_FORECASTING_TECHNIQUES?f_ri=1351"},{"id":962916,"name":"Estadistica Aplicada","url":"https://www.academia.edu/Documents/in/Estadistica_Aplicada?f_ri=1351"},{"id":1003619,"name":"Time Series Analysis and Forecasting","url":"https://www.academia.edu/Documents/in/Time_Series_Analysis_and_Forecasting?f_ri=1351"},{"id":1167512,"name":"Estadística Para Ingenieros","url":"https://www.academia.edu/Documents/in/Estadistica_Para_Ingenieros?f_ri=1351"},{"id":1223616,"name":"Building Integrated Renewable Energy","url":"https://www.academia.edu/Documents/in/Building_Integrated_Renewable_Energy?f_ri=1351"},{"id":1224548,"name":"Electrical and Computer Engineering (ECE)","url":"https://www.academia.edu/Documents/in/Electrical_and_Computer_Engineering_ECE_?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15364347 coauthored" data-work_id="15364347" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15364347/A_Bayesian_framework_for_analyzing_iEEG_data_from_a_rat_model_of_epilepsy">A Bayesian framework for analyzing iEEG data from a rat model of epilepsy</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The early detection of epileptic seizures requires computing relevant statistics from multivariate data and defining a robust decision strategy as a function of these statistics that accurately detects the transition from the normal to... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_15364347" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The early detection of epileptic seizures requires computing relevant statistics from multivariate data and defining a robust decision strategy as a function of these statistics that accurately detects the transition from the normal to the peri-ictal (problematic) state. We model the afflicted brain as a hidden Markov model (HMM) with two hidden clinical states (normal and peri-ictal). The output of the HMM is a statistic computed from multivariate neural measurements. A Bayesian framework is developed to analyze the a posteriori conditional probability of being in peri-ictal state given current and past output measurements. We apply this method to multichannel intracortical EEGs (iEEGs) from the thalamo-cortical ictal pathway in an epilepsy rat model. We first define the output statistic as the max singular value of a connectivity matrix computed on the EEG channels with spectral techniques Then, we estimate the HMM transition probabilities from this statistic and track the a poste...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15364347" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fa043fe3cb4eb0036383169a4670767d" rel="nofollow" data-download="{&quot;attachment_id&quot;:43292215,&quot;asset_id&quot;:15364347,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43292215/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34507257" href="https://johnshopkins.academia.edu/SrideviSarma">Sridevi Sarma</a><script data-card-contents-for-user="34507257" type="text/json">{"id":34507257,"first_name":"Sridevi","last_name":"Sarma","domain_name":"johnshopkins","page_name":"SrideviSarma","display_name":"Sridevi Sarma","profile_url":"https://johnshopkins.academia.edu/SrideviSarma?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-15364347">+1</span><div class="hidden js-additional-users-15364347"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MarekMirski">Marek Mirski</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-15364347'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-15364347').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_15364347 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15364347"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15364347, container: ".js-paper-rank-work_15364347", }); });</script></li><li class="js-percentile-work_15364347 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15364347; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15364347"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15364347 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15364347"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15364347; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15364347]").text(description); $(".js-view-count-work_15364347").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15364347").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15364347"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="428" rel="nofollow" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="7648" rel="nofollow" href="https://www.academia.edu/Documents/in/Epilepsy">Epilepsy</a>,&nbsp;<script data-card-contents-for-ri="7648" type="text/json">{"id":7648,"name":"Epilepsy","url":"https://www.academia.edu/Documents/in/Epilepsy?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="10904" rel="nofollow" href="https://www.academia.edu/Documents/in/Electroencephalography">Electroencephalography</a><script data-card-contents-for-ri="10904" type="text/json">{"id":10904,"name":"Electroencephalography","url":"https://www.academia.edu/Documents/in/Electroencephalography?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15364347]'), work: {"id":15364347,"title":"A Bayesian framework for analyzing iEEG data from a rat model of epilepsy","created_at":"2015-09-03T08:05:10.646-07:00","url":"https://www.academia.edu/15364347/A_Bayesian_framework_for_analyzing_iEEG_data_from_a_rat_model_of_epilepsy?f_ri=1351","dom_id":"work_15364347","summary":"The early detection of epileptic seizures requires computing relevant statistics from multivariate data and defining a robust decision strategy as a function of these statistics that accurately detects the transition from the normal to the peri-ictal (problematic) state. We model the afflicted brain as a hidden Markov model (HMM) with two hidden clinical states (normal and peri-ictal). The output of the HMM is a statistic computed from multivariate neural measurements. A Bayesian framework is developed to analyze the a posteriori conditional probability of being in peri-ictal state given current and past output measurements. We apply this method to multichannel intracortical EEGs (iEEGs) from the thalamo-cortical ictal pathway in an epilepsy rat model. We first define the output statistic as the max singular value of a connectivity matrix computed on the EEG channels with spectral techniques Then, we estimate the HMM transition probabilities from this statistic and track the a poste...","downloadable_attachments":[{"id":43292215,"asset_id":15364347,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34507257,"first_name":"Sridevi","last_name":"Sarma","domain_name":"johnshopkins","page_name":"SrideviSarma","display_name":"Sridevi Sarma","profile_url":"https://johnshopkins.academia.edu/SrideviSarma?f_ri=1351","photo":"/images/s65_no_pic.png"},{"id":41053241,"first_name":"Marek","last_name":"Mirski","domain_name":"independent","page_name":"MarekMirski","display_name":"Marek Mirski","profile_url":"https://independent.academia.edu/MarekMirski?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":7648,"name":"Epilepsy","url":"https://www.academia.edu/Documents/in/Epilepsy?f_ri=1351","nofollow":true},{"id":10904,"name":"Electroencephalography","url":"https://www.academia.edu/Documents/in/Electroencephalography?f_ri=1351","nofollow":true},{"id":143539,"name":"hidden Markov model","url":"https://www.academia.edu/Documents/in/hidden_Markov_model?f_ri=1351"},{"id":207885,"name":"Conditional probability","url":"https://www.academia.edu/Documents/in/Conditional_probability?f_ri=1351"},{"id":371528,"name":"Early Detection","url":"https://www.academia.edu/Documents/in/Early_Detection?f_ri=1351"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats?f_ri=1351"},{"id":404251,"name":"Multivariate Data","url":"https://www.academia.edu/Documents/in/Multivariate_Data?f_ri=1351"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results?f_ri=1351"},{"id":732354,"name":"Rat Model","url":"https://www.academia.edu/Documents/in/Rat_Model?f_ri=1351"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1?f_ri=1351"},{"id":901876,"name":"Sensitivity and Specificity","url":"https://www.academia.edu/Documents/in/Sensitivity_and_Specificity?f_ri=1351"},{"id":1568702,"name":"Delay Estimation","url":"https://www.academia.edu/Documents/in/Delay_Estimation?f_ri=1351"},{"id":1788300,"name":"Bayesian framework","url":"https://www.academia.edu/Documents/in/Bayesian_framework?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_74798080" data-work_id="74798080" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/74798080/Zero_Variance_Markov_Chain_Monte_Carlo_for_Bayesian_Estimators">Zero Variance Markov Chain Monte Carlo for Bayesian Estimators</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Interest is in evaluating, by Markov chain Monte Carlo (MCMC) simulation, the expected value of a function with respect to a, possibly unnormalized, probability distribution. A general purpose variance reduction technique for the MCMC... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_74798080" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Interest is in evaluating, by Markov chain Monte Carlo (MCMC) simulation, the expected value of a function with respect to a, possibly unnormalized, probability distribution. A general purpose variance reduction technique for the MCMC estimator, based on the zero-variance principle introduced in the physics literature, is proposed. Conditions for asymptotic unbiasedness of the zero-variance estimator are derived. A central limit theorem is also proved under regularity conditions. The potential of the idea is illustrated with real applications to probit, logit and GARCH Bayesian models. For all these models, a central limit theorem and unbiasedness for the zero-variance estimator are proved (see the supplementary material available on-line).</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/74798080" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0f1aaa58e84095428914f7c200758eab" rel="nofollow" data-download="{&quot;attachment_id&quot;:82818905,&quot;asset_id&quot;:74798080,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82818905/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32843285" href="https://independent.academia.edu/AntoniettaMira">Antonietta Mira</a><script data-card-contents-for-user="32843285" type="text/json">{"id":32843285,"first_name":"Antonietta","last_name":"Mira","domain_name":"independent","page_name":"AntoniettaMira","display_name":"Antonietta Mira","profile_url":"https://independent.academia.edu/AntoniettaMira?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_74798080 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="74798080"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 74798080, container: ".js-paper-rank-work_74798080", }); });</script></li><li class="js-percentile-work_74798080 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74798080; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_74798080"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_74798080 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="74798080"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74798080; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74798080]").text(description); $(".js-view-count-work_74798080").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_74798080").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="74798080"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">18</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="422" rel="nofollow" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="892" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a><script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=74798080]'), work: {"id":74798080,"title":"Zero Variance Markov Chain Monte Carlo for Bayesian Estimators","created_at":"2022-03-28T07:26:54.085-07:00","url":"https://www.academia.edu/74798080/Zero_Variance_Markov_Chain_Monte_Carlo_for_Bayesian_Estimators?f_ri=1351","dom_id":"work_74798080","summary":"Interest is in evaluating, by Markov chain Monte Carlo (MCMC) simulation, the expected value of a function with respect to a, possibly unnormalized, probability distribution. A general purpose variance reduction technique for the MCMC estimator, based on the zero-variance principle introduced in the physics literature, is proposed. Conditions for asymptotic unbiasedness of the zero-variance estimator are derived. A central limit theorem is also proved under regularity conditions. The potential of the idea is illustrated with real applications to probit, logit and GARCH Bayesian models. For all these models, a central limit theorem and unbiasedness for the zero-variance estimator are proved (see the supplementary material available on-line).","downloadable_attachments":[{"id":82818905,"asset_id":74798080,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32843285,"first_name":"Antonietta","last_name":"Mira","domain_name":"independent","page_name":"AntoniettaMira","display_name":"Antonietta Mira","profile_url":"https://independent.academia.edu/AntoniettaMira?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351","nofollow":true},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation?f_ri=1351"},{"id":26903,"name":"Quantitative Methods in Economics","url":"https://www.academia.edu/Documents/in/Quantitative_Methods_in_Economics?f_ri=1351"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=1351"},{"id":51529,"name":"Bayesian Inference","url":"https://www.academia.edu/Documents/in/Bayesian_Inference?f_ri=1351"},{"id":67959,"name":"Probability Distribution \u0026 Applications","url":"https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications?f_ri=1351"},{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo?f_ri=1351"},{"id":285582,"name":"Garch Models","url":"https://www.academia.edu/Documents/in/Garch_Models?f_ri=1351"},{"id":1346336,"name":"Variance Reduction Techniques","url":"https://www.academia.edu/Documents/in/Variance_Reduction_Techniques?f_ri=1351"},{"id":1434720,"name":"Central Limit Theorem","url":"https://www.academia.edu/Documents/in/Central_Limit_Theorem?f_ri=1351"},{"id":1951089,"name":"Bayesian Estimator","url":"https://www.academia.edu/Documents/in/Bayesian_Estimator?f_ri=1351"},{"id":1970694,"name":"Variance Estimation","url":"https://www.academia.edu/Documents/in/Variance_Estimation?f_ri=1351"},{"id":2485951,"name":"Posterior distribution","url":"https://www.academia.edu/Documents/in/Posterior_distribution?f_ri=1351"},{"id":2814568,"name":"Probability Distribution","url":"https://www.academia.edu/Documents/in/Probability_Distribution?f_ri=1351"},{"id":3489303,"name":"GARCH Model","url":"https://www.academia.edu/Documents/in/GARCH_Model?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_16087376" data-work_id="16087376" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/16087376/Asymptotically_Independent_Markov_Sampling_a_new_MCMC_scheme_for_Bayesian_Inference">Asymptotically Independent Markov Sampling: a new MCMC scheme for Bayesian Inference</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In Bayesian statistics, many problems can be expressed as the evaluation of the expectation of a quantity of interest with respect to the posterior distribution. Standard Monte Carlo method is often not applicable because the encountered... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_16087376" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In Bayesian statistics, many problems can be expressed as the evaluation of the expectation of a quantity of interest with respect to the posterior distribution. Standard Monte Carlo method is often not applicable because the encountered posterior distributions cannot be sampled directly. In this case, the most popular strategies are the importance sampling method, Markov chain Monte Carlo, and annealing.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/16087376" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f3434a4aede5a87e037d76941e41ac55" rel="nofollow" data-download="{&quot;attachment_id&quot;:38867881,&quot;asset_id&quot;:16087376,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38867881/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35210931" href="https://independent.academia.edu/KonstantinMZuev">Konstantin M. Zuev</a><script data-card-contents-for-user="35210931" type="text/json">{"id":35210931,"first_name":"Konstantin M.","last_name":"Zuev","domain_name":"independent","page_name":"KonstantinMZuev","display_name":"Konstantin M. Zuev","profile_url":"https://independent.academia.edu/KonstantinMZuev?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_16087376 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="16087376"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 16087376, container: ".js-paper-rank-work_16087376", }); });</script></li><li class="js-percentile-work_16087376 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16087376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_16087376"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_16087376 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="16087376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16087376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16087376]").text(description); $(".js-view-count-work_16087376").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_16087376").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="16087376"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="15084" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_machine_learning">Statistical machine learning</a>,&nbsp;<script data-card-contents-for-ri="15084" type="text/json">{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="51529" rel="nofollow" href="https://www.academia.edu/Documents/in/Bayesian_Inference">Bayesian Inference</a>,&nbsp;<script data-card-contents-for-ri="51529" type="text/json">{"id":51529,"name":"Bayesian Inference","url":"https://www.academia.edu/Documents/in/Bayesian_Inference?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="85262" rel="nofollow" href="https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo">Markov Chain Monte Carlo</a><script data-card-contents-for-ri="85262" type="text/json">{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=16087376]'), work: {"id":16087376,"title":"Asymptotically Independent Markov Sampling: a new MCMC scheme for Bayesian Inference","created_at":"2015-09-23T08:59:04.777-07:00","url":"https://www.academia.edu/16087376/Asymptotically_Independent_Markov_Sampling_a_new_MCMC_scheme_for_Bayesian_Inference?f_ri=1351","dom_id":"work_16087376","summary":"In Bayesian statistics, many problems can be expressed as the evaluation of the expectation of a quantity of interest with respect to the posterior distribution. Standard Monte Carlo method is often not applicable because the encountered posterior distributions cannot be sampled directly. In this case, the most popular strategies are the importance sampling method, Markov chain Monte Carlo, and annealing.","downloadable_attachments":[{"id":38867881,"asset_id":16087376,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35210931,"first_name":"Konstantin M.","last_name":"Zuev","domain_name":"independent","page_name":"KonstantinMZuev","display_name":"Konstantin M. Zuev","profile_url":"https://independent.academia.edu/KonstantinMZuev?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=1351","nofollow":true},{"id":51529,"name":"Bayesian Inference","url":"https://www.academia.edu/Documents/in/Bayesian_Inference?f_ri=1351","nofollow":true},{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo?f_ri=1351","nofollow":true},{"id":100094,"name":"Bayesian statistics","url":"https://www.academia.edu/Documents/in/Bayesian_statistics?f_ri=1351"},{"id":307221,"name":"Importance Sampling","url":"https://www.academia.edu/Documents/in/Importance_Sampling?f_ri=1351"},{"id":595993,"name":"Markov chain","url":"https://www.academia.edu/Documents/in/Markov_chain?f_ri=1351"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_16722383" data-work_id="16722383" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/16722383/A_tutorial_introduction_to_the_minimum_description_length_principle">A tutorial introduction to the minimum description length principle</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This tutorial provides an overview of and introduction to Rissanen&#39;s Minimum Description Length (MDL) Principle. The first chapter provides a conceptual, entirely non-technical introduction to the subject. It serves as a basis for the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_16722383" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This tutorial provides an overview of and introduction to Rissanen&#39;s Minimum Description Length (MDL) Principle. The first chapter provides a conceptual, entirely non-technical introduction to the subject. It serves as a basis for the technical introduction given in the second chapter, in which all the ideas of the first chapter are made mathematically precise. This tutorial will appear as the first two chapters in the collection Advances in Minimum Description Length: Theory and Applications [Grünwald, Myung, and Pitt 2004], to be published by the MIT Press.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/16722383" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0240d399155677317532b3c262c75fe1" rel="nofollow" data-download="{&quot;attachment_id&quot;:39146720,&quot;asset_id&quot;:16722383,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/39146720/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33063386" href="https://leidenuniv.academia.edu/PeterGr%C3%BCnwald">Peter Grünwald</a><script data-card-contents-for-user="33063386" type="text/json">{"id":33063386,"first_name":"Peter","last_name":"Grünwald","domain_name":"leidenuniv","page_name":"PeterGrünwald","display_name":"Peter Grünwald","profile_url":"https://leidenuniv.academia.edu/PeterGr%C3%BCnwald?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_16722383 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="16722383"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 16722383, container: ".js-paper-rank-work_16722383", }); });</script></li><li class="js-percentile-work_16722383 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16722383; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_16722383"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_16722383 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="16722383"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16722383; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16722383]").text(description); $(".js-view-count-work_16722383").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_16722383").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="16722383"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1410" rel="nofollow" href="https://www.academia.edu/Documents/in/Information_Theory">Information Theory</a>,&nbsp;<script data-card-contents-for-ri="1410" type="text/json">{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="102722" rel="nofollow" href="https://www.academia.edu/Documents/in/Science_Learning">Science Learning</a>,&nbsp;<script data-card-contents-for-ri="102722" type="text/json">{"id":102722,"name":"Science Learning","url":"https://www.academia.edu/Documents/in/Science_Learning?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="287030" rel="nofollow" href="https://www.academia.edu/Documents/in/Minimum_description_length">Minimum description length</a><script data-card-contents-for-ri="287030" type="text/json">{"id":287030,"name":"Minimum description length","url":"https://www.academia.edu/Documents/in/Minimum_description_length?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=16722383]'), work: {"id":16722383,"title":"A tutorial introduction to the minimum description length principle","created_at":"2015-10-12T23:45:18.800-07:00","url":"https://www.academia.edu/16722383/A_tutorial_introduction_to_the_minimum_description_length_principle?f_ri=1351","dom_id":"work_16722383","summary":"This tutorial provides an overview of and introduction to Rissanen's Minimum Description Length (MDL) Principle. The first chapter provides a conceptual, entirely non-technical introduction to the subject. It serves as a basis for the technical introduction given in the second chapter, in which all the ideas of the first chapter are made mathematically precise. This tutorial will appear as the first two chapters in the collection Advances in Minimum Description Length: Theory and Applications [Grünwald, Myung, and Pitt 2004], to be published by the MIT Press.","downloadable_attachments":[{"id":39146720,"asset_id":16722383,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33063386,"first_name":"Peter","last_name":"Grünwald","domain_name":"leidenuniv","page_name":"PeterGrünwald","display_name":"Peter Grünwald","profile_url":"https://leidenuniv.academia.edu/PeterGr%C3%BCnwald?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory?f_ri=1351","nofollow":true},{"id":102722,"name":"Science Learning","url":"https://www.academia.edu/Documents/in/Science_Learning?f_ri=1351","nofollow":true},{"id":287030,"name":"Minimum description length","url":"https://www.academia.edu/Documents/in/Minimum_description_length?f_ri=1351","nofollow":true},{"id":1675981,"name":"Minimum Description Length Principle","url":"https://www.academia.edu/Documents/in/Minimum_Description_Length_Principle?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14449209" data-work_id="14449209" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14449209/The_Significance_Of_The_Non_Trivial_Zeros_Of_The_Riemann_Zeta_Function">The Significance Of The Non-Trivial Zeros Of The Riemann Zeta Function</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">This paper expounds the role of the non-trivial zeros of the Riemann zeta function ζ and supplements the author’s earlier papers on the Riemann hypothesis. There is a lot of mystery surrounding the non-trivial zeros.</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14449209" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="24c8ce00e42c7c82753e34934e5ec951" rel="nofollow" data-download="{&quot;attachment_id&quot;:38327855,&quot;asset_id&quot;:14449209,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38327855/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="11414130" href="https://independent.academia.edu/WongBertrand">Bertrand Wong</a><script data-card-contents-for-user="11414130" type="text/json">{"id":11414130,"first_name":"Bertrand","last_name":"Wong","domain_name":"independent","page_name":"WongBertrand","display_name":"Bertrand Wong","profile_url":"https://independent.academia.edu/WongBertrand?f_ri=1351","photo":"https://0.academia-photos.com/11414130/3329015/3917133/s65_bertrand.wong.jpg"}</script></span></span></li><li class="js-paper-rank-work_14449209 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14449209"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14449209, container: ".js-paper-rank-work_14449209", }); });</script></li><li class="js-percentile-work_14449209 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14449209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14449209"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14449209 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14449209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14449209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14449209]").text(description); $(".js-view-count-work_14449209").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14449209").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14449209"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">34</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" rel="nofollow" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="301" rel="nofollow" href="https://www.academia.edu/Documents/in/Number_Theory">Number Theory</a>,&nbsp;<script data-card-contents-for-ri="301" type="text/json">{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="302" rel="nofollow" href="https://www.academia.edu/Documents/in/Analytic_Number_Theory">Analytic Number Theory</a>,&nbsp;<script data-card-contents-for-ri="302" type="text/json">{"id":302,"name":"Analytic Number Theory","url":"https://www.academia.edu/Documents/in/Analytic_Number_Theory?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="303" rel="nofollow" href="https://www.academia.edu/Documents/in/Algebraic_Number_Theory">Algebraic Number Theory</a><script data-card-contents-for-ri="303" type="text/json">{"id":303,"name":"Algebraic Number Theory","url":"https://www.academia.edu/Documents/in/Algebraic_Number_Theory?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14449209]'), work: {"id":14449209,"title":"The Significance Of The Non-Trivial Zeros Of The Riemann Zeta Function","created_at":"2015-07-27T16:06:50.227-07:00","url":"https://www.academia.edu/14449209/The_Significance_Of_The_Non_Trivial_Zeros_Of_The_Riemann_Zeta_Function?f_ri=1351","dom_id":"work_14449209","summary":"This paper expounds the role of the non-trivial zeros of the Riemann zeta function ζ and supplements the author’s earlier papers on the Riemann hypothesis. There is a lot of mystery surrounding the non-trivial zeros.","downloadable_attachments":[{"id":38327855,"asset_id":14449209,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":11414130,"first_name":"Bertrand","last_name":"Wong","domain_name":"independent","page_name":"WongBertrand","display_name":"Bertrand Wong","profile_url":"https://independent.academia.edu/WongBertrand?f_ri=1351","photo":"https://0.academia-photos.com/11414130/3329015/3917133/s65_bertrand.wong.jpg"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=1351","nofollow":true},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory?f_ri=1351","nofollow":true},{"id":302,"name":"Analytic Number Theory","url":"https://www.academia.edu/Documents/in/Analytic_Number_Theory?f_ri=1351","nofollow":true},{"id":303,"name":"Algebraic Number Theory","url":"https://www.academia.edu/Documents/in/Algebraic_Number_Theory?f_ri=1351","nofollow":true},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=1351"},{"id":370,"name":"Complex Analysis","url":"https://www.academia.edu/Documents/in/Complex_Analysis?f_ri=1351"},{"id":371,"name":"Functional Analysis","url":"https://www.academia.edu/Documents/in/Functional_Analysis?f_ri=1351"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=1351"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=1351"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics?f_ri=1351"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics?f_ri=1351"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics?f_ri=1351"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics?f_ri=1351"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=1351"},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis?f_ri=1351"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling?f_ri=1351"},{"id":15198,"name":"Spatial Statistics","url":"https://www.academia.edu/Documents/in/Spatial_Statistics?f_ri=1351"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=1351"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=1351"},{"id":31412,"name":"Probability and Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics?f_ri=1351"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=1351"},{"id":41239,"name":"Bayesian statistics \u0026 modelling","url":"https://www.academia.edu/Documents/in/Bayesian_statistics_and_modelling?f_ri=1351"},{"id":41815,"name":"Applied Probability","url":"https://www.academia.edu/Documents/in/Applied_Probability?f_ri=1351"},{"id":49823,"name":"Distribution of Prime Numbers","url":"https://www.academia.edu/Documents/in/Distribution_of_Prime_Numbers?f_ri=1351"},{"id":72443,"name":"Prime Numbers","url":"https://www.academia.edu/Documents/in/Prime_Numbers?f_ri=1351"},{"id":95150,"name":"General and Pure Mathematics","url":"https://www.academia.edu/Documents/in/General_and_Pure_Mathematics?f_ri=1351"},{"id":153546,"name":"Primes","url":"https://www.academia.edu/Documents/in/Primes?f_ri=1351"},{"id":247061,"name":"Pure and Applied Mathematics","url":"https://www.academia.edu/Documents/in/Pure_and_Applied_Mathematics?f_ri=1351"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics?f_ri=1351"},{"id":325323,"name":"Functions","url":"https://www.academia.edu/Documents/in/Functions?f_ri=1351"},{"id":343413,"name":"Applied Probability and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Probability_and_Statistics?f_ri=1351"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics?f_ri=1351"},{"id":466067,"name":"Complex Numbers","url":"https://www.academia.edu/Documents/in/Complex_Numbers?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_411673 coauthored" data-work_id="411673" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/411673/Processamento_E_An%C3%A1lise_De_Imagens_Hiperespectrais_No_Sistema_R_Uma_Abordagem_Comparativa">Processamento E Análise De Imagens Hiperespectrais No Sistema R: Uma Abordagem Comparativa</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/411673" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6aaee4b595e419f27cb931d123307d39" rel="nofollow" data-download="{&quot;attachment_id&quot;:3436021,&quot;asset_id&quot;:411673,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/3436021/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="48153796" href="https://independent.academia.edu/NelsonDelfino">Nelson Delfino</a><script data-card-contents-for-user="48153796" type="text/json">{"id":48153796,"first_name":"Nelson","last_name":"Delfino","domain_name":"independent","page_name":"NelsonDelfino","display_name":"Nelson Delfino","profile_url":"https://independent.academia.edu/NelsonDelfino?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-411673">+1</span><div class="hidden js-additional-users-411673"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://lbl.academia.edu/TalitaPerciano">Talita Perciano</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-411673'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-411673').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_411673 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="411673"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 411673, container: ".js-paper-rank-work_411673", }); });</script></li><li class="js-percentile-work_411673 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 411673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_411673"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_411673 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="411673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 411673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=411673]").text(description); $(".js-view-count-work_411673").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_411673").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="411673"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1185" rel="nofollow" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>,&nbsp;<script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="30665" rel="nofollow" href="https://www.academia.edu/Documents/in/Image_Processing_and_Analysis">Image Processing and Analysis</a>,&nbsp;<script data-card-contents-for-ri="30665" type="text/json">{"id":30665,"name":"Image Processing and Analysis","url":"https://www.academia.edu/Documents/in/Image_Processing_and_Analysis?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="45834" rel="nofollow" href="https://www.academia.edu/Documents/in/Open_Source">Open Source</a><script data-card-contents-for-ri="45834" type="text/json">{"id":45834,"name":"Open Source","url":"https://www.academia.edu/Documents/in/Open_Source?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=411673]'), work: {"id":411673,"title":"Processamento E Análise De Imagens Hiperespectrais No Sistema R: Uma Abordagem Comparativa","created_at":"2011-01-13T22:12:29.983-08:00","url":"https://www.academia.edu/411673/Processamento_E_An%C3%A1lise_De_Imagens_Hiperespectrais_No_Sistema_R_Uma_Abordagem_Comparativa?f_ri=1351","dom_id":"work_411673","summary":null,"downloadable_attachments":[{"id":3436021,"asset_id":411673,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":48153796,"first_name":"Nelson","last_name":"Delfino","domain_name":"independent","page_name":"NelsonDelfino","display_name":"Nelson Delfino","profile_url":"https://independent.academia.edu/NelsonDelfino?f_ri=1351","photo":"/images/s65_no_pic.png"},{"id":168646,"first_name":"Talita","last_name":"Perciano","domain_name":"lbl","page_name":"TalitaPerciano","display_name":"Talita Perciano","profile_url":"https://lbl.academia.edu/TalitaPerciano?f_ri=1351","photo":"https://0.academia-photos.com/168646/62275/164412423/s65_talita.perciano.png"}],"research_interests":[{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":30665,"name":"Image Processing and Analysis","url":"https://www.academia.edu/Documents/in/Image_Processing_and_Analysis?f_ri=1351","nofollow":true},{"id":45834,"name":"Open Source","url":"https://www.academia.edu/Documents/in/Open_Source?f_ri=1351","nofollow":true},{"id":742112,"name":"Statistical Data Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Data_Analysis?f_ri=1351"},{"id":920861,"name":"Hyperspectral Data","url":"https://www.academia.edu/Documents/in/Hyperspectral_Data?f_ri=1351"},{"id":2203644,"name":"Anais","url":"https://www.academia.edu/Documents/in/Anais?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5236987" data-work_id="5236987" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5236987/Programaci%C3%9Bn_gen%C3%88rica_en_C_usando_Metaprogramaci%C3%9Bn">ProgramaciÛn genÈrica en C++, usando MetaprogramaciÛn</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5236987" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0ac55e8200f7102cc11e10d5125c4543" rel="nofollow" data-download="{&quot;attachment_id&quot;:32420597,&quot;asset_id&quot;:5236987,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/32420597/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="7154199" href="https://independent.academia.edu/eduardoraffo">eduardo raffo</a><script data-card-contents-for-user="7154199" type="text/json">{"id":7154199,"first_name":"eduardo","last_name":"raffo","domain_name":"independent","page_name":"eduardoraffo","display_name":"eduardo raffo","profile_url":"https://independent.academia.edu/eduardoraffo?f_ri=1351","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_5236987 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5236987"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5236987, container: ".js-paper-rank-work_5236987", }); });</script></li><li class="js-percentile-work_5236987 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5236987; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5236987"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5236987 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5236987"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5236987; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5236987]").text(description); $(".js-view-count-work_5236987").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5236987").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5236987"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="453" rel="nofollow" href="https://www.academia.edu/Documents/in/Object_Oriented_Programming">Object Oriented Programming</a>,&nbsp;<script data-card-contents-for-ri="453" type="text/json">{"id":453,"name":"Object Oriented Programming","url":"https://www.academia.edu/Documents/in/Object_Oriented_Programming?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="454" rel="nofollow" href="https://www.academia.edu/Documents/in/Functional_Programming">Functional Programming</a>,&nbsp;<script data-card-contents-for-ri="454" type="text/json">{"id":454,"name":"Functional Programming","url":"https://www.academia.edu/Documents/in/Functional_Programming?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="35639" rel="nofollow" href="https://www.academia.edu/Documents/in/Scientific_Computing">Scientific Computing</a><script data-card-contents-for-ri="35639" type="text/json">{"id":35639,"name":"Scientific Computing","url":"https://www.academia.edu/Documents/in/Scientific_Computing?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5236987]'), work: {"id":5236987,"title":"ProgramaciÛn genÈrica en C++, usando MetaprogramaciÛn","created_at":"2013-11-26T22:08:46.530-08:00","url":"https://www.academia.edu/5236987/Programaci%C3%9Bn_gen%C3%88rica_en_C_usando_Metaprogramaci%C3%9Bn?f_ri=1351","dom_id":"work_5236987","summary":null,"downloadable_attachments":[{"id":32420597,"asset_id":5236987,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":7154199,"first_name":"eduardo","last_name":"raffo","domain_name":"independent","page_name":"eduardoraffo","display_name":"eduardo raffo","profile_url":"https://independent.academia.edu/eduardoraffo?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":453,"name":"Object Oriented Programming","url":"https://www.academia.edu/Documents/in/Object_Oriented_Programming?f_ri=1351","nofollow":true},{"id":454,"name":"Functional Programming","url":"https://www.academia.edu/Documents/in/Functional_Programming?f_ri=1351","nofollow":true},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":35639,"name":"Scientific Computing","url":"https://www.academia.edu/Documents/in/Scientific_Computing?f_ri=1351","nofollow":true},{"id":74777,"name":"Generic Programming","url":"https://www.academia.edu/Documents/in/Generic_Programming?f_ri=1351"},{"id":1991705,"name":"PARTIAL EVALUATION","url":"https://www.academia.edu/Documents/in/PARTIAL_EVALUATION?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_13051742 coauthored" data-work_id="13051742" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/13051742/Spatio_temporal_prediction_of_daily_temperatures_using_time_series_of_MODIS_LST_images">Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_13051742" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1 • C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4 • C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement-interactive spacetime variogram exploration and automated retrieval, resampling and filtering of MODIS images-are anticipated.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/13051742" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4edc6919af63f8d6dd44fd990464485f" rel="nofollow" data-download="{&quot;attachment_id&quot;:45737110,&quot;asset_id&quot;:13051742,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/45737110/download_file?st=MTc0MDU3MjE4OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32287087" href="https://uni-muenster.academia.edu/EdzerPebesma">Edzer Pebesma</a><script data-card-contents-for-user="32287087" type="text/json">{"id":32287087,"first_name":"Edzer","last_name":"Pebesma","domain_name":"uni-muenster","page_name":"EdzerPebesma","display_name":"Edzer Pebesma","profile_url":"https://uni-muenster.academia.edu/EdzerPebesma?f_ri=1351","photo":"https://gravatar.com/avatar/0cb923f9e51793448b544f4be3fc5fd9?s=65"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-13051742">+1</span><div class="hidden js-additional-users-13051742"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://wur.academia.edu/GHeuvelink">Gerard Heuvelink</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-13051742'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-13051742').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_13051742 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="13051742"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 13051742, container: ".js-paper-rank-work_13051742", }); });</script></li><li class="js-percentile-work_13051742 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13051742; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_13051742"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_13051742 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="13051742"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13051742; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13051742]").text(description); $(".js-view-count-work_13051742").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_13051742").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="13051742"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1351" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_Computing">Statistical Computing</a>,&nbsp;<script data-card-contents-for-ri="1351" type="text/json">{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4456" rel="nofollow" href="https://www.academia.edu/Documents/in/Time_Series">Time Series</a>,&nbsp;<script data-card-contents-for-ri="4456" type="text/json">{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="5069" rel="nofollow" href="https://www.academia.edu/Documents/in/Principal_Component_Analysis">Principal Component Analysis</a>,&nbsp;<script data-card-contents-for-ri="5069" type="text/json">{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="60285" rel="nofollow" href="https://www.academia.edu/Documents/in/Atmospheric_sciences">Atmospheric sciences</a><script data-card-contents-for-ri="60285" type="text/json">{"id":60285,"name":"Atmospheric sciences","url":"https://www.academia.edu/Documents/in/Atmospheric_sciences?f_ri=1351","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=13051742]'), work: {"id":13051742,"title":"Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images","created_at":"2015-06-17T08:09:02.856-07:00","url":"https://www.academia.edu/13051742/Spatio_temporal_prediction_of_daily_temperatures_using_time_series_of_MODIS_LST_images?f_ri=1351","dom_id":"work_13051742","summary":"A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1 • C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4 • C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement-interactive spacetime variogram exploration and automated retrieval, resampling and filtering of MODIS images-are anticipated.","downloadable_attachments":[{"id":45737110,"asset_id":13051742,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32287087,"first_name":"Edzer","last_name":"Pebesma","domain_name":"uni-muenster","page_name":"EdzerPebesma","display_name":"Edzer Pebesma","profile_url":"https://uni-muenster.academia.edu/EdzerPebesma?f_ri=1351","photo":"https://gravatar.com/avatar/0cb923f9e51793448b544f4be3fc5fd9?s=65"},{"id":19074417,"first_name":"Gerard","last_name":"Heuvelink","domain_name":"wur","page_name":"GHeuvelink","display_name":"Gerard Heuvelink","profile_url":"https://wur.academia.edu/GHeuvelink?f_ri=1351","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing?f_ri=1351","nofollow":true},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=1351","nofollow":true},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=1351","nofollow":true},{"id":60285,"name":"Atmospheric sciences","url":"https://www.academia.edu/Documents/in/Atmospheric_sciences?f_ri=1351","nofollow":true},{"id":79495,"name":"Land Cover","url":"https://www.academia.edu/Documents/in/Land_Cover?f_ri=1351"},{"id":133294,"name":"Land Surface Temperature","url":"https://www.academia.edu/Documents/in/Land_Surface_Temperature?f_ri=1351"},{"id":154543,"name":"Space Time","url":"https://www.academia.edu/Documents/in/Space_Time?f_ri=1351"},{"id":187402,"name":"Cross Validation","url":"https://www.academia.edu/Documents/in/Cross_Validation?f_ri=1351"},{"id":266485,"name":"Temperature measurement","url":"https://www.academia.edu/Documents/in/Temperature_measurement?f_ri=1351"},{"id":290971,"name":"Ordinary Kriging","url":"https://www.academia.edu/Documents/in/Ordinary_Kriging?f_ri=1351"},{"id":406051,"name":"Regression Model","url":"https://www.academia.edu/Documents/in/Regression_Model?f_ri=1351"},{"id":524631,"name":"Theoretical and applied linguistics","url":"https://www.academia.edu/Documents/in/Theoretical_and_applied_linguistics?f_ri=1351"},{"id":644954,"name":"Interactive Space","url":"https://www.academia.edu/Documents/in/Interactive_Space?f_ri=1351"},{"id":1293227,"name":"Remote Sensing Image","url":"https://www.academia.edu/Documents/in/Remote_Sensing_Image?f_ri=1351"},{"id":1984794,"name":"Urban Area","url":"https://www.academia.edu/Documents/in/Urban_Area?f_ri=1351"}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Statistical_Computing?after=50%2C13051742" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Statistical_Computing?page=last">Last &raquo;</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Longitudinal_data_analysis">Longitudinal data analysis</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="95929">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="95929">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Applied_Statistics">Applied Statistics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4060">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4060">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Survival_Analysis">Survival Analysis</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="10610">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="10610">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="892">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="892">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Computational_Statistics">Computational Statistics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4388">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4388">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/R_statistics">R statistics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="84155">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="84155">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Big_Data_Visualisation">Big Data Visualisation</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="449899">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="449899">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Software_Reuse">Software Reuse</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="9312">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="9312">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Statistical_software">Statistical software</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="198462">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="198462">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Multivariate_Statistics">Multivariate Statistics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1352">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1352">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Statistical_Computing" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9a1bcfb15dccb2f320c4b2f3419f0e8cefaf408a3b48a1212ae4bb7985700e05", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="pzqyOHQHl23b8zqGNpQEcJhVgWK9hfyL6uAve5MVo-s5jwGJGkknJPkYpqCWkF_QsWL9-FxwuBET56f_9UwUVw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Statistical_Computing" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="Wd_7sB-Rvtbj3fLHNdcQWK40XodwRehyMcU8ZwDfQ17HakgBcd8On8E2buGV00v4hwMiHZGwrOjIwrTjZob04g" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10