CINXE.COM
Search results for: Retrofit
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Retrofit</title> <meta name="description" content="Search results for: Retrofit"> <meta name="keywords" content="Retrofit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Retrofit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Retrofit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 89</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Retrofit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Wook%20Park">Sang Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Woon%20Choi"> Se Woon Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousok%20Kim"> Yousok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrofit" title="retrofit">retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20bracings" title=" FRP bracings"> FRP bracings</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20frame%20with%20infill%20wall" title=" reinforced concrete frame with infill wall"> reinforced concrete frame with infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance%20evaluation" title=" seismic performance evaluation"> seismic performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=NSGA-II" title=" NSGA-II"> NSGA-II</a> </p> <a href="https://publications.waset.org/abstracts/42927/optimal-retrofit-design-of-reinforced-concrete-frame-with-infill-wall-using-fiber-reinforced-plastic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Anuar">S. A. Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hamid"> N. H. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Hashim"> M. H. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20D.%20Salleh"> S. M. D. Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20form%20building" title="tunnel form building">tunnel form building</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20lateral%20cyclic%20loading" title=" in-plane lateral cyclic loading"> in-plane lateral cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20pattern" title=" crack pattern"> crack pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20strength" title=" lateral strength"> lateral strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20viscous%20damping" title=" equivalent viscous damping"> equivalent viscous damping</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20and%20retrofit" title=" repair and retrofit"> repair and retrofit</a> </p> <a href="https://publications.waset.org/abstracts/11546/comparison-of-double-unit-tunnel-form-building-before-and-after-repair-and-retrofit-under-in-plane-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Kim">Minjung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunkoo%20Kang"> Hyunkoo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=slit%20dampers" title=" slit dampers"> slit dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=jacketing" title=" jacketing"> jacketing</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20spectrum%20method" title=" capacity spectrum method"> capacity spectrum method</a> </p> <a href="https://publications.waset.org/abstracts/47979/story-wise-distribution-of-slit-dampers-for-seismic-retrofit-of-rc-shear-wall-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Life Cycle Cost Evaluation of Structures with Hysteretic Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim">Jinkoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungoo%20Kang"> Hyungoo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjun%20Shin"> Hyungjun Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slit%20dampers" title="slit dampers">slit dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20dampers" title=" friction dampers"> friction dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=FEMA%20P-58" title=" FEMA P-58"> FEMA P-58</a>, <a href="https://publications.waset.org/abstracts/search?q=PACT" title=" PACT"> PACT</a> </p> <a href="https://publications.waset.org/abstracts/44647/life-cycle-cost-evaluation-of-structures-with-hysteretic-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Seismic Performance Evaluation of Structures with Hybrid Dampers Based on FEMA P-58 Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim">Minsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunkoo%20Kang"> Hyunkoo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time. This research was supported by a grant (13AUDP-B066083-01) from Architecture & Urban Development Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEMA%20P-58" title="FEMA P-58">FEMA P-58</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20dampers" title=" friction dampers"> friction dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/57188/seismic-performance-evaluation-of-structures-with-hybrid-dampers-based-on-fema-p-58-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Noureldin">Mohamed Noureldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slit%20dampers" title="slit dampers">slit dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a> </p> <a href="https://publications.waset.org/abstracts/86061/seismic-retrofitting-of-structures-using-steel-plate-slit-dampers-based-on-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Advanced Seismic Retrofit of a School Building by a DFP Base Isolation Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Sorace">Stefano Sorace</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Terenzi"> Gloria Terenzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of a base isolation seismic retrofit solution for a reinforced concrete school building is presented in this paper. The building was assumed as a benchmark structure for a Research Project financed by the Italian Department of Civil Protection, and is representative of several similar public edifices designed with earlier Technical Standards editions, in Italy as well as in other earthquake-prone European countries. The structural characteristics of the building, and a synthesis of the investigation campaigns developed on it, are initially presented. The mechanical parameters, dimensions, locations and installation details of the base isolation system, incorporating double friction pendulum sliding bearings as protective devices, are then illustrated, along with the performance assessment analyses carried out in original and rehabilitated conditions according to a full non-linear dynamic approach. The results of the analyses show a remarkable enhancement of the seismic response capacities of the structure in base-isolated configuration. This allows reaching the high performance levels postulated in the rehabilitation design with notably lower costs and architectural intrusion as compared to traditional retrofit interventions designed for the same objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=r%2Fc%20structures" title=" r/c structures"> r/c structures</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20buildings" title=" school buildings"> school buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title=" base isolation"> base isolation</a> </p> <a href="https://publications.waset.org/abstracts/9559/advanced-seismic-retrofit-of-a-school-building-by-a-dfp-base-isolation-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Cost Effectiveness of Slit-Viscoelastic Dampers for Seismic Retrofit of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim">Minsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce or eliminate seismic damage in structures, many researchers have investigated various energy dissipation devices. In this study, the seismic capacity and cost of a slit-viscoelastic seismic retrofit system composed of a steel slit plate and viscoelastic dampers connected in parallel are evaluated. The combination of the two different damping mechanisms is expected to produce enhanced seismic performance of the building. The analysis model of the system is first derived using various link elements in the nonlinear dynamic analysis software Perform 3D, and fragility curves of the structure retrofitted with the dampers are obtained using incremental dynamic analyses. The analysis results show that the displacement of the structure equipped with the hybrid dampers is smaller than that of the structure with slit dampers due to the enhanced self-centering capability of the system. It is also observed that the initial cost of hybrid system required for the seismic retrofit is smaller than that of the structure with viscoelastic dampers. Acknowledgement: This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) through the International Cooperative R&D program(N043100016_Development of low-cost high-performance seismic energy dissipation devices using viscoelastic material). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damped%20cable%20systems" title="damped cable systems">damped cable systems</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title=" viscous dampers"> viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=self-centering" title=" self-centering"> self-centering</a> </p> <a href="https://publications.waset.org/abstracts/77954/cost-effectiveness-of-slit-viscoelastic-dampers-for-seismic-retrofit-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabzchi%20Asl">S. Sabzchi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tahouni"> N. Tahouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Panjeshahi"> M. H. Panjeshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle%20power%20plant" title="combined cycle power plant">combined cycle power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20benchmarking" title=" energy benchmarking"> energy benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a> </p> <a href="https://publications.waset.org/abstracts/43201/identification-of-key-parameters-for-benchmarking-of-combined-cycle-power-plants-retrofit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Flora">A. Flora</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Di%20Lascio"> A. Di Lascio</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Cardone"> D. Cardone</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gesualdi"> G. Gesualdi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Perrone"> G. Perrone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expected%20annual%20loss" title="expected annual loss">expected annual loss</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20buildings" title=" reinforced concrete buildings"> reinforced concrete buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20loss%20assessment" title=" seismic loss assessment"> seismic loss assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/83756/probabilistic-seismic-loss-assessment-of-reinforced-concrete-rc-frame-buildings-pre-and-post-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Hasurungan">David Hasurungan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=obsolescence" title=" obsolescence"> obsolescence</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20contactor" title=" vacuum contactor"> vacuum contactor</a> </p> <a href="https://publications.waset.org/abstracts/71414/electrical-power-distribution-reliability-improvement-by-retrofitting-416-kv-vacuum-contactor-in-badak-lng-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ga%20Ye%20Kim">Ga Ye Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20Kim"> Hee Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong%20Soo%20Shin"> Yeong Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrofit%20material" title="retrofit material">retrofit material</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20mortar" title=" polymer mortar"> polymer mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPFRC" title=" UHPFRC"> UHPFRC</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20finite%20element%20analysis" title=" nonlinear finite element analysis"> nonlinear finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/36362/a-study-on-reinforced-concrete-beams-enlarged-with-polymer-mortar-and-uhpfrc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Life Cycle Cost Evaluation of Structures Retrofitted with Damped Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Nour%20Eldin"> Mohamed Nour Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the seismic performance and life cycle cost (LCC) are evaluated of the structure retrofitted with the damped cable system (DCS). The DCS is a seismic retrofit system composed of a high-strength steel cable and pressurized viscous dampers. The analysis model of the system is first derived using various link elements in SAP2000, and fragility curves of the structure retrofitted with the DCS and viscous dampers are obtained using incremental dynamic analyses. The analysis results show that the residual displacements of the structure equipped with the DCS are smaller than those of the structure with retrofitted with only conventional viscous dampers, due to the enhanced stiffness/strength and self-centering capability of the damped cable system. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with viscous damper. It is also observed that the initial cost of the DCS method required for the seismic retrofit is smaller than that of the structure with viscous dampers and that the LCC of the structure equipped with the DCS is smaller than that of the structure with viscous dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damped%20cable%20system" title="damped cable system">damped cable system</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=self-centering" title=" self-centering"> self-centering</a> </p> <a href="https://publications.waset.org/abstracts/77662/life-cycle-cost-evaluation-of-structures-retrofitted-with-damped-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selin%20Guleroglu">Selin Guleroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kahraman"> Ilker Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Selahattin%20Umdu"> E. Selahattin Umdu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20performance" title="energy performance">energy performance</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20zones" title=" climatic zones"> climatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20building" title=" historic building"> historic building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofit%20measures" title=" energy retrofit measures"> energy retrofit measures</a>, <a href="https://publications.waset.org/abstracts/search?q=NPV" title=" NPV"> NPV</a> </p> <a href="https://publications.waset.org/abstracts/111368/methodological-approach-for-historical-building-retrofit-based-on-energy-and-cost-analysis-in-the-different-climatic-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Madan">Alok Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20K.%20Hashmi"> Arshad K. Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20methods" title="energy methods">energy methods</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20infilled%20frame" title=" masonry infilled frame"> masonry infilled frame</a>, <a href="https://publications.waset.org/abstracts/search?q=near-field%20earthquakes" title=" near-field earthquakes"> near-field earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection"> seismic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=supplemental%20damping%20devices" title=" supplemental damping devices"> supplemental damping devices</a> </p> <a href="https://publications.waset.org/abstracts/19955/performance-based-seismic-retrofit-of-masonry-infiled-reinforced-concrete-frames-using-passive-energy-dissipation-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Jenkins">Moses Jenkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation" title="insulation">insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=historic" title=" historic"> historic</a> </p> <a href="https://publications.waset.org/abstracts/109449/retrofitting-insulation-to-historic-masonry-buildings-improving-thermal-performance-and-maintaining-moisture-movement-to-minimize-condensation-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Seismic Performance of a Framed Structure Retrofitted with Damped Cable Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim"> Minsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the effectiveness of damped cable systems (DCS) on the mitigation of earthquake-induced response of a framed structure is investigated. The seismic performance of DCS is investigated using fragility analysis and life cycle cost evaluation of an existing building retrofitted with DCS, and the results are compared with those of the structure retrofitted with viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement becomes nearly zero in the structure retrofitted with the DCS. According to the fragility analysis, the structure retrofitted with the DCS has smaller probability of reaching a limit states compared to the structure with viscous dampers. It is also observed that both the initial and life cycle costs of the DCS method required for the seismic retrofit is smaller than those of the structure retrofitted with viscous dampers. Acknowledgment: This research was supported by a grant (17CTAP-C132889-01) from Technology Advancement Research Program (TARP) funded by Ministry of Land, Infrastructure, and Transport of Korean government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damped%20cable%20system" title="damped cable system">damped cable system</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20centering" title=" self centering"> self centering</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20analysis" title=" fragility analysis"> fragility analysis</a> </p> <a href="https://publications.waset.org/abstracts/80144/seismic-performance-of-a-framed-structure-retrofitted-with-damped-cable-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Optimal Design of Friction Dampers for Seismic Retrofit of a Moment Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungoo%20Kang">Hyungoo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the determination of the optimal location and friction force of friction dampers to effectively reduce the seismic response of a reinforced concrete structure designed without considering seismic load. To this end, the genetic algorithm process was applied and the results were compared with those obtained by simplified methods such as distribution of dampers based on the story shear or the inter-story drift ratio. The seismic performance of the model structure with optimally positioned friction dampers was evaluated by nonlinear static and dynamic analyses. The analysis results showed that compared with the system without friction dampers, the maximum roof displacement and the inter-story drift ratio were reduced by about 30% and 40%, respectively. After installation of the dampers about 70% of the earthquake input energy was dissipated by the dampers and the energy dissipated in the structural elements was reduced by about 50%. In comparison with the simplified methods of installation, the genetic algorithm provided more efficient solutions for seismic retrofit of the model structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20dampers" title="friction dampers">friction dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a> </p> <a href="https://publications.waset.org/abstracts/43940/optimal-design-of-friction-dampers-for-seismic-retrofit-of-a-moment-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Seismic Retrofit of Reinforced Concrete Structures by Highly Dissipative Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Sorace">Stefano Sorace</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Terenzi"> Gloria Terenzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Mazzieri"> Giulia Mazzieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iacopo%20Costoli"> Iacopo Costoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prolonged earthquake sequence that struck several urban agglomerations and villages in Central Italy, starting from 24 August 2016 through January 2017, highlighted once again the seismic vulnerability of pre-normative reinforced concrete (R/C) structures. At the same time, considerable damages were surveyed in recently retrofitted R/C buildings too, one of which also by means of a dissipative bracing system. The solution adopted for the latter did not expressly take into account the performance of non-structural elements, and namely of infills and partitions, confirming the importance of their dynamic interaction with the structural skeleton. Based on this consideration, an alternative supplemental damping-based retrofit solution for this representative building, i.e., a school with an R/C structure situated in the municipality of Norcia, is examined in this paper. It consists of the incorporation of dissipative braces equipped with pressurized silicone fluid viscous (FV) dampers, instead of the BRAD system installed in the building, the delayed activation of which -caused by the high stiffness of the constituting metallic dampers- determined the observed non-structural damages. Indeed, the alternative solution proposed herein, characterized by dissipaters with mainly damping mechanical properties, guarantees an earlier activation of the protective system. A careful assessment analysis, preliminarily carried out to simulate and check the case study building performance in originally BRAD-retrofitted conditions, confirms that the interstorey drift demand related to the Norcia earthquake's mainshock and aftershocks is beyond the response capacity of infills. The verification analyses developed on the R/C structure, including the FV-damped braces, highlight their higher performance, giving rise to a completely undamaged response both of structural and non-structural elements up to the basic design earthquake normative level of seismic action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies" title="dissipative technologies">dissipative technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20assessment%20analysis" title=" performance assessment analysis"> performance assessment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title=" concrete structures"> concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/114797/seismic-retrofit-of-reinforced-concrete-structures-by-highly-dissipative-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Hybrid Seismic Energy Dissipation Devices Made of Viscoelastic Pad and Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim">Jinkoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim"> Minsung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study develops a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A cyclic loading test is conducted on a test specimen to validate the seismic performance of the hybrid damper. Then a moment-framed model structure is designed without seismic load so that it is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis and the life cycle cost evaluation of the structure with and without the dampers. The analysis results show that the model structure has reduced probability of reaching damage states, especially the complete damage state, after seismic retrofit. The expected damage cost and consequently the life cycle cost of the retrofitted structure turn out to be significantly small compared with those of the original structure. Acknowledgement: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R & D program (N043100016). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=slit%20dampers" title=" slit dampers"> slit dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20dampers" title=" friction dampers"> friction dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20dampers" title=" hybrid dampers"> hybrid dampers</a> </p> <a href="https://publications.waset.org/abstracts/91332/hybrid-seismic-energy-dissipation-devices-made-of-viscoelastic-pad-and-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gary%20Black">R. Gary Black</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolhassan%20Astaneh-Asl"> Abolhassan Astaneh-Asl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentrically%20braced%20frame" title="eccentrically braced frame">eccentrically braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20slab%20construction" title=" lift slab construction"> lift slab construction</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20link" title=" shear link"> shear link</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20design" title=" steel design"> steel design</a> </p> <a href="https://publications.waset.org/abstracts/2712/design-of-seismically-resistant-tree-branching-steel-frames-using-theory-and-design-guides-for-eccentrically-braced-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20F.%20Caballero-castro">Luis F. Caballero-castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirsa%20Feliciano"> Dirsa Feliciano</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Novoa"> Daniela Novoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Orlando%20Arroyo"> Orlando Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20D.%20Villalba-morales"> Jesús D. Villalba-morales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20braces" title="buckling-restrained braces">buckling-restrained braces</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curves" title=" fragility curves"> fragility curves</a>, <a href="https://publications.waset.org/abstracts/search?q=informal%20housing" title=" informal housing"> informal housing</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/173797/enhancing-seismic-resilience-in-colombias-informal-housing-a-low-cost-retrofit-strategy-with-buckling-restrained-braces-to-protect-vulnerable-communities-in-earthquake-prone-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20H.%20Cuadra">Carlos H. Cuadra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historical%20building" title="historical building">historical building</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20structure" title=" masonry structure"> masonry structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolation" title=" seismic isolation"> seismic isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20structure" title=" wooden structure"> wooden structure</a> </p> <a href="https://publications.waset.org/abstracts/109712/comparative-study-of-seismic-isolation-as-retrofit-method-for-historical-constructions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Residential Building Facade Retrofit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galit%20Shiff">Galit Shiff</a>, <a href="https://publications.waset.org/abstracts/search?q=Yael%20Gilad"> Yael Gilad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to retrofit old buildings lies in the fact that buildings are responsible for the main energy use and CO₂ emission. Existing old structures are more dominant in their effect than new energy-efficient buildings. Nevertheless not every case of urban renewal that aims to replace old buildings with new neighbourhoods necessarily has a financial or sustainable justification. Façade design plays a vital role in the building's energy performance and the unit's comfort conditions. A retrofit façade residential methodology and feasibility applicative study has been carried out for the past four years, with two projects already fully renovated. The intention of this study is to serve as a case study for limited budget façade retrofit in Mediterranean climate urban areas. The two case study buildings are set in Israel. However, they are set in different local climatic conditions. One is in 'Sderot' in the south of the country, and one is in' Migdal Hahemek' in the north of the country. The building typology is similar. The budget of the projects is around $14,000 per unit and includes interventions at the buildings' envelope while tenants are living in. Extensive research and analysis of the existing conditions have been done. The building's components, materials and envelope sections were mapped, examined and compared to relevant updated standards. Solar radiation simulations for the buildings in their surroundings during winter and summer days were done. The energy rate of each unit, as well as the building as a whole, was calculated according to the Israeli Energy Code. The buildings’ facades were documented with the use of a thermal camera during different hours of the day. This information was superimposed with data about the electricity use and the thermal comfort that was collected from the residential units. Later in the process, similar tools were further used in order to compare the effectiveness of different design options and to evaluate the chosen solutions. Both projects showed that the most problematic units were the ones below the roof and the ones on top of the elevated entrance floor (pilotis). Old buildings tend to have poor insulation on those two horizontal surfaces which require treatment. Different radiation levels and wall sections in the two projects influenced the design strategies: In the southern project, there was an extreme difference in solar radiations levels between the main façade and the back elevation. Eventually, it was decided to invest in insulating the main south-west façade and the side façades, leaving the back north-east façade almost untouched. Lower levels of radiation in the northern project led to a different tactic: a combination of basic insulation on all façades, together with intense treatment on areas with problematic thermal behavior. While poor execution of construction details and bad installation of windows in the northern project required replacing them all, in the southern project it was found that it is more essential to shade the windows than replace them. Although the buildings and the construction typology was chosen for this study are similar, the research shows that there are large differences due to the location in different climatic zones and variation in local conditions. Therefore, in order to reach a systematic and cost-effective method of work, a more extensive catalogue database is needed. Such a catalogue will enable public housing companies in the Mediterranean climate to promote massive projects of renovating existing old buildings, drawing on minimal analysis and planning processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facade" title="facade">facade</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20budget" title=" low budget"> low budget</a>, <a href="https://publications.waset.org/abstracts/search?q=residential" title=" residential"> residential</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a> </p> <a href="https://publications.waset.org/abstracts/88178/residential-building-facade-retrofit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Infrared Thermography as an Informative Tool in Energy Audit and Software Modelling of Historic Buildings: A Case Study of the Sheffield Cathedral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ademuyiwa%20Agbonyin">Ademuyiwa Agbonyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Stamatis%20Zoras"> Stamatis Zoras</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zandi"> Mohammad Zandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the extent to which building energy modelling can be informed based on preliminary information provided by infrared thermography using a thermal imaging camera in a walkthrough audit. The case-study building is the Sheffield Cathedral, built in the early 1400s. Based on an informative qualitative report generated from the thermal images taken at the site, the regions showing significant heat loss are input into a computer model of the cathedral within the integrated environmental solution (IES) virtual environment software which performs an energy simulation to determine quantitative heat losses through the building envelope. Building data such as material thermal properties and building plans are provided by the architects, Thomas Ford and Partners Ltd. The results of the modelling revealed the portions of the building with the highest heat loss and these aligned with those suggested by the thermal camera. Retrofit options for the building are also considered, however, may not see implementation due to a desire to conserve the architectural heritage of the building. Results show that thermal imaging in a walk-through audit serves as a useful guide for the energy modelling process. Hand calculations were also performed to serve as a 'control' to estimate losses, providing a second set of data points of comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historic%20buildings" title="historic buildings">historic buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofit" title=" energy retrofit"> energy retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modelling" title=" software modelling"> software modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modelling" title=" energy modelling"> energy modelling</a> </p> <a href="https://publications.waset.org/abstracts/103567/infrared-thermography-as-an-informative-tool-in-energy-audit-and-software-modelling-of-historic-buildings-a-case-study-of-the-sheffield-cathedral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chrysanthos%20Maraveas">Chrysanthos Maraveas</a>, <a href="https://publications.waset.org/abstracts/search?q=Argiris%20Plesias"> Argiris Plesias</a>, <a href="https://publications.waset.org/abstracts/search?q=Garyfalia%20G.%20Triantafyllou"> Garyfalia G. Triantafyllou</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Petronikolos"> Konstantinos Petronikolos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistance" title="earthquake resistance">earthquake resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/90098/structural-analysis-and-strengthening-of-the-national-youth-foundation-building-in-igoumenitsa-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> An Integrated Framework for Seismic Risk Mitigation Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Sadeghi">Mojtaba Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Baniassadi"> Farshid Baniassadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Kashani"> Hamed Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=demolition" title=" demolition"> demolition</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/56270/an-integrated-framework-for-seismic-risk-mitigation-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daud%20Mustafa%20Minhas">Daud Mustafa Minhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Rehan%20Khalid"> Raja Rehan Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Georg%20Frey"> Georg Frey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20optimization" title="discrete optimization">discrete optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant%20flexibility" title=" power plant flexibility"> power plant flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=profit%20maximization" title=" profit maximization"> profit maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20commitment%20model" title=" unit commitment model"> unit commitment model</a> </p> <a href="https://publications.waset.org/abstracts/99691/maximizing-profit-using-optimal-control-by-exploiting-the-flexibility-in-thermal-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Picco">Marco Picco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Alam"> Mahmood Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analysing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulated%20panels" title="vacuum insulated panels">vacuum insulated panels</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20simulation" title=" building performance simulation"> building performance simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20retrofit" title=" building energy retrofit"> building energy retrofit</a> </p> <a href="https://publications.waset.org/abstracts/141917/holistic-approach-to-assess-the-potential-of-using-traditional-and-advance-insulation-materials-for-energy-retrofit-of-office-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Bourdeau">Mathieu Bourdeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Basset"> Philippe Basset</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Waeytens"> Julien Waeytens</a>, <a href="https://publications.waset.org/abstracts/search?q=Elyes%20Nefzaoui"> Elyes Nefzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20modeling" title=" building energy modeling"> building energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20gap" title=" performance gap"> performance gap</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20network" title=" sensor network"> sensor network</a> </p> <a href="https://publications.waset.org/abstracts/145513/calibration-of-residential-buildings-energy-simulations-using-real-data-from-an-extensive-in-situ-sensor-network-a-study-of-energy-performance-gap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Retrofit&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Retrofit&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Retrofit&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>