CINXE.COM
Search results for: noise abatement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: noise abatement</title> <meta name="description" content="Search results for: noise abatement"> <meta name="keywords" content="noise abatement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="noise abatement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="noise abatement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1198</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: noise abatement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> The Improvement of Environmental Protection through Motor Vehicle Noise Abatement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Jovanovic">Z. Jovanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Masonicic"> Z. Masonicic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dragutinovic"> S. Dragutinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sakota"> Z. Sakota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20abatement" title="noise abatement">noise abatement</a>, <a href="https://publications.waset.org/abstracts/search?q=MV%20noise%20sources" title=" MV noise sources"> MV noise sources</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20source%20identification" title=" noise source identification"> noise source identification</a>, <a href="https://publications.waset.org/abstracts/search?q=muffler" title=" muffler"> muffler</a> </p> <a href="https://publications.waset.org/abstracts/47373/the-improvement-of-environmental-protection-through-motor-vehicle-noise-abatement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1197</span> Cost-Benefit Analysis for the Optimization of Noise Abatement Treatments at the Workplace </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Lenzuni">Paolo Lenzuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cost-effectiveness of noise abatement treatments at the workplace has not yet received adequate consideration. Furthermore, most of the published work is focused on productivity, despite the poor correlation of this quantity with noise levels. There is currently no tool to estimate the social benefit associated to a specific noise abatement treatment, and no comparison among different options is accordingly possible. In this paper, we present an algorithm which has been developed to predict the cost-effectiveness of any planned noise control treatment in a workplace. This algorithm is based the estimates of hearing threshold shifts included in ISO 1999, and on compensations that workers are entitled to once their work-related hearing impairments have been certified. The benefits of a noise abatement treatment are estimated by means of the lower compensation costs which are paid to the impaired workers. Although such benefits have no real meaning in strictly monetary terms, they allow a reliable comparison between different treatments, since actual social costs can be assumed to be proportional to compensation costs. The existing European legislation on occupational exposure to noise it mandates that the noise exposure level be reduced below the upper action limit (85 dBA). There is accordingly little or no motivation for employers to sustain the extra costs required to lower the noise exposure below the lower action limit (80 dBA). In order to make this goal more appealing for employers, the algorithm proposed in this work also includes an ad-hoc element that promotes actions which bring the noise exposure down below 80 dBA. The algorithm has a twofold potential: 1) it can be used as a quality index to promote cost-effective practices; 2) it can be added to the existing criteria used by workers’ compensation authorities to evaluate the cost-effectiveness of technical actions, and support dedicated employers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost-effectiveness" title="cost-effectiveness">cost-effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20exposure" title=" occupational exposure"> occupational exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/64678/cost-benefit-analysis-for-the-optimization-of-noise-abatement-treatments-at-the-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1196</span> A Paradigm for Characterization and Checking of a Human Noise Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Dehra">Himanshu Dehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20brain" title="human brain">human brain</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20behavior" title=" noise behavior"> noise behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20characterization" title=" noise characterization"> noise characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20filters" title=" noise filters"> noise filters</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20responses" title=" physiological responses"> physiological responses</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoacoustics" title=" psychoacoustics"> psychoacoustics</a> </p> <a href="https://publications.waset.org/abstracts/70655/a-paradigm-for-characterization-and-checking-of-a-human-noise-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1195</span> Hearing Conservation Aspects of Soldier’s Exposure to Harmfull Noise within Military Armored Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fink%20Nir">Fink Nir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soldiers within armored vehicles are exposed to continuous noise reaching levels as high as 120 dB. The use of hearing protection devices (HPD) may attenuate noise by as 25 dB, but attenuated noise reaching the ear is still harmful and may result in hearing loss. Hearing conservation programs in the military suggest methods to manage the harmful effects of noise. These include noise absorption within vehicles, evaluating HPD's performance, limiting time exposure, and providing guidance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=armored%20vehicle%20noise" title="armored vehicle noise">armored vehicle noise</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20loss" title=" hearing loss"> hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20protection%20devices" title=" hearing protection devices"> hearing protection devices</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20noise" title=" military noise"> military noise</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20attenuation" title=" noise attenuation"> noise attenuation</a> </p> <a href="https://publications.waset.org/abstracts/153558/hearing-conservation-aspects-of-soldiers-exposure-to-harmfull-noise-within-military-armored-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1194</span> Digital Forgery Detection by Signal Noise Inconsistency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Liu">Bo Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Man%20Pun"> Chi-Man Pun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forgery%20detection" title="forgery detection">forgery detection</a>, <a href="https://publications.waset.org/abstracts/search?q=splicing%20forgery" title=" splicing forgery"> splicing forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20estimation" title=" noise estimation"> noise estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a> </p> <a href="https://publications.waset.org/abstracts/9880/digital-forgery-detection-by-signal-noise-inconsistency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1193</span> Evaluation of Traffic Noise Around Different Facilities Located in Silent Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Shaaban">Khaled Shaaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schools and hospitals are supposed to be located in silent zones. In these areas, it is expected to maintain low noise levels in order to promote a peaceful environment for studying or recovering. However, many of these facilities are located in urban areas and are subject to high levels of noise. In this study, an evaluation of traffic noise around schools and hospitals was conducted during different periods of the day. The results indicated that the noise is positively correlated with the traffic volume around these facilities. Locations with higher traffic volumes tend to have higher noise levels. The results also showed that the noise levels exceed the recommended values by the World Health Organization. Several solutions were suggested as potential courses of action to decrease the excessive level of noise around these facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20noise" title="traffic noise">traffic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic" title=" road traffic"> road traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20levels" title=" noise levels"> noise levels</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20volume" title=" traffic volume"> traffic volume</a> </p> <a href="https://publications.waset.org/abstracts/163737/evaluation-of-traffic-noise-around-different-facilities-located-in-silent-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1192</span> The Influence of Noise on Aerial Image Semantic Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengchao%20Wei">Pengchao Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangzhong%20Fang"> Xiangzhong Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20noise" title=" feature noise"> feature noise</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20semantic%20segmentation" title=" image semantic segmentation"> image semantic segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest-neighbor" title=" k-nearest-neighbor"> k-nearest-neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20noise" title=" label noise"> label noise</a> </p> <a href="https://publications.waset.org/abstracts/141479/the-influence-of-noise-on-aerial-image-semantic-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1191</span> Prediction of Conducted EMI Noise in a Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jon%20Cobb">Jon Cobb</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir"> Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMI" title="EMI">EMI</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20interference" title=" electromagnetic interference"> electromagnetic interference</a>, <a href="https://publications.waset.org/abstracts/search?q=SMPS" title=" SMPS"> SMPS</a>, <a href="https://publications.waset.org/abstracts/search?q=switch-mode%20power%20supply" title=" switch-mode power supply"> switch-mode power supply</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20mode" title=" common mode"> common mode</a>, <a href="https://publications.waset.org/abstracts/search?q=CM" title=" CM"> CM</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20mode" title=" differential mode"> differential mode</a>, <a href="https://publications.waset.org/abstracts/search?q=DM" title=" DM"> DM</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a> </p> <a href="https://publications.waset.org/abstracts/42100/prediction-of-conducted-emi-noise-in-a-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1190</span> An Algorithm for Removal of Noise from X-Ray Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajidullah%20Khan">Sajidullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Najeeb%20Ullah"> Najeeb Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Yin%20Chai"> Wang Yin Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chai%20Soo%20See"> Chai Soo See</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray%20image%20de-noising" title="X-ray image de-noising">X-ray image de-noising</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20noise" title=" impulse noise"> impulse noise</a>, <a href="https://publications.waset.org/abstracts/search?q=poisson%20noise" title=" poisson noise"> poisson noise</a>, <a href="https://publications.waset.org/abstracts/search?q=PRWF" title=" PRWF"> PRWF</a> </p> <a href="https://publications.waset.org/abstracts/54256/an-algorithm-for-removal-of-noise-from-x-ray-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1189</span> Development of Low Noise Savonius Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghyeon%20Kim">Sanghyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolung%20Cheong"> Cheolung Cheong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20noise" title="aerodynamic noise">aerodynamic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title=" Savonius wind turbine"> Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical-axis%20wind%20turbine" title=" vertical-axis wind turbine"> vertical-axis wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/2482/development-of-low-noise-savonius-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1188</span> Mapping of Traffic Noise in Riyadh City-Saudi Arabia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Alsaif">Khaled A. Alsaif</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosaad%20A.%20Foda"> Mosaad A. Foda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20pollution" title="noise pollution">noise pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20noise" title=" road traffic noise"> road traffic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=LimA%20predictor" title=" LimA predictor"> LimA predictor</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a> </p> <a href="https://publications.waset.org/abstracts/36791/mapping-of-traffic-noise-in-riyadh-city-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1187</span> Evaluation of Musical Conductor Exposure to Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Saleh%20Summan">Ahmed Saleh Summan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the results of a technical report on the evaluation of occupational noise exposures among a musical conductor in a musical rehearsal hall (party–center). A calibrated noise dosimeter was used to measure the personal exposure of a music teacher/conductor for 8 hours in two days of rehearsal involving 90 players. Results showed that noise exposure levels were much higher than the permissible levels regulated 85dBA/8hr by NIOSH. In fact, the first day of measurements recorded the highest exposure levels (91 dBA). A number of factors contributed to these results, such as players number, types of instruments used, and activities. Noise control measures were recommended to solve this situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20exposure" title="noise exposure">noise exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20conductors" title=" music conductors"> music conductors</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20noise" title=" occupational noise"> occupational noise</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20in%20rooms" title=" noise in rooms"> noise in rooms</a> </p> <a href="https://publications.waset.org/abstracts/146607/evaluation-of-musical-conductor-exposure-to-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1186</span> Noise Reduction by Energising the Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20P.%20Kumar">Kiran P. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nayana"> H. M. Nayana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rakshitha"> R. Rakshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sushmitha"> S. Sushmitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airframe" title="airframe">airframe</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/53714/noise-reduction-by-energising-the-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1185</span> The Psychological Impact of Industrial Noise on Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beriache%20Abderazik">Beriache Abderazik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is clear that the psychological effects of noise and physiological eloquent on the workers, what will inevitably affect the performance of both productivity and efficiency in all its aspects, industrial noise became among the most prominent modern professional problems, That require study and analysis in order to arrive at solutions and ways that you can reduce the effects of industrial noise. These factors, in addition to other reasons, made us try in this research to know the real impact of industrial noise on the professional satisfaction of workers. In light of this title we have identified the following general problem: - Is the professional satisfaction factor varies depending on the noise level in the work environment? For the purpose of ascertaining the veracity of the assumptions, we have a comparative study between two samples of equal workers, the first sample is working under the influence of industrial noise severe about (100 Db), and the second sample is working under the influence of industrial noise is low (about 63 Db), and applied them test the professional satisfaction. The results support the hypotheses and confirm all sincerity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20noise" title="industrial noise">industrial noise</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20satisfaction" title=" job satisfaction"> job satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20psychological%20effects%20of%20noise" title=" the psychological effects of noise"> the psychological effects of noise</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20environment" title=" work environment "> work environment </a> </p> <a href="https://publications.waset.org/abstracts/19972/the-psychological-impact-of-industrial-noise-on-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1184</span> Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshio%20Kurosawa">Yoshio Kurosawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20noise" title=" road noise"> road noise</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20energy%20analysis" title=" statistical energy analysis"> statistical energy analysis</a> </p> <a href="https://publications.waset.org/abstracts/46829/predicting-automotive-interior-noise-including-wind-noise-by-statistical-energy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1183</span> Traffic Noise Study at Intersection in Bangalore: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Kumar%20G.">Shiva Kumar G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is to know the level of noises emanated from vehicles in intersections located in urban areas using Sound Level Meter and the possibility of reducing noise levels through traffic flow optimization. The main objective is to study traffic noise level of the Intersections located at on-going metro construction activities and which are away from metro construction activities. To compare traffic noise level between stop phase, go phase and drive phase at the Intersections. To study the effect of traffic noise level of directional movement of traffic and variation in noise level during day and night times. The range of Noise level observed at intersections is between 60 to 105 decibel. The noise level of stop and drive phases were minimum and almost same where go phase had maximum noise level. By comparing noise level of directional movement of traffic, it has been noticed that Vijayanagar intersection has no significant difference in their noise level and all other intersection has a significant difference in their noise level. By comparing noise level of stop, go and drive phase it has been noticed that there was a significant difference in noise level during peak hours compared to off-peak hour. By comparing noise level between Metro and Non-Metro construction activity intersections it has been noticed that there was a significant difference in noise level. By comparing noise level during day and night times, significant differences in noise level were observed at all intersections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise" title="noise">noise</a>, <a href="https://publications.waset.org/abstracts/search?q=metro%20and%20non-metro%20intersections" title=" metro and non-metro intersections"> metro and non-metro intersections</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20optimization" title=" traffic flow optimization"> traffic flow optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stop-go%20and%20drive%20phase" title=" stop-go and drive phase"> stop-go and drive phase</a> </p> <a href="https://publications.waset.org/abstracts/88727/traffic-noise-study-at-intersection-in-bangalore-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1182</span> Modelling Railway Noise Over Large Areas, Assisted by GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conrad%20Weber">Conrad Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise" title="noise">noise</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a> </p> <a href="https://publications.waset.org/abstracts/154298/modelling-railway-noise-over-large-areas-assisted-by-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1181</span> Effect Analysis of an Improved Adaptive Speech Noise Reduction Algorithm in Online Communication Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xingxing%20Peng">Xingxing Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of society, there are more and more online communication scenarios such as teleconference and online education. In the process of conference communication, the quality of voice communication is a very important part, and noise may cause the communication effect of participants to be greatly reduced. Therefore, voice noise reduction has an important impact on scenarios such as voice calls. This research focuses on the key technologies of the sound transmission process. The purpose is to maintain the audio quality to the maximum so that the listener can hear clearer and smoother sound. Firstly, to solve the problem that the traditional speech enhancement algorithm is not ideal when dealing with non-stationary noise, an adaptive speech noise reduction algorithm is studied in this paper. Traditional noise estimation methods are mainly used to deal with stationary noise. In this chapter, we study the spectral characteristics of different noise types, especially the characteristics of non-stationary Burst noise, and design a noise estimator module to deal with non-stationary noise. Noise features are extracted from non-speech segments, and the noise estimation module is adjusted in real time according to different noise characteristics. This adaptive algorithm can enhance speech according to different noise characteristics, improve the performance of traditional algorithms to deal with non-stationary noise, so as to achieve better enhancement effect. The experimental results show that the algorithm proposed in this chapter is effective and can better adapt to different types of noise, so as to obtain better speech enhancement effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20noise%20reduction" title="speech noise reduction">speech noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20enhancement" title=" speech enhancement"> speech enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptation" title=" self-adaptation"> self-adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20filter%20algorithm" title=" Wiener filter algorithm"> Wiener filter algorithm</a> </p> <a href="https://publications.waset.org/abstracts/183363/effect-analysis-of-an-improved-adaptive-speech-noise-reduction-algorithm-in-online-communication-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1180</span> Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Javidnia">Hossein Javidnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehe%20Taheri"> Salehe Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20noise%20filtering" title="ECG noise filtering">ECG noise filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20filtering" title=" Wiener filtering"> Wiener filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20filtering" title=" median filtering"> median filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20noise" title=" Gaussian noise"> Gaussian noise</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20performance" title=" filtering performance"> filtering performance</a> </p> <a href="https://publications.waset.org/abstracts/9623/additive-white-gaussian-noise-filtering-from-ecg-by-wiener-filter-and-median-filter-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1179</span> The Materiality of Noise Barriers: Sustainability Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Gabr">Mostafa Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20Abdul%20Galil"> Rania Abdul Galil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Salim"> Nihal Salim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various interventions are applied in cities with the aim to improve living and acoustic environmental conditions. Noise is one of the most influential and critical factors in the environment that has an effect on the QOL (quality of life) and urban environment. It ranks second among environmental pollution issues according to EEAA. Traffic noise is a major source of noise. Noise barriers are one of the physical techniques in landscape design used to reduce the impact of noise pollution in urban areas. Roadways noise pollution can be best controlled by a noise barrier. The aim of this paper is to consider all facets of sustainability when designing a comfortable acoustic environment in roadways, through different strategies related to planning and the design process. The study focuses on the relation between the design of noise barriers as a landscape noise mitigation installation and their materiality in so far as it influences the sustainability of the open space and the acceptability of users. According to previous studies, design of noise barrier mainly depends on cost as a decisive factor. This study asserts that environmental and socioeconomic costs associated are equally important. Hence, the paper presents a strategy for sustainable soundscape design. It builds a framework focusing on materiality considering the environmental and socioeconomic impact of noise barriers shaping urban open space around the road ways, and the different academic and market positions on noise barrier types and materials. Finally, it concludes with a matrix of the relation between the noise barrier design consideration and the three pillars of sustainability (social, economic and environmental). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20noise%20level" title="traffic noise level">traffic noise level</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sustainability" title=" acoustic sustainability"> acoustic sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20barrier" title=" noise barrier"> noise barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20control" title=" noise control"> noise control</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustical%20level" title=" acoustical level"> acoustical level</a> </p> <a href="https://publications.waset.org/abstracts/59955/the-materiality-of-noise-barriers-sustainability-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1178</span> Interior Noise Reduction of Construction Equipment Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Jawale">Pradeep Jawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Supare"> Sharad Supare</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kumar%20Jain"> Sachin Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagesh%20Walke"> Nagesh Walke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interior%20noise" title="interior noise">interior noise</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=CEV" title=" CEV"> CEV</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20source%20identification" title=" noise source identification"> noise source identification</a> </p> <a href="https://publications.waset.org/abstracts/185117/interior-noise-reduction-of-construction-equipment-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1177</span> Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dudam%20Bharath%20Kumar">Dudam Bharath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsh%20Kumar"> Harsh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmed"> Naveed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20pollution" title="noise pollution">noise pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic" title=" vehicular traffic"> vehicular traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title=" urban environment"> urban environment</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20meter" title=" noise meter"> noise meter</a> </p> <a href="https://publications.waset.org/abstracts/85094/effect-of-on-road-vehicular-traffic-on-noise-pollution-in-bhubaneswar-city-eastern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1176</span> Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fadlallah">M. Fadlallah</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ghibaudo"> G. Ghibaudo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Theodorou"> C. G. Theodorou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-frequency%20noise" title="low-frequency noise">low-frequency noise</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20telegraph%20noise" title=" random telegraph noise"> random telegraph noise</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20variation" title=" dynamic variation"> dynamic variation</a>, <a href="https://publications.waset.org/abstracts/search?q=SRRV" title=" SRRV"> SRRV</a> </p> <a href="https://publications.waset.org/abstracts/95313/dynamic-variation-in-nano-scale-cmos-sram-cells-due-to-lfrts-noise-and-threshold-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1175</span> Experimental Study of Exhaust Muffler System for Direct-Injection Gasoline Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20F.%20Abd%20El-Mohsen">Abdallah F. Abd El-Mohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Abdelsamee"> Ahmed A. Abdelsamee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20M.%20Ghazaly"> Nouby M. Ghazaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine exhaust noise is considered one of the largest sources of vehicle exterior noise. Further reduction of noise from the vehicle exhaust system will be required, as the vehicle exterior noise regulations become stricter. Therefore, the present study has been carried out to illustrate the role of engine operating parameters and exhaust system construction factors on exhaust noise emitted. The measurements carried out using different exhaust systems, which are mainly used in today’s vehicle. The effect of engine speed on the spectra level of exhaust noise is recorded at engine speeds of 900 rpm, 1800 rpm, 2700, rpm 3600 rpm and 4500 rpm. The results indicate that the increase of engine speed causes a significant increase in the spectrum level of exhaust noise. The increase in the number of the outlet of the expansion chamber also reduces the overall level of exhaust noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20system" title="exhaust system">exhaust system</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20chamber" title=" expansion chamber"> expansion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20speed" title=" engine speed"> engine speed</a>, <a href="https://publications.waset.org/abstracts/search?q=spectra" title=" spectra"> spectra</a> </p> <a href="https://publications.waset.org/abstracts/113809/experimental-study-of-exhaust-muffler-system-for-direct-injection-gasoline-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1174</span> A General Strategy for Noise Assessment in Open Mining Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Mauricio%20Murillo%20Gomez">Diego Mauricio Murillo Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Enney%20Leon%20Gonzalez%20%20Ramirez"> Enney Leon Gonzalez Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Piedrahita"> Hugo Piedrahita</a>, <a href="https://publications.waset.org/abstracts/search?q=Jairo%20Yate"> Jairo Yate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20noise" title="environmental noise">environmental noise</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20control" title=" noise control"> noise control</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20noise" title=" occupational noise"> occupational noise</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20mining" title=" open mining"> open mining</a> </p> <a href="https://publications.waset.org/abstracts/136802/a-general-strategy-for-noise-assessment-in-open-mining-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1173</span> Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julius%20Onyancha">Julius Onyancha</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Plekhanova"> Valentina Plekhanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web%20log%20data" title="web log data">web log data</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20user%20profile" title=" web user profile"> web user profile</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20interest" title=" user interest"> user interest</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20web%20data%20learning" title=" noise web data learning"> noise web data learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/77482/noise-reduction-in-web-data-a-learning-approach-based-on-dynamic-user-interests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Multi-Objective Optimization in Carbon Abatement Technology Cycles (CAT) and Related Areas: Survey, Developments and Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hameed%20Rukayat%20Opeyemi">Hameed Rukayat Opeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pericles%20Pilidis"> Pericles Pilidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pagone%20Emanuele"> Pagone Emanuele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An infinitesimal increase in performance can have immense reduction in operating and capital expenses in a power generation system. Therefore, constant studies are being carried out to improve both conventional and novel power cycles. Globally, power producers are constantly researching on ways to minimize emission and to collectively downsize the total cost rate of power plants. A substantial spurt of developmental technologies of low carbon cycles have been suggested and studied, however they all have their limitations and financial implication. In the area of carbon abatement in power plants, three major objectives conflict: The cost rate of the plant, Power output and Environmental impact. Since, an increase in one of this parameter directly affects the other. This poses a multi-objective problem. It is paramount to be able to discern the point where improving one objective affects the other. Hence, the need for a Pareto-based optimization algorithm. Pareto-based optimization algorithm helps to find those points where improving one objective influences another objective negatively and stops there. The application of Pareto-based optimization algorithm helps the user/operator/designer make an informed decision. This paper sheds more light on areas that multi-objective optimization has been applied in carbon abatement technologies in the last five years, developments and prospects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20technology" title=" low carbon technology"> low carbon technology</a>, <a href="https://publications.waset.org/abstracts/search?q=pareto%20optimal" title=" pareto optimal"> pareto optimal</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/27738/multi-objective-optimization-in-carbon-abatement-technology-cycles-cat-and-related-areas-survey-developments-and-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">791</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Active Noise Cancellation in the Rectangular Enclosure Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Shakirah%20Shukor">D. Shakirah Shukor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminudin"> A. Aminudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hashim%20U.%20A."> Hashim U. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Waziralilah%20N.%20Fathiah"> Waziralilah N. Fathiah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vikneshvaran"> T. Vikneshvaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interior noise control is essential to be explored due to the interior acoustic analysis is significant in the systems such as automobiles, aircraft, air-handling system and diesel engine exhausts system. In this research, experimental work was undertaken for canceling an active noise in the rectangular enclosure. The rectangular enclosure was fabricated with multiple speakers and microphones inside the enclosure. A software program using digital signal processing is implemented to evaluate the proposed method. Experimental work was conducted to obtain the acoustic behavior and characteristics of the rectangular enclosure and noise cancellation based on active noise control in low-frequency range. Noise is generated by using multispeaker inside the enclosure and microphones are used for noise measurements. The technique for noise cancellation relies on the principle of destructive interference between two sound fields in the rectangular enclosure. One field is generated by the original or primary sound source, the other by a secondary sound source set up to interfere with, and cancel, that unwanted primary sound. At the end of this research, the result of output noise before and after cancellation are presented and discussed. On the basis of the findings presented in this research, an active noise cancellation in the rectangular enclosure is worth exploring in order to improve the noise control technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20noise%20control" title="active noise control">active noise control</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20signal%20processing" title=" digital signal processing"> digital signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20cancellation" title=" noise cancellation"> noise cancellation</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20enclosure" title=" rectangular enclosure"> rectangular enclosure</a> </p> <a href="https://publications.waset.org/abstracts/63338/active-noise-cancellation-in-the-rectangular-enclosure-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwazikwenkosi%20Sikhakhane">Kwazikwenkosi Sikhakhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Suvendi%20Rimer"> Suvendi Rimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mpho%20Gololo"> Mpho Gololo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khmaies%20Oahada"> Khmaies Oahada</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Abu-Mahfouz"> Adnan Abu-Mahfouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=speckle" title=" speckle"> speckle</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/166509/review-of-ultrasound-image-processing-techniques-for-speckle-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1169</span> Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinda%20Sabrina">Malinda Sabrina</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Andree%20Yohanes"> F. Andree Yohanes</a>, <a href="https://publications.waset.org/abstracts/search?q=Khoerul%20Anwar"> Khoerul Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20noise" title="aerodynamics noise">aerodynamics noise</a>, <a href="https://publications.waset.org/abstracts/search?q=hemi-anechoic%20chamber" title=" hemi-anechoic chamber"> hemi-anechoic chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=radiator%20cooling%20fan" title=" radiator cooling fan"> radiator cooling fan</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20pressure%20level" title=" sound pressure level"> sound pressure level</a> </p> <a href="https://publications.waset.org/abstracts/63282/experimental-study-on-aerodynamic-noise-of-radiator-cooling-fan-with-different-diameter-in-hemi-anechoic-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=noise%20abatement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>