CINXE.COM

Search results for: Drosophila melanogaster

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Drosophila melanogaster</title> <meta name="description" content="Search results for: Drosophila melanogaster"> <meta name="keywords" content="Drosophila melanogaster"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Drosophila melanogaster" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Drosophila melanogaster"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Drosophila melanogaster</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Kinetics and Specificity of Drosophila melanogaster Molybdo-Flavoenzymes towards Their Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20S.%20Al%20Salhen">Khaled S. Al Salhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) catalyze the oxidation of many different N-heterocyclic compounds as well as aliphatic and aromatic aldehydes to their corresponding lactam and carboxylic acids respectively. The present study examines the oxidation of dimethylamino-cinnamaldehyde (DMAC), vanillin and phenanthridine by AO and xanthine by XOR from Drosophila cytosol. Therefore, the results obtained in the present study showed the DMAC, vanillin and phenanthridine substrates used were found to be good substrates of Drosophila AO and xanthine is the preferred substrate for Drosophila XOR. Km values of AO substrates were observed with DMAC (50±5.4 µM), phenanthridine (80±9.1 µM) and vanillin (303±11.7 µM) respectively for Drosophila cytosol. The Km values for DMAC and phenanthridine were ~6 and ~4 fold lower than that for vanillin as a substrate. The Km for XOR with xanthine using NAD+ as an electron acceptor was 27±4.1 µM. Relatively low Vmax values were obtained with phenanthridine (1.78±0.38 nmol/min/mg protein) and DMAC (1.80±0.35 nmol/min/mg protein). The highest Vmax was obtained from Drosophila cytosol with vanillin (7.58±2.11 nmol/min/mg protein). It is concluded these results that AO and XOR in Drosophila were able to catalyse the biotransformation of numerous substrates of the well-characterised mammalian AO and XOR. The kinetic parameters have indicated that the activity of AO of Drosophila may be a significant factor the oxidation of aromatic aldehyde compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aldehyde%20oxidase" title="aldehyde oxidase">aldehyde oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthine%20oxidoreductase" title=" xanthine oxidoreductase"> xanthine oxidoreductase</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylamino-cinnamaldehyde" title=" dimethylamino-cinnamaldehyde"> dimethylamino-cinnamaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenanthridine" title=" phenanthridine"> phenanthridine</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a> </p> <a href="https://publications.waset.org/abstracts/20585/kinetics-and-specificity-of-drosophila-melanogaster-molybdo-flavoenzymes-towards-their-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Lethal and Sublethal Effect of Azadirachtin on the Development of an Insect Model: Drosophila melanogaster (Diptera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendjazia%20Radia">Bendjazia Radia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kilani-Morakchi"> Samira Kilani-Morakchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Aribi"> Nadia Aribi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. It is one of the most biologically active natural inhibitors of insect growth and development and it is known to be an antagonist of the juvenile hormone and 20-hydroxyecdysone (20E). However, its mechanism of action remains still unknown. In the present study, the toxicity of a commercial formulation of Azadirachtin (Neem Azal, 1% azadirachtine) was evaluated by topical application at various doses (0.1, 0.25, 0.5, 1 and 2 µg/insect) on the third instars larvae of D. melanogaster. Lethal doses (LD25: 0.28µg and LD50: 0.67µg), were evaluated by cumulated mortality at the immature stages. The effects of azadirachtin (LD25 and LD50) were then evaluated on the development (duration of the larval and pupal instars, the weight of larvae, pupa and adults) of Drosophila melanogaster. Results showed that the insecticide increased significantly the larval and pupal instar duration. A reduction of larval and pupal weight is noted under azadirachtin treatment as compared to controls. In addition, the weight of surviving adults at the two tested dose was also reduced. In conclusion, azadirachtin seemed to interfere with the functions of the endocrine system resulting in development defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azadirachtin" title="azadirachtin">azadirachtin</a>, <a href="https://publications.waset.org/abstracts/search?q=d.melanogaster" title=" d.melanogaster"> d.melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/31101/lethal-and-sublethal-effect-of-azadirachtin-on-the-development-of-an-insect-model-drosophila-melanogaster-diptera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Microalgae Applied to the Reduction of Biowaste Produced by Fruit Fly Drosophila melanogaster </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Qiu">Shuang Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Chen"> Zhipeng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingfeng%20Wang"> Lingfeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijian%20Ge"> Shijian Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biowastes are a concern due to the large amounts of commercial food required for model animals during the biomedical research. Searching for sustainable food alternatives with negligible physiological effects on animals is critical to solving or reducing this challenge. Microalgae have been demonstrated as suitable for both human consumption and animal feed in addition to biofuel and bioenergy applications. In this study, the possibility of using Chlorella vulgaris and Senedesmus obliquus as a feed replacement to Drosophila melanogaster, one of the fly models commonly used in biomedical studies, was investigated to assess the fly locomotor activity, motor pattern, lifespan, and body weight. Compared to control, flies fed on 60% or 80% (w/w) microalgae exhibited varied walking performance including travel distance and apparent step size, and flies treated with 40% microalgae had shorter lifespans and decreased body weight. However, the 20% microalgae treatment showed no statistical differences in all parameters tested with respect to the control. When partially including 20% microalgae in the standard food, it can annually reduce the food waste (~ 202 kg) by 22.7 % and save $ 7,200 of the food cost, offering an environmentally superior and cost-effective food alternative without compromising physiological performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20feed" title="animal feed">animal feed</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20vulgaris" title=" Chlorella vulgaris"> Chlorella vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/94542/microalgae-applied-to-the-reduction-of-biowaste-produced-by-fruit-fly-drosophila-melanogaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Singh">Neha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Ranjan"> Anuj Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanu%20Jindal"> Tanu Jindal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20death" title="cell death">cell death</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Comet%20Assay" title=" Comet Assay"> Comet Assay</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title=" DNA damage"> DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila" title=" Drosophila"> Drosophila</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20fields" title=" electromagnetic fields"> electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=EMF" title=" EMF"> EMF</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency" title=" radio frequency"> radio frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=RF" title=" RF"> RF</a>, <a href="https://publications.waset.org/abstracts/search?q=TUNEL%20assay" title=" TUNEL assay"> TUNEL assay</a> </p> <a href="https://publications.waset.org/abstracts/92485/dna-damage-and-apoptosis-induced-in-drosophila-melanogaster-exposed-to-different-duration-of-2400-mhz-radio-frequency-electromagnetic-fields-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Purple Sweet Potato Anthocyanin Attenuates the Fat-Induced Mortality in Drosophila Melanogaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lijun%20Wang">Lijun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen-Yu%20Chen"> Zhen-Yu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high-fat diet induces the accumulation of lipid hydroperoxides, accelerates the ageing process and causes a greater mortality in Drosophila melanogaster. The purple sweet potato is rich in antioxidant anthocyanin. The present study was to examine if supplementation of purple sweet potato anthocyanin (PSPA) could reduce the mortality of fruit flies fed a high-fat diet. Results showed that the mean lifespan of fruit fly was shortened from 56 to 35 days in a dose-dependent manner when lard in the diet increased from 0% to 20%. PSPA supplementation attenuated partially the lard-induced mortality. The maximum lifespan and 50% survival time were 49 and 27 days for the 10% lard control flies, in contrast, they increased to 57 and 30 days in the PSPA-supplemented fruit flies. PSPA-supplemented diet significantly up-regulated the mRNA of superoxide dismutase, catalase and Rpn11, compared with those in the control lard diet. In addition, PSPA supplementation could restore the climbing ability of fruit flies fed a 10% lard diet. It was concluded that the lifespan-prolonging activity of PSPA was most likely mediated by modulating the genes of SOD, CAT and Rpn11. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=purple%20sweet%20potato" title="purple sweet potato">purple sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title=" anthocyanin"> anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=high-fat%20diet" title=" high-fat diet"> high-fat diet</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/45155/purple-sweet-potato-anthocyanin-attenuates-the-fat-induced-mortality-in-drosophila-melanogaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Effect of a GABA/5-HTP Mixture on Behavioral Changes and Biomodulation in an Invertebrate Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyungae%20Jo">Kyungae Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Young%20Kim"> Eun Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungsoo%20Shin"> Byungsoo Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Soon%20Shin"> Kwang Soon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Joo%20Suh"> Hyung Joo Suh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gamma-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) are amino acids of digested nutrients or food ingredients and these can possibly be utilized as non-pharmacologic treatment for sleep disorder. We previously investigated the GABA/5-HTP mixture is the principal concept of sleep-promoting and activity-repressing management in nervous system of D. melanogaster. Two experiments in this study were designed to evaluate sleep-promoting effect of GABA/5-HTP mixture, to clarify the possible ratio of sleep-promoting action in the Drosophila invertebrate model system. Behavioral assays were applied to investigate distance traveled, velocity, movement, mobility, turn angle, angular velocity and meander of two amino acids and GABA/5-HTP mixture with caffeine treated flies. In addition, differentially expressed gene (DEG) analyses from next generation sequencing (NGS) were applied to investigate the signaling pathway and functional interaction network of GABA/5-HTP mixture administration. GABA/5-HTP mixture resulted in significant differences between groups related to behavior (p < 0.01) and significantly induced locomotor activity in the awake model (p < 0.05). As a result of the sequencing, the molecular function of various genes has relationship with motor activity and biological regulation. These results showed that GABA/5-HTP mixture administration significantly involved the inhibition of motor behavior. In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates locomotor activity to a greater extent than single administration of each amino acid, and that this modulation occurs via the neuronal system, neurotransmitter release cycle and transmission across chemical synapses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep" title="sleep">sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=5-hydroxytryptophan" title=" 5-hydroxytryptophan"> 5-hydroxytryptophan</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a> </p> <a href="https://publications.waset.org/abstracts/49971/effect-of-a-gaba5-htp-mixture-on-behavioral-changes-and-biomodulation-in-an-invertebrate-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Current and Future Global Distribution of Drosophila suzukii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Naserzadeh">Yousef Naserzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloufar%20Mahmoudi"> Niloufar Mahmoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20suzukii" title=" Drosophila suzukii"> Drosophila suzukii</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20variables" title=" environmental variables"> environmental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20preference" title=" host preference"> host preference</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20plant" title=" host plant"> host plant</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/146306/current-and-future-global-distribution-of-drosophila-suzukii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Efficacy of Solanum anguivi Lam Fruits (African Bitter Berry) in Lowering Glucose Levels in Diabetes Mellitus and Increasing Survival</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Musaazi%20Sebunya%20Nakitto">Aisha Musaazi Sebunya Nakitto</a>, <a href="https://publications.waset.org/abstracts/search?q=Anika%20E.%20Wagner"> Anika E. Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20B.%20Byaruhanga"> Yusuf B. Byaruhanga</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20H.%20Muyonga"> John H. Muyonga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prevalence and burden of diabetes are rapidly increasing globally, stemming from changes in lifestyle and dietary habits. Although several drugs are available to treat type 2 diabetes mellitus (T2DM), many are accompanied by several side effects and are often costly. Solanum anguivi Lam. fruits (SALF) are bitter berries that commonly grow in the wild and are traditionally cultivated by many globally as a remedy for T2DM. This effect is likely attributable to the presence of bioactive compounds such as phenolics, flavonoids, saponins, alkaloids, and vitamin C in SALF. In this study, we investigated the morphological characteristics of different SALF accessions and the effect of ripeness stages and thermal treatments on the bioactive compounds contents (BCC) and antioxidant activity (AA) of SALF accessions. Using the fruit fly Drosophila melanogaster (D. melanogaster) model, we explored the potential impact of dietary SALF in preventing and treating T2DM phenotypes. Morphological characterization was conducted based on descriptors of Solanum species. The BCC and AA of SALF at different ripeness stages (unripe, yellow, orange, and red) and after thermal treatments were determined using spectrophotometry, HPLC, and gravimetry. Male and female fruit flies were fed a high-sugar diet (HSD) to induce a T2DM-like phenotype, while control flies were fed on SY10 medium for up to 24 days. Experimental flies were exposed to HSD supplemented with 5 or 10 mg/ml SALF. The therapeutic and prevention effect of SALF in T2DM-like phenotype was investigated on weight, climbing activity, glucose and triglyceride contents, survival, and gene expression of PPARγ co-activator 1α fly homolog Srl and Drosophila insulin-like peptides. Methods in fly studies included Gustatory assay, Climbing assay, Glucose GOD-PAP assay, Triglyceride GPO-PAP assay, Roti-Quant®, and Real Time-PCR analysis. The ripeness stage significantly influenced SALF BCC and AA, and this was dependent on the accession. The unripe stage had the highest AA and total phenolics and flavonoids; the orange stage was rich in saponins, while the red stage had the highest alkaloid contents. Boiling and steaming increased the total phenolics and AA up to 4-fold and 3-fold, respectively. Drying at low temperatures resulted in higher phenolics and AA than the control. In the therapeutic model, the HSD-fed female flies exhibited elevated glucose levels, which exhibited a dose-dependent reduction upon exposure to a SALF-supplemented diet. Female flies fed on a SALF+ HSD exhibited a significant increase in survival compared to HSD-fed and control diet-fed flies. SALF supplementation did not alter the weights, fitness, and triglyceride levels of female flies in comparison with HSD-only-fed flies. The mRNA levels of Srl decreased in HSD-fed flies compared to the control-fed, with no effect observed in females exposed to HSD+SALF. Similarly, in the preventative model, the SALF diet resulted in higher survival of supplemented flies compared to controls. Consumption of boiled unripe SALF may result in the highest health benefits due to the high phenolic contents and antioxidant activity observed. Dietary intake of SALF significantly lowered glucose levels and increased survival of the D. melanogaster model. Additional studies in higher organisms are needed to explore the preventative and therapeutic potential of SALF in T2DM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20berries" title=" bitter berries"> bitter berries</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20anguivi" title=" Solanum anguivi"> Solanum anguivi</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a> </p> <a href="https://publications.waset.org/abstracts/190336/efficacy-of-solanum-anguivi-lam-fruits-african-bitter-berry-in-lowering-glucose-levels-in-diabetes-mellitus-and-increasing-survival" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Intersection/Union Region Computation for Drosophila Brain Images Using Encoding Schemes Based on Multi-Core CPUs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Yang%20Guo">Ming-Yang Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Xian%20Wu"> Cheng-Xian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Xiang%20Chen"> Wei-Xiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Yuan%20Lin"> Chun-Yuan Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Jen%20Lin"> Yen-Jen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann-Shyn%20Chiang"> Ann-Shyn Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With more and more Drosophila Driver and Neuron images, it is an important work to find the similarity relationships among them as the functional inference. There is a general problem that how to find a Drosophila Driver image, which can cover a set of Drosophila Driver/Neuron images. In order to solve this problem, the intersection/union region for a set of images should be computed at first, then a comparison work is used to calculate the similarities between the region and other images. In this paper, three encoding schemes, namely Integer, Boolean, Decimal, are proposed to encode each image as a one-dimensional structure. Then, the intersection/union region from these images can be computed by using the compare operations, Boolean operators and lookup table method. Finally, the comparison work is done as the union region computation, and the similarity score can be calculated by the definition of Tanimoto coefficient. The above methods for the region computation are also implemented in the multi-core CPUs environment with the OpenMP. From the experimental results, in the encoding phase, the performance by the Boolean scheme is the best than that by others; in the region computation phase, the performance by Decimal is the best when the number of images is large. The speedup ratio can achieve 12 based on 16 CPUs. This work was supported by the Ministry of Science and Technology under the grant MOST 106-2221-E-182-070. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20driver%20image" title="Drosophila driver image">Drosophila driver image</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20neuron%20images" title=" Drosophila neuron images"> Drosophila neuron images</a>, <a href="https://publications.waset.org/abstracts/search?q=intersection%2Funion%20computation" title=" intersection/union computation"> intersection/union computation</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20processing" title=" parallel processing"> parallel processing</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenMP" title=" OpenMP"> OpenMP</a> </p> <a href="https://publications.waset.org/abstracts/89335/the-intersectionunion-region-computation-for-drosophila-brain-images-using-encoding-schemes-based-on-multi-core-cpus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Bertolazzi">Giorgio Bertolazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Panayiotis%20Benos"> Panayiotis Benos</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Tumminello"> Michele Tumminello</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Coronnello"> Claudia Coronnello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGO1" title="AGO1">AGO1</a>, <a href="https://publications.waset.org/abstracts/search?q=coding%20region" title=" coding region"> coding region</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20target%20prediction" title=" microRNA target prediction"> microRNA target prediction</a> </p> <a href="https://publications.waset.org/abstracts/121083/an-improvement-of-comir-algorithm-for-microrna-target-prediction-by-exploiting-coding-region-sequences-of-mrnas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ponchang%20Apollos%20Wuyep">Ponchang Apollos Wuyep</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Njolke%20Mafe"> Alice Njolke Mafe</a>, <a href="https://publications.waset.org/abstracts/search?q=Longchi%20Satkat%20Zacheaus"> Longchi Satkat Zacheaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogun%20Ojochogu"> Dogun Ojochogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dabot%20Ayuba%20Yakubu"> Dabot Ayuba Yakubu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terminalia%20mantaly" title="Terminalia mantaly">Terminalia mantaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20fumigatus" title=" Aspergillus fumigatus"> Aspergillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a> </p> <a href="https://publications.waset.org/abstracts/152628/the-in-vitro-and-in-vivo-antifungal-activity-of-terminalia-mantaly-on-aspergillus-species-using-drosophila-melanogaster-uas-diptericin-as-a-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Modeling of Alpha-Particles’ Epigenetic Effects in Short-Term Test on Drosophila melanogaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20M.%20Biyasheva">Z. M. Biyasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zh.%20Tleubergenova"> M. Zh. Tleubergenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Zaripova"> Y. A. Zaripova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Shakirov"> A. L. Shakirov</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Dyachkov"> V. V. Dyachkov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, interest in ecogenetic and biomedical problems related to the effects on the population of radon and its daughter decay products has increased significantly. Of particular interest is the assessment of the consequence of irradiation at hazardous radon areas, which includes the Almaty region due to the large number of tectonic faults that enhance radon emanation. In connection with the foregoing, the purpose of this work was to study the genetic effects of exposure to supernormal radon doses on the alpha-radiation model. Irradiation does not affect the growth of the cell, but rather its ability to differentiate. In addition, irradiation can lead to somatic mutations, morphoses and modifications. These damages most likely occur from changes in the composition of the substances of the cell. Such changes are epigenetic since they affect the regulatory processes of ontogenesis. Variability in the expression of regulatory genes refers to conditional mutations that modify the formation of signs of intraspecific similarity. Characteristic features of these conditional mutations are the dominant type of their manifestation, phenotypic asymmetry and their instability in the generations. Currently, the terms &ldquo;morphosis&rdquo; and &ldquo;modification&rdquo; are used to describe epigenetic variability, which are maintained in <em>Drosophila melanogaster </em>cultures using linkaged X- chromosomes, and the mutant X-chromosome is transmitted along the paternal line. In this paper, we investigated the epigenetic effects of alpha particles, whose source in nature is mainly radon and its daughter decay products. In the experiment, an isotope of plutonium-238 (Pu<sup>238</sup>), generating radiation with an energy of about 5500 eV, was used as a source of alpha particles. In an experiment in the first generation (F<sub>1</sub>), deformities or morphoses were found, which can be called &quot;radiation syndromes&quot; or mutations, the manifestation of which is similar to the pleiotropic action of genes. The proportion of morphoses in the experiment was 1.8%, and in control 0.4%. In this experiment, the morphoses in the flies of the first and second generation looked like black spots, or melanomas on different parts of the imago body; &quot;generalized&quot; melanomas; curled, curved wings; shortened wing; bubble on one wing; absence of one wing, deformation of thorax, interruption and violation of tergite patterns, disruption of distribution of ocular facets and bristles; absence of pigmentation of the second and third legs. Statistical analysis by the Chi-square method showed the reliability of the difference in experiment and control at P &le; 0.01. On the basis of this, it can be considered that alpha particles, which in the environment are mainly generated by radon and its isotopes, have a mutagenic effect that manifests itself, mainly in the formation of morphoses or deformities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-radiation" title="alpha-radiation">alpha-radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=morphoses" title=" morphoses"> morphoses</a>, <a href="https://publications.waset.org/abstracts/search?q=radioecology" title=" radioecology"> radioecology</a>, <a href="https://publications.waset.org/abstracts/search?q=radon" title=" radon"> radon</a> </p> <a href="https://publications.waset.org/abstracts/97237/modeling-of-alpha-particles-epigenetic-effects-in-short-term-test-on-drosophila-melanogaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20M.%20Myasnikova">Ekaterina M. Myasnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Makashov"> Andrey A. Makashov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Spirov"> Alexander V. Spirov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drosophila" title="drosophila">drosophila</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20genes" title=" gap genes"> gap genes</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion%20model" title=" reaction-diffusion model"> reaction-diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a> </p> <a href="https://publications.waset.org/abstracts/73794/robustness-conditions-for-the-establishment-of-stationary-patterns-of-drosophila-segmentation-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Genetic Divergence of Life History Traits in Indian Populations of Drosophila bipectinata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manvender%20Singh">Manvender Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature is one of the most important climatic parameter for explaining the geographic distribution of ectothermic species. Empirical investigations on norms of the reaction according to developmental temperatures are helpful in analyzing the adapture capacity of a species which may be related to its ecological niche. In the present investigation, we have compared the effects of developmental temperatures on fecundity, hatchability, viability, and duration of development in five natural populations of Drosophila bipectinata along the latitudinal range. The clinal patterns for fecundity, as well as ovariole number, were observed which showed significant positive correlation (r=0.97). Similarly, hatchability and duration of development also revealed a positive correlation with latitude. Hence, suggesting the role of natural selection in maintaining the genetic divergence for life history traits along the north-south transect of the Indian Subcontinent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20temperature" title="growth temperature">growth temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fecundity" title=" fecundity"> fecundity</a>, <a href="https://publications.waset.org/abstracts/search?q=hatchability" title=" hatchability"> hatchability</a>, <a href="https://publications.waset.org/abstracts/search?q=viability" title=" viability"> viability</a>, <a href="https://publications.waset.org/abstracts/search?q=duration%20of%20development" title=" duration of development"> duration of development</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila" title=" Drosophila"> Drosophila</a> </p> <a href="https://publications.waset.org/abstracts/2607/genetic-divergence-of-life-history-traits-in-indian-populations-of-drosophila-bipectinata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Aminopeptidase P (DAP) Expression Pattern in Drosophila Melanogaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suneeta%20Gireesh%20Panicker">Suneeta Gireesh Panicker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Aminopeptidase P (APP) is an enzyme that has specificity for proline, can specifically cleave Xaa-Proline peptides and is a metallo-aminopeptidase. The bonds nearby to the imino acid proline are tough to cleave by many peptidases, but APP can specifically break peptide bonds engaged with proline. Membrane-bound form and a cytosolic form are the two forms in which this enzyme exists. The exact physiological function of APP remains unclear and hence the present work attempts to determine it. Methods: In the present study, the expression pattern of cytosolic Aminopeptidase P (DAP) was determined in all the embryonic stages and larval stages of wild-type Drosophila by using polyclonal monospecific antibodies. To show the presence of DAP RNA in embryonic and larval stages, RNA in situ hybridization was performed. DAP promoter-LacZ fusion reporter gene vector was used to construct transgenic embryos to study the regulation pattern of DAP. To study the DAP expression profile, a transgenic fly consisting of a DAP promoter with β-gal and GFP reporter genes in front of it was constructed. Results: DAP protein expression was observed in neuroectodermal cells, posterior midgut primordium, proctodeum, ventral neuroblast and primordial stomatogastric nervous system. It was observed in the ventral cord and midgut in stage 12. The completely developed embryos showed the intense occurrence of it in the ventral cord and gut region. The eye-antennal disc, wing disc and leg disc also showed the presence of DAP protein. LacZ expression in transgenic embryos also showed the same pattern. Conclusion: Similar to various known multiple-functional proteins, DAP could be one with different functions at different stages and in different cells. Data presented here designates DAP functions in the early embryonic and imaginal dics differentiation and development, suggesting that it may be required for the metabolism of proteins like neuropeptides and tachykinins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aminopeptidase%20P" title="aminopeptidase P">aminopeptidase P</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20hybridization" title=" in situ hybridization"> in situ hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=transgenic%20fly" title=" transgenic fly"> transgenic fly</a>, <a href="https://publications.waset.org/abstracts/search?q=embryonic%20stages" title=" embryonic stages"> embryonic stages</a> </p> <a href="https://publications.waset.org/abstracts/171503/aminopeptidase-p-dap-expression-pattern-in-drosophila-melanogaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Spirov">Alexander V. Spirov</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20M.%20Holloway"> David M. Holloway</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20M.%20Myasnikova"> Ekaterina M. Myasnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20embryo" title="Drosophila embryo">Drosophila embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=bicoid%20morphogenetic%20gradient" title=" bicoid morphogenetic gradient"> bicoid morphogenetic gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20expression%20profile" title=" exponential expression profile"> exponential expression profile</a>, <a href="https://publications.waset.org/abstracts/search?q=expression%20surface%20form" title=" expression surface form"> expression surface form</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20genes" title=" segmentation genes"> segmentation genes</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20modelling" title=" 3D modelling"> 3D modelling</a> </p> <a href="https://publications.waset.org/abstracts/73820/the-bicoid-gradient-in-the-drosophila-embryo-3d-modelling-with-realistic-egg-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Bhattacharya">Surajit Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Veltri"> Daniel Veltri</a>, <a href="https://publications.waset.org/abstracts/search?q=Atit%20A.%20Patel"> Atit A. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20N.%20Cox"> Daniel N. Cox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miRNA" title="miRNA">miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA%3AmRNA%20target%20prediction" title=" miRNA:mRNA target prediction"> miRNA:mRNA target prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA%3AmRNA%20interaction%20network" title=" miRNA:mRNA interaction network"> miRNA:mRNA interaction network</a> </p> <a href="https://publications.waset.org/abstracts/27427/intra-mir-explorer-a-novel-bioinformatics-platform-for-integrated-discovery-of-mirnamrna-gene-regulatory-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Potential of Macroalgae Ulva lactuca for Municipal Wastewater Treatment and Fruitfly Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Qiu">Shuang Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingfeng%20Wang"> Lingfeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Chen"> Zhipeng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijian%20Ge"> Shijian Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macroalgae are considered a promising approach for wastewater treatment as well as an alternative animal feed in addition to a biofuel feedstock. Their large size and/or tendency to grow as dense floating mats or substrate-attached turfs lead to lower separation and drying costs than microalgae. In this study, the macroalgae species Ulva lactuca (U. lactuca) were used to investigate their capacity for treating municipal wastewaters, and the feasibility of using the harvested biomass as an alternative food source for the fruitfly Drosophila melanogaster, an animal model for biological research. Results suggested that U. lactuca could successfully grow on three types of wastewaters studied with biomass productivities of 8.12-64.3 g DW (dry weight)/(m²∙d). The secondary wastewater (SW) was demonstrated as the most effective wastewater medium for U. lactuca growth. However, both high nitrogen (92.5-98.9%) and phosphorus (64.5-88.6%) removal efficiencies were observed in all wastewaters, particularly in primary wastewater (PW) and SW, however, in central wastewater (CW), the highest removal rates were obtained (N 24.7 ± 0.97 and P 0.69 ± 0.01 mg/(g DW·d)). Additionally, the inclusion of 20% washed U. lactuca with 80% standard fruitfly food (w/w) resulted in a longer lifespan and more stable body weights in flies. On the other hand, similar results were not obtained for the food treatment with the addition of 20 % unwashed U. lactuca. This study suggests a promising method for the macroalgae-based treatment of municipal wastewater and the biomass for animal feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20feed" title="animal feed">animal feed</a>, <a href="https://publications.waset.org/abstracts/search?q=flies" title=" flies"> flies</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20recovery" title=" nutrient recovery"> nutrient recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20lactuca" title=" Ulva lactuca"> Ulva lactuca</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/94541/potential-of-macroalgae-ulva-lactuca-for-municipal-wastewater-treatment-and-fruitfly-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Transcriptome Analysis of Protestia brevitarsis seulensis with Focus On Wing Development and Metamorphosis in Developmental Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihye%20Hwang">Jihye Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Hwa%20Choi"> Eun Hwa Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Youn%20Baek"> Su Youn Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bia%20Park"> Bia Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyeongmin%20Kim"> Gyeongmin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chorong%20Shin"> Chorong Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon%20Ha%20Lee"> Joon Ha Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Sam%20Hwang"> Jae-Sam Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ui%20Wook%20Hwang"> Ui Wook Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> White-spotted flower chafers are widely distributed in Asian countries and traditionally used for the treatment of chronic fatigue, blood circulation, and paralysis in the oriental medicine field. The evolution and development of insect wings and metamorphosis remain under-discovered subjects in arthropod evolutionary researches. Gene expression abundance analyses along with developmental stages based on the large-scale RNA-seq data are also still rarely done. Here we report the de novo assembly of a Protestia brevitarsis seulensis transcriptome along four different developmental stages (egg, larva, pupa, and adult) to explore its development and evolution of wings and metamorphosis. The de novo transcriptome assembly consists of 23,551 high-quality transcripts and is approximately 96.7% complete. Out of 8,545 transcripts, 5,183 correspond to the possible orthologs with Drosophila melanogaster. As a result, we could found 265 genes related to wing development and 19 genes related to metamorphosis. The comparison of transcript expression abundance with different developmental stages revealed developmental stage-specific transcripts especially working at the stage of wing development and metamorphosis of P. b. seulensis. This transcriptome quantification along the developmental stages may provide some meaningful clues to elucidate the genetic modulation mechanism of wing development and metamorphosis obtained during the insect evolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=white-spotted%20flower%20chafers" title="white-spotted flower chafers">white-spotted flower chafers</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-seq" title=" RNA-seq"> RNA-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20biology" title=" network biology"> network biology</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20development" title=" wing development"> wing development</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphosis" title=" metamorphosis"> metamorphosis</a> </p> <a href="https://publications.waset.org/abstracts/138739/transcriptome-analysis-of-protestia-brevitarsis-seulensis-with-focus-on-wing-development-and-metamorphosis-in-developmental-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Energy Metabolites Show Cross-Protective Plastic Responses for Stress Resistance in a Circumtropical Drosophila Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Pathak">Ankita Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Munjal"> Ashok Munjal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Parkash"> Ravi Parkash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation; and changes in trehalose, proline and body lipids in D. ananassae flies reared under wet or dry season specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization, as well as rates of metabolic change for each energy metabolite, were significantly higher in wet season flies than dry season flies. Energy metabolite changes due to inter-related stressors (heat vs. desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet or dry season flies. Thus, low or high humidity induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wet-dry%20seasons" title="wet-dry seasons">wet-dry seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20changes" title=" plastic changes"> plastic changes</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20related%20traits" title=" stress related traits"> stress related traits</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20metabolites" title=" energy metabolites"> energy metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20protection" title=" cross protection"> cross protection</a> </p> <a href="https://publications.waset.org/abstracts/89439/energy-metabolites-show-cross-protective-plastic-responses-for-stress-resistance-in-a-circumtropical-drosophila-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felice%20Elefant">Felice Elefant</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanksha%20Bhatnaghar"> Akanksha Bhatnaghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Keegan%20Krick"> Keegan Krick</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Heller"> Elizabeth Heller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroepigenetics" title=" neuroepigenetics"> neuroepigenetics</a> </p> <a href="https://publications.waset.org/abstracts/167302/tip60s-novel-rna-binding-function-modulates-alternative-splicing-of-pre-mrna-targets-implicated-in-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Brainbow Image Segmentation Using Bayesian Sequential Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yayun%20Hsu">Yayun Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Horng-Shing%20Lu"> Henry Horng-Shing Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brainbow" title="brainbow">brainbow</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20imaging" title=" 3D imaging"> 3D imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron%20morphology" title=" neuron morphology"> neuron morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20data%20mining" title=" biological data mining"> biological data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20learning" title=" non-parametric learning"> non-parametric learning</a> </p> <a href="https://publications.waset.org/abstracts/2189/brainbow-image-segmentation-using-bayesian-sequential-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yayun%20Hsu">Yayun Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Horng-Shing%20Lu"> Henry Horng-Shing Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microscopic%20image%20processing" title="microscopic image processing">microscopic image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20data%20mining" title=" scientific data mining"> scientific data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20modeling" title=" multi-scale modeling"> multi-scale modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a> </p> <a href="https://publications.waset.org/abstracts/2589/multiscale-connected-component-labelling-and-applications-to-scientific-microscopy-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Assessment of Weaver Birds and Their Allies Within and Around Ngel-Nyaki Forest Reserve, Yelwa, Sardauna LGA, Taraba State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Delpine%20Leila">David Delpine Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Demnyo%20Sunita%20Femi"> Demnyo Sunita Femi</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20David%20Garkida"> Musa David Garkida</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisha%20Emmanuel%20Barde"> Elisha Emmanuel Barde</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Allahnanan"> Emmanuel Allahnanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yani%20Julius%20Philip"> Yani Julius Philip</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Birds are among the key components of the earth’s biodiversity and the most diverse and evolutionarily successful groups of animals. The weaverbirds are a large family of birds found mostly in Africa, with a few species found in southern Asia and the West Indian Ocean islands. This study assessed the diversity and abundance of weaver birds and their allies within and around Ngel-Nyaki Forest Reserve in Yelwa, Sardauna Local Government Area of Taraba State, Nigeria. A total of 602 weaver birds and allies’ bird species were recorded using the Point Count Line Transect. The data collected during the research period were analyzed using simple percentages, and diversity was calculated using the Shannon Wiener Diversity Index. The fenced (ungrazed area) was more abundant with 351 individuals while the unfenced (grazed area) was less abundant with 251 individuals recorded. In the fenced (ungrazed area), Yellow Bishop (Euplectes capensis) had the highest abundance of (102; 29.01%), followed by Village Weaver (Ploceus cucullatus) (80; 22.79%), then Vieillot's Black Weaver (Ploceus nigerrimus) (40; 11.42%), Red-collard Widowbird (Ploceus ardens) (6; 1.71%), Dark-backed Weaver (5; 1.42%) and the least was Hartlaub Marsh Widowbird (1; 0.28%) while in the unfenced (grazed area), the Village weaver (Ploceus cucullatus) (85; 33.86%) was the most abundant, followed by Spectacled Weaver (Ploceus ocularis) (36; 14.34%), then Yellow Bishop (Euplectes capensis) (30; 11.95%), Baglefecht Weaver (Ploceus baglafecht) (23; 9.16%), Bannerman’s Weaver (Ploceus bannermani) (17; 6.77%) and the least was Yellow-mantled Widowbird (Euplectes macroura) (5; 1.99%). In terms of diversity, there were more weaver bird species in the fenced area with a Shannon Wiener Diversity Index of (Hˈ 2.03417) than in the unfenced area with a Shannon Wiener Diversity Index of (Hˈ 1.862671). The Shannon Wiener Diversity Index in both fenced and unfenced areas is significant. There was more abundance of bird species in the fenced area than in the unfenced area of the Forest Reserve. Thorough research should be conducted on the abundance and diversity of weavers and their allies because we were only able to access 4 km2 out of 46 km2 of land available, according to the Annual Report of Ngel-Nyaki Forest Reserve of 2020. It shows that there are many species of weaver birds and their allies, such as the Black-billed Weaver (Ploceus melanogaster) and the Red-billed Quelea (Quelea quelea), which are available within the reserve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=weaver%20birds" title=" weaver birds"> weaver birds</a>, <a href="https://publications.waset.org/abstracts/search?q=allies" title=" allies"> allies</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngel-Nyaki" title=" Ngel-Nyaki"> Ngel-Nyaki</a> </p> <a href="https://publications.waset.org/abstracts/179089/assessment-of-weaver-birds-and-their-allies-within-and-around-ngel-nyaki-forest-reserve-yelwa-sardauna-lga-taraba-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Transcriptional Response of Honey Bee to Differential Nutritional Status and Nosema Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farida%20Azzouz-Olden">Farida Azzouz-Olden</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20G.%20Hunt"> Arthur G. Hunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Degrandi-Hoffman"> Gloria Degrandi-Hoffman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice; however, commercial substitutes, such as BeePro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Gene ontology enrichment revealed that, compared with poor diet (carbohydrates (C)), bees fed pollen (P > C), BeePro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or BeePro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to BeePro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than BeePro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeybee" title="honeybee">honeybee</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Nosema" title=" Nosema"> Nosema</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-seq" title=" RNA-seq"> RNA-seq</a> </p> <a href="https://publications.waset.org/abstracts/95286/transcriptional-response-of-honey-bee-to-differential-nutritional-status-and-nosema-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Metagenomics Analysis on Microbial Communities of Sewage Sludge from Nyeri-Kangemi Wastewater Treatment Plant, Nyeri County-Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allan%20Kiptanui%20Kimisto">Allan Kiptanui Kimisto</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Odhiambo%20Ongondo"> Geoffrey Odhiambo Ongondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Wairimu%20Muia"> Anastasia Wairimu Muia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrus%20Ndungu%20Kimani"> Cyrus Ndungu Kimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major challenge to proper sewage sludge treatment processes is the poor understanding of sludge microbiome diversities. This study applied the whole-genome. shotgun metagenomics technique to profile the microbial composition of sewage sludge in two active digestion lagoons at the Nyeri-Kangemi Wastewater Treatment Plant in Nyeri County, Kenya. Total microbial community DNA was extracted from samples using the available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for comparing taxonomic diversity before β-diversities studies for Bacteria, Archaea and Eukaryotes. The study identified 57 phyla, 145 classes, 301 orders, 506 families, 963 genera, and 1980 species. Bacteria dominated the microbes and comprised 28 species, 51 classes, 110 orders, 243 families, 597 genera, and 1518 species. The Bacteroides(6.77%) were dominant, followed by Acinetobacter(1.44%) belonging to the Gammaproteobacteria and Acidororax (1.36%), Bacillus (1.24%) and Clostridium (1.02%) belonging to Betaproteobacteria. Archaea recorded 5 phyla, 13 classes, 19 orders, 29 families, 60 genera,and87 species, with the dominant genera being Methanospirillum (16.01%), methanosarcina (15.70%), and Methanoregula(14.80%) and Methanosaeta (8.74%), Methanosphaerula(5.48%) and Methanobrevibacter(5.03%) being the subdominant group. The eukaryotes were the least in abundance and comprised 24 phyla, 81 classes, 301 orders, 506 families, 963 genera, and 980 species. Arabidopsis (4.91%) and Caenorhabditis (4.81%) dominated the eukaryotes, while Dityostelium (3.63%) and Drosophila(2.08%) were the subdominant genera. All these microbes play distinct roles in the anaerobic treatment process of sewage sludge. The local sludge microbial composition and abundance variations may be due to age difference differences between the two digestion lagoons in operation at the plant and the different degradation rales played by the taxa. The information presented in this study can help in the genetic manipulation or formulation of optimal microbial ratios to improve their effectiveness in sewage sludge treatment. This study recommends further research on how the different taxa respond to environmental changes over time and space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shotgun%20metagenomics" title="shotgun metagenomics">shotgun metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=archaea" title=" archaea"> archaea</a>, <a href="https://publications.waset.org/abstracts/search?q=eukaryotes" title=" eukaryotes"> eukaryotes</a> </p> <a href="https://publications.waset.org/abstracts/157198/metagenomics-analysis-on-microbial-communities-of-sewage-sludge-from-nyeri-kangemi-wastewater-treatment-plant-nyeri-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Contribution of Research to Innovation Management in the Traditional Fruit Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camille%20Aouina%C3%AFt">Camille Aouinaït</a>, <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Christen"> Danilo Christen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Carlen"> Christoph Carlen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Small and Medium-sized Enterprises (SMEs) are facing different challenges such as pressures on environmental resources, the rise of downstream power, and trade liberalization. Remaining competitive by implementing innovations and engaging in collaborations could be a strategic solution. In Switzerland, the Federal Institute for Research in Agriculture (Agroscope), the Federal schools of technology (EPFL and ETHZ), Cantonal universities and Universities of Applied Sciences (UAS) can provide substantial inputs. UAS were developed with specific missions to match the labor markets and society needs. Research projects produce patents, publications and improved networks of scientific expertise. The study’s goal is to measure the contribution of UAS and research organization to innovation and the impact of collaborations with partners in the non-academic environment in Swiss traditional fruit production. Materials and methods: The European projects Traditional Food Network to improve the transfer of knowledge for innovation (TRAFOON) and Social Impact Assessment of Productive Interactions between science and society (SIAMPI) frame the present study. The former aims to fill the gap between the needs of traditional food producing SMEs and innovations implemented following European projects. The latter developed a method to assess the impacts of scientific research. On one side, interviews with market players have been performed to make an inventory of needs of Swiss SMEs producing apricots and berries. The participative method allowed matching the current needs and the existing innovations coming from past European projects. Swiss stakeholders (e.g. producers, retailers, an inter-branch organization of fruits and vegetables) directly rated the needs on a five-Likert scale. To transfer the knowledge to SMEs, training workshops have been organized for apricot and berries actors separately, on specific topics. On the other hand, a mapping of a social network is drawn to characterize the links between actors, with a focus on the Swiss canton of Valais and UAS Valais Wallis. Type and frequency of interactions among actors have identified thanks to interviews. Preliminary results: A list of 369 SMEs needs grouped in 22 categories was produced with 37 fulfilled questionnaires. Swiss stakeholders rated 31 needs very important. Training workshops on apricot are focusing on varietal innovations, storage, disease (bacterial blight), pest (Drosophila suzukii), sorting and rootstocks. Entrepreneurship was targeted through trademark discussions in berry production. The UAS Valais Wallis collaborated on a few projects with Agroscope along with industries, at European and national levels. Political and public bodies interfere with the central area of agricultural vulgarization that induces close relationships between the research and the practical side. Conclusions: The needs identified by Swiss stakeholders are becoming part of training workshops to incentivize innovations. The UAS Valais Wallis takes part in collaboration projects with the research environment and market players that bring innovations helping SMEs in their contextual environment. Then, a Strategic Research and Innovation Agenda will be created in order to pursue research and answer the issues facing by SMEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20transfer" title=" knowledge transfer"> knowledge transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20and%20research%20collaboration" title=" university and research collaboration"> university and research collaboration</a> </p> <a href="https://publications.waset.org/abstracts/35768/contribution-of-research-to-innovation-management-in-the-traditional-fruit-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10