CINXE.COM

Search results for: droplets

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: droplets</title> <meta name="description" content="Search results for: droplets"> <meta name="keywords" content="droplets"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="droplets" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="droplets"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 161</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: droplets</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> The Effect of Water Droplets Size in Fire Fighting Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tassadit%20Tabouche">Tassadit Tabouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplets" title="droplets">droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20spray" title=" water spray"> water spray</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets%20size" title=" water droplets size"> water droplets size</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/7533/the-effect-of-water-droplets-size-in-fire-fighting-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Poly (L-Lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Its Applications in Controlled Release of Drug Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Verma">Indu Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Kumar%20Pal"> Santanu Kumar Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interactions between DNA and adsorbed Poly (L-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy (POM) and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single stranded DNA/double stranded DNA) at PLL coated LC droplets was found to trigger a LC reorientation within the droplets leading to pre-radial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA (c-ssDNA) to ssDNA/ adsorbed PLL modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA adsorbed PLL droplets have been found to be effectively used to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label free droplet based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nano-carriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20biosensor" title="DNA biosensor">DNA biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=interfaces" title=" interfaces"> interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal%20droplets" title=" liquid crystal droplets"> liquid crystal droplets</a> </p> <a href="https://publications.waset.org/abstracts/81656/poly-l-lysine-coated-liquid-crystal-droplets-for-sensitive-detection-of-dna-and-its-applications-in-controlled-release-of-drug-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tien-Li%20Chang">Tien-Li Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang-Chi%20Huang"> Huang-Chi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao-Chi%20Chen"> Zhao-Chi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wun-Yi%20Chen"> Wun-Yi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20detection" title=" single detection"> single detection</a> </p> <a href="https://publications.waset.org/abstracts/24600/study-on-an-integrated-real-time-sensor-in-droplet-based-microfluidics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaleel%20Sami%20Hamdan">Khaleel Sami Hamdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Eok%20Kim"> Dong-Eok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Ki%20Moon"> Sang-Ki Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=break-up" title="break-up">break-up</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet" title=" droplet"> droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20hot%20plate" title=" inclined hot plate"> inclined hot plate</a>, <a href="https://publications.waset.org/abstracts/search?q=Leidenfrost%20temperature" title=" Leidenfrost temperature"> Leidenfrost temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=LOCA" title=" LOCA"> LOCA</a> </p> <a href="https://publications.waset.org/abstracts/5059/an-experimental-investigation-on-the-droplet-behavior-impacting-a-hot-surface-above-the-leidenfrost-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helene%20Martin">Helene Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Solmaz%20Boroomandi%20Barati"> Solmaz Boroomandi Barati</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Charles%20Pinoli"> Jean-Charles Pinoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Valette"> Stephane Valette</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Gavet"> Yann Gavet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dropwise%20condensation" title="dropwise condensation">dropwise condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=textured%20surface" title=" textured surface"> textured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/77857/segmentation-of-gray-scale-images-of-dropwise-condensation-on-textured-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Behavior of Droplets in Microfluidic System with T-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guellati">A. Guellati</a>, <a href="https://publications.waset.org/abstracts/search?q=F-M%20Lounis"> F-M Lounis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Guemras"> N. Guemras</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Daoud"> K. Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn&#39;t allow regular out-flows due to the fact that the continuous phase doesn&#39;t adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20system" title="microfluidic system">microfluidic system</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20droplets%20generation" title=" micro droplets generation"> micro droplets generation</a>, <a href="https://publications.waset.org/abstracts/search?q=t-junction" title=" t-junction"> t-junction</a>, <a href="https://publications.waset.org/abstracts/search?q=fluids%20engineering" title=" fluids engineering"> fluids engineering</a> </p> <a href="https://publications.waset.org/abstracts/7208/behavior-of-droplets-in-microfluidic-system-with-t-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Modelling of Heating and Evaporation of Biodiesel Fuel Droplets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Al%20Qubeissi">Mansour Al Qubeissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20S.%20Sazhin"> Sergei S. Sazhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Crua"> Cyril Crua</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20R.%20Heikal"> Morgan R. Heikal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%2Fmass%20transfer" title="heat/mass transfer">heat/mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-component%20fuel" title=" multi-component fuel"> multi-component fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet" title=" droplet"> droplet</a> </p> <a href="https://publications.waset.org/abstracts/19140/modelling-of-heating-and-evaporation-of-biodiesel-fuel-droplets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Formation of Microcapsules in Microchannel through Droplet Merging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Danish%20Eqbal">Md. Danish Eqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkat%20Gundabala"> Venkat Gundabala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microparticles and microcapsules are basically used as a carrier for cells, tissues, drugs, and chemicals. Due to its biocompatibility, non-toxicity and biodegradability, alginate based microparticles have numerous applications in drug delivery, tissue engineering, organ repair and transplantation, etc. The production of uniform monodispersed microparticles was a challenge for the past few decades. However, emergence of microfluidics has provided controlled methods for the generation of the uniform monodispersed microparticles. In this work, we present a successful method for the generation of both microparticles and microcapsules (single and double core) using merging approach of two droplets, completely inside the microfluidic device. We have fabricated hybrid glass- PDMS (polydimethylsiloxane) based microfluidic device which has coflow geometry as well as the T junction channel. Coflow is used to generate the single as well as double oil-alginate emulsion in oil and T junction helps to form the calcium chloride droplets in oil. The basic idea is to match the frequency of the alginate droplets and calcium chloride droplets perfectly for controlled generation. Using the merging of droplets technique, we have successfully generated the microparticles and the microcapsules having single core as well as double and multiple cores. The cores in the microcapsules are very stable, well separated from each other and very intact as seen through cross-sectional confocal images. The size and the number of the cores along with the thickness of the shell can be easily controlled by controlling the flowrate of the liquids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-core" title="double-core">double-core</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsules" title=" microcapsules"> microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a> </p> <a href="https://publications.waset.org/abstracts/62027/formation-of-microcapsules-in-microchannel-through-droplet-merging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Sultana">K. R. Sultana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pope"> K. Pope</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Muzychka"> Y. S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplets" title="droplets">droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermos-physical%20properties" title=" thermos-physical properties"> thermos-physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a> </p> <a href="https://publications.waset.org/abstracts/71358/modelling-and-investigation-of-phase-change-phenomena-of-multiple-water-droplets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Two-Phase Flow Study of Airborne Transmission Control in Dental Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Zabihi">Mojtaba Zabihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Munro"> Stephen Munro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Little"> Jonathan Little</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Li"> Ri Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Brinkerhoff"> Joshua Brinkerhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Kheirkhah"> Sina Kheirkhah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=dental" title=" dental"> dental</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase%20model" title=" discrete phase model"> discrete phase model</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/130160/two-phase-flow-study-of-airborne-transmission-control-in-dental-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Numerical Investigation of the Flow Characteristics inside the Scrubber Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration%20of%20water%20droplets" title="concentration of water droplets">concentration of water droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation%20rate" title=" evaporation rate"> evaporation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=scrubber" title=" scrubber"> scrubber</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20sprayer" title=" water sprayer"> water sprayer</a> </p> <a href="https://publications.waset.org/abstracts/21713/numerical-investigation-of-the-flow-characteristics-inside-the-scrubber-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dehghani">S. R. Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Naterer"> G. F. Naterer</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Muzychka"> Y. S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation" title="evaporation">evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20spray" title=" sea spray"> sea spray</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20icing" title=" marine icing"> marine icing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/61868/heat-transfer-and-trajectory-models-for-a-cloud-of-spray-over-a-marine-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Mechanisms Leading to the Protective Behavior of Ethanol Vapour Drying of Probiotics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Mansouri">Shahnaz Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Dong%20Chen"> Xiao Dong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Wai%20Woo"> Meng Wai Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new antisolvent vapour precipitation approach was used to make ultrafine submicron probiotic encapsulates. The approach uses ethanol vapour to precipitate submicron encapsulates within relatively large droplets. Surprisingly, the probiotics (Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus) showed relatively high survival even under destructive ethanolic conditions within the droplet. This unusual behaviour was deduced to be caused by the denaturation and aggregation of the milk protein forming an ethanolic protective matrix for the probiotics. Skim milk droplets which is rich in casein and contains naturally occurring minerals provided higher ethanolic protection when compared whey protein isolate and lactose droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey" title="whey">whey</a>, <a href="https://publications.waset.org/abstracts/search?q=skim%20milk" title=" skim milk"> skim milk</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=antisolvent" title=" antisolvent"> antisolvent</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=denaturation" title=" denaturation"> denaturation</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/22431/mechanisms-leading-to-the-protective-behavior-of-ethanol-vapour-drying-of-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Soltani">H. Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hadfield"> J. Hadfield</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Redmond"> M. Redmond</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nobes"> D. S. Nobes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rising%20droplet" title="rising droplet">rising droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20orifice" title=" rectangular orifice"> rectangular orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20shadow%20velocimetry" title=" particle shadow velocimetry"> particle shadow velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=match%20refractive%20index" title=" match refractive index"> match refractive index</a> </p> <a href="https://publications.waset.org/abstracts/59627/observation-of-the-flow-behavior-for-a-rising-droplet-in-a-mini-slot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hasan">W. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Farhat"> H. Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain&rsquo;s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title="lattice Boltzmann method">lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunstensen%20model" title=" Gunstensen model"> Gunstensen model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20viscosity%20ratio" title=" high viscosity ratio"> high viscosity ratio</a> </p> <a href="https://publications.waset.org/abstracts/74061/investigating-the-effects-of-thermal-and-surface-energy-on-the-two-dimensional-flow-characteristics-of-oil-in-water-mixture-between-two-parallel-plates-a-lattice-boltzmann-method-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> The Coalescence Process of Droplet Pairs in Different Junctions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Wang">Xiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang"> Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coalescence" title="coalescence">coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20capillary%20number" title=" critical capillary number"> critical capillary number</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20pair" title=" droplet pair"> droplet pair</a>, <a href="https://publications.waset.org/abstracts/search?q=split" title=" split"> split</a> </p> <a href="https://publications.waset.org/abstracts/65284/the-coalescence-process-of-droplet-pairs-in-different-junctions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Linassier">Guillaume Linassier</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Balland"> Morgan Balland</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Pervier"> Hugo Pervier</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Pervier"> Marie Pervier</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Hammond"> David Hammond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbomachine" title="turbomachine">turbomachine</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-icing" title=" anti-icing"> anti-icing</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20rig" title=" cascade rig"> cascade rig</a>, <a href="https://publications.waset.org/abstracts/search?q=runback%20water" title=" runback water "> runback water </a> </p> <a href="https://publications.waset.org/abstracts/80186/experimental-characterization-of-anti-icing-system-and-accretion-of-re-emitted-droplets-on-turbojet-engine-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Modelling of Aerosols in Absorption Column </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Majeed">Hammad Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Knuutila"> Hanna Knuutila</a>, <a href="https://publications.waset.org/abstracts/search?q=Magne%20Hillestad"> Magne Hillestad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hallvard%20F.%20Svendsen"> Hallvard F. Svendsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow<em>. </em>As a consequence of this, aerosol based emissions in the order of grams per Nm<sup>3</sup> have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO<sub>2</sub> absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20columns" title="absorption columns">absorption columns</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20formation" title=" aerosol formation"> aerosol formation</a>, <a href="https://publications.waset.org/abstracts/search?q=amine%20emissions" title=" amine emissions"> amine emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20droplet%20profiles" title=" internal droplet profiles"> internal droplet profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=monoethanolamine%20%28MEA%29" title=" monoethanolamine (MEA)"> monoethanolamine (MEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20combustion%20CO2%20capture" title=" post combustion CO2 capture"> post combustion CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/43462/modelling-of-aerosols-in-absorption-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Gibbons">M. J. Gibbons</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Robinson"> A. J. Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20cooling" title="electronic cooling">electronic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray" title=" electrospray"> electrospray</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray%20plume%20dispersion" title=" electrospray plume dispersion"> electrospray plume dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20cooling" title=" spray cooling"> spray cooling</a> </p> <a href="https://publications.waset.org/abstracts/36285/electrospray-plume-characterisation-of-a-single-source-cone-jet-for-micro-electronic-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Flotation Recovery of Gold-Loaded Fine Activated Carbon Using Emulsified Diesel and Kerosene as Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Jr.%20Ballad">Emmanuel Jr. Ballad</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Mendoza"> Herman Mendoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recovery of fine activated carbon with adsorbed gold in the cyanidation tailings of a small-scale gold plant was investigated due to the high amount of gold present. In the study, collectors that were used are kerosene and diesel. Emulsification of the oils was done to improve its collecting property, thus also the recovery. It was found out that the best hydrophile lypophile balance (HLB) of emulsified diesel and kerosene oil is 13 and 12 respectively. The amount of surfactants (SPAN 20 and TWEEN 20) for the best stability of the emulsified oils was found to be 10% in both kerosene and diesel. Optical microscopy showed that the oil dispersion in the water forms spherical droplets like features. The higher the stability, the smaller the droplets and their number were increasing. The smaller droplets indicate better dispersion of oil in the water. Consequently, it will have a greater chance of oil and activated carbon particle interaction during flotation. Due to the interaction of dispersed oil phase with carbon, the hydrophobicity of the carbon will be improved and will be attached to the bubble. Thus, flotation recovery will be increased. Results showed that the recovery of the fine activated carbon using emulsified diesel or kerosene is three times more effective than using pure diesel or kerosene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsified%20oils" title="emulsified oils">emulsified oils</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophile%20lyophile%20balance" title=" hydrophile lyophile balance"> hydrophile lyophile balance</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20surfactants" title=" non-ionic surfactants"> non-ionic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/68257/flotation-recovery-of-gold-loaded-fine-activated-carbon-using-emulsified-diesel-and-kerosene-as-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Determination of the Cooling Rate Dependency of High Entropy Alloys Using a High-Temperature Drop-on-Demand Droplet Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Imani%20Moqadam">Saeedeh Imani Moqadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Bobrov"> Ilya Bobrov</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9r%C3%A9my%20Epp"> Jérémy Epp</a>, <a href="https://publications.waset.org/abstracts/search?q=Nils%20Ellendt"> Nils Ellendt</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutz%20M%C3%A4dler"> Lutz Mädler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High entropy alloys (HEAs), having adjustable properties and enhanced stability compared with intermetallic compounds, are solid solution alloys that contain more than five principal elements with almost equal atomic percentage. The concept of producing such alloys pave the way for developing advanced materials with unique properties. However, the synthesis of such alloys may require advanced processes with high cooling rates depending on which alloy elements are used. In this study, the micro spheres of different diameters of HEAs were generated via a drop-on-demand droplet generator and subsequently solidified during free-fall in an argon atmosphere. Such droplet generators can generate individual droplets with high reproducibility regarding droplet diameter, trajectory and cooling while avoiding any interparticle momentum or thermal coupling. Metallography as well as X-ray diffraction investigations for each diameter of the generated metallic droplets where then carried out to obtain information about the microstructural state. To calculate the cooling rate of the droplets, a droplet cooling model was developed and validated using model alloys such as CuSn%6 and AlCu%4.5 for which a correlation of secondary dendrite arm spacing (SDAS) and cooling rate is well-known. Droplets were generated from these alloys and their SDAS was determined using quantitative metallography. The cooling rate was then determined from the SDAS and used to validate the cooling rates obtained from the droplet cooling model. The application of that model on the HEA then leads to the cooling rate dependency and hence to the identification of process windows for the synthesis of these alloys. These process windows were then compared with cooling rates obtained in processes such as powder production, spray forming, selective laser melting and casting to predict if a synthesis is possible with these processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title="cooling rate">cooling rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drop-on-demand" title=" drop-on-demand"> drop-on-demand</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloys" title=" high entropy alloys"> high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20droplet%20generation" title=" single droplet generation"> single droplet generation</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20Diffractometry" title=" X-ray Diffractometry"> X-ray Diffractometry</a> </p> <a href="https://publications.waset.org/abstracts/78280/determination-of-the-cooling-rate-dependency-of-high-entropy-alloys-using-a-high-temperature-drop-on-demand-droplet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> The Dynamics of a Droplet Spreading on a Steel Surface </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeniya%20Orlova">Evgeniya Orlova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Feoktistov"> Dmitriy Feoktistov</a>, <a href="https://publications.waset.org/abstracts/search?q=Geniy%20Kuznetsov"> Geniy Kuznetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20line%20speed" title="contact line speed">contact line speed</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20growth%20rate" title=" droplet growth rate"> droplet growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20contact%20angle" title=" dynamic contact angle"> dynamic contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=shadow%20system" title=" shadow system"> shadow system</a>, <a href="https://publications.waset.org/abstracts/search?q=spreading" title=" spreading"> spreading</a> </p> <a href="https://publications.waset.org/abstracts/57156/the-dynamics-of-a-droplet-spreading-on-a-steel-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Khan">Abdullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Redelius"> Per Redelius</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Kringos"> Nicole Kringos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsions" title="bitumen emulsions">bitumen emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20and%20coalescence" title=" breaking and coalescence"> breaking and coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20mix%20asphalt" title=" cold mix asphalt"> cold mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifiers" title=" emulsifiers"> emulsifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a> </p> <a href="https://publications.waset.org/abstracts/62893/towards-an-understanding-of-breaking-and-coalescence-process-in-bitumen-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Calculating Approach of Thermal Conductivity of 8 YSZ in Different Relative Humidities Corresponding to Low Water Contents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun%20Chol%20Kang">Yun Chol Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Myong%20Nam%20Kong"> Myong Nam Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Chol%20Yu"> Nam Chol Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim%20Kim"> Jin Sim Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Un%20Yong%20Paek"> Un Yong Paek</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Ho%20Kim"> Song Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the calculating approach of the thermal conductivity of 8 mol% yttria-stabilized zirconia (8YSZ) in different relative humidity corresponding to low water contents. When water content in 8YSZ is low, water droplets can accumulate in the neck regions. We assume that spherical water droplets are randomly located in the neck regions formed by grains and surrounded by the pores. Based on this, a new hypothetical pore constituted by air and water is proposed using the microstructural modeling. We consider 8YSZ is a two-phase material constituted by the solid region and the hypothetical pore region where the water droplets are penetrated in the pores, randomly. The results showed that the thermal conductivity of the hypothetical pore is calculated using the parallel resistance for low water contents, and the effective thermal conductivity of 8YSZ material constituted by solid and hypothetical pore in different relative humidities using EMPT. When the numbers of water layers on the surface of 8YSZ are less than 1.5, the proposed approach gives a good interpretation of the experimental results. When the theoretical value of the number of water layers on 8YSZ surface is 1, the water content is not enough to cover the internal solid surface completely. The proposed approach gives a better interpretation of the experimental results in different relative humidities that numbers of water layers on the surface of 8YSZ are less than 1.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=8YSZ" title="8YSZ">8YSZ</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a> </p> <a href="https://publications.waset.org/abstracts/168365/calculating-approach-of-thermal-conductivity-of-8-ysz-in-different-relative-humidities-corresponding-to-low-water-contents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Ru">Jiahe Ru</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang"> Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neck%20interface" title="neck interface">neck interface</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20coupling" title=" interface coupling"> interface coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=janus%20droplets" title=" janus droplets"> janus droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/163142/neck-thinning-dynamics-of-janus-droplets-under-multiphase-interface-coupling-in-cross-junction-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20M.%20Ammar">N. M. M. Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mustaqim"> S. M. Mustaqim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Nadzir"> N. M. Nadzir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important problem occurs on oil spills in sea water is to reduce the oil spills size. This study deals with the development of high pressurized nozzle using dispersion method for oil leakage in offshore. 3D numerical simulation results were obtained using ANSYS Fluent 13.0 code and correlate with the experimental data for validation. This paper studies the contribution of the process on flow speed and pressure of the flow from two different geometrical designs of nozzles and to generate a spray pattern suitable for dispersant application. Factor of size distribution of droplets generated by the nozzle is calculated using pressures ranging from 2 to 6 bars. Results obtain from both analyses shows a significant spray pattern and flow distribution as well as distance. Results also show a significant contribution on the effect of oil leakage in terms of the diameter of the oil spills break up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arc%20nozzle" title="arc nozzle">arc nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a> </p> <a href="https://publications.waset.org/abstracts/8542/effect-of-highly-pressurized-dispersion-arc-nozzle-on-breakup-of-oil-leakage-in-offshore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Investigation of Droplet Size Produced in Two-Phase Gravity Separators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kul%20Pun">Kul Pun</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hamad"> F. A. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahmed"> T. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Ugwu"> J. O. Ugwu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Eyers"> J. Eyers</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lawson"> G. Lawson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Russell"> P. A. Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20separator" title="two-phase separator">two-phase separator</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20bubble%20droplet" title=" average bubble droplet"> average bubble droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20size%20distribution" title=" bubble size distribution"> bubble size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20phase" title=" liquid-liquid phase"> liquid-liquid phase</a> </p> <a href="https://publications.waset.org/abstracts/152230/investigation-of-droplet-size-produced-in-two-phase-gravity-separators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Doustdar">Mohammad Mahdi Doustdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mojtahedpoor"> Mohammad Mojtahedpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are as a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multi phase, multi component code for the analysis of chemically reacting flows with sprays, is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KIVA-3V" title="KIVA-3V">KIVA-3V</a>, <a href="https://publications.waset.org/abstracts/search?q=flame-holder" title=" flame-holder"> flame-holder</a>, <a href="https://publications.waset.org/abstracts/search?q=duct%20combustion" title=" duct combustion"> duct combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20mass%20fraction" title=" effective mass fraction"> effective mass fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20diameter%20of%20droplets" title=" mean diameter of droplets"> mean diameter of droplets</a> </p> <a href="https://publications.waset.org/abstracts/33237/influence-of-flame-holder-on-existence-important-parameters-in-a-duct-combustion-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection-diffusion%20controlled%20model" title="convection-diffusion controlled model">convection-diffusion controlled model</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20particle%20tracking" title=" lagrangian particle tracking"> lagrangian particle tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermolysis" title=" thermolysis"> thermolysis</a> </p> <a href="https://publications.waset.org/abstracts/59691/numerical-simulation-of-urea-water-solution-evaporation-behavior-inside-the-diesel-selective-catalytic-reduction-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivna%20Moror%C3%B3">Ivna Mororó</a>, <a href="https://publications.waset.org/abstracts/search?q=Lise%20P.%20Lab%C3%A9jof"> Lise P. Labéjof</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Ribeiro"> Stephanie Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kely%20Almeida"> Kely Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiobiology" title="radiobiology">radiobiology</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatocytes" title=" hepatocytes"> hepatocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20metabolism" title=" lipid metabolism"> lipid metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/43603/ultrastructural-characterization-of-lipid-droplets-of-rat-hepatocytes-after-whole-body-60-cobalt-gamma-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=droplets&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=droplets&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=droplets&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=droplets&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=droplets&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=droplets&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10