CINXE.COM
Search results for: microparticles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microparticles</title> <meta name="description" content="Search results for: microparticles"> <meta name="keywords" content="microparticles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microparticles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microparticles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 61</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microparticles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Development and In vitro Characterization of Diclofenac-Loaded Microparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakriti%20Diwan">Prakriti Diwan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saraf"> S. Saraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study involves preparation and evaluation of microparticles of diclofenac sodium. The microparticles were prepared by the emulsion solvent evaporation techniques using ethylcellulose polymer. Four different batches of microspheres were prepared by varying the concentration of polymer from 50% to 80% w/w. The microspheres were characterized for drug content, percentage yield and encapsulation efficiency, particle size analysis and surface morphology. Microsphere prepared with high drug content produces higher percentage yield and encapsulation efficiency values. It was observed the increase in concentration of the polymer, increases the mean particle size of the microspheres. The effect of polymer concentration on the in vitro release of diclofenac from the microspheres was also studied. The production microparticles yield showed 98.74%, mean particle size 956.32µm and loading efficiency 97.15%. The results were found that microparticles prepared had slower release than microparticles (p>0.05). Therefore, it may be concluded that drug loaded microparticles are suitable delivery systems for diclofenac sodium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diclofenac%20sodium" title="diclofenac sodium">diclofenac sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20solvent%20evaporation" title=" emulsion solvent evaporation"> emulsion solvent evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylcellulose" title=" ethylcellulose"> ethylcellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a> </p> <a href="https://publications.waset.org/abstracts/47663/development-and-in-vitro-characterization-of-diclofenac-loaded-microparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Mendes">J. E. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20de%20Barros"> T. T. de Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20G.%20de%20Assis"> O. B. G. de Assis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20C.%20Pessoa"> J. D. C. Pessoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles" title="chitosan microparticles">chitosan microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title=" bioprinting"> bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/14524/synthesis-and-characterization-of-chitosan-microparticles-for-scaffold-structure-and-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Formation of Microcapsules in Microchannel through Droplet Merging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Danish%20Eqbal">Md. Danish Eqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkat%20Gundabala"> Venkat Gundabala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microparticles and microcapsules are basically used as a carrier for cells, tissues, drugs, and chemicals. Due to its biocompatibility, non-toxicity and biodegradability, alginate based microparticles have numerous applications in drug delivery, tissue engineering, organ repair and transplantation, etc. The production of uniform monodispersed microparticles was a challenge for the past few decades. However, emergence of microfluidics has provided controlled methods for the generation of the uniform monodispersed microparticles. In this work, we present a successful method for the generation of both microparticles and microcapsules (single and double core) using merging approach of two droplets, completely inside the microfluidic device. We have fabricated hybrid glass- PDMS (polydimethylsiloxane) based microfluidic device which has coflow geometry as well as the T junction channel. Coflow is used to generate the single as well as double oil-alginate emulsion in oil and T junction helps to form the calcium chloride droplets in oil. The basic idea is to match the frequency of the alginate droplets and calcium chloride droplets perfectly for controlled generation. Using the merging of droplets technique, we have successfully generated the microparticles and the microcapsules having single core as well as double and multiple cores. The cores in the microcapsules are very stable, well separated from each other and very intact as seen through cross-sectional confocal images. The size and the number of the cores along with the thickness of the shell can be easily controlled by controlling the flowrate of the liquids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-core" title="double-core">double-core</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsules" title=" microcapsules"> microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a> </p> <a href="https://publications.waset.org/abstracts/62027/formation-of-microcapsules-in-microchannel-through-droplet-merging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Effect of Different Parameters in the Preparation of Antidiabetic Microparticules by Coacervation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawel%20Ouennoughi">Nawel Ouennoughi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Daoud"> Kamel Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During recent years, new pharmaceutical dosage forms were developed in the research laboratories and which consists of encapsulating one or more active molecules in a polymeric envelope. Several techniques of encapsulation allow obtaining the microparticles or the nanoparticles containing one or several polymers. In the industry, microencapsulation is implemented to fill the following objectives: to ensure protection, the compatibility and the stabilization of an active matter in a formulation, to carry out an adapted working, to improve the presentation of a product, to mask a taste or an odor, to modify and control the profile of release of an active matter to obtain, for example, prolonged or started effect. To this end, we focus ourselves on the encapsulation of the antidiabetic. It is an oral hypoglycemic agent belonging to the second generation of sulfonylurea’s commonly employed in the treatment of type II non-insulin-dependent diabetes in order to improve profile them dissolution. Our choice was made on the technique of encapsulation by complex coacervation with two types of polymers (gelatin and the gum Arabic) which is a physicochemical process. Several parameters were studied at the time of the formulation of the microparticles and the nanoparticles: temperature, pH, ratio of polymers etc. The microparticles and the nanoparticles obtained were characterized by microscopy, laser granulometry, FTIR and UV-visible spectrophotometry. The profile of dissolution obtained for the microparticles showed an improvement of the kinetics of dissolution compared to that obtained for the active ingredient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coacervation" title="coacervation">coacervation</a>, <a href="https://publications.waset.org/abstracts/search?q=gum%20Arabic" title=" gum Arabic"> gum Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a> </p> <a href="https://publications.waset.org/abstracts/39396/effect-of-different-parameters-in-the-preparation-of-antidiabetic-microparticules-by-coacervation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> The Catalytic Activity of CU2O Microparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanda%20Wongwailikhit">Kanda Wongwailikhit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper (I) oxide microparticles with the morphology of cubic and hollow sphere were synthesized with the assistance of a surfactant as the shape controller. Both particles were then subjected to a study of the catalytic activity and the results of shape effects of catalysts on rate of catalytic reaction was observed. The decolorizing reaction of crystal violet and sodium hydroxide was chosen and the decrease of reactant with respect to time was measured using a spectrophotometer. The result revealed that morphology of the crystal had no effect on the catalytic activity for the crystal violet reaction but contributed to total surface area predominantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20%28I%29%20oxide" title="copper (I) oxide">copper (I) oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20activity" title=" catalytic activity"> catalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20violet" title=" crystal violet"> crystal violet</a> </p> <a href="https://publications.waset.org/abstracts/23861/the-catalytic-activity-of-cu2o-microparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamer%20M.%20Shehata">Tamer M. Shehata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mucoadhesive" title="mucoadhesive">mucoadhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetis" title=" diabetis"> diabetis</a> </p> <a href="https://publications.waset.org/abstracts/40380/a-new-technology-for-metformin-hydrochloride-mucoadhesive-microparticles-preparation-utilizing-buchi-nano-spray-dryer-b-90" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Formulation and Evaluation of Metformin Hydrochloride Microparticles via BÜCHI Nano-Spray Dryer B-90</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Shehata">Tamer Shehata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, nanotechnology acquired a great interest in the field of pharmaceutical production. Several pharmaceutical equipment were introduced into the research field for production of nanoparticles, among them, BÜCHI’ fourth generation nano-spray dryer B-90. B-90 is specialized with single step of production and drying of nano and microparticles. Currently, our research group is investigating several pharmaceutical formulations utilizing BÜCHI Nano-Spray Dryer B-90 technology. One of our projects is the formulation and evaluation of metformin hydrochloride mucoadhesive microparticles for treatment of type 2-diabetis. Several polymers were investigated, among them, gelatin and sodium alginate. The previous polymers are natural polymers with mucoadhesive properties. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension were performed. Postformulation characters such as particle size, flowability, surface scan and dissolution profile were evaluated. Finally, the pharmacological activity of certain selected formula was evaluated in streptozotocin-induced diabetic rats. B-90’spray head was 7 µm hole heated to 120 with air flow rate 3.5 mL/min. The viscosity of the solution was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Successfully, discrete, non-aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and Sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, mucoadhesive metformin hydrochloride microparticles obtained from B-90 could offer a convenient dosage form with enhanced hypoglycemic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mucoadhesive" title="mucoadhesive">mucoadhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=metformin%20hydrochloride" title=" metformin hydrochloride"> metformin hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-spray%20dryer" title=" nano-spray dryer"> nano-spray dryer</a> </p> <a href="https://publications.waset.org/abstracts/62255/formulation-and-evaluation-of-metformin-hydrochloride-microparticles-via-buchi-nano-spray-dryer-b-90" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Fluorescent Ph-Sensing Bandage for Point-of-Care Wound Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Katia">Cherifi Katia</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Hawat%20Marie-Lynn"> Al-Hawat Marie-Lynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Tricou%20Leo-Paul"> Tricou Leo-Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamontagne%20Stephanie"> Lamontagne Stephanie</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Minh"> Tran Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngu%20Amy%20Ching%20Yie"> Ngu Amy Ching Yie</a>, <a href="https://publications.waset.org/abstracts/search?q=Manrique%20Gabriela"> Manrique Gabriela</a>, <a href="https://publications.waset.org/abstracts/search?q=Guirguis%20Natalie"> Guirguis Natalie</a>, <a href="https://publications.waset.org/abstracts/search?q=Machuca%20Parra%20Arturo%20Israel"> Machuca Parra Arturo Israel</a>, <a href="https://publications.waset.org/abstracts/search?q=Matoori%20Simon"> Matoori Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic foot ulcers (DFUs) are a serious and prevalent complication of diabetes. Current diagnostic options are limited to macroscopic wound analysis such as wound size, depth, and infection. Molecular diagnostics promise to improve DFU diagnosis, staging, and assessment of treatment response. Here, we developed a rapid and easy-to-use fluorescent pH-sensing bandage for wound diagnostics. In a fluorescent dye screen, we identified pyranine as the lead compound due to its suitable pH-sensing properties in the clinically relevant pH range of 6 to 9. To minimize the release of this dye into the wound bed, we screened a library of ionic microparticles and found a strong adhesion of the anionic dye to a cationic polymeric microparticle. These dye-loaded microparticles showed a strong fluorescence response in the clinically relevant pH range of 6 to 9 and a dye release below 1% after one day in biological media. The dye-loaded microparticles were subsequently encapsulated in a calcium alginate hydrogel to minimize the interaction of the microparticles with the wound tissue. This pH-sensing diagnostic wound dressing was tested on full-thickness dorsal wounds of mice, and a linear fluorescence response (R2 = 0.9909) to clinically relevant pH values was observed. These findings encourage further development of this pH-sensing system for molecular diagnostics in DFUs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20ph" title="wound ph">wound ph</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20foot%20ulcer" title=" diabetic foot ulcer"> diabetic foot ulcer</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20wounds" title=" chronic wounds"> chronic wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/177542/fluorescent-ph-sensing-bandage-for-point-of-care-wound-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Non-Steroidal Anti-inflammatory Drugs, Plant Extracts, and Characterized Microparticles to Modulate Antimicrobial Resistance of Epidemic Meca Positive S. Aureus of Dairy Origin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amjad%20I.%20Aqib">Amjad I. Aqib</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanza%20R.%20Khan"> Shanza R. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Ahmad"> Tanveer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20R.%20Shah"> Syed A. R. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Naseer"> Muhammad A. Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shoaib"> Muhammad Shoaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Sarwar"> Iqra Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20F.%20A.%20Kulyar"> Muhammad F. A. Kulyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20A.%20Bhutta"> Zeeshan A. Bhutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20A.%20Khan"> Mumtaz A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahboob%20Ali"> Mahboob Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Yasmeen"> Khadija Yasmeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study focused on resistance modulation of dairy linked epidemic mec A positive S. aureus for resistance modulation by plant extract (Eucalyptus globolus, Calotropis procera), NSAIDs, and star like microparticles. Zinc oxide {ZnO}c and {Zn (OH)₂} microparticles were synthesized by solvothermal method and characterized by calcination, X-ray diffraction (XRD), and scanning electron microscope (SEM). Plant extracts were prepared by the Soxhlet extraction method. The study found 34% of subclinical samples (n=200) positive for S. aureus from dairy milk having significant (p < 0.05) association of assumed risk factors with pathogen. The antimicrobial assay showed 55, 42, 41, and 41% of S. aureus resistant to oxacillin, ciprofloxacin, streptomycin, and enoxacin. Amoxicillin showed the highest percentage of increase in zone of inhibitions (ZOI) at 100mg of Calotropis procera extract (31.29%) followed by 1mg/mL (28.91%) and 10mg/mL (21.68%) of Eucalyptus globolus. Amoxicillin increased ZOI by 42.85, 37.32, 29.05, and 22.78% in combination with 500 ug/ml with each of diclofenac, aspirin, ibuprofen, and meloxicam, respectively. Fractional inhibitory concentration indices (FICIs) showed synergism of amoxicillin with diclofenac and aspirin and indifferent synergy with ibuprofen and meloxicam. The preliminary in vitro finding of combination of microparticles with amoxicillin proved to be synergistic, giving rise to 26.74% and 14.85% increase in ZOI of amoxicillin in combination with zinc oxide and zinc hydroxide, respectively. The modulated antimicrobial resistance incurred by NSAIDs, plant extracts, and microparticles against pathogenic S. aureus invite immediate attention to probe alternative antimicrobial sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20milk" title=" dairy milk"> dairy milk</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=NSIDs" title=" NSIDs"> NSIDs</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20modulation" title=" resistance modulation"> resistance modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a> </p> <a href="https://publications.waset.org/abstracts/129936/non-steroidal-anti-inflammatory-drugs-plant-extracts-and-characterized-microparticles-to-modulate-antimicrobial-resistance-of-epidemic-meca-positive-s-aureus-of-dairy-origin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathwik%20Sarvadevabhatla%20Kasyap">Sathwik Sarvadevabhatla Kasyap</a>, <a href="https://publications.waset.org/abstracts/search?q=Kostas%20Senetakis"> Kostas Senetakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20interface" title="contact interface">contact interface</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-mechanical%20behavior" title=" micro-mechanical behavior"> micro-mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=quartz%20sand" title=" quartz sand"> quartz sand</a> </p> <a href="https://publications.waset.org/abstracts/94772/influence-of-microparticles-in-the-contact-region-of-quartz-sand-grains-a-micro-mechanical-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Particle Migration in Shear Thinning Viscoelastic Fluid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shamik%20Hazra">Shamik Hazra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushanta%20Mitra"> Sushanta Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashis%20Sen"> Ashis Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20migration" title="lateral migration">lateral migration</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticle" title=" microparticle"> microparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20oxide" title=" polyethylene oxide"> polyethylene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/128138/particle-migration-in-shear-thinning-viscoelastic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hend%20Ben%20Tkhayat">Hend Ben Tkhayat </a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Al%20Zahabi"> Khaled Al Zahabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Husam%20Younes"> Husam Younes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vildagliptin" title="vildagliptin">vildagliptin</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20congealing" title=" spray congealing"> spray congealing</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a> </p> <a href="https://publications.waset.org/abstracts/120656/formulation-of-lipid-based-tableted-spray-congealed-microparticles-for-zero-order-release-of-vildagliptin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Formulation and Evaluation of Curcumin-Zn (II) Microparticulate Drug Delivery System for Antimalarial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Aher">M. R. Aher</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Laware"> R. B. Laware</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20%20Asane"> G. S. Asane</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Kuchekar"> B. S. Kuchekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Studies have shown that a new combination therapy with Artemisinin derivatives and curcumin is unique, with potential advantages over known ACTs. In present study an attempt was made to prepare microparticulate drug delivery system of Curcumin-Zn complex and evaluate it in combination with artemether for antimalarial activity. Material and method: Curcumin Zn complex was prepared and encapsulated using sodium alginate. Microparticles thus obtained are further coated with various enteric polymers at different coating thickness to control the release. Microparticles are evaluated for encapsulation efficiency, drug loading and in vitro drug release. Roentgenographic Studies was conducted in rabbits with BaSO 4 tagged formulation. Optimized formulation was screened for antimalarial activity using P. berghei-infected mice survival test and % paracetemia inhibition, alone (three oral dose of 5mg/day) and in combination with arthemether (i.p. 500, 1000 and 1500µg). Curcumin-Zn(II) was estimated in serum after oral administration to rats by using spectroflurometry. Result: Microparticles coated with Cellulose acetate phthalate showed most satisfactory and controlled release with 479 min time for 60% drug release. X-ray images taken at different time intervals confirmed the retention of formulation in GI tract. Estimation of curcumin in serum by spectroflurometry showed that drug concentration is maintained in the blood for longer time with tmax of 6 hours. The survival time (40 days post treatment) of mice infected with P. berghei was compared to survival after treatment with either Curcumin-Zn(II) microparticles artemether combination, curcumin-Zn complex and artemether. Oral administration of Curcumin-Zn(II)-artemether prolonged the survival of P.berghei-infected mice. All the mice treated with Curcumin-Zn(II) microparticles (5mg/day) artemether (1000µg) survived for more than 40 days and recovered with no detectable parasitemia. Administration of Curcumin-Zn(II) artemether combination reduced the parasitemia in mice by more than 90% compared to that in control mice for the first 3 days after treatment. Conclusion: Antimalarial activity of the curcumin Zn-artemether combination was more pronounced than mono therapy. A single dose of 1000µg of artemether in curcumin-Zn combination gives complete protection in P. berghei-infected mice. This may reduce the chances of drug resistance in malaria management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formulation" title="formulation">formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticulate%20drug%20delivery" title=" microparticulate drug delivery"> microparticulate drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=antimalarial" title=" antimalarial"> antimalarial</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutics" title=" pharmaceutics"> pharmaceutics</a> </p> <a href="https://publications.waset.org/abstracts/26467/formulation-and-evaluation-of-curcumin-zn-ii-microparticulate-drug-delivery-system-for-antimalarial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Improvement of Oxidative Stability of Edible Oil by Microencapsulation Using Plant Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Le%20Priol">L. Le Priol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nesterenko"> A. Nesterenko</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20El%20Kirat"> K. El Kirat</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saleh"> K. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and objectives: Polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 are widely recognized as being beneficial to the health and normal growth. Unfortunately, due to their highly unsaturated nature, these molecules are sensitive to oxidation and thermic degradation leading to the production of toxic compounds and unpleasant flavors and smells. Hence, it is necessary to find out a suitable way to protect them. Microencapsulation by spray-drying is a low-cost encapsulation technology and most commonly used in the food industry. Many compounds can be used as wall materials, but there is a growing interest in the use of biopolymers, such as proteins and polysaccharides, over the last years. The objective of this study is to increase the oxidative stability of sunflower oil by microencapsulation in plant protein matrices using spray-drying technique. Material and methods: Sunflower oil was used as a model substance for oxidable food oils. Proteins from brown rice, hemp, pea, soy and sunflower seeds were used as emulsifiers and microencapsulation wall materials. First, the proteins were solubilized in distilled water. Then, the emulsions were pre-homogenized using a high-speed homogenizer (Ultra-Turrax) and stabilized by using a high-pressure homogenizer (HHP). Drying of the emulsion was performed in a Mini Spray Dryer. The oxidative stability of the encapsulated oil was determined by performing accelerated oxidation tests with a Rancimat. The size of the microparticles was measured using a laser diffraction analyzer. The morphology of the spray-dried microparticles was acquired using environmental scanning microscopy. Results: Pure sunflower oil was used as a reference material. Its induction time was 9.5 ± 0.1 h. The microencapsulation of sunflower oil in pea and soy protein matrices significantly improved its oxidative stability with induction times of 21.3 ± 0.4 h and 12.5 ± 0.4 h respectively. The encapsulation with hemp proteins did not significantly change the oxidative stability of the encapsulated oil. Sunflower and brown rice proteins were ineffective materials for this application, with induction times of 7.2 ± 0.2 h and 7.0 ± 0.1 h respectively. The volume mean diameter of the microparticles formulated with soy and pea proteins were 8.9 ± 0.1 µm and 16.3 ± 1.2 µm respectively. The values for hemp, sunflower and brown rice proteins could not be obtained due to the agglomeration of the microparticles. ESEM images showed smooth and round microparticles with soy and pea proteins. The surfaces of the microparticles obtained with sunflower and hemp proteins were porous. The surface was rough when brown rice proteins were used as the encapsulating agent. Conclusion: Soy and pea proteins appeared to be efficient wall materials for the microencapsulation of sunflower oil by spray drying. These results were partly explained by the higher solubility of soy and pea proteins in water compared to hemp, sunflower, and brown rice proteins. Acknowledgment: This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title="biopolymer">biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oil" title=" edible oil"> edible oil</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stability" title=" oxidative stability"> oxidative stability</a>, <a href="https://publications.waset.org/abstracts/search?q=release" title=" release"> release</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a> </p> <a href="https://publications.waset.org/abstracts/90642/improvement-of-oxidative-stability-of-edible-oil-by-microencapsulation-using-plant-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Karabutov">Alexander A. Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20B.%20Podymova"> Natalia B. Podymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya"> Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Makarov"> Vladimir A. Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20G.%20Sokolovskaya"> Yulia G. Sokolovskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasonic" title="laser ultrasonic">laser ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20and%20shear%20ultrasonic%20waves" title=" longitudinal and shear ultrasonic waves"> longitudinal and shear ultrasonic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20elastic%20moduli" title=" local elastic moduli"> local elastic moduli</a> </p> <a href="https://publications.waset.org/abstracts/36229/laser-ultrasonic-method-for-measuring-the-local-elastic-moduli-of-porosity-isotropic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Mixed Hydrotropic Zaleplon Oral Tablets: Formulation and Neuropharmacological Effect on Plasma GABA Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20A.%20Abdelbary">Ghada A. Abdelbary</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20M.%20Amin"> Maha M. Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Abdelmoteleb"> Mostafa Abdelmoteleb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zaleplon (ZP) is a non-benzodiazepine poorly soluble hypnotic drug indicated for the short term treatment of insomnia having a bioavailability of about 30%. The aim of the present study is to enhance the solubility and consequently the bioavailability of ZP using hydrotropic agents (HA). Phase solubility diagrams of ZP in presence of different molar concentrations of HA (Sodium benzoate, Urea, Ascorbic acid, Resorcinol, Nicotinamide, and Piperazine) were constructed. ZP/Sodium benzoate and Resorcinol microparticles were prepared adopting melt, solvent evaporation and melt-evaporation techniques followed by XRD. Directly compressed mixed hydrotropic ZP tablets of Sodium benzoate and Resorcinol in different weight ratios were prepared and evaluated compared to the commercially available tablets (Sleep aid® 5 mg). The effect of shelf and accelerated stability storage (40°C ± 2°C/75%RH ± 5%RH) on the optimum tablet formula (F5) for six months were studied. The enhancement of ZP solubility follows the order of: Resorcinol > Sodium benzoate > Ascorbic acid > Piperazine > Urea > Nicotinamide with about 350 and 2000 fold increase using 1M of Sodium benzoate and Resorcinol respectively. ZP/HA microparticles exhibit the order of: Solvent evaporation > melt-solvent evaporation > melt > physical mixture which was further confirmed by the complete conversion of ZP into amorphous form. Mixed hydrotropic tablet formula (F5) composed of ZP/(Resorcinol: Sodium benzoate 4:1w/w) microparticles prepared by solvent evaporation exhibits in-vitro dissolution of 31.7±0.11% after five minutes (Q5min) compared to 10.0±0.10% for Sleep aid® (5 mg) respectively. F5 showed significantly higher GABA concentration of 122.5±5.5mg/mL in plasma compared to 118±1.00 and 27.8±1.5 mg/mL in case of Sleep aid® (5 mg) and control taking only saline respectively suggesting a higher neuropharmacological effect of ZP following hydrotropic solubilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zaleplon" title="zaleplon">zaleplon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrotropic%20solubilization" title=" hydrotropic solubilization"> hydrotropic solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20GABA%20level" title=" plasma GABA level"> plasma GABA level</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20hydrotropy" title=" mixed hydrotropy"> mixed hydrotropy</a> </p> <a href="https://publications.waset.org/abstracts/30664/mixed-hydrotropic-zaleplon-oral-tablets-formulation-and-neuropharmacological-effect-on-plasma-gaba-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Munster">Lukas Munster</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Bazant"> Pavel Bazant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Kuritka"> Ivo Kuritka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microcrystalline%20cellulose" title="microcrystalline cellulose">microcrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20sub-microparticles" title=" zinc oxide sub-microparticles"> zinc oxide sub-microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20dialdehyde" title=" cellulose dialdehyde"> cellulose dialdehyde</a> </p> <a href="https://publications.waset.org/abstracts/10728/microwave-assisted-synthesis-of-agzno-sub-microparticles-deposited-on-various-cellulose-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Ex-vivo Bio-distribution Studies of a Potential Lung Perfusion Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Sarwar">Shabnam Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Lacoeuille"> Franck Lacoeuille</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20%20Withofs"> Nadia Withofs</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Hustinx"> Roland Hustinx</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the development of a potential surrogate of MAA, and its successful application for the diagnosis of pulmonary embolism in artificially embolized rats’ lungs, this microparticulate system were radiolabelled with gallium-68 to synthesize 68Ga-SBMP with high radiochemical purity >99%. As a prerequisite step of clinical trials, 68Ga- labelled starch based microparticles (SBMP) were analysed for their in-vivo behavior in small animals. The purpose of the presented work includes the ex-vivo biodistribution studies of 68Ga-SBMP in order to assess the activity uptake in target organs with respect to time, excretion pathways of the radiopharmaceutical, %ID/g in major organs, T/NT ratios, in-vivo stability of the radiotracer and subsequently the microparticles in the target organs. Radiolabelling of starch based microparticles was performed by incubating it with 68Ga generator eluate (430±26 MBq) at room temperature and pressure without using any harsh reaction condition. For Ex-vivo biodistribution studies healthy White Wistar rats weighing between 345-460 g were injected intravenously 68Ga-SBMP 20±8 MBq, containing about 2,00,000-6,00,000 SBMP particles in a volume of 700µL. The rats were euthanized at predefined time intervals (5min, 30min, 60min and 120min) and their organ parts were cut, washed, and put in the pre-weighed tubes and measured for radioactivity counts through automatic Gamma counter. The 68Ga-SBMP produced >99% RCP just after 10-20 min incubation through a simple and robust procedure. Biodistribution of 68Ga-SBMP showed that initially just after 5 min post injection major uptake was observed in the lungs following by blood, heart, liver, kidneys, bladder, urine, spleen, stomach, small intestine, colon, skin and skeleton, thymus and at last the smallest activity was found in brain. Radioactivity counts stayed stable in lungs with gradual decrease with the passage of time, and after 2h post injection, almost half of the activity were seen in lungs. This is a sufficient time to perform PET/CT lungs scanning in humans while activity in the liver, spleen, gut and urinary system decreased with time. The results showed that urinary system is the excretion pathways instead of hepatobiliary excretion. There was a high value of T/NT ratios which suggest fine tune images for PET/CT lung perfusion studies henceforth further pre-clinical studies and then clinical trials should be planned in order to utilize this potential lung perfusion agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch%20based%20microparticles" title="starch based microparticles">starch based microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium-68" title=" gallium-68"> gallium-68</a>, <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title=" biodistribution"> biodistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20organs" title=" target organs"> target organs</a>, <a href="https://publications.waset.org/abstracts/search?q=excretion%20pathways" title=" excretion pathways"> excretion pathways</a> </p> <a href="https://publications.waset.org/abstracts/128551/ex-vivo-bio-distribution-studies-of-a-potential-lung-perfusion-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Molina">Victoria Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=Wendy%20%20Franco"> Wendy Franco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20%20Benavides"> Sergio Benavides</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20M.%20Troncoso"> José M. Troncoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20%20Luna"> Ricardo Luna</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20R.%20P%C3%A9Rez-Correa"> Jose R. PéRez-Correa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title="microencapsulation">microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20decision-making%20criteria" title=" multiple decision-making criteria"> multiple decision-making criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Soluplus%C2%AE" title=" Soluplus®"> Soluplus®</a> </p> <a href="https://publications.waset.org/abstracts/129307/multi-objective-optimization-pareto-sets-and-multi-response-optimization-desirability-function-of-microencapsulation-of-emamectin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Biodegradable Poly D,L-Lactide-Co-Glycolic Acid Microparticle Vaccine against Aeromonas hydrophila Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saekil%20Yun">Saekil Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sib%20Sankar%20Giri"> Sib Sankar Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Woo%20Jun"> Jin Woo Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoun%20Joong%20Kim"> Hyoun Joong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Guen%20Kim"> Sang Guen Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Wha%20Kim"> Sang Wha Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Woo%20Kang"> Jung Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Jin%20Han"> Se Jin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Chang%20Park"> Se Chang Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aquaculture, vaccination is important to control and prevent diseases. In the study, we utilized poly D,L-lactide-co-glycolic acid (PLGA) microparticles (MPs) for encapsulating formalin-killed Aeromonas hydrophila cells. To assess the innate and adaptive immune responses, carps and loaches were used for the experiments. Fish were divided into three groups (A, B, C). Total antigen of 0.1 ml vaccine was adjusted by 2 x 108 CFU and injected via intraperitoneal route. Group A was vaccinated with 0.1 ml of PLGA vaccine, group B was with 0.1 ml of FKC vaccine and group C was with 0.1 ml of sterile PBS. All three groups were challenged with A. hydrophila and challenge dose was lethal dose (LD50). Loaches and carp were then challenged with A. hydrophila at 12 and 20 weeks post vaccination (wpv), and 10 and 14 wpv, respectively, and relative survival rates were calculated. For both fish species, the curve of antibody titer over time was shallower in the PLGA group than the FKC group and the PLGA groups demonstrated higher survival rates at all time-points. In the groups of PLGA-MP, relative mRNA levels of IL-1β, TNF-α, lysozyme C and IgM were significantly upregulated than FKC treated groups. Biodegradable PLGA microparticle vaccine could induce longer immune responses than original FKC vaccines to protect from A. hydrophila infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLGA" title="PLGA">PLGA</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Aeromonas%20hydrophila" title=" Aeromonas hydrophila"> Aeromonas hydrophila</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a> </p> <a href="https://publications.waset.org/abstracts/80486/biodegradable-poly-dl-lactide-co-glycolic-acid-microparticle-vaccine-against-aeromonas-hydrophila-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Multicellular Cancer Spheroids as an in Vitro Model for Localized Hyperthermia Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamila%20Dus-Szachniewicz">Kamila Dus-Szachniewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Bednarkiewicz"> Artur Bednarkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Gdesz-Birula"> Katarzyna Gdesz-Birula</a>, <a href="https://publications.waset.org/abstracts/search?q=Slawomir%20Drobczynski"> Slawomir Drobczynski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern oncology hyperthermia (HT) is defined as a controlled tumor heating. HT treatment temperatures range between 40–48 °C and can selectively damage heat-sensitive cancer cells or limit their further growth, usually with minimal injury to healthy tissues. Despite many advantages, conventional whole-body and regional hyperthermia have clinically relevant side effects, including cardiac and vascular disorders. Additionally, the lack of accessibility of deep-seated tumor sites and impaired targeting micrometastases renders HT less effective. It is believed that above disadvantages can significantly overcome by the application of biofunctionalized microparticles, which can specifically target tumor sites and become activated by an external stimulus to provide a sufficient cellular response. In our research, the unique optical tweezers system have enabled capturing the silica microparticles, primary cells and tumor spheroids in highly controllable and reproducible environment to study the impact of localized heat stimulation on normal and pathological cell and within multicellular tumor spheroid. High throughput spheroid model was introduced to better mimic the response to HT treatment on tumors in vivo. Additionally, application of local heating of tumor spheroids was performed in strictly controlled conditions resembling tumor microenvironment (temperature, pH, hypoxia, etc.), in response to localized and nonhomogeneous hyperthermia in the extracellular matrix, which promotes tumor progression and metastatic spread. The lack of precise control over these well- defined parameters in basic research leads to discrepancies in the response of tumor cells to the new treatment strategy in preclinical animal testing. The developed approach enables also sorting out subclasses of cells, which exhibit partial or total resistance to therapy, in order to understand fundamental aspects of the resistance shown by given tumor cells in response to given therapy mode and conditions. This work was funded by the National Science Centre (NCN, Poland) under grant no. UMO-2017/27/B/ST7/01255. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20spheroids" title="cancer spheroids">cancer spheroids</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20tweezers" title=" optical tweezers"> optical tweezers</a> </p> <a href="https://publications.waset.org/abstracts/113988/multicellular-cancer-spheroids-as-an-in-vitro-model-for-localized-hyperthermia-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Antimicrobial Properties of SEBS Compounds with Copper Microparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanda%20Ferreira%20Ribeiro">Vanda Ferreira Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Daiane%20Tomacheski"> Daiane Tomacheski</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Naue%20Sim%C3%B5es"> Douglas Naue Simões</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Pitto"> Michele Pitto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Marlene%20Campomanes%20Santana"> Ruth Marlene Campomanes Santana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioner" title="air conditioner">air conditioner</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=cooper" title=" cooper"> cooper</a>, <a href="https://publications.waset.org/abstracts/search?q=SEBS" title=" SEBS"> SEBS</a> </p> <a href="https://publications.waset.org/abstracts/46861/antimicrobial-properties-of-sebs-compounds-with-copper-microparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Guillermo%20Piedrahita%20Marquez">David Guillermo Piedrahita Marquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Suarez%20Mahecha"> Hector Suarez Mahecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jairo%20Humberto%20Lopez"> Jairo Humberto Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title="spray drying">spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=propolis" title=" propolis"> propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=maltodextrin" title=" maltodextrin"> maltodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/62826/spray-drying-and-physico-chemical-microbiological-evaluation-of-ethanolic-extracts-of-propolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B4nio%20P.%20de%20Ara%C3%BAjo%20Neto">Antônio P. de Araújo Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruy%20D.%20A.%20da%20Silva%20Neto"> Ruy D. A. da Silva Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20R.%20de%20Souza"> Juliana R. de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Salete%20K.%20P.%20de%20Medeiros"> Salete K. P. de Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20T.%20N.%20de%20Medeiros"> João T. N. de Medeiros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient of friction and wear resistance of the specimens. The parameters known to performing the test were 300 rpm rotation, normal load of 16N and duration of 33.5 minutes. The composite with 10% mineral filler performed better, considering that the wear resistance was good when compared to the other compositions and an average low coefficient of friction, in the order of μ ≤ 0.15. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microcomposites" title="microcomposites">microcomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles%20tailings%20of%20scheelite" title=" microparticles tailings of scheelite"> microparticles tailings of scheelite</a>, <a href="https://publications.waset.org/abstracts/search?q=PTFE" title=" PTFE"> PTFE</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/43127/evaluation-of-ptfe-composites-with-mineral-tailing-considering-friction-wear-and-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Microfluidic Synthesis of Chlorophyll Extraction–Loaded PCL Composite Microparticles Developed as Health Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Ju%20Hsiao">Ching-Ju Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mao-Chen%20Huang"> Mao-Chen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Fan%20Chen"> Pei-Fan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruo-Yun%20Chung"> Ruo-Yun Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Hua%20Chou"> Jiun-Hua Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Hui%20Yang"> Chih-Hui Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Keng-Shiang%20Huang"> Keng-Shiang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jei-Fu%20Shaw"> Jei-Fu Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlorophyll has many benefits for human body. It is known to improve the health of the circulatory, digestive, immune and detoxification systems of the body. However, Chl can’t be preserved at the environment of high temperature and light exposure for a long time due to it is chemical structure is easily degradable. This characteristic causes that human body is difficult to absorb Chl effective components. In order to solve this problem, we utilize polycaprolactone (PCL) polymer encapsulation technology to increase the stability of Chl. In particular, we also established a microfluidic platform provide the control of composite beads diameter. The new composite beads is potential to be a health food. Result show that Chl effective components via the microfludic platform can be encapsulated effectively and still preserve its effective components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title="chlorophyll">chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=PCL" title=" PCL"> PCL</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a> </p> <a href="https://publications.waset.org/abstracts/26797/microfluidic-synthesis-of-chlorophyll-extraction-loaded-pcl-composite-microparticles-developed-as-health-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Poly(Methyl Methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gansukh%20Erdenedelger">Gansukh Erdenedelger</a>, <a href="https://publications.waset.org/abstracts/search?q=Doljinsuren%20Sukhbaatar"> Doljinsuren Sukhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Trung%20Dung%20Dao"> Trung Dung Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Mo%20Jeong"> Han Mo Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two kinds of carboxylated thermally reduced graphenes (C-TRGs) having different lateral sizes are examined as a Pickering stabilizer in the suspension polymerization of methyl methacrylate. The size and the shape of the prepared composite particles are irregular due to agglomeration, more evidently when the larger C-TRG is used. In addition, C-TRG is distributed not only on the surface but also inside the composite particles. It indicates that the C-TRG alone is not a stable Pickering agent. However, a very small dosage of acrylic acid remedies all these issues, because acrylic acid interacts with C-TRG and synergizes the stabilizing effect. The compression molded composite of the core/shell poly(methyl methacrylate)/C-TRG particles exhibits a very low percolation threshold of electrical conductivity of 0.03 vol%. It demonstrates that the C-TRG shells of the composite particles effectively form a segregated conductive network throughout the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pickering" title="pickering">pickering</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a> </p> <a href="https://publications.waset.org/abstracts/45928/polymethyl-methacrylategraphene-microparticles-having-a-coreshell-structure-prepared-with-carboxylated-graphene-as-a-pickering-stabilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Enhancing Water Purification with Angiosperm Xylem Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yinan%20Zhou">Yinan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One in four people in the world still lack access to clean drinking water, and there is a current lack of cost-effective ways for water-scarce regions to access it. This study seeks to investigate the solutions to water filtration in rural China as well as test the feasibility of using angiosperms as xylem candidates. Four angiosperms that are found in China and around Asia were subject to three tests to test their filtration capacity: ink water filtration, creek water filtration, and microparticle filtration. Analysis of the experiments demonstrated that Celtis Sinensis was able to produce one of the clearest solutions, filter out large debris and bacteria, and reject microparticles almost completely. Celtis Sinensis proves that angiosperm xylem filters are also competent filter candidates and, due to their availability in China, can be used as a nearby source of water filtration. Further research should be done on scaling production to a larger scale and also on the filtration of viruses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=xylem%20filter" title="xylem filter">xylem filter</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a>, <a href="https://publications.waset.org/abstracts/search?q=angiosperms" title=" angiosperms"> angiosperms</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/193135/enhancing-water-purification-with-angiosperm-xylem-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Photocatalytic Packed‐Bed Flow Reactor for Continuous Room‐Temperature Hydrogen Release from Liquid Organic Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malek%20Y.%20S.%20Ibrahim">Malek Y. S. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20A.%20Bennett"> Jeffrey A. Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Abolhasani"> Milad Abolhasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the potential of hydrogen (H2) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling has hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20chemistry" title=" flow chemistry"> flow chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20hydrogen" title=" solar hydrogen"> solar hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/154600/photocatalytic-packedbed-flow-reactor-for-continuous-roomtemperature-hydrogen-release-from-liquid-organic-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipali%20Nagaonkar">Dipali Nagaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Rai"> Mahendra Rai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitosan%20nanoparticles" title="Chitosan nanoparticles">Chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pongamia%20pinnata" title=" Pongamia pinnata"> Pongamia pinnata</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a> </p> <a href="https://publications.waset.org/abstracts/20293/green-approach-towards-synthesis-of-chitosan-nanoparticles-for-in-vitro-release-of-quercetin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microparticles&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microparticles&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microparticles&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>