CINXE.COM

Lyapunov exponent - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Lyapunov exponent - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9e6bf29e-971d-48ed-9b54-a6e518c0fa42","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Lyapunov_exponent","wgTitle":"Lyapunov exponent","wgCurRevisionId":1235959907,"wgRevisionId":1235959907,"wgArticleId":166441,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1: long volume value","Articles with short description","Short description matches Wikidata","Pages using multiple image with auto scaled images","Webarchive template wayback links","Dynamical systems"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Lyapunov_exponent","wgRelevantArticleId":166441,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1238630","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Lyapunov-exponent.svg/1200px-Lyapunov-exponent.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="997"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Lyapunov-exponent.svg/800px-Lyapunov-exponent.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="665"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Lyapunov-exponent.svg/640px-Lyapunov-exponent.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="532"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Lyapunov exponent - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Lyapunov_exponent"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Lyapunov_exponent&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Lyapunov_exponent"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Lyapunov_exponent rootpage-Lyapunov_exponent skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lyapunov+exponent" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Lyapunov+exponent" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lyapunov+exponent" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Lyapunov+exponent" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition_of_the_maximal_Lyapunov_exponent" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition_of_the_maximal_Lyapunov_exponent"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition of the maximal Lyapunov exponent</span> </div> </a> <ul id="toc-Definition_of_the_maximal_Lyapunov_exponent-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition_of_the_Lyapunov_spectrum" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition_of_the_Lyapunov_spectrum"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition of the Lyapunov spectrum</span> </div> </a> <ul id="toc-Definition_of_the_Lyapunov_spectrum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lyapunov_exponent_for_time-varying_linearization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lyapunov_exponent_for_time-varying_linearization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Lyapunov exponent for time-varying linearization</span> </div> </a> <button aria-controls="toc-Lyapunov_exponent_for_time-varying_linearization-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lyapunov exponent for time-varying linearization subsection</span> </button> <ul id="toc-Lyapunov_exponent_for_time-varying_linearization-sublist" class="vector-toc-list"> <li id="toc-Perron_effects_of_largest_Lyapunov_exponent_sign_inversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Perron_effects_of_largest_Lyapunov_exponent_sign_inversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Perron effects of largest Lyapunov exponent sign inversion</span> </div> </a> <ul id="toc-Perron_effects_of_largest_Lyapunov_exponent_sign_inversion-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Basic_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Basic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Basic properties</span> </div> </a> <ul id="toc-Basic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Significance_of_the_Lyapunov_spectrum" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Significance_of_the_Lyapunov_spectrum"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Significance of the Lyapunov spectrum</span> </div> </a> <ul id="toc-Significance_of_the_Lyapunov_spectrum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerical_calculation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numerical_calculation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Numerical calculation</span> </div> </a> <ul id="toc-Numerical_calculation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Local_Lyapunov_exponent" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Local_Lyapunov_exponent"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Local Lyapunov exponent</span> </div> </a> <ul id="toc-Local_Lyapunov_exponent-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conditional_Lyapunov_exponent" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conditional_Lyapunov_exponent"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Conditional Lyapunov exponent</span> </div> </a> <ul id="toc-Conditional_Lyapunov_exponent-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Software" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Software"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Software</span> </div> </a> <ul id="toc-Software-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Lyapunov exponent</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 13 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-13" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">13 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB_%D0%BD%D0%B0_%D0%9B%D1%8F%D0%BF%D1%83%D0%BD%D0%BE%D0%B2" title="Показател на Ляпунов – Bulgarian" lang="bg" hreflang="bg" data-title="Показател на Ляпунов" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Exponent_de_Liapunov" title="Exponent de Liapunov – Catalan" lang="ca" hreflang="ca" data-title="Exponent de Liapunov" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ljapunow-Exponent" title="Ljapunow-Exponent – German" lang="de" hreflang="de" data-title="Ljapunow-Exponent" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Exponente_de_Lyapunov" title="Exponente de Lyapunov – Spanish" lang="es" hreflang="es" data-title="Exponente de Lyapunov" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Exposant_de_Liapounov" title="Exposant de Liapounov – French" lang="fr" hreflang="fr" data-title="Exposant de Liapounov" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Esponente_di_Ljapunov" title="Esponente di Ljapunov – Italian" lang="it" hreflang="it" data-title="Esponente di Ljapunov" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%A7%D7%A1%D7%A4%D7%95%D7%A0%D7%A0%D7%98_%D7%9C%D7%99%D7%90%D7%A4%D7%95%D7%A0%D7%95%D7%91" title="אקספוננט ליאפונוב – Hebrew" lang="he" hreflang="he" data-title="אקספוננט ליאפונוב" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%82%A2%E3%83%97%E3%83%8E%E3%83%95%E6%8C%87%E6%95%B0" title="リアプノフ指数 – Japanese" lang="ja" hreflang="ja" data-title="リアプノフ指数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wyk%C5%82adnik_Lapunowa" title="Wykładnik Lapunowa – Polish" lang="pl" hreflang="pl" data-title="Wykładnik Lapunowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Expoente_de_Lyapunov" title="Expoente de Lyapunov – Portuguese" lang="pt" hreflang="pt" data-title="Expoente de Lyapunov" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C_%D0%9B%D1%8F%D0%BF%D1%83%D0%BD%D0%BE%D0%B2%D0%B0" title="Показатель Ляпунова – Russian" lang="ru" hreflang="ru" data-title="Показатель Ляпунова" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%BD%D0%B8%D0%BA_%D0%9B%D1%8F%D0%BF%D1%83%D0%BD%D0%BE%D0%B2%D0%B0" title="Показник Ляпунова – Ukrainian" lang="uk" hreflang="uk" data-title="Показник Ляпунова" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9D%8E%E4%BA%9A%E6%99%AE%E8%AF%BA%E5%A4%AB%E6%8C%87%E6%95%B0" title="李亚普诺夫指数 – Chinese" lang="zh" hreflang="zh" data-title="李亚普诺夫指数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1238630#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lyapunov_exponent" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Lyapunov_exponent" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lyapunov_exponent"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Lyapunov_exponent"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Lyapunov_exponent" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Lyapunov_exponent" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;oldid=1235959907" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Lyapunov_exponent&amp;id=1235959907&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLyapunov_exponent"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLyapunov_exponent"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Lyapunov_exponent&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Lyapunov_exponent&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1238630" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">The rate of separation of infinitesimally close trajectories</div><style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:242px;max-width:242px"><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:197px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Lyapunov-exponent.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Lyapunov-exponent.svg/238px-Lyapunov-exponent.svg.png" decoding="async" width="238" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Lyapunov-exponent.svg/357px-Lyapunov-exponent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Lyapunov-exponent.svg/476px-Lyapunov-exponent.svg.png 2x" data-file-width="213" data-file-height="177" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:178px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Orbital_instability_(Lyapunov_exponent).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Orbital_instability_%28Lyapunov_exponent%29.png/238px-Orbital_instability_%28Lyapunov_exponent%29.png" decoding="async" width="238" height="179" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Orbital_instability_%28Lyapunov_exponent%29.png/357px-Orbital_instability_%28Lyapunov_exponent%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Orbital_instability_%28Lyapunov_exponent%29.png/476px-Orbital_instability_%28Lyapunov_exponent%29.png 2x" data-file-width="945" data-file-height="709" /></a></span></div><div class="thumbcaption">Explanations of the Lyapunov exponent</div></div></div></div></div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Lyapunov exponent</b> or <b>Lyapunov characteristic exponent</b> of a <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical system</a> is a quantity that characterizes the rate of separation of infinitesimally close <a href="/wiki/Trajectory" title="Trajectory">trajectories</a>. Quantitatively, two trajectories in <a href="/wiki/Phase_space" title="Phase space">phase space</a> with initial separation vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {Z} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \mathbf {Z} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0197de2ff71c4f6e2610fd4b16975a847836980c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.737ex; height:2.676ex;" alt="{\displaystyle \delta \mathbf {Z} _{0}}"></span> diverge (provided that the divergence can be treated within the linearized approximation) at a rate given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\delta \mathbf {Z} (t)|\approx e^{\lambda t}|\delta \mathbf {Z} _{0}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mi>t</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\delta \mathbf {Z} (t)|\approx e^{\lambda t}|\delta \mathbf {Z} _{0}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56076031e9fca916bb1f8c9ccf05c26c7826cfa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.622ex; height:3.176ex;" alt="{\displaystyle |\delta \mathbf {Z} (t)|\approx e^{\lambda t}|\delta \mathbf {Z} _{0}|}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is the Lyapunov exponent. </p><p>The rate of separation can be different for different orientations of initial separation vector. Thus, there is a <b>spectrum of Lyapunov exponents</b>—equal in number to the dimensionality of the phase space. It is common to refer to the largest one as the <b>maximal Lyapunov exponent</b> (MLE), because it determines a notion of <a href="/wiki/Predictability" title="Predictability">predictability</a> for a dynamical system. A positive MLE is usually taken as an indication that the system is <a href="/wiki/Chaos_theory" title="Chaos theory">chaotic</a> (provided some other conditions are met, e.g., phase space compactness). Note that an arbitrary initial separation vector will typically contain some component in the direction associated with the MLE, and because of the exponential growth rate, the effect of the other exponents will be obliterated over time. </p><p>The exponent is named after <a href="/wiki/Aleksandr_Lyapunov" title="Aleksandr Lyapunov">Aleksandr Lyapunov</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition_of_the_maximal_Lyapunov_exponent">Definition of the maximal Lyapunov exponent</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=1" title="Edit section: Definition of the maximal Lyapunov exponent"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The maximal Lyapunov exponent can be defined as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =\lim _{t\to \infty }\lim _{|\delta \mathbf {Z} _{0}|\to 0}{\frac {1}{t}}\ln {\frac {|\delta \mathbf {Z} (t)|}{|\delta \mathbf {Z} _{0}|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>t</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =\lim _{t\to \infty }\lim _{|\delta \mathbf {Z} _{0}|\to 0}{\frac {1}{t}}\ln {\frac {|\delta \mathbf {Z} (t)|}{|\delta \mathbf {Z} _{0}|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47938b708c0bc8cb7ee27b4770a5114e9b64dcdb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.39ex; height:6.509ex;" alt="{\displaystyle \lambda =\lim _{t\to \infty }\lim _{|\delta \mathbf {Z} _{0}|\to 0}{\frac {1}{t}}\ln {\frac {|\delta \mathbf {Z} (t)|}{|\delta \mathbf {Z} _{0}|}}}"></span> </p><p>The limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\delta \mathbf {Z} _{0}|\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\delta \mathbf {Z} _{0}|\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9de02cc1947eb72e6b76e32da768425cf72b441a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.807ex; height:2.843ex;" alt="{\displaystyle |\delta \mathbf {Z} _{0}|\to 0}"></span> ensures the validity of the linear approximation at any time.<sup id="cite_ref-cencini_1-0" class="reference"><a href="#cite_note-cencini-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>For discrete time system (maps or fixed point iterations) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n+1}=f(x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n+1}=f(x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/643700935b0ff5e6dd286c1ec5dbb1605be82171" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.383ex; height:2.843ex;" alt="{\displaystyle x_{n+1}=f(x_{n})}"></span>, for an orbit starting with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> this translates into: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda (x_{0})=\lim _{n\to \infty }{\frac {1}{n}}\sum _{i=0}^{n-1}\ln |f'(x_{i})|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda (x_{0})=\lim _{n\to \infty }{\frac {1}{n}}\sum _{i=0}^{n-1}\ln |f'(x_{i})|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cad41c8155238ec954d0fcfc61700b0bf324e3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.231ex; height:7.343ex;" alt="{\displaystyle \lambda (x_{0})=\lim _{n\to \infty }{\frac {1}{n}}\sum _{i=0}^{n-1}\ln |f&#039;(x_{i})|}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Definition_of_the_Lyapunov_spectrum">Definition of the Lyapunov spectrum</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=2" title="Edit section: Definition of the Lyapunov spectrum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:LyapunovDiagram.svg" class="mw-file-description"><img alt="Lyapunov exponent" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/LyapunovDiagram.svg/220px-LyapunovDiagram.svg.png" decoding="async" width="220" height="236" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/LyapunovDiagram.svg/330px-LyapunovDiagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/04/LyapunovDiagram.svg/440px-LyapunovDiagram.svg.png 2x" data-file-width="529" data-file-height="568" /></a><figcaption>The leading Lyapunov vector.</figcaption></figure> <p>For a dynamical system with evolution equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {x}}_{i}=f_{i}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {x}}_{i}=f_{i}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b7f3cab0f75c97e6b4652afb5873eb6e6747ca9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.306ex; height:2.843ex;" alt="{\displaystyle {\dot {x}}_{i}=f_{i}(x)}"></span> in an <i>n</i>–dimensional phase space, the spectrum of Lyapunov exponents <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\lambda _{1},\lambda _{2},\ldots ,\lambda _{n}\}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\lambda _{1},\lambda _{2},\ldots ,\lambda _{n}\}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d451c9bd8a3fa425e7a5357b23473ab6f19bfc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.964ex; height:2.843ex;" alt="{\displaystyle \{\lambda _{1},\lambda _{2},\ldots ,\lambda _{n}\}\,,}"></span> in general, depends on the starting point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. However, we will usually be interested in the <a href="/wiki/Attractor" title="Attractor">attractor</a> (or attractors) of a dynamical system, and there will normally be one set of exponents associated with each attractor. The choice of starting point may determine which attractor the system ends up on, if there is more than one. (For Hamiltonian systems, which do not have attractors, this is not a concern.) The Lyapunov exponents describe the behavior of vectors in the tangent space of the phase space and are defined from the <a href="/wiki/Jacobian_matrix" class="mw-redirect" title="Jacobian matrix">Jacobian matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{ij}(t)=\left.{\frac {df_{i}(x)}{dx_{j}}}\right|_{x(t)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{ij}(t)=\left.{\frac {df_{i}(x)}{dx_{j}}}\right|_{x(t)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8cdfe012771f9c6cb0e6c2f5f4e90eabfd4a5b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.337ex; height:7.009ex;" alt="{\displaystyle J_{ij}(t)=\left.{\frac {df_{i}(x)}{dx_{j}}}\right|_{x(t)}}"></span> this Jacobian defines the evolution of the tangent vectors, given by the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, via the equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {Y}}=JY}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>J</mi> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {Y}}=JY}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fac746e2537a450a7b2773d0453a496defe81c4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.116ex; height:2.676ex;" alt="{\displaystyle {\dot {Y}}=JY}"></span> with the initial condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{ij}(0)=\delta _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{ij}(0)=\delta _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72d060822d81e538c3da0fc2aaeec167cc12b311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.407ex; height:3.009ex;" alt="{\displaystyle Y_{ij}(0)=\delta _{ij}}"></span>. The matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> describes how a small change at the point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f7176643e6d36fa7674dc79fdff1a4daa068f5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.301ex; height:2.843ex;" alt="{\displaystyle x(0)}"></span> propagates to the final point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span>. The limit <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda =\lim _{t\rightarrow \infty }{\frac {1}{2t}}\log(Y(t)Y^{T}(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda =\lim _{t\rightarrow \infty }{\frac {1}{2t}}\log(Y(t)Y^{T}(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18028f42f186b36e3185bf4f5aeae17ea3bfec84" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.346ex; height:5.343ex;" alt="{\displaystyle \Lambda =\lim _{t\rightarrow \infty }{\frac {1}{2t}}\log(Y(t)Y^{T}(t))}"></span> defines a matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span> (the conditions for the existence of the limit are given by the <a href="/wiki/Oseledets_theorem" title="Oseledets theorem">Oseledets theorem</a>). The Lyapunov exponents <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span> are defined by the eigenvalues of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span>. </p><p>The set of Lyapunov exponents will be the same for almost all starting points of an <a href="/wiki/Dynamical_system#Ergodic_systems" title="Dynamical system">ergodic</a> component of the dynamical system. </p> <div class="mw-heading mw-heading2"><h2 id="Lyapunov_exponent_for_time-varying_linearization">Lyapunov exponent for time-varying linearization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=3" title="Edit section: Lyapunov exponent for time-varying linearization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To introduce Lyapunov exponent consider a fundamental matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfeb6663c0a903f587cd6d776c387370fc5c4ab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle X(t)}"></span> (e.g., for linearization along a stationary solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> in a continuous system), the fundamental matrix is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp \left(\left.{\frac {df^{t}(x)}{dx}}\right|_{x_{0}}t\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp \left(\left.{\frac {df^{t}(x)}{dx}}\right|_{x_{0}}t\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42fbd772d30685945d9c967b7b2678a11d3b8663" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.062ex; height:7.509ex;" alt="{\displaystyle \exp \left(\left.{\frac {df^{t}(x)}{dx}}\right|_{x_{0}}t\right)}"></span> consisting of the linearly-independent solutions of the first-order approximation of the system. The singular values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\alpha _{j}{\big (}X(t){\big )}\}_{1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\alpha _{j}{\big (}X(t){\big )}\}_{1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c70c4c8926ba455024e197837a3ea676aa7211" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.699ex; height:3.176ex;" alt="{\displaystyle \{\alpha _{j}{\big (}X(t){\big )}\}_{1}^{n}}"></span> of the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfeb6663c0a903f587cd6d776c387370fc5c4ab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle X(t)}"></span> are the square roots of the eigenvalues of the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t)^{*}X(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t)^{*}X(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da1ecb6b68c051c30fba048eb8084c457e046e8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.312ex; height:2.843ex;" alt="{\displaystyle X(t)^{*}X(t)}"></span>. The largest Lyapunov exponent <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\mathrm {max} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\mathrm {max} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84643cf5aa56108219c7e9ba81e01aba19ca0bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.646ex; height:2.509ex;" alt="{\displaystyle \lambda _{\mathrm {max} }}"></span> is as follows<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\mathrm {max} }=\max \limits _{j}\limsup _{t\rightarrow \infty }{\frac {1}{t}}\ln \alpha _{j}{\big (}X(t){\big )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> <mo>=</mo> <munder> <mo form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>t</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\mathrm {max} }=\max \limits _{j}\limsup _{t\rightarrow \infty }{\frac {1}{t}}\ln \alpha _{j}{\big (}X(t){\big )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8900d575b62717ccaba52f175fef23fe86eb400" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.479ex; height:5.676ex;" alt="{\displaystyle \lambda _{\mathrm {max} }=\max \limits _{j}\limsup _{t\rightarrow \infty }{\frac {1}{t}}\ln \alpha _{j}{\big (}X(t){\big )}.}"></span> Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is <a href="/wiki/Lyapunov_stability" title="Lyapunov stability">asymptotically Lyapunov stable</a>. Later, it was stated by O. Perron that the requirement of regularity of the first approximation is substantial. </p> <div class="mw-heading mw-heading3"><h3 id="Perron_effects_of_largest_Lyapunov_exponent_sign_inversion">Perron effects of largest Lyapunov exponent sign inversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=4" title="Edit section: Perron effects of largest Lyapunov exponent sign inversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1930 <a href="/wiki/Oskar_Perron" title="Oskar Perron">O. Perron</a> constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all solutions of original system have positive Lyapunov exponents. Also, it is possible to construct a reverse example in which the first approximation has positive Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of original nonlinear system is Lyapunov stable.<sup id="cite_ref-2005-IEEE-Discrete-system-stability-Lyapunov-exponent_3-0" class="reference"><a href="#cite_note-2005-IEEE-Discrete-system-stability-Lyapunov-exponent-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2007-IJBC-Lyapunov-exponent_4-0" class="reference"><a href="#cite_note-2007-IJBC-Lyapunov-exponent-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The effect of sign inversion of Lyapunov exponents of solutions of the original system and the system of first approximation with the same initial data was subsequently called the Perron effect.<sup id="cite_ref-2005-IEEE-Discrete-system-stability-Lyapunov-exponent_3-1" class="reference"><a href="#cite_note-2005-IEEE-Discrete-system-stability-Lyapunov-exponent-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2007-IJBC-Lyapunov-exponent_4-1" class="reference"><a href="#cite_note-2007-IJBC-Lyapunov-exponent-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Perron's counterexample shows that a negative largest Lyapunov exponent does not, in general, indicate stability, and that a positive largest Lyapunov exponent does not, in general, indicate chaos. </p><p>Therefore, time-varying linearization requires additional justification.<sup id="cite_ref-2007-IJBC-Lyapunov-exponent_4-2" class="reference"><a href="#cite_note-2007-IJBC-Lyapunov-exponent-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Basic_properties">Basic properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=5" title="Edit section: Basic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the system is conservative (i.e., there is no <a href="/wiki/Dissipation" title="Dissipation">dissipation</a>), a volume element of the phase space will stay the same along a trajectory. Thus the sum of all Lyapunov exponents must be zero. If the system is dissipative, the sum of Lyapunov exponents is negative. </p><p>If the system is a flow and the trajectory does not converge to a single point, one exponent is always zero—the Lyapunov exponent corresponding to the eigenvalue of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> with an eigenvector in the direction of the flow. </p> <div class="mw-heading mw-heading2"><h2 id="Significance_of_the_Lyapunov_spectrum">Significance of the Lyapunov spectrum</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=6" title="Edit section: Significance of the Lyapunov spectrum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lyapunov spectrum can be used to give an estimate of the rate of entropy production, of the <a href="/wiki/Fractal_dimension" title="Fractal dimension">fractal dimension</a>, and of the <a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff dimension</a> of the considered <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical system</a>.<sup id="cite_ref-2020-KuznetsovR_5-0" class="reference"><a href="#cite_note-2020-KuznetsovR-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> In particular from the knowledge of the Lyapunov spectrum it is possible to obtain the so-called <a href="/wiki/Lyapunov_dimension" title="Lyapunov dimension">Lyapunov dimension</a> (or <a href="/wiki/Kaplan%E2%80%93Yorke_conjecture" title="Kaplan–Yorke conjecture">Kaplan–Yorke dimension</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{KY}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{KY}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99ac47e414853068c2be623f4a876c27a88765d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.871ex; height:2.509ex;" alt="{\displaystyle D_{KY}}"></span>, which is defined as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{KY}=k+\sum _{i=1}^{k}{\frac {\lambda _{i}}{|\lambda _{k+1}|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{KY}=k+\sum _{i=1}^{k}{\frac {\lambda _{i}}{|\lambda _{k+1}|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d8c27c3a76dc60b78b7978c7419a729915614a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.438ex; height:7.343ex;" alt="{\displaystyle D_{KY}=k+\sum _{i=1}^{k}{\frac {\lambda _{i}}{|\lambda _{k+1}|}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is the maximum integer such that the sum of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> largest exponents is still non-negative. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{KY}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{KY}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99ac47e414853068c2be623f4a876c27a88765d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.871ex; height:2.509ex;" alt="{\displaystyle D_{KY}}"></span> represents an upper bound for the <a href="/wiki/Information_dimension" title="Information dimension">information dimension</a> of the system.<sup id="cite_ref-ky_6-0" class="reference"><a href="#cite_note-ky-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Moreover, the sum of all the positive Lyapunov exponents gives an estimate of the <a href="/wiki/Kolmogorov%E2%80%93Sinai_entropy" class="mw-redirect" title="Kolmogorov–Sinai entropy">Kolmogorov–Sinai entropy</a> accordingly to Pesin's theorem.<sup id="cite_ref-pesin_7-0" class="reference"><a href="#cite_note-pesin-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Along with widely used numerical methods for estimating and computing the <a href="/wiki/Lyapunov_dimension" title="Lyapunov dimension">Lyapunov dimension</a> there is an effective analytical approach, which is based on the direct Lyapunov method with special Lyapunov-like functions.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> The Lyapunov exponents of bounded trajectory and the <a href="/wiki/Lyapunov_dimension" title="Lyapunov dimension">Lyapunov dimension</a> of attractor are invariant under <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphism</a> of the phase space.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> of the largest Lyapunov exponent is sometimes referred in literature as <a href="/wiki/Lyapunov_time" title="Lyapunov time">Lyapunov time</a>, and defines the characteristic <i>e</i>-folding time. For chaotic orbits, the Lyapunov time will be finite, whereas for regular orbits it will be infinite. </p> <div class="mw-heading mw-heading2"><h2 id="Numerical_calculation">Numerical calculation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=7" title="Edit section: Numerical calculation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Lyapunov_exponents_of_the_Mandelbrot_set_(The_mini-Mandelbrot)_-_Matlab.png" class="mw-file-description"><img alt="Lyapunov exponent" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Lyapunov_exponents_of_the_Mandelbrot_set_%28The_mini-Mandelbrot%29_-_Matlab.png/220px-Lyapunov_exponents_of_the_Mandelbrot_set_%28The_mini-Mandelbrot%29_-_Matlab.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Lyapunov_exponents_of_the_Mandelbrot_set_%28The_mini-Mandelbrot%29_-_Matlab.png/330px-Lyapunov_exponents_of_the_Mandelbrot_set_%28The_mini-Mandelbrot%29_-_Matlab.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Lyapunov_exponents_of_the_Mandelbrot_set_%28The_mini-Mandelbrot%29_-_Matlab.png/440px-Lyapunov_exponents_of_the_Mandelbrot_set_%28The_mini-Mandelbrot%29_-_Matlab.png 2x" data-file-width="801" data-file-height="801" /></a><figcaption>Points inside and outside <a href="/wiki/Mandelbrot_set" title="Mandelbrot set">Mandelbrot set</a> colored by Lyapunov exponent.</figcaption></figure> <p>Generally the calculation of Lyapunov exponents, as defined above, cannot be carried out analytically, and in most cases one must resort to numerical techniques. An early example, which also constituted the first demonstration of the exponential divergence of chaotic trajectories, was carried out by <a href="/w/index.php?title=Richard_H._Miller&amp;action=edit&amp;redlink=1" class="new" title="Richard H. Miller (page does not exist)">R. H. Miller</a> in 1964.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Currently, the most commonly used numerical procedure estimates the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> matrix based on averaging several finite time approximations of the limit defining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>. </p><p>One of the most used and effective numerical techniques to calculate the Lyapunov spectrum for a smooth dynamical system relies on periodic <a href="/wiki/Gram%E2%80%93Schmidt" class="mw-redirect" title="Gram–Schmidt">Gram–Schmidt</a> orthonormalization of the <a href="/wiki/Lyapunov_vector" title="Lyapunov vector">Lyapunov vectors</a> to avoid a misalignment of all the vectors along the direction of maximal expansion.<sup id="cite_ref-benettin_11-0" class="reference"><a href="#cite_note-benettin-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-shimada_13-0" class="reference"><a href="#cite_note-shimada-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> The Lyapunov spectrum of various models are described.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Source codes for nonlinear systems such as the Hénon map, the Lorenz equations, a delay differential equation and so on are introduced.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>For the calculation of Lyapunov exponents from limited experimental data, various methods have been proposed. However, there are many difficulties with applying these methods and such problems should be approached with care. The main difficulty is that the data does not fully explore the phase space, rather it is confined to the attractor which has very limited (if any) extension along certain directions. These thinner or more singular directions within the data set are the ones associated with the more negative exponents. The use of nonlinear mappings to model the evolution of small displacements from the attractor has been shown to dramatically improve the ability to recover the Lyapunov spectrum,<sup id="cite_ref-Bryant1_19-0" class="reference"><a href="#cite_note-Bryant1-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-brown_20-0" class="reference"><a href="#cite_note-brown-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> provided the data has a very low level of noise. The singular nature of the data and its connection to the more negative exponents has also been explored.<sup id="cite_ref-bryant2_21-0" class="reference"><a href="#cite_note-bryant2-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Local_Lyapunov_exponent">Local Lyapunov exponent</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=8" title="Edit section: Local Lyapunov exponent"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Whereas the (global) Lyapunov exponent gives a measure for the total predictability of a system, it is sometimes of interest to estimate the local predictability around a point <span class="texhtml"><i>x</i><sub>0</sub></span> in phase space. This may be done through the <a href="/wiki/Eigenvalues" class="mw-redirect" title="Eigenvalues">eigenvalues</a> of the <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a> matrix <span class="texhtml"><i>J</i><sup>0</sup>(<i>x</i><sub>0</sub>)</span>. These eigenvalues are also called local Lyapunov exponents.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Local exponents are not invariant under a nonlinear change of coordinates. </p> <div class="mw-heading mw-heading2"><h2 id="Conditional_Lyapunov_exponent">Conditional Lyapunov exponent</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=9" title="Edit section: Conditional Lyapunov exponent"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This term is normally used regarding <a href="/wiki/Synchronization_of_chaos" title="Synchronization of chaos">synchronization of chaos</a>, in which there are two systems that are coupled, usually in a unidirectional manner so that there is a drive (or master) system and a response (or slave) system. The conditional exponents are those of the response system with the drive system treated as simply the source of a (chaotic) drive signal. Synchronization occurs when all of the conditional exponents are negative.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Chaos_theory#Sensitivity_to_initial_conditions" title="Chaos theory">Chaos Theory</a></li> <li><a href="/wiki/Chaotic_mixing#Lyapunov_exponents" title="Chaotic mixing">Chaotic mixing</a> for an alternative derivation</li> <li><a href="/wiki/Eden%27s_conjecture" title="Eden&#39;s conjecture">Eden's conjecture</a> on the Lyapunov dimension</li> <li><a href="/wiki/Floquet_theory" title="Floquet theory">Floquet theory</a></li> <li><a href="/wiki/Liouville%27s_theorem_(Hamiltonian)" title="Liouville&#39;s theorem (Hamiltonian)">Liouville's theorem (Hamiltonian)</a></li> <li><a href="/wiki/Lyapunov_dimension" title="Lyapunov dimension">Lyapunov dimension</a></li> <li><a href="/wiki/Lyapunov_time" title="Lyapunov time">Lyapunov time</a></li> <li><a href="/wiki/Recurrence_quantification_analysis" title="Recurrence quantification analysis">Recurrence quantification analysis</a></li> <li><a href="/wiki/Oseledets_theorem" title="Oseledets theorem">Oseledets theorem</a></li> <li><a href="/wiki/Butterfly_effect" title="Butterfly effect">Butterfly effect</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-cencini-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-cencini_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCencini2010" class="citation book cs1">Cencini, M.; et&#160;al. (2010). World Scientific (ed.). <i>Chaos From Simple models to complex systems</i>. World Scientific. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-4277-65-5" title="Special:BookSources/978-981-4277-65-5"><bdi>978-981-4277-65-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chaos+From+Simple+models+to+complex+systems&amp;rft.pub=World+Scientific&amp;rft.date=2010&amp;rft.isbn=978-981-4277-65-5&amp;rft.aulast=Cencini&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTemam1988" class="citation book cs1"><a href="/wiki/Roger_Temam" title="Roger Temam">Temam, R.</a> (1988). <i>Infinite Dimensional Dynamical Systems in Mechanics and Physics</i>. Cambridge: Springer-Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Infinite+Dimensional+Dynamical+Systems+in+Mechanics+and+Physics&amp;rft.pub=Cambridge%3A+Springer-Verlag&amp;rft.date=1988&amp;rft.aulast=Temam&amp;rft.aufirst=R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-2005-IEEE-Discrete-system-stability-Lyapunov-exponent-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-2005-IEEE-Discrete-system-stability-Lyapunov-exponent_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-2005-IEEE-Discrete-system-stability-Lyapunov-exponent_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFN.V._KuznetsovG.A._Leonov2005" class="citation book cs1 cs1-prop-long-vol">N.V. Kuznetsov; G.A. Leonov (2005). "On stability by the first approximation for discrete systems". <a rel="nofollow" class="external text" href="http://www.math.spbu.ru/user/nk/PDF/2005-IEEE-Discrete-system-stability-Lyapunov-exponent.pdf"><i>Proceedings. 2005 International Conference Physics and Control, 2005</i></a> <span class="cs1-format">(PDF)</span>. Vol.&#160;Proceedings Volume 2005. pp.&#160;596–599. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FPHYCON.2005.1514053">10.1109/PHYCON.2005.1514053</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7803-9235-9" title="Special:BookSources/978-0-7803-9235-9"><bdi>978-0-7803-9235-9</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31746738">31746738</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=On+stability+by+the+first+approximation+for+discrete+systems&amp;rft.btitle=Proceedings.+2005+International+Conference+Physics+and+Control%2C+2005&amp;rft.pages=596-599&amp;rft.date=2005&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31746738%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FPHYCON.2005.1514053&amp;rft.isbn=978-0-7803-9235-9&amp;rft.au=N.V.+Kuznetsov&amp;rft.au=G.A.+Leonov&amp;rft_id=http%3A%2F%2Fwww.math.spbu.ru%2Fuser%2Fnk%2FPDF%2F2005-IEEE-Discrete-system-stability-Lyapunov-exponent.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-2007-IJBC-Lyapunov-exponent-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-2007-IJBC-Lyapunov-exponent_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-2007-IJBC-Lyapunov-exponent_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-2007-IJBC-Lyapunov-exponent_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG.A._LeonovN.V._Kuznetsov2007" class="citation journal cs1">G.A. Leonov; N.V. Kuznetsov (2007). <a rel="nofollow" class="external text" href="http://www.math.spbu.ru/user/nk/PDF/2007_IJBC_Lyapunov_exponent_Linearization_Chaos_Perron_effects.pdf">"Time-Varying Linearization and the Perron effects"</a> <span class="cs1-format">(PDF)</span>. <i>International Journal of Bifurcation and Chaos</i>. <b>17</b> (4): 1079–1107. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007IJBC...17.1079L">2007IJBC...17.1079L</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.660.43">10.1.1.660.43</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218127407017732">10.1142/S0218127407017732</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Bifurcation+and+Chaos&amp;rft.atitle=Time-Varying+Linearization+and+the+Perron+effects&amp;rft.volume=17&amp;rft.issue=4&amp;rft.pages=1079-1107&amp;rft.date=2007&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.660.43%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1142%2FS0218127407017732&amp;rft_id=info%3Abibcode%2F2007IJBC...17.1079L&amp;rft.au=G.A.+Leonov&amp;rft.au=N.V.+Kuznetsov&amp;rft_id=http%3A%2F%2Fwww.math.spbu.ru%2Fuser%2Fnk%2FPDF%2F2007_IJBC_Lyapunov_exponent_Linearization_Chaos_Perron_effects.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-2020-KuznetsovR-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-2020-KuznetsovR_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuznetsovReitmann2020" class="citation book cs1">Kuznetsov, Nikolay; Reitmann, Volker (2020). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9783030509866"><i>Attractor Dimension Estimates for Dynamical Systems: Theory and Computation</i></a>. Cham: Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Attractor+Dimension+Estimates+for+Dynamical+Systems%3A+Theory+and+Computation&amp;rft.place=Cham&amp;rft.pub=Springer&amp;rft.date=2020&amp;rft.aulast=Kuznetsov&amp;rft.aufirst=Nikolay&amp;rft.au=Reitmann%2C+Volker&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9783030509866&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-ky-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-ky_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaplanYorke1979" class="citation book cs1">Kaplan, J. &amp; Yorke, J. (1979). "Chaotic behavior of multidimensional difference equations". In Peitgen, H. O. &amp; Walther, H. O. (eds.). <i>Functional Differential Equations and Approximation of Fixed Points</i>. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-09518-7" title="Special:BookSources/978-3-540-09518-7"><bdi>978-3-540-09518-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chaotic+behavior+of+multidimensional+difference+equations&amp;rft.btitle=Functional+Differential+Equations+and+Approximation+of+Fixed+Points&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=1979&amp;rft.isbn=978-3-540-09518-7&amp;rft.aulast=Kaplan&amp;rft.aufirst=J.&amp;rft.au=Yorke%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-pesin-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-pesin_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPesin1977" class="citation journal cs1">Pesin, Y. B. (1977). "Characteristic Lyapunov Exponents and Smooth Ergodic Theory". <i>Russian Math. Surveys</i>. <b>32</b> (4): 55–114. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977RuMaS..32...55P">1977RuMaS..32...55P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1070%2FRM1977v032n04ABEH001639">10.1070/RM1977v032n04ABEH001639</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250877457">250877457</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Russian+Math.+Surveys&amp;rft.atitle=Characteristic+Lyapunov+Exponents+and+Smooth+Ergodic+Theory&amp;rft.volume=32&amp;rft.issue=4&amp;rft.pages=55-114&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250877457%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1070%2FRM1977v032n04ABEH001639&amp;rft_id=info%3Abibcode%2F1977RuMaS..32...55P&amp;rft.aulast=Pesin&amp;rft.aufirst=Y.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuznetsov2016" class="citation journal cs1">Kuznetsov, N.V. (2016). "The Lyapunov dimension and its estimation via the Leonov method". <i>Physics Letters A</i>. <b>380</b> (25–26): 2142–2149. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.05410">1602.05410</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhLA..380.2142K">2016PhLA..380.2142K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physleta.2016.04.036">10.1016/j.physleta.2016.04.036</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118467839">118467839</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+A&amp;rft.atitle=The+Lyapunov+dimension+and+its+estimation+via+the+Leonov+method&amp;rft.volume=380&amp;rft.issue=25%E2%80%9326&amp;rft.pages=2142-2149&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1602.05410&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118467839%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.physleta.2016.04.036&amp;rft_id=info%3Abibcode%2F2016PhLA..380.2142K&amp;rft.aulast=Kuznetsov&amp;rft.aufirst=N.V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuznetsovAlexeevaLeonov2016" class="citation journal cs1">Kuznetsov, N.V.; Alexeeva, T.A.; Leonov, G.A. (2016). "Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations". <i>Nonlinear Dynamics</i>. <b>85</b> (1): 195–201. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.2016">1410.2016</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11071-016-2678-4">10.1007/s11071-016-2678-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119650438">119650438</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nonlinear+Dynamics&amp;rft.atitle=Invariance+of+Lyapunov+exponents+and+Lyapunov+dimension+for+regular+and+irregular+linearizations&amp;rft.volume=85&amp;rft.issue=1&amp;rft.pages=195-201&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1410.2016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119650438%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs11071-016-2678-4&amp;rft.aulast=Kuznetsov&amp;rft.aufirst=N.V.&amp;rft.au=Alexeeva%2C+T.A.&amp;rft.au=Leonov%2C+G.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller1964" class="citation journal cs1">Miller, R. H. (1964). "Irreversibility in Small Stellar Dynamical Systems". <i>The Astrophysical Journal</i>. <b>140</b>: 250. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964ApJ...140..250M">1964ApJ...140..250M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F147911">10.1086/147911</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astrophysical+Journal&amp;rft.atitle=Irreversibility+in+Small+Stellar+Dynamical+Systems&amp;rft.volume=140&amp;rft.pages=250&amp;rft.date=1964&amp;rft_id=info%3Adoi%2F10.1086%2F147911&amp;rft_id=info%3Abibcode%2F1964ApJ...140..250M&amp;rft.aulast=Miller&amp;rft.aufirst=R.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-benettin-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-benettin_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenettinGalganiGiorgilliStrelcyn1980" class="citation journal cs1">Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J. M. (1980). "Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory". <i>Meccanica</i>. <b>15</b>: 9–20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02128236">10.1007/BF02128236</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123085922">123085922</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Meccanica&amp;rft.atitle=Lyapunov+Characteristic+Exponents+for+smooth+dynamical+systems+and+for+hamiltonian+systems%3B+a+method+for+computing+all+of+them.+Part+1%3A+Theory&amp;rft.volume=15&amp;rft.pages=9-20&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1007%2FBF02128236&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123085922%23id-name%3DS2CID&amp;rft.aulast=Benettin&amp;rft.aufirst=G.&amp;rft.au=Galgani%2C+L.&amp;rft.au=Giorgilli%2C+A.&amp;rft.au=Strelcyn%2C+J.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenettinGalganiGiorgilliStrelcyn1980" class="citation journal cs1">Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J. M. (1980). "Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application". <i>Meccanica</i>. <b>15</b>: 21–30. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02128237">10.1007/BF02128237</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117095512">117095512</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Meccanica&amp;rft.atitle=Lyapunov+Characteristic+Exponents+for+smooth+dynamical+systems+and+for+hamiltonian+systems%3B+A+method+for+computing+all+of+them.+Part+2%3A+Numerical+application&amp;rft.volume=15&amp;rft.pages=21-30&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1007%2FBF02128237&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117095512%23id-name%3DS2CID&amp;rft.aulast=Benettin&amp;rft.aufirst=G.&amp;rft.au=Galgani%2C+L.&amp;rft.au=Giorgilli%2C+A.&amp;rft.au=Strelcyn%2C+J.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-shimada-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-shimada_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShimadaNagashima1979" class="citation journal cs1">Shimada, I.; Nagashima, T. (1979). <a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.61.1605">"A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems"</a>. <i>Progress of Theoretical Physics</i>. <b>61</b> (6): 1605–1616. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979PThPh..61.1605S">1979PThPh..61.1605S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.61.1605">10.1143/PTP.61.1605</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+of+Theoretical+Physics&amp;rft.atitle=A+Numerical+Approach+to+Ergodic+Problem+of+Dissipative+Dynamical+Systems&amp;rft.volume=61&amp;rft.issue=6&amp;rft.pages=1605-1616&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1143%2FPTP.61.1605&amp;rft_id=info%3Abibcode%2F1979PThPh..61.1605S&amp;rft.aulast=Shimada&amp;rft.aufirst=I.&amp;rft.au=Nagashima%2C+T.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1143%252FPTP.61.1605&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEckmannRuelle1985" class="citation journal cs1">Eckmann, J. -P.; Ruelle, D. (1985). "Ergodic theory of chaos and strange attractors". <i>Reviews of Modern Physics</i>. <b>57</b> (3): 617–656. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985RvMP...57..617E">1985RvMP...57..617E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.57.617">10.1103/RevModPhys.57.617</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18330392">18330392</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=Ergodic+theory+of+chaos+and+strange+attractors&amp;rft.volume=57&amp;rft.issue=3&amp;rft.pages=617-656&amp;rft.date=1985&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18330392%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.57.617&amp;rft_id=info%3Abibcode%2F1985RvMP...57..617E&amp;rft.aulast=Eckmann&amp;rft.aufirst=J.+-P.&amp;rft.au=Ruelle%2C+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSprott2001" class="citation book cs1">Sprott, Julien Clinton (September 27, 2001). <i>Chaos and Time-Series Analysis</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0198508403" title="Special:BookSources/978-0198508403"><bdi>978-0198508403</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chaos+and+Time-Series+Analysis&amp;rft.pub=Oxford+University+Press&amp;rft.date=2001-09-27&amp;rft.isbn=978-0198508403&amp;rft.aulast=Sprott&amp;rft.aufirst=Julien+Clinton&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSprott2005" class="citation web cs1">Sprott, Julien Clinton (May 26, 2005). <a rel="nofollow" class="external text" href="https://sprott.physics.wisc.edu/chaos/lespec.htm">"Lyapunov Exponent Spectrum Software"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lyapunov+Exponent+Spectrum+Software&amp;rft.date=2005-05-26&amp;rft.aulast=Sprott&amp;rft.aufirst=Julien+Clinton&amp;rft_id=https%3A%2F%2Fsprott.physics.wisc.edu%2Fchaos%2Flespec.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSprott2006" class="citation web cs1">Sprott, Julien Clinton (October 4, 2006). <a rel="nofollow" class="external text" href="https://sprott.physics.wisc.edu/chaos/ddele.htm">"Lyapunov Exponents for Delay Differential Equations"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lyapunov+Exponents+for+Delay+Differential+Equations&amp;rft.date=2006-10-04&amp;rft.aulast=Sprott&amp;rft.aufirst=Julien+Clinton&amp;rft_id=https%3A%2F%2Fsprott.physics.wisc.edu%2Fchaos%2Fddele.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTomo2022" class="citation web cs1">Tomo, Nakamura (19 October 2022). <a rel="nofollow" class="external text" href="https://sites.google.com/view/lyapunov-spectrum/home">"nonlinear systems and Lyapunov spectrum"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=nonlinear+systems+and+Lyapunov+spectrum&amp;rft.date=2022-10-19&amp;rft.aulast=Tomo&amp;rft.aufirst=Nakamura&amp;rft_id=https%3A%2F%2Fsites.google.com%2Fview%2Flyapunov-spectrum%2Fhome&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-Bryant1-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bryant1_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBryantBrownAbarbanel1990" class="citation journal cs1">Bryant, P.; Brown, R.; Abarbanel, H. (1990). "Lyapunov exponents from observed time series". <i>Physical Review Letters</i>. <b>65</b> (13): 1523–1526. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990PhRvL..65.1523B">1990PhRvL..65.1523B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.65.1523">10.1103/PhysRevLett.65.1523</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10042292">10042292</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Lyapunov+exponents+from+observed+time+series&amp;rft.volume=65&amp;rft.issue=13&amp;rft.pages=1523-1526&amp;rft.date=1990&amp;rft_id=info%3Apmid%2F10042292&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.65.1523&amp;rft_id=info%3Abibcode%2F1990PhRvL..65.1523B&amp;rft.aulast=Bryant&amp;rft.aufirst=P.&amp;rft.au=Brown%2C+R.&amp;rft.au=Abarbanel%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-brown-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-brown_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownBryantAbarbanel1991" class="citation journal cs1">Brown, R.; Bryant, P.; Abarbanel, H. (1991). "Computing the Lyapunov spectrum of a dynamical system from an observed time series". <i>Physical Review A</i>. <b>43</b> (6): 2787–2806. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PhRvA..43.2787B">1991PhRvA..43.2787B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.43.2787">10.1103/PhysRevA.43.2787</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9905344">9905344</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Computing+the+Lyapunov+spectrum+of+a+dynamical+system+from+an+observed+time+series&amp;rft.volume=43&amp;rft.issue=6&amp;rft.pages=2787-2806&amp;rft.date=1991&amp;rft_id=info%3Apmid%2F9905344&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.43.2787&amp;rft_id=info%3Abibcode%2F1991PhRvA..43.2787B&amp;rft.aulast=Brown&amp;rft.aufirst=R.&amp;rft.au=Bryant%2C+P.&amp;rft.au=Abarbanel%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-bryant2-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-bryant2_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBryant1993" class="citation journal cs1">Bryant, P. H. (1993). "Extensional singularity dimensions for strange attractors". <i>Physics Letters A</i>. <b>179</b> (3): 186–190. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993PhLA..179..186B">1993PhLA..179..186B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2893%2991136-S">10.1016/0375-9601(93)91136-S</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+A&amp;rft.atitle=Extensional+singularity+dimensions+for+strange+attractors&amp;rft.volume=179&amp;rft.issue=3&amp;rft.pages=186-190&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1016%2F0375-9601%2893%2991136-S&amp;rft_id=info%3Abibcode%2F1993PhLA..179..186B&amp;rft.aulast=Bryant&amp;rft.aufirst=P.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbarbanelBrownKennel1992" class="citation journal cs1">Abarbanel, H.D.I.; Brown, R.; Kennel, M.B. (1992). "Local Lyapunov exponents computed from observed data". <i>Journal of Nonlinear Science</i>. <b>2</b> (3): 343–365. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992JNS.....2..343A">1992JNS.....2..343A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01208929">10.1007/BF01208929</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122542761">122542761</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Nonlinear+Science&amp;rft.atitle=Local+Lyapunov+exponents+computed+from+observed+data&amp;rft.volume=2&amp;rft.issue=3&amp;rft.pages=343-365&amp;rft.date=1992&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122542761%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01208929&amp;rft_id=info%3Abibcode%2F1992JNS.....2..343A&amp;rft.aulast=Abarbanel&amp;rft.aufirst=H.D.I.&amp;rft.au=Brown%2C+R.&amp;rft.au=Kennel%2C+M.B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">See, e.g., <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPecoraCarrollJohnsonMar1997" class="citation journal cs1">Pecora, L. M.; Carroll, T. L.; Johnson, G. A.; Mar, D. J.; Heagy, J. F. (1997). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.166278">"Fundamentals of synchronization in chaotic systems, concepts, and applications"</a>. <i>Chaos: An Interdisciplinary Journal of Nonlinear Science</i>. <b>7</b> (4): 520–543. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997Chaos...7..520P">1997Chaos...7..520P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.166278">10.1063/1.166278</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12779679">12779679</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chaos%3A+An+Interdisciplinary+Journal+of+Nonlinear+Science&amp;rft.atitle=Fundamentals+of+synchronization+in+chaotic+systems%2C+concepts%2C+and+applications&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=520-543&amp;rft.date=1997&amp;rft_id=info%3Apmid%2F12779679&amp;rft_id=info%3Adoi%2F10.1063%2F1.166278&amp;rft_id=info%3Abibcode%2F1997Chaos...7..520P&amp;rft.aulast=Pecora&amp;rft.aufirst=L.+M.&amp;rft.au=Carroll%2C+T.+L.&amp;rft.au=Johnson%2C+G.+A.&amp;rft.au=Mar%2C+D.+J.&amp;rft.au=Heagy%2C+J.+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.166278&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=12" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuznetsovReitmann2020" class="citation book cs1">Kuznetsov, Nikolay; Reitmann, Volker (2020). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9783030509866"><i>Attractor Dimension Estimates for Dynamical Systems: Theory and Computation</i></a>. Cham: Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Attractor+Dimension+Estimates+for+Dynamical+Systems%3A+Theory+and+Computation&amp;rft.place=Cham&amp;rft.pub=Springer&amp;rft.date=2020&amp;rft.aulast=Kuznetsov&amp;rft.aufirst=Nikolay&amp;rft.au=Reitmann%2C+Volker&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9783030509866&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM.-F._DancaN.V._Kuznetsov2018" class="citation journal cs1">M.-F. Danca &amp; N.V. Kuznetsov (2018). "Matlab Code for Lyapunov Exponents of Fractional-Order Systems". <i>International Journal of Bifurcation and Chaos</i>. <b>25</b> (5): 1850067–1851392. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1804.01143">1804.01143</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018IJBC...2850067D">2018IJBC...2850067D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218127418500670">10.1142/S0218127418500670</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Bifurcation+and+Chaos&amp;rft.atitle=Matlab+Code+for+Lyapunov+Exponents+of+Fractional-Order+Systems&amp;rft.volume=25&amp;rft.issue=5&amp;rft.pages=1850067-1851392&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1804.01143&amp;rft_id=info%3Adoi%2F10.1142%2FS0218127418500670&amp;rft_id=info%3Abibcode%2F2018IJBC...2850067D&amp;rft.au=M.-F.+Danca&amp;rft.au=N.V.+Kuznetsov&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li>Cvitanović P., Artuso R., Mainieri R., Tanner G. and Vattay G.<a rel="nofollow" class="external text" href="http://www.chaosbook.org/">Chaos: Classical and Quantum</a> Niels Bohr Institute, Copenhagen 2005 – <i>textbook about chaos available under <a href="/wiki/Free_Documentation_License" class="mw-redirect" title="Free Documentation License">Free Documentation License</a></i></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreddy_ChristiansenHans_Henrik_Rugh1997" class="citation journal cs1">Freddy Christiansen &amp; Hans Henrik Rugh (1997). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060425194442/http://www.mpipks-dresden.mpg.de/eprint/freddy/9702017/9702017.ps">"Computing Lyapunov spectra with continuous Gram–Schmidt orthonormalization"</a>. <i>Nonlinearity</i>. <b>10</b> (5): 1063–1072. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/chao-dyn/9611014">chao-dyn/9611014</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997Nonli..10.1063C">1997Nonli..10.1063C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0951-7715%2F10%2F5%2F004">10.1088/0951-7715/10/5/004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122976405">122976405</a>. Archived from <a rel="nofollow" class="external text" href="http://www.mpipks-dresden.mpg.de/eprint/freddy/9702017/9702017.ps">the original</a> on 2006-04-25.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nonlinearity&amp;rft.atitle=Computing+Lyapunov+spectra+with+continuous+Gram%E2%80%93Schmidt+orthonormalization&amp;rft.volume=10&amp;rft.issue=5&amp;rft.pages=1063-1072&amp;rft.date=1997&amp;rft_id=info%3Aarxiv%2Fchao-dyn%2F9611014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122976405%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0951-7715%2F10%2F5%2F004&amp;rft_id=info%3Abibcode%2F1997Nonli..10.1063C&amp;rft.au=Freddy+Christiansen&amp;rft.au=Hans+Henrik+Rugh&amp;rft_id=http%3A%2F%2Fwww.mpipks-dresden.mpg.de%2Feprint%2Ffreddy%2F9702017%2F9702017.ps&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalman_HabibRobert_D._Ryne1995" class="citation journal cs1">Salman Habib &amp; Robert D. Ryne (1995). "Symplectic Calculation of Lyapunov Exponents". <i>Physical Review Letters</i>. <b>74</b> (1): 70–73. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/chao-dyn/9406010">chao-dyn/9406010</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhRvL..74...70H">1995PhRvL..74...70H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.74.70">10.1103/PhysRevLett.74.70</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10057701">10057701</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19203665">19203665</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Symplectic+Calculation+of+Lyapunov+Exponents&amp;rft.volume=74&amp;rft.issue=1&amp;rft.pages=70-73&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19203665%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1995PhRvL..74...70H&amp;rft_id=info%3Aarxiv%2Fchao-dyn%2F9406010&amp;rft_id=info%3Apmid%2F10057701&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.74.70&amp;rft.au=Salman+Habib&amp;rft.au=Robert+D.+Ryne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGovindan_RangarajanSalman_HabibRobert_D._Ryne1998" class="citation journal cs1">Govindan Rangarajan; Salman Habib &amp; Robert D. Ryne (1998). "Lyapunov Exponents without Rescaling and Reorthogonalization". <i>Physical Review Letters</i>. <b>80</b> (17): 3747–3750. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/chao-dyn/9803017">chao-dyn/9803017</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvL..80.3747R">1998PhRvL..80.3747R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.80.3747">10.1103/PhysRevLett.80.3747</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14483592">14483592</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Lyapunov+Exponents+without+Rescaling+and+Reorthogonalization&amp;rft.volume=80&amp;rft.issue=17&amp;rft.pages=3747-3750&amp;rft.date=1998&amp;rft_id=info%3Aarxiv%2Fchao-dyn%2F9803017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14483592%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.80.3747&amp;rft_id=info%3Abibcode%2F1998PhRvL..80.3747R&amp;rft.au=Govindan+Rangarajan&amp;rft.au=Salman+Habib&amp;rft.au=Robert+D.+Ryne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFX._ZengR._EykholtR._A._Pielke1991" class="citation journal cs1">X. Zeng; R. Eykholt &amp; R. A. Pielke (1991). "Estimating the Lyapunov-exponent spectrum from short time series of low precision". <i>Physical Review Letters</i>. <b>66</b> (25): 3229–3232. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PhRvL..66.3229Z">1991PhRvL..66.3229Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.66.3229">10.1103/PhysRevLett.66.3229</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10043734">10043734</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Estimating+the+Lyapunov-exponent+spectrum+from+short+time+series+of+low+precision&amp;rft.volume=66&amp;rft.issue=25&amp;rft.pages=3229-3232&amp;rft.date=1991&amp;rft_id=info%3Apmid%2F10043734&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.66.3229&amp;rft_id=info%3Abibcode%2F1991PhRvL..66.3229Z&amp;rft.au=X.+Zeng&amp;rft.au=R.+Eykholt&amp;rft.au=R.+A.+Pielke&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE_AurellG_BoffettaA_CrisantiG_Paladin1997" class="citation journal cs1">E Aurell; G Boffetta; A Crisanti; G Paladin; A Vulpiani (1997). "Predictability in the large: an extension of the concept of Lyapunov exponent". <i>J. Phys. A: Math. Gen</i>. <b>30</b> (1): 1–26. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/chao-dyn/9606014">chao-dyn/9606014</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997JPhA...30....1A">1997JPhA...30....1A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F30%2F1%2F003">10.1088/0305-4470/30/1/003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54697488">54697488</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Phys.+A%3A+Math.+Gen.&amp;rft.atitle=Predictability+in+the+large%3A+an+extension+of+the+concept+of+Lyapunov+exponent&amp;rft.volume=30&amp;rft.issue=1&amp;rft.pages=1-26&amp;rft.date=1997&amp;rft_id=info%3Aarxiv%2Fchao-dyn%2F9606014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54697488%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F30%2F1%2F003&amp;rft_id=info%3Abibcode%2F1997JPhA...30....1A&amp;rft.au=E+Aurell&amp;rft.au=G+Boffetta&amp;rft.au=A+Crisanti&amp;rft.au=G+Paladin&amp;rft.au=A+Vulpiani&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFF_GinelliP_PoggiA_TurchiH_Chaté2007" class="citation journal cs1">F Ginelli; P Poggi; A Turchi; H Chaté; R Livi; A Politi (2007). <a rel="nofollow" class="external text" href="https://wayback.archive-it.org/all/20081031185653/http://www.fi.isc.cnr.it/users/antonio.politi/Reprints/145.pdf">"Characterizing Dynamics with Covariant Lyapunov Vectors"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review Letters</i>. <b>99</b> (13): 130601. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0706.0510">0706.0510</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007PhRvL..99m0601G">2007PhRvL..99m0601G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.99.130601">10.1103/PhysRevLett.99.130601</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2158%2F253565">2158/253565</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17930570">17930570</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21992110">21992110</a>. Archived from <a rel="nofollow" class="external text" href="http://www.fi.isc.cnr.it/users/antonio.politi/Reprints/145.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2008-10-31.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Characterizing+Dynamics+with+Covariant+Lyapunov+Vectors&amp;rft.volume=99&amp;rft.issue=13&amp;rft.pages=130601&amp;rft.date=2007&amp;rft_id=info%3Ahdl%2F2158%2F253565&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21992110%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2007PhRvL..99m0601G&amp;rft_id=info%3Aarxiv%2F0706.0510&amp;rft_id=info%3Apmid%2F17930570&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.99.130601&amp;rft.au=F+Ginelli&amp;rft.au=P+Poggi&amp;rft.au=A+Turchi&amp;rft.au=H+Chat%C3%A9&amp;rft.au=R+Livi&amp;rft.au=A+Politi&amp;rft_id=http%3A%2F%2Fwww.fi.isc.cnr.it%2Fusers%2Fantonio.politi%2FReprints%2F145.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALyapunov+exponent" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Software">Software</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=13" title="Edit section: Software"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external autonumber" href="https://web.archive.org/web/20161027044059/http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html">[1]</a> R. Hegger, H. Kantz, and T. Schreiber, Nonlinear Time Series Analysis, <a href="/wiki/Tisean" title="Tisean">TISEAN</a> 3.0.1 (March 2007).</li> <li><a rel="nofollow" class="external autonumber" href="https://web.archive.org/web/20130917012451/http://www.scientio.com/Products/ChaosKit">[2]</a> Scientio's ChaosKit product calculates Lyapunov exponents amongst other Chaotic measures. Access is provided online via a web service and Silverlight demo.</li> <li><a rel="nofollow" class="external autonumber" href="http://ftp2.sco.com/pub/skunkware/src/x11/misc/mathrec-1.1c.tar.gz">[3]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220628200022/http://ftp2.sco.com/pub/skunkware/src/x11/misc/mathrec-1.1c.tar.gz">Archived</a> 2022-06-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> Dr. Ronald Joe Record's mathematical recreations software laboratory includes an X11 graphical client, lyap, for graphically exploring the Lyapunov exponents of a forced logistic map and other maps of the unit interval. The <a rel="nofollow" class="external text" href="http://ftp2.sco.com/pub/skunkware/src/x11/misc/mathrec-1.1c/ReadMe.html">contents and manual pages</a> of the mathrec software laboratory are also available.</li> <li><a rel="nofollow" class="external autonumber" href="http://biocircuits.ucsd.edu/pbryant/">[4]</a> Software on this page was developed specifically for the efficient and accurate calculation of the full spectrum of exponents. This includes LyapOde for cases where the equations of motion are known and also Lyap for cases involving experimental time series data. LyapOde, which includes source code written in "C", can also calculate the conditional Lyapunov exponents for coupled identical systems. It is intended to allow the user to provide their own set of model equations or to use one of the ones included. There are no inherent limitations on the number of variables, parameters etc. Lyap which includes source code written in Fortran, can also calculate the Lyapunov direction vectors and can characterize the singularity of the attractor, which is the main reason for difficulties in calculating the more negative exponents from time series data. In both cases there is extensive documentation and sample input files. The software can be compiled for running on Windows, Mac, or Linux/Unix systems. The software runs in a text window and has no graphics capabilities, but can generate output files that could easily be plotted with a program like excel.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lyapunov_exponent&amp;action=edit&amp;section=14" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304045024/http://www.math.spbu.ru/user/nk/PDF/Lyapunov_exponent.pdf">Perron effects of Lyapunov exponent sign inversions</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q1238630#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q1238630#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1238630#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1004171/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4123668-3">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh91004822">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb125431035">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb125431035">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007536903905171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐tc56n Cached time: 20241122155147 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.466 seconds Real time usage: 0.630 seconds Preprocessor visited node count: 2132/1000000 Post‐expand include size: 77487/2097152 bytes Template argument size: 903/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 111861/5000000 bytes Lua time usage: 0.298/10.000 seconds Lua memory usage: 5380622/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 457.566 1 -total 45.25% 207.044 1 Template:Reflist 22.53% 103.086 21 Template:Cite_journal 21.75% 99.530 7 Template:Cite_book 17.94% 82.109 1 Template:Authority_control 17.65% 80.759 1 Template:Short_description 12.44% 56.936 2 Template:Pagetype 4.94% 22.596 1 Template:Multiple_image 3.08% 14.073 5 Template:Main_other 3.02% 13.836 3 Template:Cite_web --> <!-- Saved in parser cache with key enwiki:pcache:idhash:166441-0!canonical and timestamp 20241122155147 and revision id 1235959907. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Lyapunov_exponent&amp;oldid=1235959907">https://en.wikipedia.org/w/index.php?title=Lyapunov_exponent&amp;oldid=1235959907</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Dynamical_systems" title="Category:Dynamical systems">Dynamical systems</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 22 July 2024, at 03:52<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Lyapunov_exponent&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-2l27l","wgBackendResponseTime":129,"wgPageParseReport":{"limitreport":{"cputime":"0.466","walltime":"0.630","ppvisitednodes":{"value":2132,"limit":1000000},"postexpandincludesize":{"value":77487,"limit":2097152},"templateargumentsize":{"value":903,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":111861,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 457.566 1 -total"," 45.25% 207.044 1 Template:Reflist"," 22.53% 103.086 21 Template:Cite_journal"," 21.75% 99.530 7 Template:Cite_book"," 17.94% 82.109 1 Template:Authority_control"," 17.65% 80.759 1 Template:Short_description"," 12.44% 56.936 2 Template:Pagetype"," 4.94% 22.596 1 Template:Multiple_image"," 3.08% 14.073 5 Template:Main_other"," 3.02% 13.836 3 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.298","limit":"10.000"},"limitreport-memusage":{"value":5380622,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-tc56n","timestamp":"20241122155147","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Lyapunov exponent","url":"https:\/\/en.wikipedia.org\/wiki\/Lyapunov_exponent","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1238630","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1238630","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-01-07T16:47:04Z","dateModified":"2024-07-22T03:52:33Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3f\/Lyapunov-exponent.svg","headline":"the rate of separation of infinitesimally close trajectories"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10