CINXE.COM
Search results for: Single wall carbon nanotubes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Single wall carbon nanotubes</title> <meta name="description" content="Search results for: Single wall carbon nanotubes"> <meta name="keywords" content="Single wall carbon nanotubes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Single wall carbon nanotubes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Single wall carbon nanotubes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2857</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Single wall carbon nanotubes</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2857</span> Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Transverse%20magnetic" title="Transverse magnetic">Transverse magnetic</a>, <a href="https://publications.waset.org/search?q=transverse%20electric" title=" transverse electric"> transverse electric</a>, <a href="https://publications.waset.org/search?q=quantum%20hydrodynamic%20model" title=" quantum hydrodynamic model"> quantum hydrodynamic model</a>, <a href="https://publications.waset.org/search?q=electron%20exchange-correlation%20potential" title=" electron exchange-correlation potential"> electron exchange-correlation potential</a>, <a href="https://publications.waset.org/search?q=single-wall%20carbon%20nanotubes." title=" single-wall carbon nanotubes."> single-wall carbon nanotubes.</a> </p> <a href="https://publications.waset.org/10007640/implication-of-the-exchange-correlation-on-electromagnetic-wave-propagation-in-single-wall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007640/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007640/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007640/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007640/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007640/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007640/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007640/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007640/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007640/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007640/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1080</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2856</span> Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Kalbac">M. Kalbac</a>, <a href="https://publications.waset.org/search?q=T.%20Verhagen"> T. Verhagen</a>, <a href="https://publications.waset.org/search?q=K.%20Drogowska"> K. Drogowska</a>, <a href="https://publications.waset.org/search?q=J.%20Vejpravova"> J. Vejpravova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One- and two-dimensional carbon nanostructures with sp2 hybridization of carbon atoms (single walled carbon nanotubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper we present a comparative study of graphene and single-wall carbon nanotubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nanostructures induced by a strong magnetic field.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanostructures" title="Carbon nanostructures">Carbon nanostructures</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/search?q=Raman%0D%0Aspectroscopy." title=" Raman spectroscopy."> Raman spectroscopy.</a> </p> <a href="https://publications.waset.org/9999709/raman-spectroscopy-of-carbon-nanostructures-in-strong-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999709/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999709/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999709/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999709/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999709/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999709/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999709/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999709/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999709/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999709/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2651</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2855</span> Bode Stability Analysis for Single Wall Carbon Nanotube Interconnects Used in 3D-VLSI Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saeed%20H.%20Nasiri">Saeed H. Nasiri</a>, <a href="https://publications.waset.org/search?q=Rahim%20Faez"> Rahim Faez</a>, <a href="https://publications.waset.org/search?q=Bita%20Davoodi"> Bita Davoodi</a>, <a href="https://publications.waset.org/search?q=Maryam%20Farrokhi"> Maryam Farrokhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bode stability analysis based on transmission line modeling (TLM) for single wall carbon nanotube (SWCNT) interconnects used in 3D-VLSI circuits is investigated for the first time. In this analysis, the dependence of the degree of relative stability for SWCNT interconnects on the geometry of each tube has been acquired. It is shown that, increasing the length and diameter of each tube, SWCNT interconnects become more stable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bode%20stability%20criterion" title="Bode stability criterion">Bode stability criterion</a>, <a href="https://publications.waset.org/search?q=Interconnects" title=" Interconnects"> Interconnects</a>, <a href="https://publications.waset.org/search?q=Interlayer%0Avia" title=" Interlayer via"> Interlayer via</a>, <a href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes" title=" Single wall carbon nanotubes"> Single wall carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=Transmission%20line%20method" title=" Transmission line method"> Transmission line method</a>, <a href="https://publications.waset.org/search?q=Time%0Adomain%20analysis" title=" Time domain analysis"> Time domain analysis</a> </p> <a href="https://publications.waset.org/8373/bode-stability-analysis-for-single-wall-carbon-nanotube-interconnects-used-in-3d-vlsi-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8373/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8373/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8373/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8373/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8373/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8373/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8373/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8373/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8373/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8373/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1831</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2854</span> Carbon Nanotubes with Magnetic Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Svitlana%20Kopyl">Svitlana Kopyl</a>, <a href="https://publications.waset.org/search?q=Vladimir%20Bystrov"> Vladimir Bystrov</a>, <a href="https://publications.waset.org/search?q=Mikhail%20Maiorov"> Mikhail Maiorov</a>, <a href="https://publications.waset.org/search?q=Manuel%20Valente"> Manuel Valente</a>, <a href="https://publications.waset.org/search?q=Igor%20Bdikin"> Igor Bdikin</a>, <a href="https://publications.waset.org/search?q=Antonio%20C.M.%20Sousa"> Antonio C.M. Sousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic carbon nanotubes composites were obtained by filling carbon nanotubes with paramagnetic iron oxide particles. Detailed investigation of magnetic behaviour of resulting composites was done at different temperatures. Measurements indicate that these functionalized nanotubes are superparamagnetic at room temperature; however, no superparamagnetism was observed at 125 K and 80 K. The blocking temperature TB was estimated at 145 K. These magnetic carbon nanotubes have the potential of being used in a wide range of applications, in particular, the production of nanofluids, which can be controlled and steered by appropriate magnetic fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/search?q=nanofluids" title=" nanofluids"> nanofluids</a> </p> <a href="https://publications.waset.org/13829/carbon-nanotubes-with-magnetic-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13829/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13829/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13829/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13829/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13829/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13829/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13829/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13829/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13829/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13829/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2680</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2853</span> Optical Fiber Sensor for Detection of Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20I.%20L.%20Justino">C. I. L. Justino</a>, <a href="https://publications.waset.org/search?q=A.%20C.%20Freitas"> A. C. Freitas</a>, <a href="https://publications.waset.org/search?q=T.%20A.%20P.%20Rocha-Santos"> T. A. P. Rocha-Santos</a>, <a href="https://publications.waset.org/search?q=A.%20C.%20Duarte"> A. C. Duarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work relates the development of an optical fiber (OF) sensor for the detection and quantification of single walled carbon nanotubes in aqueous solutions. The developed OF displays a compact design, it requires less expensive materials and equipment as well as low volume of sample (0.2 mL). This methodology was also validated by the comparison of its analytical performance with that of a standard methodology based on ultraviolet-visible spectroscopy. The developed OF sensor follows the general SDS calibration proposed for OF sensors as a more suitable calibration fitting compared with classical calibrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Optical%20fiber%20sensor" title="Optical fiber sensor">Optical fiber sensor</a>, <a href="https://publications.waset.org/search?q=single-walled%20carbon%0Ananotubes" title=" single-walled carbon nanotubes"> single-walled carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=SDS%20calibration%20model" title=" SDS calibration model"> SDS calibration model</a>, <a href="https://publications.waset.org/search?q=UV-Vis%20spectroscopy" title=" UV-Vis spectroscopy"> UV-Vis spectroscopy</a> </p> <a href="https://publications.waset.org/8428/optical-fiber-sensor-for-detection-of-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8428/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8428/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8428/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8428/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8428/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8428/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8428/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8428/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8428/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8428/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1704</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2852</span> Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Eldessouki">Mohamed Eldessouki</a>, <a href="https://publications.waset.org/search?q=Ebraheem%20Shady"> Ebraheem Shady</a>, <a href="https://publications.waset.org/search?q=Yasser%20Gowayed"> Yasser Gowayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes%20functionalization" title="Carbon nanotubes functionalization">Carbon nanotubes functionalization</a>, <a href="https://publications.waset.org/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/search?q=epoxy%20nanocomposites." title=" epoxy nanocomposites."> epoxy nanocomposites.</a> </p> <a href="https://publications.waset.org/10002600/surface-activation-of-carbon-nanotubes-generating-a-chemical-interaction-in-epoxy-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002600/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002600/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002600/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002600/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002600/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002600/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002600/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002600/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002600/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002600/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1980</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2851</span> Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yasser%20M.%20Moustafa">Yasser M. Moustafa</a>, <a href="https://publications.waset.org/search?q=Rania%20E.%20Morsi"> Rania E. Morsi</a>, <a href="https://publications.waset.org/search?q=Mohammed%20Fathy"> Mohammed Fathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cold%20Vapor%20Atomic%20Absorption%20Spectroscopy" title="Cold Vapor Atomic Absorption Spectroscopy">Cold Vapor Atomic Absorption Spectroscopy</a>, <a href="https://publications.waset.org/search?q=Hydride%20System" title=" Hydride System"> Hydride System</a>, <a href="https://publications.waset.org/search?q=Mercury%20Removing" title=" Mercury Removing"> Mercury Removing</a>, <a href="https://publications.waset.org/search?q=Multi%20Wall%20Carbon%20Nanotubes." title=" Multi Wall Carbon Nanotubes."> Multi Wall Carbon Nanotubes.</a> </p> <a href="https://publications.waset.org/9999824/mercury-removing-capacity-of-multiwall-carbon-nanotubes-as-detected-by-cold-vapor-atomic-absorption-spectroscopy-kinetic-equilibrium-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999824/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999824/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999824/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999824/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999824/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999824/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999824/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999824/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999824/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999824/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2419</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2850</span> Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vanessa%20Romanovicz"> Vanessa Romanovicz</a>, <a href="https://publications.waset.org/search?q=Beatriz%20A.%20Berns"> Beatriz A. Berns</a>, <a href="https://publications.waset.org/search?q=Stephen%20D.%20Carpenter"> Stephen D. Carpenter</a>, <a href="https://publications.waset.org/search?q=Deyse%20Carpenter"> Deyse Carpenter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of S<sub>BET</sub>= 3.691m<sup>,</sup>/g.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=sugar%20cane" title=" sugar cane"> sugar cane</a>, <a href="https://publications.waset.org/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/search?q=catalyst%20support." title=" catalyst support. "> catalyst support. </a> </p> <a href="https://publications.waset.org/9996999/carbon-nanotubes-synthesized-using-sugar-cane-as-a-percursor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996999/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996999/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996999/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996999/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996999/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996999/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996999/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996999/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996999/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996999/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3291</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2849</span> Hydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Neslihan%20Yuca">Neslihan Yuca</a>, <a href="https://publications.waset.org/search?q=Nilg%C3%BCn%20Karatepe"> Nilgün Karatepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. Purification process of SWCNTs was fulfilled by microwave digestion at three different temperatures (120, 150 and 200 °C), three different acid concentrations (0.5, 1 and 1.5 M) and for three different time intervals (15, 30 and 60 min). Nitric acid (HNO3) was used in the removal of the metal catalysts. The hydrogen storage capacities of the purified materials were measured using volumetric method at the liquid nitrogen temperature and gas pressure up to 100 bar. The effects of the purification conditions such as temperature, time and acid concentration on hydrogen adsorption were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/search?q=microwavedigestion" title=" microwavedigestion"> microwavedigestion</a>, <a href="https://publications.waset.org/search?q=hydrogen%20storage" title=" hydrogen storage"> hydrogen storage</a> </p> <a href="https://publications.waset.org/1396/hydrogen-storage-in-single-walled-carbon-nanotubes-purified-by-microwave-digestion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1396/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1396/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1396/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1396/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1396/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1396/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1396/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1396/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1396/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1396/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2246</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2848</span> Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Alrekabi">S. Alrekabi</a>, <a href="https://publications.waset.org/search?q=A.%20Cundy"> A. Cundy</a>, <a href="https://publications.waset.org/search?q=A.%20Lampropoulos"> A. Lampropoulos</a>, <a href="https://publications.waset.org/search?q=I.%20Savina"> I. Savina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dispersion" title="Dispersion">Dispersion</a>, <a href="https://publications.waset.org/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a>, <a href="https://publications.waset.org/search?q=sonication%20conditions." title=" sonication conditions. "> sonication conditions. </a> </p> <a href="https://publications.waset.org/10003884/experimental-investigation-on-the-effect-of-ultrasonication-on-dispersion-and-mechanical-performance-of-multi-wall-carbon-nanotube-cement-mortar-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003884/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003884/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003884/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003884/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003884/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003884/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003884/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003884/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003884/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003884/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1877</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2847</span> Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bashir%20Ahmmad">Bashir Ahmmad</a>, <a href="https://publications.waset.org/search?q=Kensaku%20Kanomata"> Kensaku Kanomata</a>, <a href="https://publications.waset.org/search?q=Fumihiko%20Hirose"> Fumihiko Hirose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The effect of carbon materials on TiO<sub>2</sub> for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO<sub>2</sub>. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO<sub>2</sub>, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO<sub>2</sub> were smashed in an agate mortar before photocatalytic reactions. The order of H<sub>2</sub> gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO<sub>2</sub>, various parameters of experimental condition were changed. Also, a comparison between Pt/TiO<sub>2</sub>, SWNTs/TiO<sub>2</sub> and GS/TiO<sub>2</sub> was made for the amount of H<sub>2</sub> gas production. Finally, the recyclability of SWNTs/TiO<sub>2</sub>or GS/TiO<sub>2</sub> was tested.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalysis" title="Photocatalysis">Photocatalysis</a>, <a href="https://publications.waset.org/search?q=carbon%20materials" title=" carbon materials"> carbon materials</a>, <a href="https://publications.waset.org/search?q=alcohol%20reforming" title=" alcohol reforming"> alcohol reforming</a>, <a href="https://publications.waset.org/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/search?q=titanium%20oxide." title=" titanium oxide."> titanium oxide.</a> </p> <a href="https://publications.waset.org/9997121/enhanced-photocatalytic-hydrogen-production-on-tio2-by-using-carbon-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997121/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997121/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997121/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997121/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997121/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997121/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997121/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997121/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997121/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997121/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3987</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2846</span> Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/search?q=N.%20Ucar"> N. Ucar</a>, <a href="https://publications.waset.org/search?q=A.%20Onen"> A. Onen</a>, <a href="https://publications.waset.org/search?q=N.%20K%C4%B1z%C4%B1ldag"> N. Kızıldag</a>, <a href="https://publications.waset.org/search?q=O.%20F.%20Vurur"> O. F. Vurur</a>, <a href="https://publications.waset.org/search?q=N.%20Demirsoy"> N. Demirsoy</a>, <a href="https://publications.waset.org/search?q=I.%20Karacan"> I. Karacan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to decrease of diameter of nanofiber.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Amine%20functionalized%20carbon%20nanotube" title="Amine functionalized carbon nanotube">Amine functionalized carbon nanotube</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/search?q=polyacrylonitrile." title=" polyacrylonitrile."> polyacrylonitrile.</a> </p> <a href="https://publications.waset.org/9998966/effect-of-amine-functionalized-carbon-nanotubes-on-the-properties-of-cnt-pan-composite-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998966/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998966/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998966/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998966/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998966/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998966/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998966/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998966/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998966/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998966/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4182</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2845</span> Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=John%20Justo%20Ambuchi">John Justo Ambuchi</a>, <a href="https://publications.waset.org/search?q=Zhaohan%20Zhang"> Zhaohan Zhang</a>, <a href="https://publications.waset.org/search?q=Yujie%20Feng"> Yujie Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anaerobic%20granular%20sludge" title="Anaerobic granular sludge">Anaerobic granular sludge</a>, <a href="https://publications.waset.org/search?q=extracellular%20polymeric%20substances" title=" extracellular polymeric substances"> extracellular polymeric substances</a>, <a href="https://publications.waset.org/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/search?q=multi-wall%20carbon%20nanotubes." title=" multi-wall carbon nanotubes. "> multi-wall carbon nanotubes. </a> </p> <a href="https://publications.waset.org/10005619/biogas-enhancement-using-iron-oxide-nanoparticles-and-multi-wall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005619/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005619/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005619/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005619/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005619/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005619/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005619/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005619/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005619/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005619/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2128</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2844</span> Production of Carbon Nanotubes by Iron Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ezgi%20D%C3%BCndar-Tekkaya">Ezgi Dündar-Tekkaya</a>, <a href="https://publications.waset.org/search?q=Nilg%C3%BCn%20Karatepe"> Nilgün Karatepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotube" title="Carbon nanotube">Carbon nanotube</a>, <a href="https://publications.waset.org/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/search?q=catalytic%20chemical%20vapordeposition" title=" catalytic chemical vapordeposition"> catalytic chemical vapordeposition</a>, <a href="https://publications.waset.org/search?q=iron" title=" iron"> iron</a> </p> <a href="https://publications.waset.org/7347/production-of-carbon-nanotubes-by-iron-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7347/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7347/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7347/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7347/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7347/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7347/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7347/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7347/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7347/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7347/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2895</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2843</span> Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Vesali%20Naseh">M. Vesali Naseh</a>, <a href="https://publications.waset.org/search?q=A.%20A.%20Khodadadi"> A. A. Khodadadi</a>, <a href="https://publications.waset.org/search?q=Y.%20Mortazavi"> Y. Mortazavi</a>, <a href="https://publications.waset.org/search?q=O.%20Alizadeh%20Sahraei"> O. Alizadeh Sahraei</a>, <a href="https://publications.waset.org/search?q=F.%20Pourfayaz"> F. Pourfayaz</a>, <a href="https://publications.waset.org/search?q=S.%20Mosadegh%20Sedghi"> S. Mosadegh Sedghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, multiwall carbon nanotubes (MWNTs) were modified with nitric acid chemically and by dielectric barrier discharge (DBD) plasma in an oxygen-based atmosphere. Used carbon nanotubes (CNTs) were prepared by chemical vapour deposition (CVD) floating catalyst method. For removing amorphous carbon and metal catalyst, MWNTs were exposed to dry air and washed with hydrochloric acid. Heating purified CNTs under helium atmosphere caused elimination of acidic functional groups. Fourier transformed infrared spectroscopy (FTIR) shows formation of oxygen containing groups such as C=O and COOH. Brunauer, Emmett, Teller (BET) analysis revealed that functionalization causes generation of defects on the sidewalls and opening of the ends of CNTs. Results of temperature-programmed desorption (TPD) and gas chromatography(GC) indicate that nitric acid treatment create more acidic groups than plasma treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes%20%28CNTs%29" title="Carbon nanotubes (CNTs)">Carbon nanotubes (CNTs)</a>, <a href="https://publications.waset.org/search?q=chemical%20treatment" title=" chemical treatment"> chemical treatment</a>, <a href="https://publications.waset.org/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/search?q=plasma." title=" plasma."> plasma.</a> </p> <a href="https://publications.waset.org/5775/functionalization-of-carbon-nanotubes-using-nitric-acid-oxidation-and-dbd-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5775/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5775/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5775/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5775/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5775/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5775/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5775/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5775/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5775/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5775/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5776</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2842</span> Fabrication of Carbon Doped TiO2 Nanotubes via In-situ Anodization of Ti-foil in Acidic Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Asma%20M.%20Milad">Asma M. Milad</a>, <a href="https://publications.waset.org/search?q=Mohammad%20B.%20Kassim"> Mohammad B. Kassim</a>, <a href="https://publications.waset.org/search?q=Wan%20R.%20Daud"> Wan R. Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly ordered TiO2 nanotube (TNT) arrays were fabricated onto a pre-treated titanium foil by anodic oxidation with a voltage of 20V in phosphoric acid/sodium fluoride electrolyte. A pretreatment of titanium foil involved washing with acetone, isopropanol, ethanol and deionized water. Carbon doped TiO2 nanotubes (C-TNT) was fabricated 'in-situ' with the same method in the presence of polyvinyl alcohol and urea as carbon sources. The affects of polyvinyl alcohol concentration and oxidation time on the composition, morphology and structure of the C-TN were studied by FE-SEM, EDX and XRD techniques. FESEM images of the nanotubes showed uniform arrays of C-TNTs. The density and microstructures of the nanotubes were greatly affected by the content of PVA. The introduction of the polyvinyl alcohol into the electrolyte increases the amount of C content inside TiO2 nanotube arrays uniformly. The influence of carbon content on the photo-current of C-TNT was investigated and the I-V profiles of the nanotubes were established. The preliminary results indicated that the 'in-situ' doping technique produced a superior quality nanotubes compared to post doping techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anodization" title="Anodization">Anodization</a>, <a href="https://publications.waset.org/search?q=photoelectrochemical%20cell" title=" photoelectrochemical cell"> photoelectrochemical cell</a>, <a href="https://publications.waset.org/search?q=%27in-situ%27" title=" 'in-situ'"> 'in-situ'</a>, <a href="https://publications.waset.org/search?q=post%20doping" title="post doping">post doping</a>, <a href="https://publications.waset.org/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/search?q=and%20titania%20nanotube%20arrays." title=" and titania nanotube arrays."> and titania nanotube arrays.</a> </p> <a href="https://publications.waset.org/2976/fabrication-of-carbon-doped-tio2-nanotubes-via-in-situ-anodization-of-ti-foil-in-acidic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2976/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2976/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2976/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2976/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2976/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2976/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2976/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2976/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2976/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2976/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2841</span> Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jyoti%20Bharj">Jyoti Bharj</a>, <a href="https://publications.waset.org/search?q=Sarabjit%20Singh"> Sarabjit Singh</a>, <a href="https://publications.waset.org/search?q=Subhash%20Chander"> Subhash Chander</a>, <a href="https://publications.waset.org/search?q=Rabinder%20Singh"> Rabinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The outstanding mechanical properties of Carbon nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of multiwalled carbon nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28 and 35days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.</p> <p> </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20Nanotubes" title="Carbon Nanotubes">Carbon Nanotubes</a>, <a href="https://publications.waset.org/search?q=Portland%20Cement" title=" Portland Cement"> Portland Cement</a>, <a href="https://publications.waset.org/search?q=Composite" title=" Composite"> Composite</a>, <a href="https://publications.waset.org/search?q=Compressive%20Strength." title=" Compressive Strength."> Compressive Strength.</a> </p> <a href="https://publications.waset.org/9997523/role-of-dispersion-of-multiwalled-carbon-nanotubes-on-compressive-strength-of-cement-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997523/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997523/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997523/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997523/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997523/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997523/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997523/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997523/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997523/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997523/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3135</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2840</span> A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Rattanachan">K. Rattanachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In sheet metal forming process, raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloyed, which have the different unit cell, mechanical property and chemical composition. They were forming into cone shape specimens having 100 mm diameter with different wall’s incline angle: 90o, 75o and 60o. The investigation was continued until the specimens formed surface facture. The experimental result showed that the smaller the wall incline angle higher the formability with the both materials. The formability limit of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 has higher formability than SUS 304. This result can be used as the initial data in designing the single point incremental forming parts.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=NC%20incremental%20forming" title="NC incremental forming">NC incremental forming</a>, <a href="https://publications.waset.org/search?q=Single%20point%20incremental%0D%0Aforming" title=" Single point incremental forming"> Single point incremental forming</a>, <a href="https://publications.waset.org/search?q=Wall%20incline%20angle" title=" Wall incline angle"> Wall incline angle</a>, <a href="https://publications.waset.org/search?q=Formability." title=" Formability."> Formability.</a> </p> <a href="https://publications.waset.org/10000052/a-comparison-of-single-point-incremental-forming-formability-between-carbon-steel-and-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000052/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000052/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000052/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000052/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000052/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000052/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000052/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000052/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000052/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000052/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2686</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2839</span> Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Shahid">Muhammad Shahid</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Mansoor"> Muhammad Mansoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=induction%20melting" title=" induction melting"> induction melting</a>, <a href="https://publications.waset.org/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/search?q=strengthening%20mechanism." title=" strengthening mechanism."> strengthening mechanism.</a> </p> <a href="https://publications.waset.org/10004490/induction-melting-as-a-fabrication-route-for-aluminum-carbon-nanotubes-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004490/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004490/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004490/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004490/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004490/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004490/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004490/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004490/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004490/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004490/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2838</span> Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gholamhosein%20Khosravi">Gholamhosein Khosravi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Azadi"> Mohammad Azadi</a>, <a href="https://publications.waset.org/search?q=Hamidreza%20Ghezavati"> Hamidreza Ghezavati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/search?q=piezoelectric%20layers" title=" piezoelectric layers"> piezoelectric layers</a>, <a href="https://publications.waset.org/search?q=elastic%20foundation." title=" elastic foundation."> elastic foundation.</a> </p> <a href="https://publications.waset.org/10005072/vibration-control-of-a-functionally-graded-carbon-nanotube-reinforced-composites-beam-resting-on-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005072/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005072/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005072/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005072/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005072/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005072/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005072/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005072/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005072/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005072/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1255</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2837</span> Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Hashimoto">T. Hashimoto</a>, <a href="https://publications.waset.org/search?q=N.%20Miki"> N. Miki</a>, <a href="https://publications.waset.org/search?q=H.%20Maki"> H. Maki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=NbN%20nanowire" title="NbN nanowire">NbN nanowire</a>, <a href="https://publications.waset.org/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/search?q=quantum%20size%20effect" title=" quantum size effect"> quantum size effect</a>, <a href="https://publications.waset.org/search?q=Josephson%20junction" title=" Josephson junction"> Josephson junction</a> </p> <a href="https://publications.waset.org/5482/size-dependence-of-1d-superconductivity-in-nbn-nanowires-on-suspended-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5482/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5482/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5482/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5482/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5482/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5482/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5482/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5482/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5482/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5482/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2054</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2836</span> Nanocomputing Memory Devices Formed from Carbon Nanotubes and Metallofulleres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Richard%20K.%20F.%20Lee">Richard K. F. Lee</a>, <a href="https://publications.waset.org/search?q=James%20M.%20Hill"> James M. Hill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we summarize recent work of the authors on nanocomputing memory devices. We investigate two memory devices, each comprising a charged metallofullerene and carbon nanotubes. The first device involves two open nanotubes of the same radius that are joined by a centrally located nanotube of a smaller radius. A metallofullerene is then enclosed inside the structure. The second device also involves a etallofullerene that is located inside a closed carbon nanotube. Assuming the Lennard-Jones interaction energy and the continuum approximation, for both devices, the metallofullerene has two symmetrically placed equal minimum energy positions. On one side the metallofullerene represents the zero information state and by applying an external electrical field, it can overcome the energy barrier, and pass from one end of the tube to the other, where the metallofullerene then represents the one information state.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotube" title="Carbon nanotube">Carbon nanotube</a>, <a href="https://publications.waset.org/search?q=continuous%20approach" title=" continuous approach"> continuous approach</a>, <a href="https://publications.waset.org/search?q=energy%20barrier" title=" energy barrier"> energy barrier</a>, <a href="https://publications.waset.org/search?q=Lennard-Jones%20potential" title=" Lennard-Jones potential"> Lennard-Jones potential</a>, <a href="https://publications.waset.org/search?q=metallofullerene" title=" metallofullerene"> metallofullerene</a>, <a href="https://publications.waset.org/search?q=nanomemory%20device." title=" nanomemory device."> nanomemory device.</a> </p> <a href="https://publications.waset.org/15139/nanocomputing-memory-devices-formed-from-carbon-nanotubes-and-metallofulleres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15139/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15139/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15139/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15139/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15139/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15139/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15139/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15139/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15139/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15139/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1460</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2835</span> Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zian%20Cheak%20Tiu">Zian Cheak Tiu</a>, <a href="https://publications.waset.org/search?q=Harith%20Ahmad"> Harith Ahmad</a>, <a href="https://publications.waset.org/search?q=Sulaiman%20Wadi%20Harun"> Sulaiman Wadi Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 μs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi-wavelength" title="Multi-wavelength">Multi-wavelength</a>, <a href="https://publications.waset.org/search?q=Q-switched" title=" Q-switched"> Q-switched</a>, <a href="https://publications.waset.org/search?q=multi-wall%20carbon%0D%0Ananotube" title=" multi-wall carbon nanotube"> multi-wall carbon nanotube</a>, <a href="https://publications.waset.org/search?q=photonic%20crystal%20fiber." title=" photonic crystal fiber."> photonic crystal fiber.</a> </p> <a href="https://publications.waset.org/9999431/multi-wavelength-q-switched-erbium-doped-fiber-laser-with-photonic-crystal-fiber-and-multi-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999431/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999431/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999431/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999431/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999431/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999431/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999431/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999431/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999431/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999431/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2488</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2834</span> Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md%20F.%20Mina">Md F. Mina</a>, <a href="https://publications.waset.org/search?q=Mohammad%20D.H.%20Beg"> Mohammad D.H. Beg</a>, <a href="https://publications.waset.org/search?q=Muhammad%20R.%20Islam"> Muhammad R. Islam</a>, <a href="https://publications.waset.org/search?q=Abu%20K.%20M.%20M.%20Alam%20A.%20Nizam"> Abu K. M. M. Alam A. Nizam</a>, <a href="https://publications.waset.org/search?q=Rosli%20M.%20Younus"> Rosli M. Younus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crystallization" title="Crystallization">Crystallization</a>, <a href="https://publications.waset.org/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=Poly%20%28lactic%20acid%29." title=" Poly (lactic acid)."> Poly (lactic acid).</a> </p> <a href="https://publications.waset.org/13702/characterization-of-biodegradable-nanocomposites-with-poly-lactic-acid-and-multi-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13702/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13702/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13702/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13702/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13702/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13702/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13702/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13702/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13702/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13702/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2603</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2833</span> A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gloria%20A.%20Adewumi">Gloria A. Adewumi</a>, <a href="https://publications.waset.org/search?q=Andrew%20C.%20Eloka-Eboka"> Andrew C. Eloka-Eboka</a>, <a href="https://publications.waset.org/search?q=Freddie%20L.%20Inambao"> Freddie L. Inambao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=phonons" title=" phonons"> phonons</a>, <a href="https://publications.waset.org/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/search?q=umklapp%20process." title=" umklapp process."> umklapp process.</a> </p> <a href="https://publications.waset.org/10004107/a-review-on-thermal-conductivity-of-bio-based-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004107/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004107/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004107/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004107/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004107/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004107/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004107/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004107/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004107/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004107/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1738</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2832</span> Carbon Nanotubes–A Successful Hydrogen Storage Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vijaya%20Ilango">Vijaya Ilango</a>, <a href="https://publications.waset.org/search?q=Avika%20Gupta"> Avika Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H<sub>2</sub> upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=Chemisorption" title=" Chemisorption"> Chemisorption</a>, <a href="https://publications.waset.org/search?q=Hydrogen%20%20%20storage" title=" Hydrogen storage"> Hydrogen storage</a>, <a href="https://publications.waset.org/search?q=Physisorption." title=" Physisorption."> Physisorption.</a> </p> <a href="https://publications.waset.org/16692/carbon-nanotubes-a-successful-hydrogen-storage-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16692/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16692/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16692/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16692/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16692/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16692/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16692/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16692/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16692/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16692/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3154</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2831</span> Investigation of Gas Phase Composition During Carbon Nanotube Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Yaglikci">S. Yaglikci</a>, <a href="https://publications.waset.org/search?q=B.%20Salgara"> B. Salgara</a>, <a href="https://publications.waset.org/search?q=F.%20Soysal"> F. Soysal</a>, <a href="https://publications.waset.org/search?q=B.%20Cicek"> B. Cicek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanotubes" title="Carbon nanotubes">Carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/search?q=GC%2FMS" title=" GC/MS"> GC/MS</a>, <a href="https://publications.waset.org/search?q=species%20profile" title=" species profile"> species profile</a> </p> <a href="https://publications.waset.org/12409/investigation-of-gas-phase-composition-during-carbon-nanotube-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12409/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12409/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12409/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12409/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12409/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12409/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12409/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12409/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12409/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12409/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2830</span> Methanol Concentration Sensitive SWCNT/Nafion Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyongsoo%20Lee">Kyongsoo Lee</a>, <a href="https://publications.waset.org/search?q="> </a>, <a href="https://publications.waset.org/search?q=Seong-Il%20Kim"> Seong-Il Kim</a>, <a href="https://publications.waset.org/search?q=Byeong-Kwon%20Ju"> Byeong-Kwon Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=methanol%20concentration" title="methanol concentration">methanol concentration</a>, <a href="https://publications.waset.org/search?q=SWCNT" title=" SWCNT"> SWCNT</a>, <a href="https://publications.waset.org/search?q=nafion%20composites" title=" nafion composites"> nafion composites</a> </p> <a href="https://publications.waset.org/2033/methanol-concentration-sensitive-swcntnafion-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2033/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2033/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2033/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2033/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2033/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2033/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2033/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2033/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2033/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2033/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1928</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2829</span> Functionalization and Characterization of Carbon Nanotubes/ Polypropylene Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mokhtar%20Awang">Mokhtar Awang</a>, <a href="https://publications.waset.org/search?q=Wei-Vern%20Hor"> Wei-Vern Hor</a>, <a href="https://publications.waset.org/search?q=Ehsan%20Mohammadpour"> Ehsan Mohammadpour</a>, <a href="https://publications.waset.org/search?q=M%20Zaki%20Abdullah"> M Zaki Abdullah</a>, <a href="https://publications.waset.org/search?q=Faiz%20Ahmad"> Faiz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical and physical functionalization of multiwalled carbon nanotubes (MWCNT) has been commonly practiced to achieve better dispersion of carbon nanotubes (CNTs) in polymer matrix. This work describes various functionalization methods (acidtreatment, non-ionic surfactant treatment with TritonX-100), fabrication of MWCNT/PP nanocomposites via melt blending and characterization of mechanical properties. Microscopy analysis (FESEM, TEM, XPS) showed effective purification of MWCNTs under acid treatment, and better dispersion under both chemical and physical functionalization techniques combined, in their respective order. Tensile tests showed increase in tensile strength for the nanocomposites that contain MWCNTs up to 2 wt%. A decrease in tensile strength was seen in samples that contain 4 wt% of MWCNTs for both raw and Triton X-100 functionalized, signifying MWCNT degradation/rebundling at composition with higher content of MWCNTs. For the acid-treated MWCNTs, however, the tensile results showed slight improvement even at 4wt%, indicating effective dispersion of MWCNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi%20walled%20carbon%20nanotube%20%28MWCNT%29" title="Multi walled carbon nanotube (MWCNT)">Multi walled carbon nanotube (MWCNT)</a>, <a href="https://publications.waset.org/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/8632/functionalization-and-characterization-of-carbon-nanotubes-polypropylene-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8632/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8632/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8632/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8632/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8632/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8632/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8632/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8632/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8632/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8632/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2360</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2828</span> Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20J.%20Pillewan">V. J. Pillewan</a>, <a href="https://publications.waset.org/search?q=D.%20N.%20Raut"> D. N. Raut</a>, <a href="https://publications.waset.org/search?q=K.%20N.%20Patil"> K. N. Patil</a>, <a href="https://publications.waset.org/search?q=D.%20K.%20Shinde"> D. K. Shinde </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Grinding%20waste" title="Grinding waste">Grinding waste</a>, <a href="https://publications.waset.org/search?q=powder%20injection%20molding" title=" powder injection molding"> powder injection molding</a>, <a href="https://publications.waset.org/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=metal%20matrix%20composites." title=" metal matrix composites."> metal matrix composites.</a> </p> <a href="https://publications.waset.org/10006932/carbon-nanotubes-based-porous-framework-for-filtration-applications-using-industrial-grinding-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006932/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006932/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006932/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006932/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006932/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006932/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006932/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006932/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006932/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006932/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=96">96</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Single%20wall%20carbon%20nanotubes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>