CINXE.COM

Search results for: serviceability

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: serviceability</title> <meta name="description" content="Search results for: serviceability"> <meta name="keywords" content="serviceability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="serviceability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="serviceability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 60</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: serviceability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Study on the Prediction of Serviceability of Garments Based on the Seam Efficiency and Selection of the Right Seam to Ensure Better Serviceability of Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Azizul%20Islam">Md Azizul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seam is the line of joining two separate fabric layers for functional or aesthetic purposes. Different kinds of seams are used for assembling the different areas or parts of the garment to increase serviceability. To empirically support the importance of seam efficiency on serviceability of garments, this study is focused on choosing the right type of seams for particular sewing parts of the garments based on the seam efficiency to ensure better serviceability. Seam efficiency is the ratio of seam strength and fabric strength. Single jersey knitted finished fabrics of four different GSMs (gram per square meter) were used to make the test garments T-shirt. Three distinct types of the seam: superimposed, lapped and flat seam was applied to the side seams of T-shirt and sewn by lockstitch (stitch class- 301) in a flat-bed plain sewing machine (maximum sewing speed: 5000 rpm) to make (3x4) 12 T-shirts. For experimental purposes, needle thread count (50/3 Ne), bobbin thread count (50/2 Ne) and the stitch density (stitch per inch: 8-9), Needle size (16 in singer system), stitch length (31 cm), and seam allowance (2.5cm) were kept same for all specimens. The grab test (ASTM D5034-08) was done in the Universal tensile tester to measure the seam strength and fabric strength. The produced T-shirts were given to 12 soccer players who wore the shirts for 20 soccer matches (each match of 90 minutes duration). Serviceability of the shirt were measured by visual inspection of a 5 points scale based on the seam conditions. The study found that T-shirts produced with lapped seam show better serviceability and T-shirts made of flat seams perform the lowest score in serviceability score. From the calculated seam efficiency (seam strength/ fabric strength), it was obvious that the performance (in terms of strength) of the lapped and bound seam is higher than that of the superimposed seam and the performance of superimposed seam is far better than that of the flat seam. So it can be predicted that to get a garment of high serviceability, lapped seams could be used instead of superimposed or other types of the seam. In addition, less stressed garments can be assembled by others seems like superimposed seams or flat seams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seam" title="seam">seam</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20efficiency" title=" seam efficiency"> seam efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=T-shirt" title=" T-shirt"> T-shirt</a> </p> <a href="https://publications.waset.org/abstracts/111460/study-on-the-prediction-of-serviceability-of-garments-based-on-the-seam-efficiency-and-selection-of-the-right-seam-to-ensure-better-serviceability-of-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Identifying Strategies for Improving Railway Services in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armana%20Sabiha%20Huq">Armana Sabiha Huq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahmina%20Rahman%20Chowdhury"> Tahmina Rahman Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, based on the stated preference experiment, the service quality of Bangladesh Railway has been assessed, and particular importance has been given to investigate if there exists a relationship between service quality and safety. For investigation purposes, environmental and organizational factors were assumed to determine the safety performance of the railway. Data collected from the survey has been analyzed by importance-performance analysis (IPA). In this paper, a modification of the well-known importance-performance analysis (IPA) has been done by adopting the importance of the weights determined through a structural equation modeling (SEM) approach and by plotting the gap between importance and performance on a visual graph. It has been found that there exists a relationship between safety and serviceability to some extent. Limited resources are an important factor to improve the safety and serviceability condition of the BD railway. Moreover, it is observed that the limited resources available to monitor and improve the safety performance of railway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=importance-performance%20analysis" title="importance-performance analysis">importance-performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GAP-IPA" title=" GAP-IPA"> GAP-IPA</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a> </p> <a href="https://publications.waset.org/abstracts/136775/identifying-strategies-for-improving-railway-services-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Serviceability of Fabric-Formed Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadgar%20Tayfur">Yadgar Tayfur</a>, <a href="https://publications.waset.org/abstracts/search?q=Antony%20Darby"> Antony Darby</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Ibell"> Tim Ibell</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Evernden"> Mark Evernden</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Orr"> John Orr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric-formed%20concrete" title="fabric-formed concrete">fabric-formed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20beams" title=" continuous beams"> continuous beams</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a> </p> <a href="https://publications.waset.org/abstracts/42271/serviceability-of-fabric-formed-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A Framework for the Evaluation of Infrastructures’ Serviceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyonghoon%20Kim">Kyonghoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wonyoung%20Park"> Wonyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeil%20Park"> Taeil Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1994, Korea experienced a national tragedy of Seongsu Bridge collapse. The accident was severe enough to alert governmental officers to the problem of existing management policy for national infrastructures. As a result, government legislated the ‘Guidelines for the safety inspection and test of infrastructure’ which have been utilized as the primary tool to make decision for the maintenance and rehabilitation of infrastructure for last twenty years. Although it is clear that the guideline established a basics how to evaluate and manage the condition of infrastructures in systematic manner, it is equally clear that the guideline needs improvements in order to obtain reasonable investment decisions for budget allocation. Because its inspection and evaluation procedures mainly focused on the structural condition of infrastructures, it was hard to make decision when the infrastructures were in same level of structural condition. In addition, it did not properly reflect various aspects of infrastructures such as performance, public demand, capacity, etc., which were more valuable to public. Regardless of the importance, these factors were commonly neglected in governmental decision-making process, because there factors were somewhat subjective and difficult to quantify in rational manner. Thus, this study proposes a framework to properly evaluate the serviceability indicators using AHP and Fuzzy approach. The framework is expected to assist governmental agency in establishing effective investment strategies for budget planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title="infrastructure">infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a> </p> <a href="https://publications.waset.org/abstracts/26919/a-framework-for-the-evaluation-of-infrastructures-serviceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Crack Width Evaluation for Flexural RC Members with Axial Tension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukrit%20Ghorai">Sukrit Ghorai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools support the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user-friendly and ready to evolve for a greater spectrum of section sizes and materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title="concrete structures">concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20calculation" title=" crack width calculation"> crack width calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability%20limit%20state" title=" serviceability limit state"> serviceability limit state</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title=" bridge engineering"> bridge engineering</a> </p> <a href="https://publications.waset.org/abstracts/19413/crack-width-evaluation-for-flexural-rc-members-with-axial-tension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Investigating the Organizational Capacity of Communities Affecting Water Supply Resilience </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Balaei">Behrooz Balaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzanne%20Wilkinson"> Suzanne Wilkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Regan%20Potangaroa"> Regan Potangaroa</a>, <a href="https://publications.waset.org/abstracts/search?q=Larry%20Abel"> Larry Abel</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20McFarlane"> Philip McFarlane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water supply system failure has serious direct and indirect effects on people wellbeing. Post-disaster water system serviceability depends on a variety of factors from technical characteristics to social, economic, and organizational attributes of communities. This paper tests the organizational factors affecting water supply resilience to outline how these factors contributed to previous disasters. To do so, a framework is briefly introduced in this study to provide a clear guide to identify the significant relevant organizational factors. Then the factors affecting water serviceability following a disaster are outlines. Next, these factors are measured in the case of Tropical Cyclone Pam, which hit Vanuatu in March 2015. Reviewing the existing literature has also been carried out to obtain a comprehensive understanding of the background A site visit and a series of interviews have also been undertaken following the cyclone to collect site-specific data and information. In the end, the organizational factors were ranked to enable decision makers to identify significance of each factor compared to the others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title="water supply">water supply</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20capacity" title=" organizational capacity"> organizational capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanuatu" title=" Vanuatu"> Vanuatu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tropical%20Cyclone%20Pam" title=" Tropical Cyclone Pam"> Tropical Cyclone Pam</a> </p> <a href="https://publications.waset.org/abstracts/109289/investigating-the-organizational-capacity-of-communities-affecting-water-supply-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20J.%20Yang">Q. J. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pad%20footing" title="pad footing">pad footing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilly%20formation" title=" Hilly formation"> Hilly formation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20works" title=" block works"> block works</a> </p> <a href="https://publications.waset.org/abstracts/66058/geotechnical-design-of-bridge-foundations-and-approaches-in-hilly-granite-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Hamrat">Mostefa Hamrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensaid%20Boulekbache"> Bensaid Boulekbache</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Chemrouk"> Mohamed Chemrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Amziane"> Sofiane Amziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation%20%28DIC%29" title=" digital image correlation (DIC)"> digital image correlation (DIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=codes%20provisions" title=" codes provisions"> codes provisions</a> </p> <a href="https://publications.waset.org/abstracts/19290/flexural-behaviour-of-normal-strength-and-high-strength-fibre-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Implementation of Deep Neural Networks for Pavement Condition Index Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sirhan">M. Sirhan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bekhor"> S. Bekhor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sidess"> A. Sidess</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20programming" title=" computer programming"> computer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20condition%20index" title=" pavement condition index"> pavement condition index</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management" title=" pavement management"> pavement management</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20prediction" title=" performance prediction"> performance prediction</a> </p> <a href="https://publications.waset.org/abstracts/110339/implementation-of-deep-neural-networks-for-pavement-condition-index-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Budget Optimization for Maintenance of Bridges in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Abd%20Elkhalek">Hesham Abd Elkhalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20Hafez"> Sherif M. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20El%20Fahham"> Yasser M. El Fahham </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20management%20systems%20%28BMS%29" title="bridge management systems (BMS)">bridge management systems (BMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20optimization%20condition%20assessment" title=" cost optimization condition assessment"> cost optimization condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=fund%20allocation" title=" fund allocation"> fund allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chain" title=" Markov chain"> Markov chain</a> </p> <a href="https://publications.waset.org/abstracts/42338/budget-optimization-for-maintenance-of-bridges-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filippo%20Ranalli">Filippo Ranalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Forest%20Flager"> Forest Flager</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Fischer"> Martin Fischer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost-based%20structural%20optimization" title="cost-based structural optimization">cost-based structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-based%20topology%20and%20sizing" title=" cost-based topology and sizing"> cost-based topology and sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame%20ground%20structure%20optimization" title=" steel frame ground structure optimization"> steel frame ground structure optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multidisciplinary%20optimization%20of%20steel%20structures" title=" multidisciplinary optimization of steel structures"> multidisciplinary optimization of steel structures</a> </p> <a href="https://publications.waset.org/abstracts/73293/a-ground-structure-method-to-minimize-the-total-installed-cost-of-steel-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Reinforced Concrete Foundation for Turbine Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhartha%20Bhattacharya">Siddhartha Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine%20generator%20foundation" title="steam turbine generator foundation">steam turbine generator foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/56409/reinforced-concrete-foundation-for-turbine-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Concrete Mixes for Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristyna%20Hrabova">Kristyna Hrabova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20H%C3%BCblova"> Sabina Hüblova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Vymazal"> Tomas Vymazal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural design of concrete structure has the result in qualities of structural safety and serviceability, together with durability, robustness, sustainability and resilience. A sustainable approach is at the heart of the research agenda around the world, and the Fibrillation Commission is also working on a new model code 2020. Now it is clear that the effects of mechanical, environmental load and even social coherence need to be reflected and included in the designing and evaluating structures. This study aimed to present the methodology for the sustainability assessment of various concrete mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=Model%20Code%202020" title=" Model Code 2020"> Model Code 2020</a> </p> <a href="https://publications.waset.org/abstracts/124008/concrete-mixes-for-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Zavalis">Mindaugas Zavalis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voided%20slab" title="voided slab">voided slab</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=hallow%20plastic%20insert" title=" hallow plastic insert"> hallow plastic insert</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=one-way%20reinforced%20concrete" title=" one-way reinforced concrete"> one-way reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a> </p> <a href="https://publications.waset.org/abstracts/168434/evaluation-and-control-of-cracking-for-bending-rein-forced-one-way-concrete-voided-slab-with-plastic-hollow-inserts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Noruziaan">B. Noruziaan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shvarzman"> A. Shvarzman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Leahy"> R. Leahy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Composite" title="Composite">Composite</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20deck" title=" floor deck"> floor deck</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum%20based" title=" gypsum based"> gypsum based</a>, <a href="https://publications.waset.org/abstracts/search?q=lumber%20joist" title=" lumber joist"> lumber joist</a>, <a href="https://publications.waset.org/abstracts/search?q=non-cement" title=" non-cement"> non-cement</a>, <a href="https://publications.waset.org/abstracts/search?q=oriented%20strandboard" title=" oriented strandboard"> oriented strandboard</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20bond" title=" shear bond"> shear bond</a> </p> <a href="https://publications.waset.org/abstracts/21166/oriented-strandboard-geogyptm-undelayment-a-novel-composite-flooring-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Parisi">S. Parisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=telecommunications%20container" title="telecommunications container">telecommunications container</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarian%20logistics" title=" humanitarian logistics"> humanitarian logistics</a> </p> <a href="https://publications.waset.org/abstracts/14677/conceptual-design-of-a-telecommunications-equipment-container-for-humanitarian-logistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Shafee">Ashkan Shafee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fahimifar"> Ahmad Fahimifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20excavation" title="deep excavation">deep excavation</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20loading" title=" inclined loading"> inclined loading</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20deformation" title=" lateral deformation"> lateral deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20group" title=" pile group"> pile group</a> </p> <a href="https://publications.waset.org/abstracts/95108/numerical-investigation-on-the-effects-of-deep-excavation-on-adjacent-pile-groups-subjected-to-inclined-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Creep Effect on Composite Beam with Perfect Steel-Concrete Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souici%20Abdelaziz">Souici Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tehami%20Mohamed"> Tehami Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahal%20Nacer"> Rahal Nacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mohamed%20Bekkouche"> Said Mohamed Bekkouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthet%20Jean-Fabien"> Berthet Jean-Fabien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of the concrete slab creep on the initial deformability of a bent composite beam is modelled. This deformability depends on the rate of creep. This means the rise in value of the longitudinal strain ε c(x,t), the displacement D eflec(x,t) and the strain energy E(t). The variation of these three parameters can easily affect negatively the good appearance and the serviceability of the structure. Therefore, an analytical approach is designed to control the status of the deformability of the beam at the instant t. This approach is based on the Boltzmann’s superposition principle and very particularly on the irreversible law of deformation. For this, two conditions of compatibility and two other static equilibrium equations are adopted. The two first conditions are set according to the rheological equation of Dischinger. After having done a mathematical arrangement, we have reached a system of two differential equations whose integration allows to find the mathematical expression of each generalized internal force in terms of the ability of the concrete slab to creep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20section" title="composite section">composite section</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/24870/creep-effect-on-composite-beam-with-perfect-steel-concrete-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Amini%20Motlagh">Peyman Amini Motlagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Pak"> Ali Pak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic retrofitting of important structures is essential in seismological active zones. The importance is doubled when it comes to some buildings like schools, hospitals, bridges etc. because they are required to continue their serviceability even after a major earthquake. Generally, seismic retrofitting codes have paid little attention to retrofitting of foundations due to its construction complexity. In this paper different methods for seismic retrofitting of tall buildings’ foundations will be discussed and evaluated. Foundations are considered in three different categories. First, foundations those are in danger of liquefaction of their underlying soil. Second, foundations located on slopes in seismological active regions. Third, foundations designed according to former design codes and may show structural defects under earthquake loads. After describing different methods used in different countries for retrofitting of the existing foundations in seismological active regions, comprehensive comparison between these methods with regard to the above mentioned categories is carried out. This paper gives some guidelines to choose the best method for seismic retrofitting of tall buildings’ foundations in retrofitting projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20foundation" title="existing foundation">existing foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting" title=" seismic retrofitting"> seismic retrofitting</a> </p> <a href="https://publications.waset.org/abstracts/8453/comparison-of-seismic-retrofitting-methods-for-existing-foundations-in-seismological-active-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grmanesh%20Gidey%20Kahsay">Grmanesh Gidey Kahsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20quality%20tools" title="essential quality tools">essential quality tools</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20systems%20and%20models" title=" quality systems and models"> quality systems and models</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management%20systems" title=" quality management systems"> quality management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20quality%20assurance" title=" and quality assurance"> and quality assurance</a> </p> <a href="https://publications.waset.org/abstracts/136437/concurrent-engineering-challenges-and-resolution-mechanisms-from-quality-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> A Probabilistic Study on Time to Cover Cracking Due to Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li">Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Baji"> Hassan Baji</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic" title=" probabilistic"> probabilistic</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a> </p> <a href="https://publications.waset.org/abstracts/79579/a-probabilistic-study-on-time-to-cover-cracking-due-to-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> ArcGIS as a Tool for Infrastructure Documentation and Asset Management: Establishing a GIS for Computer Network Documentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Segars">John Segars</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Built out of a real-world need to have better, more detailed, asset and infrastructure documentation, this project will lay out the case for using the database functionality of ArcGIS as a tool to track and maintain infrastructure location, status, maintenance and serviceability. Workflows and processes will be presented and detailed which may be applied to an organizations’ infrastructure needs that might allow them to make use of the robust tools which surround the ArcGIS platform. The end result is a value-added information system framework with a geographic component e.g., the spatial location of various I.T. assets, a detailed set of records which not only documents location but also captures the maintenance history for assets along with photographs and documentation of these various assets as attachments to the numerous feature class items. In addition to the asset location and documentation benefits, the staff will be able to log into the devices and pull SNMP (Simple Network Management Protocol) based query information from within the user interface. The entire collection of information may be displayed in ArcGIS, via a JavaScript based web application or via queries to the back-end database. The project is applicable to all organizations which maintain an IT infrastructure but specifically targets post-secondary educational institutions where access to ESRI resources is generally already available in house. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESRI" title="ESRI">ESRI</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20documentation" title=" network documentation"> network documentation</a>, <a href="https://publications.waset.org/abstracts/search?q=PostgreSQL" title=" PostgreSQL"> PostgreSQL</a> </p> <a href="https://publications.waset.org/abstracts/144976/arcgis-as-a-tool-for-infrastructure-documentation-and-asset-management-establishing-a-gis-for-computer-network-documentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Ma">F. J. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20H.%20Kwan"> A. K. H. Kwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20queuing%20algorithm" title="crack queuing algorithm">crack queuing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20analysis" title=" crack width analysis"> crack width analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20effect" title=" shrinkage effect"> shrinkage effect</a> </p> <a href="https://publications.waset.org/abstracts/50507/crack-width-analysis-of-reinforced-concrete-members-under-shrinkage-effect-by-pseudo-discrete-crack-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Fuentes">William Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Melany%20Gil"> Melany Gil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbine" title="offshore wind turbine">offshore wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=monopile" title=" monopile"> monopile</a>, <a href="https://publications.waset.org/abstracts/search?q=ISA" title=" ISA"> ISA</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoplasticity" title=" hypoplasticity"> hypoplasticity</a> </p> <a href="https://publications.waset.org/abstracts/91237/finite-element-simulation-of-an-offshore-monopile-subjected-to-cyclic-loading-using-hypoplasticity-with-intergranular-strain-anisotropy-isa-for-the-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Javad%20Vaziri%20Kang%20Olyaei">Seyed Javad Vaziri Kang Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sadat%20Dabiri"> Asma Sadat Dabiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fazaeli"> Hassan Fazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ali%20Amini"> Amir Ali Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavement" title="concrete pavement">concrete pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20polypropylene%20fibers" title=" macro polypropylene fibers"> macro polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20polypropylene%20fibers" title=" micro polypropylene fibers"> micro polypropylene fibers</a> </p> <a href="https://publications.waset.org/abstracts/128419/investigation-of-the-addition-of-macro-and-micro-polypropylene-fibers-on-mechanical-properties-of-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caglayan%20Hizal">Caglayan Hizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Emre%20Demirci"> Hasan Emre Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Engin%20Aktas"> Engin Aktas</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Sezer"> Alper Sezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Offshore%20wind%20turbines" title="Offshore wind turbines">Offshore wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=SHM" title=" SHM"> SHM</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment"> reliability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/135552/reliability-based-condition-assessment-of-offshore-wind-turbines-using-shm-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Akhavan%20Tavakkoli"> Maedeh Akhavan Tavakkoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20resistance%20ratio" title=" cyclic resistance ratio"> cyclic resistance ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT%20test" title=" SPT test"> SPT test</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title=" clay soil"> clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion%20soils" title=" cohesion soils"> cohesion soils</a> </p> <a href="https://publications.waset.org/abstracts/148105/evaluation-of-liquefaction-potential-of-fine-grained-soil-kerman-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Reliability-Based Codified Design of Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naser%20Alenezi">Naser Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Alsakkaf"> Ibrahim Alsakkaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Eid"> Osama Eid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to develop an independent reliability based code for reinforced concrete (R/C) structural components and elements solely for the State of Kuwait and its neighboring countries. The proposed code will take into account the harsh Kuwait’s harsh environment, loading conditions and material strengths. The method for developing such a code is based on structural reliability theory that takes into accounts the specific geographical and the various prescribed societal environment of the Kuwait region. These methods were developed according to the following four components: (1) loads, (2) structural strength, (3) reliability analysis, and (4) achieving target reliability levels (reliability index ’s ). The final product from this study will be a design code for R/C structural elements that include beams and columns, and some other structural members. This reliability-based LRFD design code will provide appropriate, easy, fast, and economical approach for designing R/C structural elements such as, beams and columns, for both houses and bridges, and other concrete structures. In addition, this reliability-based codified design of R/C beams, columns, and, possibly, concrete slabs will improve the design and serviceability of R/C bridge and building systems in Kuwait and neighboring GCC countries. Also, it has the potential to reduce the cost of new concrete structures, as fewer materials are used with more design efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=live%20laod" title="live laod">live laod</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20building" title=" structural building"> structural building</a> </p> <a href="https://publications.waset.org/abstracts/34927/reliability-based-codified-design-of-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Terceros">Mauricio Terceros</a>, <a href="https://publications.waset.org/abstracts/search?q=Jann-Eike%20Saathoff"> Jann-Eike Saathoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Achmus"> Martin Achmus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=onshore%20wind%20foundation" title="onshore wind foundation">onshore wind foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=pier%20foundation" title=" pier foundation"> pier foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20stiffness%20of%20soil-foundation%20system" title=" rotational stiffness of soil-foundation system"> rotational stiffness of soil-foundation system</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/101482/assessment-of-pier-foundations-for-onshore-wind-turbines-in-non-cohesive-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmad%20Aasim">Bashir Ahmad Aasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Khaliq%20Karimi"> Abdul Khaliq Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Tomiyama"> Jun Tomiyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title="concrete beam">concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20characteristics" title=" vibration characteristics"> vibration characteristics</a> </p> <a href="https://publications.waset.org/abstracts/120706/evaluation-of-beam-structure-using-non-destructive-vibration-based-damage-detection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=serviceability&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=serviceability&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10