CINXE.COM

Search results for: hydrophilicity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydrophilicity</title> <meta name="description" content="Search results for: hydrophilicity"> <meta name="keywords" content="hydrophilicity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrophilicity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrophilicity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 88</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrophilicity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Wei%20Chang">Yu-Wei Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan-Yu%20Ku"> Hsuan-Yu Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Shan%20Chiu"> Jo-Shan Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Fu%20Chang"> Shao-Fu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chon%20Chen"> Chien-Chon Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H<sub>2</sub>SO<sub>4</sub>), oxalic acid (COOH)<sub>2</sub>, and phosphoric acid (H<sub>3</sub>PO<sub>4</sub>), respectively. TiO<sub>2</sub>-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO<sub>2</sub>-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AAO" title="AAO">AAO</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube" title=" nanotube"> nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=anodization" title=" anodization"> anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a> </p> <a href="https://publications.waset.org/abstracts/69809/study-on-hydrophilicity-of-anodic-aluminum-oxide-templates-with-tio2-nts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> UV Enhanced Hydrophilicity of the Anodized Films Formed at Low Current Density and Low Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanawan%20Whangdee">Phanawan Whangdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Watanabe"> Tomoaki Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Viritpon%20Srimaneepong"> Viritpon Srimaneepong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dujreutai%20Pongkao%20Kashima"> Dujreutai Pongkao Kashima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anodized films formed at high current density or high voltage have been widely prepared for dental implant because it can improve the hydrophilicity to the film. Our attempt is exploring whether low current density and low voltage could enhance the good hydrophilicity to the anodized films or not. Furthermore, UV irradiation would be one of the key factor to enhance their hydrophilicity. The anodized films were performed at low current density of 2 mA/cm2 in 1M H3PO4, 1 mA/cm2 in 1M MCPM and low voltage of 6 V in either 1M H3PO4 or 1M MCPM. All samples were treated with UV for various times up to 24 h. After UV irradiation, the contact angle decreased, the chemical species changed. The Ti 2p and O 1s peaks increased, while the C 1s peak decreased which might be due to removal of hydrocarbon. The functional groups of the films shown as the change of OH groups appeared at wave number 3700 cm-1 and 2900-3000 cm-1, however, the peak of H2O at 1630 cm-1disappeared. It is indicated that UV irradiation might change the stretching modes of OH groups coordinated to surface Ti4+ cation but UV did not affect to the changes in surface morphologies. The surface energies increased after UV irradiation resulting in improving of the hydrophilicity. The anodized films formed at low current density or low voltage after UV irradiation showed a low contact angle as well as the film formed at high current density or high voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title="hydrophilicity">hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20current%20density" title=" low current density"> low current density</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage" title=" low voltage"> low voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20irradiation" title=" UV irradiation"> UV irradiation</a> </p> <a href="https://publications.waset.org/abstracts/22858/uv-enhanced-hydrophilicity-of-the-anodized-films-formed-at-low-current-density-and-low-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> The Use of Arabic Gum Mixed with Carbon Nanotubes Functionalized with Dodecylamine to Fabricate Superior Ultrafiltration Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Manawi">Yehia Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Kochkodan"> Viktor Kochkodan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muataz%20Hussien"> Muataz Hussien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of adding Arabic Gum (AG) and carbon nanotubes functionalized with dodecylamine (CNT-DDA) to the casting solutions of polysulfone (PS) was investigated. The aim of adding AG and CNT-DDA was to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. Different CNT-DDA loadings (0.1-3.0 wt.%) in 2 wt.% AG were added to PS/dimethylacetamide (DMAc) casting solutions to prepare PS membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PS/AG/CNT-DDA membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of BSA solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG and CNT-DDA to PS membranes was found to increase the hydrophilicity, porosity and hence the permeate flux of the fabricated membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title="Arabic gum">Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=polysulfone%20membrane" title=" polysulfone membrane"> polysulfone membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/69708/the-use-of-arabic-gum-mixed-with-carbon-nanotubes-functionalized-with-dodecylamine-to-fabricate-superior-ultrafiltration-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> The Effect of TiO₂ Nano-Thin Films on Light Transmission and Self-Cleaning Capabilities of Glass Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alduweesh">Ahmad Alduweesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-cleaning surfaces have become essential in various applications. For instance, in photovoltaics, they provide an easy-cost effecting way to keep the solar cells clean. Titanium dioxide (TiO₂) nanoparticles were fabricated at different thicknesses to study the effect of different thicknesses on the hydrophilicity behavior of TiO₂, eventually leading to customizing hydrophilicity levels to desired values under natural light. As a result, a remarkable increase was noticed in surface hydrophilicity after applying thermal annealing on the as-deposited TiO₂ thin-films, with contact angle dropping from around 85.4ᵒ for as-deposited thin-films down to 5.1ᵒ for one of the annealed samples. The produced thin films were exposed to the outside environment to observe the effect of dust. The transmittance of light using UV-VIS spectroscopy will be conducted on the lowest and highest thicknesses (5-40 nm); this will show whether the Titania has successfully enabled more sunlight to penetrate the glass or not. Surface characterizations, including AFM and contact angle, have been included in this test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20vapor%20deposition" title="physical vapor deposition">physical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-thin%20films" title=" nano-thin films"> nano-thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning%20surfaces" title=" self-cleaning surfaces"> self-cleaning surfaces</a> </p> <a href="https://publications.waset.org/abstracts/153034/the-effect-of-tio2-nano-thin-films-on-light-transmission-and-self-cleaning-capabilities-of-glass-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roshank%20Haghighat">Roshank Haghighat</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon-6%2FTiO2" title=" nylon-6/TiO2"> nylon-6/TiO2</a> </p> <a href="https://publications.waset.org/abstracts/34568/electrospun-tio2nylon-6-nanofiber-mat-improved-hydrophilicity-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eden%20G.%20Mariquit">Eden G. Mariquit</a>, <a href="https://publications.waset.org/abstracts/search?q=Winarto%20Kurniawan"> Winarto Kurniawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Miyauchi"> Masahiro Miyauchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirofumi%20Hinode"> Hirofumi Hinode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hydrophilicity" title=" surface hydrophilicity"> surface hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20thin%20films" title=" TiO2 thin films"> TiO2 thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant "> surfactant </a> </p> <a href="https://publications.waset.org/abstracts/14519/effect-of-addition-of-surfactant-to-the-surface-hydrophilicity-and-photocatalytic-activity-of-immobilized-nano-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Rezaei">Fatemeh Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Shokri"> Babak Shokri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20response" title="cellular response">cellular response</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title=" MTT assay"> MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20plasma" title=" RF plasma"> RF plasma</a> </p> <a href="https://publications.waset.org/abstracts/14636/enhanced-cell-adhesion-on-pmma-by-radio-frequency-oxygen-plasma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyung%20T.%20Kwak">Hyung T. Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gao"> Jun Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20An"> Yao An</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Kleinhammes"> Alfred Kleinhammes</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Wu"> Yue Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wettability" title="Wettability">Wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=Gas%20Isotherm" title=" Gas Isotherm"> Gas Isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrophilicity" title=" Hydrophilicity"> Hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/117675/influence-of-silica-surface-hydrophilicity-on-adsorbed-water-and-isopropanol-studied-by-in-situ-nmr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> The Effect of Arabic Gum on Polyethersulfone Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Manawi">Yehia Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Kochkodan"> Viktor Kochkodan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muataz%20Hussien"> Muataz Hussien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of adding Arabic Gum (AG) to the dope solutions of polyethersulfone (PES) was studied. The aim of adding AG is to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. several AG loading (0.1-3.0 wt.%) in PES/ N-Methyl-2-pyrrolidone (NMP) casting solutions were prepared to fabricate PES membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PES/AG membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of oil solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG to PES membranes was found to increase the permeate flux and porosity as well as reducing surface roughness and the contact angle of the membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifouling" title="antifouling">antifouling</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title=" Arabic gum"> Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethersulfone%20membrane" title=" polyethersulfone membrane"> polyethersulfone membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/69493/the-effect-of-arabic-gum-on-polyethersulfone-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20El%20Houda%20Arabi">Nour El Houda Arabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Iratni"> Aicha Iratni</a>, <a href="https://publications.waset.org/abstracts/search?q=Talaighil%20Razika"> Talaighil Razika</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Capoen"> Bruno Capoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bouazaoui"> Mohamed Bouazaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title="physical properties">physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sol" title=" sol"> sol</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%2FSiO2%20composite%20films" title=" TiO2/SiO2 composite films"> TiO2/SiO2 composite films</a> </p> <a href="https://publications.waset.org/abstracts/24780/the-effect-of-the-calcination-temperature-and-sio2-addition-on-the-physical-properties-of-sol-gel-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nurkhamidah">Siti Nurkhamidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeni%20Rahmawati"> Yeni Rahmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadlilatul%20Taufany"> Fadlilatul Taufany</a>, <a href="https://publications.waset.org/abstracts/search?q=Eamor%20M.%20Woo"> Eamor M. Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20P.%20A.%20Merta"> I Made P. A. Merta</a>, <a href="https://publications.waset.org/abstracts/search?q=Deffry%20D.%20A.%20Putra"> Deffry D. A. Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitsyah%20Alifiyanti"> Pitsyah Alifiyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisna%20D.%20Priambodo"> Krisna D. Priambodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20acetate" title=" cellulose acetate"> cellulose acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=PEG" title=" PEG"> PEG</a> </p> <a href="https://publications.waset.org/abstracts/50953/fabrication-of-cellulose-acetatepolyethylene-glycol-membranes-blended-with-silica-and-carbon-nanotube-for-desalination-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Amidi%20Fazli">Farid Amidi Fazli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=EVOH" title=" EVOH"> EVOH</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20cellulose" title=" nanocrystalline cellulose"> nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity "> hydrophilicity </a> </p> <a href="https://publications.waset.org/abstracts/20201/barrier-properties-of-starch-ethylene-vinyl-alcohol-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Improving Performance of K₂CO₃ Sorbent Using Core/Shell Alumina-Based Supports in a Multicycle CO₂ Capture Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Toufigh%20Bararpour">S. Toufigh Bararpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20H.%20Soleimanisalim"> Amir H. Soleimanisalim</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Karami"> Davood Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Mahinpey"> Nader Mahinpey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continued increase in the atmospheric concentration of CO2 is expected to have great impacts on the climate. In order to reduce CO2 emission to the atmosphere, an efficient and cost-effective technique is required. Using regenerable solid sorbents, especially K2CO3 is a promising method for low-temperature CO2 capture. Pure K2CO3 is a delinquent substance that requires modifications before it can be used for cyclic operations. For this purpose, various types of additives and supports have been used to improve the structure of K2CO3. However, hydrophilicity and reactivity of the support materials with K2CO3 have a negative effect on the CO2 capture capacity of the sorbents. In this research, two kinds of alumina supports (γ-Alumina and Boehmite) were used. In order to decrease the supports' hydrophilicity and reactivity with K2CO3, nonreactive additives such as Titania, Zirconia and Silisium were incorporated into their structures. These materials provide a shell around the alumina to protect it from undesirable reactions and improve its properties. K2CO3-based core/shell-supported sorbents were fabricated using two preparation steps. The sol-gel method was applied for shelling the supports. Then the shelled supports were impregnated on K2CO3. The physicochemical properties of the sorbents were determined using SEM and BET analyses, and their CO2 capture capacity was quantified using a thermogravimetric analyzer. It was shown that type of the shell's material had an important effect on the water adsorption capacity of the sorbents. Supported K2CO3 modified by Titania shell showed the lowest hydrophilicity among the prepared samples. Based on the obtained results, incorporating nonreactive additives in Boehmite had an outstanding impact on the CO2 capture performance of the sorbent. Incorporation of Titania into the Boehmite-supported K2CO3 enhanced its CO2 capture capacity significantly. Therefore, further study of this novel fabrication technique is highly recommended. In the second phase of this research project, the CO2 capture performance of the sorbents in fixed and fluidized bed reactors will be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title="CO₂ capture">CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell%20support" title=" core/shell support"> core/shell support</a>, <a href="https://publications.waset.org/abstracts/search?q=K%E2%82%82CO%E2%82%83" title=" K₂CO₃"> K₂CO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=post-combustion" title=" post-combustion"> post-combustion</a> </p> <a href="https://publications.waset.org/abstracts/82778/improving-performance-of-k2co3-sorbent-using-coreshell-alumina-based-supports-in-a-multicycle-co2-capture-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Ozkan">Ozan Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Turkoglu%20Sasmazel"> Hilal Turkoglu Sasmazel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/10533/dry-modifications-of-pclchitosanpcl-tissue-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajeri">S. Mohajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-plating" title=" pulse-plating"> pulse-plating</a> </p> <a href="https://publications.waset.org/abstracts/26116/an-investigation-on-the-pulse-electrodeposition-of-ni-tio2tio2-multilayer-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Pardis%20Hosseini">Seyedeh Pardis Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title="forward osmosis">forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20polybenzimidazole" title=" sulfonated polybenzimidazole"> sulfonated polybenzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20permeability" title=" water permeability"> water permeability</a> </p> <a href="https://publications.waset.org/abstracts/188962/molecular-dynamics-simulation-study-of-sulfonated-polybenzimidazole-polymers-as-promising-forward-osmosis-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Super-Hydrophilic TFC Membrane with High Stability in Oil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Obaid">M. Obaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20M.%20Barakat"> Nasser A. M. Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadali%20O.A"> Fadali O.A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low stability in oil media and the hydrophobicity problems of the ploysulfone electrospun membranes could be overcome in the present study. Synthesis of super-hydrophilic and highly stable in oil polysulfone electrospun nanofiber membrane was achieved by electrospinning of polysulfone solution containing NaOH salt followed by activation of the dried electrospun membrane by deposition of polyamide layer on the surface using m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride. The introduced membrane has super-hydrophilicity characteristic (contact angle=3o), excellent stability in oil media and distinct performance in oil-water separation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-degradability" title=" oil-degradability"> oil-degradability</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/17053/super-hydrophilic-tfc-membrane-with-high-stability-in-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoyang%20Liu">Zhaoyang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20nanofibers" title=" inorganic nanofibers"> inorganic nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%2Fwater%20separation" title=" oil/water separation"> oil/water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsions" title=" emulsions"> emulsions</a> </p> <a href="https://publications.waset.org/abstracts/79392/an-inorganic-nanofiberpolymeric-microfiber-network-membrane-for-high-performance-oilwater-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Investigation of Antimicrobial Activity of Dielectric Barrier Discharge Oxygen Plasma Combined with ZnO NPs-Treated Cotton Fabric Coated with Natural Green Tea Leaf Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20A.%20Mohamed">Fatma A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hend%20M.%20Ahmed"> Hend M. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research explores the antimicrobial effects of dielectric barrier discharge (DBD) oxygen plasma treatment combined with ZnO NPs on the cotton fabric, focusing on various treatment durations (5, 10, 15, 20, and 30 minutes) and discharge powers (15.5–17.35 watts) at flow rate 0.5 l/min. After treatment with oxygen plasma and ZnO NPs, the fabric was printed with green tea (Camellia sinensis) at five different concentrations. The study evaluated the treatment's effectiveness by analyzing surface wettability, specifically through wet-out time and hydrophilicity, as well as measuring contact angles. To investigate the chemical changes on the fabric's surface, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy was employed to identify the functional groups formed as a result of the plasma treatment. This comprehensive approach aims to understand how DBD oxygen plasma treatment and ZnO nanoparticles change cotton fabric properties and enhance its antimicrobial potential, paving the way for innovative applications in textiles. In addition to the chemical analysis, the surface morphology of the O₂ plasma/ZnO NPs-treated cotton fabric was examined using scanning electron microscopy (SEM). FTIR analysis revealed an increase in polar functional groups (-COOH, -OH, and -C≡O) on the fabric's surface, contributing to enhanced hydrophilicity and functionality. The antimicrobial properties were evaluated using qualitative and quantitative methods, including agar plate assays and modified Hoenstein tests against Staphylococcus aureus and Escherichia coli. The results indicated a significant improvement in antimicrobial effectiveness for the cotton fabric treated with plasma and coated with natural extracts, maintaining this efficacy even after four washing cycles. This research demonstrates that utilizing oxygen DBD plasma/ZnO NPs treatment, combined with the absorption of tea and tulsi leaf extracts, presents a promising strategy for developing natural antimicrobial textiles. This approach is particularly relevant given the increasing medical and healthcare demands for effective antimicrobial materials. Overall, the method not only enhances the absorption of plant extracts but also significantly boosts antimicrobial efficacy, offering valuable insights for future textile applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20NPs" title=" ZnO NPs"> ZnO NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20tea%20leaf" title=" green tea leaf"> green tea leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20avtivity" title=" antimicrobial avtivity"> antimicrobial avtivity</a>, <a href="https://publications.waset.org/abstracts/search?q=DBD%20oxygen%20plasma" title=" DBD oxygen plasma"> DBD oxygen plasma</a> </p> <a href="https://publications.waset.org/abstracts/193903/investigation-of-antimicrobial-activity-of-dielectric-barrier-discharge-oxygen-plasma-combined-with-zno-nps-treated-cotton-fabric-coated-with-natural-green-tea-leaf-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulqader%20Alkhouzaam">Abdulqader Alkhouzaam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazim%20Qiblawey"> Hazim Qiblawey</a>, <a href="https://publications.waset.org/abstracts/search?q=Majeda%20Khraisheh"> Majeda Khraisheh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifouling%20properties" title="antifouling properties">antifouling properties</a>, <a href="https://publications.waset.org/abstracts/search?q=GO%20based%20membranes" title=" GO based membranes"> GO based membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=polysulfone" title=" polysulfone"> polysulfone</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/116407/synthesis-of-high-antifouling-ultrafiltration-polysulfone-membranes-incorporating-low-concentrations-of-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Well-Defined Polypeptides: Synthesis and Selective Attachment of Poly(ethylene glycol) Functionalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Lavilla">Cristina Lavilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Heise"> Andreas Heise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of sequence-controlled polymers has received increasing attention in the last years. Well-defined polyacrylates, polyacrylamides and styrene-maleimide copolymers have been synthesized by sequential or kinetic addition of comonomers. However this approach has not yet been introduced to the synthesis of polypeptides, which are in fact polymers developed by nature in a sequence-controlled way. Polypeptides are natural materials that possess the ability to self-assemble into complex and highly ordered structures. Their folding and properties arise from precisely controlled sequences and compositions in their constituent amino acid monomers. So far, solid-phase peptide synthesis is the only technique that allows preparing short peptide sequences with excellent sequence control, but also requires extensive protection/deprotection steps and it is a difficult technique to scale-up. A new strategy towards sequence control in the synthesis of polypeptides is introduced, based on the sequential addition of α-amino acid-N-carboxyanhydrides (NCAs). The living ring-opening process is conducted to full conversion and no purification or deprotection is needed before addition of a new amino acid. The length of every block is predefined by the NCA:initiator ratio in every step. This method yields polypeptides with a specific sequence and controlled molecular weights. A series of polypeptides with varying block sequences have been synthesized with the aim to identify structure-property relationships. All of them are able to adopt secondary structures similar to natural polypeptides, and display properties in the solid state and in solution that are characteristic of the primary structure. By design the prepared polypeptides allow selective modification of individual block sequences, which has been exploited to introduce functionalities in defined positions along the polypeptide chain. Poly(ethylene glycol)(PEG) was the functionality chosen, as it is known to favor hydrophilicity and also yield thermoresponsive materials. After PEGylation, hydrophilicity of the polypeptides is enhanced, and their thermal response in H2O has been studied. Noteworthy differences in the behavior of the polypeptides having different sequences have been found. Circular dichroism measurements confirmed that the α-helical conformation is stable over the examined temperature range (5-90 °C). It is concluded that PEG units are the main responsible of the changes in H-bonding interactions with H2O upon variation of temperature, and the position of these functional units along the backbone is a factor of utmost importance in the resulting properties of the α-helical polypeptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amino%20acid%20N-carboxyanhydrides" title="α-amino acid N-carboxyanhydrides">α-amino acid N-carboxyanhydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=multiblock%20copolymers" title=" multiblock copolymers"> multiblock copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20glycol%29" title=" poly(ethylene glycol)"> poly(ethylene glycol)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypeptides" title=" polypeptides"> polypeptides</a>, <a href="https://publications.waset.org/abstracts/search?q=ring-opening%20polymerization" title=" ring-opening polymerization"> ring-opening polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20control" title=" sequence control"> sequence control</a> </p> <a href="https://publications.waset.org/abstracts/44823/well-defined-polypeptides-synthesis-and-selective-attachment-of-polyethylene-glycol-functionalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Ho%20Moon">Jong-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Ho%20Lee"> Dong-Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunuk%20Kim"> Hyunuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Cheol%20Park"> Young Cheol Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Seop%20Lee"> Jong-Seop Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-deok%20Jeon"> Jae-deok Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Keun%20Lee"> Hyung-Keun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimehtyl%20carbonate" title="dimehtyl carbonate">dimehtyl carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20membrane" title=" zeolite membrane"> zeolite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a> </p> <a href="https://publications.waset.org/abstracts/71361/pervaporation-of-dimethyl-carbonate-methanol-water-mixtures-using-zeolite-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Hsuan%20Hsu">Wei-Hsuan Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Xuan%20Huang"> Yi-Xuan Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrowetting" title="electrowetting">electrowetting</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20filling" title=" mold filling"> mold filling</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-imprint" title=" nano-imprint"> nano-imprint</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/99756/a-study-of-electrowetting-assisted-mold-filling-in-nanoimprint-lithography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gueridi%20Bachir">Gueridi Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadache%20Derradji"> Dadache Derradji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouabah%20Farid"> Rouabah Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20materials" title=" hybrid materials"> hybrid materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%2FSIO%E2%82%82%2FTiO%E2%82%82" title=" PVA/SIO₂/TiO₂"> PVA/SIO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopical%20characterization" title=" spectroscopical characterization"> spectroscopical characterization</a> </p> <a href="https://publications.waset.org/abstracts/194584/synthesis-of-a-hybrid-material-pvasio2tio2-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Modification of a Commercial Ultrafiltration Membrane by Electrospray Deposition for Performance Adjustment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizaveta%20Korzhova">Elizaveta Korzhova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Deon"> Sebastien Deon</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Fievet"> Patrick Fievet</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Lopatin"> Dmitry Lopatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Baranov"> Oleg Baranov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filtration with nanoporous ultrafiltration membranes is an attractive option to remove ionic pollutants from contaminated effluents. Unfortunately, commercial membranes are not necessarily suitable for specific applications, and their modification by polymer deposition is a fruitful way to adapt their performances accordingly. Many methods are usually used for surface modification, but a novel technique based on electrospray is proposed here. Various quantities of polymers were deposited on a commercial membrane, and the impact of the deposit is investigated on filtration performances and discussed in terms of charge and hydrophobicity. The electrospray deposition is a technique which has not been used for membrane modification up to now. It consists of spraying small drops of polymer solution under a high voltage between the needle containing the solution and the metallic support on which membrane is stuck. The advantage of this process lies in the small quantities of polymer that can be coated on the membrane surface compared with immersion technique. In this study, various quantities (from 2 to 40 μL/cm²) of solutions containing two charged polymers (13 mmol/L of monomer unit), namely polyethyleneimine (PEI) and polystyrene sulfonate (PSS), were sprayed on a negatively charged polyethersulfone membrane (PLEIADE, Orelis Environment). The efficacy of the polymer deposition was then investigated by estimating ion rejection, permeation flux, zeta-potential and contact angle before and after the polymer deposition. Firstly, contact angle (θ) measurements show that the surface hydrophilicity is notably improved by coating both PEI and PSS. Moreover, it was highlighted that the contact angle decreases monotonously with the amount of sprayed solution. Additionally, hydrophilicity enhancement was proved to be better with PSS (from 62 to 35°) than PEI (from 62 to 53°). Values of zeta-potential (ζ were estimated by measuring the streaming current generated by a pressure difference on both sides of a channel made by clamping two membranes. The ζ-values demonstrate that the deposits of PSS (negative at pH=5.5) allow an increase of the negative membrane charge, whereas the deposits of PEI (positive) lead to a positive surface charge. Zeta-potentials measurements also emphasize that the sprayed quantity has little impact on the membrane charge, except for very low quantities (2 μL/m²). The cross-flow filtration of salt solutions containing mono and divalent ions demonstrate that polymer deposition allows a strong enhancement of ion rejection. For instance, it is shown that rejection of a salt containing a divalent cation can be increased from 1 to 20 % and even to 35% by deposing 2 and 4 μL/cm² of PEI solution, respectively. This observation is coherent with the reversal of the membrane charge induced by PEI deposition. Similarly, the increase of negative charge induced by PSS deposition leads to an increase of NaCl rejection from 5 to 45 % due to electrostatic repulsion of the Cl- ion by the negative surface charge. Finally, a notable fall in the permeation flux due to the polymer layer coated at the surface was observed and the best polymer concentration in the sprayed solution remains to be determined to optimize performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title="ultrafiltration">ultrafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray%20deposition" title=" electrospray deposition"> electrospray deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20rejection" title=" ion rejection"> ion rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=permeation%20flux" title=" permeation flux"> permeation flux</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta-potential" title=" zeta-potential"> zeta-potential</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/86934/modification-of-a-commercial-ultrafiltration-membrane-by-electrospray-deposition-for-performance-adjustment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thanh%20Truc">Nguyen Thi Thanh Truc</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati"> Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS" title="ABS">ABS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title=" froth flotation"> froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a> </p> <a href="https://publications.waset.org/abstracts/32214/separation-of-hazardous-brominated-plastics-from-waste-plastics-by-froth-flotation-after-surface-modification-with-mild-heat-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Nanocellulose Incorporated Polyvinyl Alcohol Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Mohd%20Yunus">Rosli Mohd Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Zianor%20Azrina%20Zianon%20Abdin"> Zianor Azrina Zianon Abdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Dalour%20Hossen%20Beg"> Mohammad Dalour Hossen Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Ramli"> Ridzuan Ramli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, nanocrystalline cellulose (NCC) has gained considerable interest as a promising biomaterial due to their outstanding properties such as high surface area, high mechanical properties, hydrophilicity, biocompatibility and biodegradability. The NCC also has good stability in water which is compatible for mixing of water based polymer solution or emulsions with NCC. Oil palm empty fruit bunch (EFB) contained different amount of lignocellulosic materials such as lignin, hemicellulose and cellulose. Cellulose is the most significant materials that can be extracted from EFB as nanocrystalline cellulose (NCC). In this work the nanocrystalline cellulose were produced through acid hydrolysis together with ultrasound technique. The morphology of NCC was characterized by TEM, thermal behavior has been studied with DSC, TGA analysis. Structural properties were illustrated X-Ray diffraction as well as FTIR. The hydrogel was produced using polyvinyl alcohol (PVA) with different concentration of NCC. The hydrogel composite was characterized by swelling ratio, crosslinking density, mechanical properties and morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title="nanocellulose">nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/49487/nanocellulose-incorporated-polyvinyl-alcohol-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Li">Shaohua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Zhang"> Aihua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Zatopek"> Kelly Zatopek</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Parvez"> Saba Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20F.%20Gardner"> Andrew F. Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20R.%20Corr%C3%AAa%20Jr."> Ivan R. Corrêa Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Noren"> Christopher J. Noren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Qun%20Xu"> Ming-Qun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title="immobilized enzymes">immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20oxide%29" title=" poly(ethylene oxide)"> poly(ethylene oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/79716/improvement-on-the-specific-activities-of-immobilized-enzymes-by-polyethylene-oxide-surface-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debarun%20Dhar%20Purkayastha">Debarun Dhar Purkayastha</a>, <a href="https://publications.waset.org/abstracts/search?q=Talinungsang"> Talinungsang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20energy" title=" surface energy"> surface energy</a> </p> <a href="https://publications.waset.org/abstracts/86183/superhydrophobic-behavior-of-sno2-tio2-composite-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Physical Properties of Nano-Sized Poly-N-Isopropylacrylamide Hydrogels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Alveroglu%20Durucu">Esra Alveroglu Durucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenan%20Koc"> Kenan Koc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we synthesized and characterized nano-sized Poly- N-isopropylacrylamide (PNIPAM) hydrogels. N-isopropylacrylamide (NIPAM) micro and macro gels are known as a thermosensitive colloidal structure, and they respond to changes in the environmental conditions such as temperature and pH. Here, nano-sized gels were synthesized via precipitation copolymerization method. N,N-methylenebisacrylamide (BIS) and ammonium persulfate APS were used as crosslinker and initiator, respectively. 8-Hydroxypyrene-1,3,6- trisulfonic Acid (Pyranine, Py) molecules were used for arranging the particle size and thus physical properties of the nano-sized hydrogels. Fluorescence spectroscopy, atomic force microscopy and light scattering methods were used for characterizing the synthesized hydrogels. The results show that the gel size was decreased with increasing amount of ionic molecule from 550 to 140 nm due to the electrostatic behavior of the ionic side groups of pyranine. Light scattering experiments demonstrate that lower critical solution temperature (LCST) of the gels shifts to the lower temperature with decreasing size of gel due to the hydrophobicity–hydrophilicity balance of the polymer chains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title="hydrogels">hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20critical%20solution%20temperature" title=" lower critical solution temperature"> lower critical solution temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogels" title=" nanogels"> nanogels</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28n-isopropylacrylamide%29" title=" poly(n-isopropylacrylamide)"> poly(n-isopropylacrylamide)</a> </p> <a href="https://publications.waset.org/abstracts/54276/physical-properties-of-nano-sized-poly-n-isopropylacrylamide-hydrogels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrophilicity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrophilicity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrophilicity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10