CINXE.COM

Frobenius endomorphism - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Frobenius endomorphism - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f5ca0f0c-696f-453c-be01-44f46c1aca5c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Frobenius_endomorphism","wgTitle":"Frobenius endomorphism","wgCurRevisionId":1226769762,"wgRevisionId":1226769762,"wgArticleId":1088270,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from November 2013","All articles needing additional references","Finite fields","Algebraic number theory","Galois theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Frobenius_endomorphism","wgRelevantArticleId":1088270,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable": true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q769124","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled": false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Frobenius endomorphism - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Frobenius_endomorphism"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Frobenius_endomorphism"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Frobenius_endomorphism rootpage-Frobenius_endomorphism skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Frobenius+endomorphism" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Frobenius+endomorphism" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Frobenius+endomorphism" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Frobenius+endomorphism" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fixed_points_of_the_Frobenius_endomorphism" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fixed_points_of_the_Frobenius_endomorphism"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Fixed points of the Frobenius endomorphism</span> </div> </a> <ul id="toc-Fixed_points_of_the_Frobenius_endomorphism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_a_generator_of_Galois_groups" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#As_a_generator_of_Galois_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>As a generator of Galois groups</span> </div> </a> <ul id="toc-As_a_generator_of_Galois_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Frobenius_for_schemes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Frobenius_for_schemes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Frobenius for schemes</span> </div> </a> <button aria-controls="toc-Frobenius_for_schemes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Frobenius for schemes subsection</span> </button> <ul id="toc-Frobenius_for_schemes-sublist" class="vector-toc-list"> <li id="toc-The_absolute_Frobenius_morphism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_absolute_Frobenius_morphism"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>The absolute Frobenius morphism</span> </div> </a> <ul id="toc-The_absolute_Frobenius_morphism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Restriction_and_extension_of_scalars_by_Frobenius" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Restriction_and_extension_of_scalars_by_Frobenius"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Restriction and extension of scalars by Frobenius</span> </div> </a> <ul id="toc-Restriction_and_extension_of_scalars_by_Frobenius-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relative_Frobenius" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relative_Frobenius"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Relative Frobenius</span> </div> </a> <ul id="toc-Relative_Frobenius-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetic_Frobenius" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arithmetic_Frobenius"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Arithmetic Frobenius</span> </div> </a> <ul id="toc-Arithmetic_Frobenius-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_Frobenius" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometric_Frobenius"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Geometric Frobenius</span> </div> </a> <ul id="toc-Geometric_Frobenius-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetic_and_geometric_Frobenius_as_Galois_actions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arithmetic_and_geometric_Frobenius_as_Galois_actions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Arithmetic and geometric Frobenius as Galois actions</span> </div> </a> <ul id="toc-Arithmetic_and_geometric_Frobenius_as_Galois_actions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Frobenius_for_local_fields" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Frobenius_for_local_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Frobenius for local fields</span> </div> </a> <ul id="toc-Frobenius_for_local_fields-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Frobenius_for_global_fields" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Frobenius_for_global_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Frobenius for global fields</span> </div> </a> <ul id="toc-Frobenius_for_global_fields-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Frobenius endomorphism</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 15 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-15" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">15 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Endomorfisme_de_Frobenius" title="Endomorfisme de Frobenius – Catalan" lang="ca" hreflang="ca" data-title="Endomorfisme de Frobenius" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Frobeni%C5%AFv_endomorfismus" title="Frobeniův endomorfismus – Czech" lang="cs" hreflang="cs" data-title="Frobeniův endomorfismus" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Frobeniushomomorphismus" title="Frobeniushomomorphismus – German" lang="de" hreflang="de" data-title="Frobeniushomomorphismus" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Endomorfismo_de_Frobenius" title="Endomorfismo de Frobenius – Spanish" lang="es" hreflang="es" data-title="Endomorfismo de Frobenius" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Endomorphisme_de_Frobenius" title="Endomorphisme de Frobenius – French" lang="fr" hreflang="fr" data-title="Endomorphisme de Frobenius" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%94%84%EB%A1%9C%EB%B2%A0%EB%8B%88%EC%9A%B0%EC%8A%A4_%EC%82%AC%EC%83%81" title="프로베니우스 사상 – Korean" lang="ko" hreflang="ko" data-title="프로베니우스 사상" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Endomorfismo_di_Frobenius" title="Endomorfismo di Frobenius – Italian" lang="it" hreflang="it" data-title="Endomorfismo di Frobenius" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%95%D7%9E%D7%95%D7%9E%D7%95%D7%A8%D7%A4%D7%99%D7%96%D7%9D_%D7%A4%D7%A8%D7%95%D7%91%D7%A0%D7%99%D7%95%D7%A1" title="הומומורפיזם פרובניוס – Hebrew" lang="he" hreflang="he" data-title="הומומורפיזם פרובניוס" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Frobenius-endomorfisme" title="Frobenius-endomorfisme – Dutch" lang="nl" hreflang="nl" data-title="Frobenius-endomorfisme" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AD%E3%83%99%E3%83%8B%E3%82%A6%E3%82%B9%E8%87%AA%E5%B7%B1%E6%BA%96%E5%90%8C%E5%9E%8B" title="フロベニウス自己準同型 – Japanese" lang="ja" hreflang="ja" data-title="フロベニウス自己準同型" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Endomorfizm_Frobeniusa" title="Endomorfizm Frobeniusa – Polish" lang="pl" hreflang="pl" data-title="Endomorfizm Frobeniusa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Endomorfismo_de_Frobenius" title="Endomorfismo de Frobenius – Portuguese" lang="pt" hreflang="pt" data-title="Endomorfismo de Frobenius" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%AD%D0%BD%D0%B4%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%B8%D0%B7%D0%BC_%D0%A4%D1%80%D0%BE%D0%B1%D0%B5%D0%BD%D0%B8%D1%83%D1%81%D0%B0" title="Эндоморфизм Фробениуса – Russian" lang="ru" hreflang="ru" data-title="Эндоморфизм Фробениуса" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%BD%D0%B4%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D1%96%D0%B7%D0%BC_%D0%A4%D1%80%D0%BE%D0%B1%D0%B5%D0%BD%D1%96%D1%83%D1%81%D0%B0" title="Ендоморфізм Фробеніуса – Ukrainian" lang="uk" hreflang="uk" data-title="Ендоморфізм Фробеніуса" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BC%97%E7%BD%97%E8%B4%9D%E5%B0%BC%E4%B9%8C%E6%96%AF%E8%87%AA%E5%90%8C%E6%80%81" title="弗罗贝尼乌斯自同态 – Chinese" lang="zh" hreflang="zh" data-title="弗罗贝尼乌斯自同态" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q769124#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Frobenius_endomorphism" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Frobenius_endomorphism" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Frobenius_endomorphism"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Frobenius_endomorphism"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Frobenius_endomorphism" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Frobenius_endomorphism" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;oldid=1226769762" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Frobenius_endomorphism&amp;id=1226769762&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFrobenius_endomorphism"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFrobenius_endomorphism"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Frobenius_endomorphism&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Frobenius_endomorphism&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q769124" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">In a ring with prime characteristic p, the map raising elements to the pth power</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Frobenius_endomorphism" title="Special:EditPage/Frobenius endomorphism">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Frobenius+endomorphism%22">"Frobenius endomorphism"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Frobenius+endomorphism%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Frobenius+endomorphism%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Frobenius+endomorphism%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Frobenius+endomorphism%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Frobenius+endomorphism%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">November 2013</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Commutative_algebra" title="Commutative algebra">commutative algebra</a> and <a href="/wiki/Field_theory_(mathematics)" class="mw-redirect" title="Field theory (mathematics)">field theory</a>, the <b>Frobenius endomorphism</b> (after <a href="/wiki/Ferdinand_Georg_Frobenius" title="Ferdinand Georg Frobenius">Ferdinand Georg Frobenius</a>) is a special <a href="/wiki/Endomorphism" title="Endomorphism">endomorphism</a> of <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a> <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a> with <a href="/wiki/Prime_number" title="Prime number">prime</a> <a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a> <span class="texhtml mvar" style="font-style:italic;">p</span>, an important class that includes <a href="/wiki/Finite_fields" class="mw-redirect" title="Finite fields">finite fields</a>. The endomorphism maps every element to its <span class="texhtml mvar" style="font-style:italic;">p</span>-th power. In certain contexts it is an <a href="/wiki/Automorphism" title="Automorphism">automorphism</a>, but this is not true in general. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a commutative ring with prime characteristic <span class="texhtml mvar" style="font-style:italic;">p</span> (an <a href="/wiki/Integral_domain" title="Integral domain">integral domain</a> of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism <i>F</i> is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(r)=r^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(r)=r^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5188b35673c10ffd81bbd1abda0ae414336cd1bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.805ex; height:2.843ex;" alt="{\displaystyle F(r)=r^{p}}"></span></dd></dl> <p>for all <i>r</i> in <i>R</i>. It respects the multiplication of <i>R</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(rs)=(rs)^{p}=r^{p}s^{p}=F(r)F(s),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(rs)=(rs)^{p}=r^{p}s^{p}=F(r)F(s),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9153e28d363e8e373dd1e063a9f45355e384682" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.136ex; height:2.843ex;" alt="{\displaystyle F(rs)=(rs)^{p}=r^{p}s^{p}=F(r)F(s),}"></span></dd></dl> <p>and <span class="texhtml"><i>F</i>(1)</span> is 1 as well. Moreover, it also respects the addition of <span class="texhtml mvar" style="font-style:italic;">R</span>. The expression <span class="texhtml">(<i>r</i> + <i>s</i>)<sup><i>p</i></sup></span> can be expanded using the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a>. Because <span class="texhtml mvar" style="font-style:italic;">p</span> is prime, it divides <span class="texhtml"><i>p</i>!</span> but not any <span class="texhtml"><i>q</i>!</span> for <span class="texhtml"><i>q</i> &lt; <i>p</i></span>; it therefore will divide the <a href="/wiki/Numerator" class="mw-redirect" title="Numerator">numerator</a>, but not the <a href="/wiki/Denominator" class="mw-redirect" title="Denominator">denominator</a>, of the explicit formula of the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficients</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {p!}{k!(p-k)!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo>!</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {p!}{k!(p-k)!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7c6b5c1ff638e50e2a82e3b98fcd7644cb1864c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.018ex; height:6.176ex;" alt="{\displaystyle {\frac {p!}{k!(p-k)!}},}"></span></dd></dl> <p>if <span class="texhtml">1 &#8804; <i>k</i> &#8804; <i>p</i> &#8722; 1</span>. Therefore, the coefficients of all the terms except <span class="texhtml"><i>r</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> and <span class="texhtml"><i>s</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> are divisible by <span class="texhtml mvar" style="font-style:italic;">p</span>, and hence they vanish.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(r+s)=(r+s)^{p}=r^{p}+s^{p}=F(r)+F(s).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(r+s)=(r+s)^{p}=r^{p}+s^{p}=F(r)+F(s).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/641ed196e2f783f1597e197be658faed7ccdb64b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.497ex; height:2.843ex;" alt="{\displaystyle F(r+s)=(r+s)^{p}=r^{p}+s^{p}=F(r)+F(s).}"></span></dd></dl> <p>This shows that <i>F</i> is a <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">ring homomorphism</a>. </p><p>If <span class="texhtml"><i>φ</i>&#160;: <i>R</i> → <i>S</i></span> is a homomorphism of rings of characteristic <span class="texhtml mvar" style="font-style:italic;">p</span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x^{p})=\varphi (x)^{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x^{p})=\varphi (x)^{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09f7c3d42d276b667d6479744d2aa24ae7fa7d0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.182ex; height:2.843ex;" alt="{\displaystyle \varphi (x^{p})=\varphi (x)^{p}.}"></span></dd></dl> <p>If <span class="texhtml"><i>F<sub>R</sub></i></span> and <span class="texhtml"><i>F<sub>S</sub></i></span> are the Frobenius endomorphisms of <span class="texhtml mvar" style="font-style:italic;">R</span> and <span class="texhtml mvar" style="font-style:italic;">S</span>, then this can be rewritten as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \circ F_{R}=F_{S}\circ \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \circ F_{R}=F_{S}\circ \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/251251055a7d81da813a980d708e95e6a2118930" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.936ex; height:2.676ex;" alt="{\displaystyle \varphi \circ F_{R}=F_{S}\circ \varphi .}"></span></dd></dl> <p>This means that the Frobenius endomorphism is a <a href="/wiki/Natural_transformation" title="Natural transformation">natural transformation</a> from the identity <a href="/wiki/Functor" title="Functor">functor</a> on the <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> of characteristic <span class="texhtml mvar" style="font-style:italic;">p</span> rings to itself. </p><p>If the ring <span class="texhtml mvar" style="font-style:italic;">R</span> is a ring with no <a href="/wiki/Nilpotent" title="Nilpotent">nilpotent</a> elements, then the Frobenius endomorphism is <a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a>: <span class="texhtml"><i>F</i>(<i>r</i>) = 0</span> means <span class="texhtml"><i>r</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span> = 0</span>, which by definition means that <span class="texhtml mvar" style="font-style:italic;">r</span> is nilpotent of order at most <span class="texhtml mvar" style="font-style:italic;">p</span>. In fact, this is necessary and sufficient, because if <span class="texhtml mvar" style="font-style:italic;">r</span> is any nilpotent, then one of its powers will be nilpotent of order at most <span class="texhtml mvar" style="font-style:italic;">p</span>. In particular, if <span class="texhtml mvar" style="font-style:italic;">R</span> is a field then the Frobenius endomorphism is injective. </p><p>The Frobenius morphism is not necessarily <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a>, even when <span class="texhtml mvar" style="font-style:italic;">R</span> is a field. For example, let <span class="texhtml"><i>K</i> = <b>F</b><sub><i>p</i></sub>(<i>t</i>)</span> be the finite field of <span class="texhtml mvar" style="font-style:italic;">p</span> elements together with a single <a href="/wiki/Transcendental_element" class="mw-redirect" title="Transcendental element">transcendental element</a>; equivalently, <span class="texhtml mvar" style="font-style:italic;">K</span> is the field of <a href="/wiki/Rational_function" title="Rational function">rational functions</a> with coefficients in <span class="texhtml"><b>F</b><sub><i>p</i></sub></span>. Then the image of <span class="texhtml mvar" style="font-style:italic;">F</span> does not contain <span class="texhtml mvar" style="font-style:italic;">t</span>. If it did, then there would be a rational function <span class="texhtml"><i>q</i>(<i>t</i>)/<i>r</i>(<i>t</i>)</span> whose <span class="texhtml mvar" style="font-style:italic;">p</span>-th power <span class="texhtml"><i>q</i>(<i>t</i>)<sup><i>p</i></sup>/<i>r</i>(<i>t</i>)<sup><i>p</i></sup></span> would equal <span class="texhtml mvar" style="font-style:italic;">t</span>. But the degree of this <span class="texhtml mvar" style="font-style:italic;">p</span>-th power (the difference between the degrees of its numerator and denominator) is <span class="texhtml"><i>p</i> deg(<i>q</i>) − <i>p</i> deg(<i>r</i>)</span>, which is a multiple of <span class="texhtml mvar" style="font-style:italic;">p</span>. In particular, it can't be 1, which is the degree of <span class="texhtml mvar" style="font-style:italic;">t</span>. This is a contradiction; so <span class="texhtml mvar" style="font-style:italic;">t</span> is not in the image of <span class="texhtml mvar" style="font-style:italic;">F</span>. </p><p>A field <span class="texhtml mvar" style="font-style:italic;">K</span> is called <i><a href="/wiki/Perfect_field" title="Perfect field">perfect</a></i> if either it is of characteristic zero or it is of positive characteristic and its Frobenius endomorphism is an automorphism. For example, all finite fields are perfect. </p> <div class="mw-heading mw-heading2"><h2 id="Fixed_points_of_the_Frobenius_endomorphism">Fixed points of the Frobenius endomorphism</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=2" title="Edit section: Fixed points of the Frobenius endomorphism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the finite field <span class="texhtml"><b>F</b><sub><i>p</i></sub></span>. By <a href="/wiki/Fermat%27s_little_theorem" title="Fermat&#39;s little theorem">Fermat's little theorem</a>, every element <span class="texhtml mvar" style="font-style:italic;">x</span> of <span class="texhtml"><b>F</b><sub><i>p</i></sub></span> satisfies <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span> = <i>x</i></span>. Equivalently, it is a root of the polynomial <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span> − <i>X</i></span>. The elements of <span class="texhtml"><b>F</b><sub><i>p</i></sub></span> therefore determine <span class="texhtml mvar" style="font-style:italic;">p</span> roots of this equation, and because this equation has degree <span class="texhtml mvar" style="font-style:italic;">p</span> it has no more than <span class="texhtml mvar" style="font-style:italic;">p</span> roots over any <a href="/wiki/Field_extension" title="Field extension">extension</a>. In particular, if <span class="texhtml mvar" style="font-style:italic;">K</span> is an algebraic extension of <span class="texhtml"><b>F</b><sub><i>p</i></sub></span> (such as the algebraic closure or another finite field), then <span class="texhtml"><b>F</b><sub><i>p</i></sub></span> is the fixed field of the Frobenius automorphism of <span class="texhtml mvar" style="font-style:italic;">K</span>. </p><p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a ring of characteristic <span class="texhtml"><i>p</i> &gt; 0</span>. If <span class="texhtml mvar" style="font-style:italic;">R</span> is an integral domain, then by the same reasoning, the fixed points of Frobenius are the elements of the prime field. However, if <span class="texhtml mvar" style="font-style:italic;">R</span> is not a domain, then <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span> − <i>X</i></span> may have more than <span class="texhtml mvar" style="font-style:italic;">p</span> roots; for example, this happens if <span class="texhtml"><i>R</i> = <b>F</b><sub><i>p</i></sub> × <b>F</b><sub><i>p</i></sub></span>. </p><p>A similar property is enjoyed on the finite field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9c8fdcca891dcfe7fbeb429813af2eae3bc63a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.707ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p^{n}}}"></span> by the <i>n</i>th iterate of the Frobenius automorphism: Every element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9c8fdcca891dcfe7fbeb429813af2eae3bc63a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.707ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p^{n}}}"></span> is a root of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{p^{n}}-X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{p^{n}}-X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26c5444ae298745e11c69beb75e5308379f41ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.841ex; height:2.843ex;" alt="{\displaystyle X^{p^{n}}-X}"></span>, so if <span class="texhtml mvar" style="font-style:italic;">K</span> is an algebraic extension of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9c8fdcca891dcfe7fbeb429813af2eae3bc63a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.707ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p^{n}}}"></span> and <span class="texhtml mvar" style="font-style:italic;">F</span> is the Frobenius automorphism of <span class="texhtml mvar" style="font-style:italic;">K</span>, then the fixed field of <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9c8fdcca891dcfe7fbeb429813af2eae3bc63a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.707ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p^{n}}}"></span>. If <i>R</i> is a domain that is an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9c8fdcca891dcfe7fbeb429813af2eae3bc63a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.707ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p^{n}}}"></span>-algebra, then the fixed points of the <i>n</i>th iterate of Frobenius are the elements of the image of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9c8fdcca891dcfe7fbeb429813af2eae3bc63a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.707ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p^{n}}}"></span>. </p><p>Iterating the Frobenius map gives a sequence of elements in <span class="texhtml mvar" style="font-style:italic;">R</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,x^{p},x^{p^{2}},x^{p^{3}},\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,x^{p},x^{p^{2}},x^{p^{3}},\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/018faa04be1f4e613227b328e35c6074d77cb274" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.052ex; height:3.343ex;" alt="{\displaystyle x,x^{p},x^{p^{2}},x^{p^{3}},\ldots .}"></span></dd></dl> <p>This sequence of iterates is used in defining the <a href="/w/index.php?title=Frobenius_closure&amp;action=edit&amp;redlink=1" class="new" title="Frobenius closure (page does not exist)">Frobenius closure</a> and the <a href="/wiki/Tight_closure" title="Tight closure">tight closure</a> of an ideal. </p> <div class="mw-heading mw-heading2"><h2 id="As_a_generator_of_Galois_groups">As a generator of Galois groups</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=3" title="Edit section: As a generator of Galois groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Galois_group" title="Galois group">Galois group</a> of an extension of finite fields is generated by an iterate of the Frobenius automorphism. First, consider the case where the ground field is the prime field <span class="texhtml"><b>F</b><sub><i>p</i></sub></span>. Let <span class="texhtml"><b>F</b><sub><i>q</i></sub></span> be the finite field of <span class="texhtml mvar" style="font-style:italic;">q</span> elements, where <span class="texhtml"><i>q</i> = <i>p</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span>. The Frobenius automorphism <span class="texhtml mvar" style="font-style:italic;">F</span> of <span class="texhtml"><b>F</b><sub><i>q</i></sub></span> fixes the prime field <span class="texhtml"><b>F</b><sub><i>p</i></sub></span>, so it is an element of the Galois group <span class="texhtml">Gal(<b>F</b><sub><i>q</i></sub>/<b>F</b><sub><i>p</i></sub>)</span>. In fact, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{q}^{\times }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{q}^{\times }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48c98903cb1b9f77d79d3c62b5dd800008fe2685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.194ex; height:3.176ex;" alt="{\displaystyle \mathbf {F} _{q}^{\times }}"></span> is <a href="/wiki/Finite_field#Multiplicative_structure" title="Finite field">cyclic with <span class="nowrap"><i>q</i> − 1</span> elements</a>, we know that the Galois group is cyclic and <span class="texhtml mvar" style="font-style:italic;">F</span> is a generator. The order of <span class="texhtml mvar" style="font-style:italic;">F</span> is <span class="texhtml mvar" style="font-style:italic;">n</span> because <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span> acts on an element <span class="texhtml mvar" style="font-style:italic;">x</span> by sending it to <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>p<sup>j</sup></i></sup></span></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{p^{j}}=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </msup> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{p^{j}}=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19bca1b1e2f829546a1f06c0701a1bd4c3bb2612" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.531ex; height:3.009ex;" alt="{\displaystyle x^{p^{j}}=x}"></span> can only have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e79163ba3c2248a6275212b1fdb7ce321e682c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.169ex; height:3.009ex;" alt="{\displaystyle p^{j}}"></span> many roots, since we are in a field. Every automorphism of <span class="texhtml"><b>F</b><sub><i>q</i></sub></span> is a power of <span class="texhtml mvar" style="font-style:italic;">F</span>, and the generators are the powers <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span></span> with <span class="texhtml mvar" style="font-style:italic;">i</span> coprime to <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>Now consider the finite field <span class="texhtml"><b>F</b><sub><i>q</i><span style="padding-left:0.12em;"><sup><i>f</i></sup></span></sub></span> as an extension of <span class="texhtml"><b>F</b><sub><i>q</i></sub></span>, where <span class="texhtml"><i>q</i> = <i>p</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> as above. If <span class="texhtml"><i>n</i> &gt; 1</span>, then the Frobenius automorphism <span class="texhtml mvar" style="font-style:italic;">F</span> of <span class="texhtml"><b>F</b><sub><i>q</i><span style="padding-left:0.12em;"><sup><i>f</i></sup></span></sub></span> does not fix the ground field <span class="texhtml"><b>F</b><sub><i>q</i></sub></span>, but its <span class="texhtml mvar" style="font-style:italic;">n</span>th iterate <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> does. The Galois group <span class="texhtml">Gal(<b>F</b><sub><i>q</i><span style="padding-left:0.12em;"><sup><i>f</i></sup></span></sub>&#8201;/<b>F</b><sub><i>q</i></sub>)</span> is cyclic of order <span class="texhtml mvar" style="font-style:italic;">f</span> and is generated by <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span>. It is the subgroup of <span class="texhtml">Gal(<b>F</b><sub><i>q</i><span style="padding-left:0.12em;"><sup><i>f</i></sup></span></sub>&#8201;/<b>F</b><sub><i>p</i></sub>)</span> generated by <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span>. The generators of <span class="texhtml">Gal(<b>F</b><sub><i>q</i><span style="padding-left:0.12em;"><sup><i>f</i></sup></span></sub>&#8201;/<b>F</b><sub><i>q</i></sub>)</span> are the powers <span class="texhtml"><i>F</i><span style="padding-left:0.12em;"><sup><i>ni</i></sup></span></span> where <span class="texhtml mvar" style="font-style:italic;">i</span> is coprime to <span class="texhtml mvar" style="font-style:italic;">f</span>. </p><p>The Frobenius automorphism is not a generator of the <a href="/wiki/Absolute_Galois_group" title="Absolute Galois group">absolute Galois group</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Gal} \left({\overline {\mathbf {F} _{q}}}/\mathbf {F} _{q}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Gal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Gal} \left({\overline {\mathbf {F} _{q}}}/\mathbf {F} _{q}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b629a5638e009559e4f7ece79670599e66f153f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.676ex; height:4.843ex;" alt="{\displaystyle \operatorname {Gal} \left({\overline {\mathbf {F} _{q}}}/\mathbf {F} _{q}\right),}"></span></dd></dl> <p>because this Galois group is isomorphic to the <a href="/wiki/Profinite_integer" title="Profinite integer">profinite integers</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mathbf {Z} }}=\varprojlim _{n}\mathbf {Z} /n\mathbf {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2190;<!-- ← --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mathbf {Z} }}=\varprojlim _{n}\mathbf {Z} /n\mathbf {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee9011f66c715c7e30e8ec64850c794c601fa1dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:15.016ex; height:6.009ex;" alt="{\displaystyle {\widehat {\mathbf {Z} }}=\varprojlim _{n}\mathbf {Z} /n\mathbf {Z} ,}"></span></dd></dl> <p>which are not cyclic. However, because the Frobenius automorphism is a generator of the Galois group of every finite extension of <span class="texhtml"><b>F</b><sub><i>q</i></sub></span>, it is a generator of every finite quotient of the absolute Galois group. Consequently, it is a topological generator in the usual Krull topology on the absolute Galois group. </p> <div class="mw-heading mw-heading2"><h2 id="Frobenius_for_schemes">Frobenius for schemes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=4" title="Edit section: Frobenius for schemes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are several different ways to define the Frobenius morphism for a <a href="/wiki/Scheme_(mathematics)" title="Scheme (mathematics)">scheme</a>. The most fundamental is the absolute Frobenius morphism. However, the absolute Frobenius morphism behaves poorly in the relative situation because it pays no attention to the base scheme. There are several different ways of adapting the Frobenius morphism to the relative situation, each of which is useful in certain situations. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Absolute_and_relative_Frobenius.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Absolute_and_relative_Frobenius.svg/220px-Absolute_and_relative_Frobenius.svg.png" decoding="async" width="220" height="222" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Absolute_and_relative_Frobenius.svg/330px-Absolute_and_relative_Frobenius.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Absolute_and_relative_Frobenius.svg/440px-Absolute_and_relative_Frobenius.svg.png 2x" data-file-width="138" data-file-height="139" /></a><figcaption>Let <span class="texhtml">φ&#160;: <i>X</i> → <i>S</i></span> be a morphism of schemes, and denote the absolute Frobenius morphisms of <span class="texhtml"><i>S</i></span> and <span class="texhtml"><i>X</i></span> by <span class="texhtml"><i>F</i><sub><i>S</i></sub></span> and <span class="texhtml"><i>F</i><sub><i>X</i></sub></span>, respectively. Define <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> to be the base change of <span class="texhtml"><i>X</i></span> by <span class="texhtml"><i>F</i><sub><i>S</i></sub></span>. Then the above diagram commutes and the square is <a href="/wiki/Cartesian_square_(category_theory)" class="mw-redirect" title="Cartesian square (category theory)">Cartesian</a>. The morphism <span class="texhtml"><i>F</i><sub><i>X</i>/<i>S</i></sub></span> is relative Frobenius.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="The_absolute_Frobenius_morphism">The absolute Frobenius morphism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=5" title="Edit section: The absolute Frobenius morphism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that <span class="texhtml mvar" style="font-style:italic;">X</span> is a scheme of characteristic <span class="texhtml"><i>p</i> &gt; 0</span>. Choose an open affine subset <span class="texhtml"><i>U</i> = Spec <i>A</i></span> of <span class="texhtml mvar" style="font-style:italic;">X</span>. The ring <span class="texhtml mvar" style="font-style:italic;">A</span> is an <span class="texhtml"><b>F</b><sub><i>p</i></sub></span>-algebra, so it admits a Frobenius endomorphism. If <span class="texhtml mvar" style="font-style:italic;">V</span> is an open affine subset of <span class="texhtml mvar" style="font-style:italic;">U</span>, then by the naturality of Frobenius, the Frobenius morphism on <span class="texhtml mvar" style="font-style:italic;">U</span>, when restricted to <span class="texhtml mvar" style="font-style:italic;">V</span>, is the Frobenius morphism on <span class="texhtml mvar" style="font-style:italic;">V</span>. Consequently, the Frobenius morphism glues to give an endomorphism of <span class="texhtml mvar" style="font-style:italic;">X</span>. This endomorphism is called the <b>absolute Frobenius morphism</b> of <span class="texhtml mvar" style="font-style:italic;">X</span>, denoted <span class="texhtml"><i>F<sub>X</sub></i></span>. By definition, it is a homeomorphism of <span class="texhtml mvar" style="font-style:italic;">X</span> with itself. The absolute Frobenius morphism is a natural transformation from the identity functor on the category of <span class="texhtml"><b>F</b><sub><i>p</i></sub></span>-schemes to itself. </p><p>If <span class="texhtml mvar" style="font-style:italic;">X</span> is an <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme and the Frobenius morphism of <span class="texhtml mvar" style="font-style:italic;">S</span> is the identity, then the absolute Frobenius morphism is a morphism of <span class="texhtml mvar" style="font-style:italic;">S</span>-schemes. In general, however, it is not. For example, consider the ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\mathbf {F} _{p^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\mathbf {F} _{p^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26041a306d06db346f90eefd91a898a2040bfe99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.415ex; height:3.009ex;" alt="{\displaystyle A=\mathbf {F} _{p^{2}}}"></span>. Let <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">S</span> both equal <span class="texhtml">Spec <i>A</i></span> with the structure map <span class="texhtml"><i>X</i> → <i>S</i></span> being the identity. The Frobenius morphism on <span class="texhtml mvar" style="font-style:italic;">A</span> sends <span class="texhtml mvar" style="font-style:italic;">a</span> to <span class="texhtml"><i>a</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span>. It is not a morphism of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5d1b9f50001dd9cc15cd86d77ac5c76648f26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.573ex; height:3.009ex;" alt="{\displaystyle \mathbf {F} _{p^{2}}}"></span>-algebras. If it were, then multiplying by an element <span class="texhtml mvar" style="font-style:italic;">b</span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5d1b9f50001dd9cc15cd86d77ac5c76648f26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.573ex; height:3.009ex;" alt="{\displaystyle \mathbf {F} _{p^{2}}}"></span> would commute with applying the Frobenius endomorphism. But this is not true because: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\cdot a=ba\neq F(b)\cdot a=b^{p}a.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\cdot a=ba\neq F(b)\cdot a=b^{p}a.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4f06030152d5561ed0604e6740c33851e2605a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.819ex; height:2.843ex;" alt="{\displaystyle b\cdot a=ba\neq F(b)\cdot a=b^{p}a.}"></span></dd></dl> <p>The former is the action of <span class="texhtml mvar" style="font-style:italic;">b</span> in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5d1b9f50001dd9cc15cd86d77ac5c76648f26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.573ex; height:3.009ex;" alt="{\displaystyle \mathbf {F} _{p^{2}}}"></span>-algebra structure that <span class="texhtml mvar" style="font-style:italic;">A</span> begins with, and the latter is the action of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5d1b9f50001dd9cc15cd86d77ac5c76648f26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.573ex; height:3.009ex;" alt="{\displaystyle \mathbf {F} _{p^{2}}}"></span> induced by Frobenius. Consequently, the Frobenius morphism on <span class="texhtml">Spec <i>A</i></span> is not a morphism of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5d1b9f50001dd9cc15cd86d77ac5c76648f26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.573ex; height:3.009ex;" alt="{\displaystyle \mathbf {F} _{p^{2}}}"></span>-schemes. </p><p>The absolute Frobenius morphism is a purely inseparable morphism of degree <span class="texhtml mvar" style="font-style:italic;">p</span>. Its differential is zero. It preserves products, meaning that for any two schemes <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span>, <span class="texhtml"><i>F</i><sub><i>X</i>×<i>Y</i></sub> = <i>F<sub>X</sub></i> × <i>F<sub>Y</sub></i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Restriction_and_extension_of_scalars_by_Frobenius">Restriction and extension of scalars by Frobenius</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=6" title="Edit section: Restriction and extension of scalars by Frobenius"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that <span class="texhtml"><i>φ</i>&#160;: <i>X</i> → <i>S</i></span> is the structure morphism for an <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme <span class="texhtml mvar" style="font-style:italic;">X</span>. The base scheme <span class="texhtml mvar" style="font-style:italic;">S</span> has a Frobenius morphism <i>F</i><sub><i>S</i></sub>. Composing <span class="texhtml mvar" style="font-style:italic;">φ</span> with <i>F</i><sub><i>S</i></sub> results in an <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme <i>X</i><sub><i>F</i></sub> called the <b>restriction of scalars by Frobenius</b>. The restriction of scalars is actually a functor, because an <span class="texhtml mvar" style="font-style:italic;">S</span>-morphism <span class="texhtml"><i>X</i> → <i>Y</i></span> induces an <span class="texhtml mvar" style="font-style:italic;">S</span>-morphism <span class="texhtml"><i>X<sub>F</sub></i> → <i>Y<sub>F</sub></i></span>. </p><p>For example, consider a ring <i>A</i> of characteristic <span class="texhtml"><i>p</i> &gt; 0</span> and a finitely presented algebra over <i>A</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31e00f8d177d656b5de83ecac70c3cc28c75eadd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.003ex; height:2.843ex;" alt="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}).}"></span></dd></dl> <p>The action of <i>A</i> on <i>R</i> is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\cdot \sum a_{\alpha }X^{\alpha }=\sum ca_{\alpha }X^{\alpha },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <mo>&#x2211;<!-- ∑ --></mo> <mi>c</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\cdot \sum a_{\alpha }X^{\alpha }=\sum ca_{\alpha }X^{\alpha },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3fb6ab5053f8b02953c47d0831d9e37af0bece2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:26.512ex; height:3.843ex;" alt="{\displaystyle c\cdot \sum a_{\alpha }X^{\alpha }=\sum ca_{\alpha }X^{\alpha },}"></span></dd></dl> <p>where &#945; is a multi-index. Let <span class="texhtml"><i>X</i> = Spec <i>R</i></span>. Then <span class="texhtml"><i>X<sub>F</sub></i></span> is the affine scheme <span class="texhtml">Spec <i>R</i></span>, but its structure morphism <span class="texhtml">Spec <i>R</i> → Spec <i>A</i></span>, and hence the action of <i>A</i> on <i>R</i>, is different: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\cdot \sum a_{\alpha }X^{\alpha }=\sum F(c)a_{\alpha }X^{\alpha }=\sum c^{p}a_{\alpha }X^{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <mo>&#x2211;<!-- ∑ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\cdot \sum a_{\alpha }X^{\alpha }=\sum F(c)a_{\alpha }X^{\alpha }=\sum c^{p}a_{\alpha }X^{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80a40944808365c50929d332ac2fb1f93d9e355c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:44.764ex; height:3.843ex;" alt="{\displaystyle c\cdot \sum a_{\alpha }X^{\alpha }=\sum F(c)a_{\alpha }X^{\alpha }=\sum c^{p}a_{\alpha }X^{\alpha }.}"></span></dd></dl> <p>Because restriction of scalars by Frobenius is simply composition, many properties of <span class="texhtml mvar" style="font-style:italic;">X</span> are inherited by <i>X</i><sub><i>F</i></sub> under appropriate hypotheses on the Frobenius morphism. For example, if <span class="texhtml mvar" style="font-style:italic;">X</span> and <i>S</i><sub><i>F</i></sub> are both finite type, then so is <i>X</i><sub><i>F</i></sub>. </p><p>The <b>extension of scalars by Frobenius</b> is defined to be: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{(p)}=X\times _{S}S_{F}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>X</mi> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{(p)}=X\times _{S}S_{F}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c849b18a55643255b694a795fdd8da7e7d46092d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.082ex; height:3.176ex;" alt="{\displaystyle X^{(p)}=X\times _{S}S_{F}.}"></span></dd></dl> <p>The projection onto the <span class="texhtml mvar" style="font-style:italic;">S</span> factor makes <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> an <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme. If <span class="texhtml mvar" style="font-style:italic;">S</span> is not clear from the context, then <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> is denoted by <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>/<i>S</i>)</sup></span></span>. Like restriction of scalars, extension of scalars is a functor: An <span class="texhtml mvar" style="font-style:italic;">S</span>-morphism <span class="texhtml"><i>X</i> → <i>Y</i></span> determines an <span class="texhtml mvar" style="font-style:italic;">S</span>-morphism <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span> → <i>Y</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span>. </p><p>As before, consider a ring <i>A</i> and a finitely presented algebra <i>R</i> over <i>A</i>, and again let <span class="texhtml"><i>X</i> = Spec <i>R</i></span>. Then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{(p)}=\operatorname {Spec} R\otimes _{A}A_{F}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>Spec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>R</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{(p)}=\operatorname {Spec} R\otimes _{A}A_{F}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdef1d2599a734889b214645073446f59dec18c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.393ex; height:3.176ex;" alt="{\displaystyle X^{(p)}=\operatorname {Spec} R\otimes _{A}A_{F}.}"></span></dd></dl> <p>A global section of <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> is of the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}=\sum _{i}\sum _{\alpha }X^{\alpha }\otimes a_{i\alpha }^{p}b_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}=\sum _{i}\sum _{\alpha }X^{\alpha }\otimes a_{i\alpha }^{p}b_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fcef253ca6af43837b1ad1df5a70150013a817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:44.395ex; height:7.509ex;" alt="{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}=\sum _{i}\sum _{\alpha }X^{\alpha }\otimes a_{i\alpha }^{p}b_{i},}"></span></dd></dl> <p>where <i>α</i> is a multi-index and every <i>a</i><sub><i>iα</i></sub> and <i>b</i><sub><i>i</i></sub> is an element of <i>A</i>. The action of an element <i>c</i> of <i>A</i> on this section is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\cdot \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}=\sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\cdot \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}=\sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de2c9c8e6a74711206d64730df47ad9377828ce9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.769ex; height:7.509ex;" alt="{\displaystyle c\cdot \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}=\sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}c.}"></span></dd></dl> <p>Consequently, <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> is isomorphic to: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Spec} A[X_{1},\ldots ,X_{n}]/\left(f_{1}^{(p)},\ldots ,f_{m}^{(p)}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Spec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Spec} A[X_{1},\ldots ,X_{n}]/\left(f_{1}^{(p)},\ldots ,f_{m}^{(p)}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27273cdaea62053fdc4ba1ced3dfa23ce11eae76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.228ex; height:4.843ex;" alt="{\displaystyle \operatorname {Spec} A[X_{1},\ldots ,X_{n}]/\left(f_{1}^{(p)},\ldots ,f_{m}^{(p)}\right),}"></span></dd></dl> <p>where, if: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}=\sum _{\beta }f_{j\beta }X^{\beta },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}=\sum _{\beta }f_{j\beta }X^{\beta },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42e1813345c6bbfa2ff11d6b6f6722c71b4c9f0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:15.698ex; height:5.843ex;" alt="{\displaystyle f_{j}=\sum _{\beta }f_{j\beta }X^{\beta },}"></span></dd></dl> <p>then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}^{(p)}=\sum _{\beta }f_{j\beta }^{p}X^{\beta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </munder> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}^{(p)}=\sum _{\beta }f_{j\beta }^{p}X^{\beta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f00bc38294a6e91bf6af9e89ebc3e8edfcdda8ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:17.308ex; height:6.009ex;" alt="{\displaystyle f_{j}^{(p)}=\sum _{\beta }f_{j\beta }^{p}X^{\beta }.}"></span></dd></dl> <p>A similar description holds for arbitrary <i>A</i>-algebras <i>R</i>. </p><p>Because extension of scalars is base change, it preserves limits and coproducts. This implies in particular that if <span class="texhtml mvar" style="font-style:italic;">X</span> has an algebraic structure defined in terms of finite limits (such as being a group scheme), then so does <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span>. Furthermore, being a base change means that extension of scalars preserves properties such as being of finite type, finite presentation, separated, affine, and so on. </p><p>Extension of scalars is well-behaved with respect to base change: Given a morphism <span class="texhtml"><i>S</i>′ → <i>S</i></span>, there is a natural isomorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{(p/S)}\times _{S}S'\cong (X\times _{S}S')^{(p/S')}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> </msup> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2245;<!-- ≅ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{(p/S)}\times _{S}S'\cong (X\times _{S}S')^{(p/S')}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cb9be61ca4685916cde65cdc71ff73df23005b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.198ex; height:3.509ex;" alt="{\displaystyle X^{(p/S)}\times _{S}S&#039;\cong (X\times _{S}S&#039;)^{(p/S&#039;)}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Relative_Frobenius">Relative Frobenius</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=7" title="Edit section: Relative Frobenius"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>X</i></span> be an <span class="texhtml"><i>S</i></span>-scheme with structure morphism <span class="texhtml"><i>φ</i></span>. The <b>relative Frobenius morphism</b> of <span class="texhtml"><i>X</i></span> is the morphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}:X\to X^{(p)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> </msub> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}:X\to X^{(p)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ffca492309101294a48baae9f4b5cb2624b90f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.876ex; height:3.676ex;" alt="{\displaystyle F_{X/S}:X\to X^{(p)}}"></span></dd></dl> <p>defined by the universal property of the <a href="/wiki/Pullback_(category_theory)" title="Pullback (category theory)">pullback</a> <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> (see the diagram above): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}=(F_{X},\varphi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}=(F_{X},\varphi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eaa57d14dc7fc377dbc80dddf754f729fc16f75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.245ex; height:3.176ex;" alt="{\displaystyle F_{X/S}=(F_{X},\varphi ).}"></span></dd></dl> <p>Because the absolute Frobenius morphism is natural, the relative Frobenius morphism is a morphism of <span class="texhtml mvar" style="font-style:italic;">S</span>-schemes. </p><p>Consider, for example, the <i>A</i>-algebra: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31e00f8d177d656b5de83ecac70c3cc28c75eadd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.003ex; height:2.843ex;" alt="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}).}"></span></dd></dl> <p>We have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/(f_{1}^{(p)},\ldots ,f_{m}^{(p)}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/(f_{1}^{(p)},\ldots ,f_{m}^{(p)}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5958a3ca8b10c768163b6715285865c6cb7246fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.652ex; height:3.676ex;" alt="{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/(f_{1}^{(p)},\ldots ,f_{m}^{(p)}).}"></span></dd></dl> <p>The relative Frobenius morphism is the homomorphism <span class="texhtml"><i>R</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span> → <i>R</i></span> defined by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\sum _{\alpha }X^{\alpha }\otimes a_{i\alpha }\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }X^{p\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\sum _{\alpha }X^{\alpha }\otimes a_{i\alpha }\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }X^{p\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5168e132de25be0cc34836e2a216df07505b714d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.621ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\sum _{\alpha }X^{\alpha }\otimes a_{i\alpha }\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }X^{p\alpha }.}"></span></dd></dl> <p>Relative Frobenius is compatible with base change in the sense that, under the natural isomorphism of <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>/<i>S</i>)</sup></span> ×<sub><i>S</i></sub> <i>S</i>′</span> and <span class="texhtml">(<i>X</i> ×<sub><i>S</i></sub> <i>S</i>′)<span style="padding-left:0.12em;"><sup>(<i>p</i>/<i>S</i>′)</sup></span></span>, we have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}\times 1_{S'}=F_{X\times _{S}S'/S'}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}\times 1_{S'}=F_{X\times _{S}S'/S'}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e5fb93b9f317cfe30bfd88ddffaf62c3bf87d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.064ex; height:3.176ex;" alt="{\displaystyle F_{X/S}\times 1_{S&#039;}=F_{X\times _{S}S&#039;/S&#039;}.}"></span></dd></dl> <p>Relative Frobenius is a universal homeomorphism. If <span class="texhtml"><i>X</i> → <i>S</i></span> is an open immersion, then it is the identity. If <span class="texhtml"><i>X</i> → <i>S</i></span> is a closed immersion determined by an ideal sheaf <i>I</i> of <span class="texhtml"><i>O<sub>S</sub></i></span>, then <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> is determined by the ideal sheaf <span class="texhtml"><i>I</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> and relative Frobenius is the augmentation map <span class="texhtml"><i>O<sub>S</sub></i>/<i>I</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span> → <i>O<sub>S</sub></i>/<i>I</i></span>. </p><p><i>X</i> is unramified over <span class="texhtml mvar" style="font-style:italic;">S</span> if and only if <i>F</i><sub><i>X</i>/<i>S</i></sub> is unramified and if and only if <i>F</i><sub><i>X</i>/<i>S</i></sub> is a monomorphism. <i>X</i> is étale over <span class="texhtml mvar" style="font-style:italic;">S</span> if and only if <i>F</i><sub><i>X</i>/<i>S</i></sub> is étale and if and only if <i>F</i><sub><i>X</i>/<i>S</i></sub> is an isomorphism. </p> <div class="mw-heading mw-heading3"><h3 id="Arithmetic_Frobenius">Arithmetic Frobenius</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=8" title="Edit section: Arithmetic Frobenius"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Arithmetic_and_geometric_Frobenius" title="Arithmetic and geometric Frobenius">Arithmetic and geometric Frobenius</a></div> <p>The <b>arithmetic Frobenius morphism</b> of an <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme <span class="texhtml mvar" style="font-style:italic;">X</span> is a morphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}^{a}:X^{(p)}\to X\times _{S}S\cong X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo>:</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>S</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}^{a}:X^{(p)}\to X\times _{S}S\cong X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73916db9d5bf2a450566d4458a560c58efeec9d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:27.586ex; height:4.009ex;" alt="{\displaystyle F_{X/S}^{a}:X^{(p)}\to X\times _{S}S\cong X}"></span></dd></dl> <p>defined by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}^{a}=1_{X}\times F_{S}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}^{a}=1_{X}\times F_{S}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e50e2c687b663b08dc8e9b6f1308ea7b12f9448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:17.176ex; height:3.343ex;" alt="{\displaystyle F_{X/S}^{a}=1_{X}\times F_{S}.}"></span></dd></dl> <p>That is, it is the base change of <i>F</i><sub><i>S</i></sub> by 1<sub><i>X</i></sub>. </p><p>Again, if: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cdf109f0aa7fb76d0e194c75ad7a297599d0147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.003ex; height:2.843ex;" alt="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m})\otimes _{A}A_{F},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m})\otimes _{A}A_{F},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657ae74319024e58a6f6444604319ec06dae2445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.853ex; height:3.343ex;" alt="{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m})\otimes _{A}A_{F},}"></span></dd></dl> <p>then the arithmetic Frobenius is the homomorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }b_{i}^{p}X^{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }b_{i}^{p}X^{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d03a90ce09361ccc6ab839491f219653d88bb730" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.33ex; height:7.509ex;" alt="{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }b_{i}^{p}X^{\alpha }.}"></span></dd></dl> <p>If we rewrite <span class="texhtml"><i>R</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/\left(f_{1}^{(p)},\ldots ,f_{m}^{(p)}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/\left(f_{1}^{(p)},\ldots ,f_{m}^{(p)}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ea54d6240e00724a61bece15bb9944be07a1a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.393ex; height:4.843ex;" alt="{\displaystyle R^{(p)}=A[X_{1},\ldots ,X_{n}]/\left(f_{1}^{(p)},\ldots ,f_{m}^{(p)}\right),}"></span></dd></dl> <p>then this homomorphism is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum a_{\alpha }X^{\alpha }\mapsto \sum a_{\alpha }^{p}X^{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2211;<!-- ∑ --></mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum a_{\alpha }X^{\alpha }\mapsto \sum a_{\alpha }^{p}X^{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45b852331e52c7cf904d8605a5c0c324991b16d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:23.335ex; height:3.843ex;" alt="{\displaystyle \sum a_{\alpha }X^{\alpha }\mapsto \sum a_{\alpha }^{p}X^{\alpha }.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Geometric_Frobenius">Geometric Frobenius</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=9" title="Edit section: Geometric Frobenius"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that the absolute Frobenius morphism of <span class="texhtml mvar" style="font-style:italic;">S</span> is invertible with inverse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{S}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{S}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8848050832ef234bfdcca3fa28e4e21b9e6da8f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.148ex; height:3.343ex;" alt="{\displaystyle F_{S}^{-1}}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{F^{-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{F^{-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cabd77166954be1cb424c70113f2c7639c2b975e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.81ex; height:2.843ex;" alt="{\displaystyle S_{F^{-1}}}"></span> denote the <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{S}^{-1}:S\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>:</mo> <mi>S</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{S}^{-1}:S\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f1691c1a0ca9ec1ebab75dd25755c44555c186b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.697ex; height:3.343ex;" alt="{\displaystyle F_{S}^{-1}:S\to S}"></span>. Then there is an extension of scalars of <span class="texhtml mvar" style="font-style:italic;">X</span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{S}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{S}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8848050832ef234bfdcca3fa28e4e21b9e6da8f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.148ex; height:3.343ex;" alt="{\displaystyle F_{S}^{-1}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{(1/p)}=X\times _{S}S_{F^{-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>X</mi> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{(1/p)}=X\times _{S}S_{F^{-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6969feb02518936cc4863d5a3b438e1cb7f3b238" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.647ex; height:3.509ex;" alt="{\displaystyle X^{(1/p)}=X\times _{S}S_{F^{-1}}.}"></span></dd></dl> <p>If: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cdf109f0aa7fb76d0e194c75ad7a297599d0147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.003ex; height:2.843ex;" alt="{\displaystyle R=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m}),}"></span></dd></dl> <p>then extending scalars by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{S}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{S}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8848050832ef234bfdcca3fa28e4e21b9e6da8f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.148ex; height:3.343ex;" alt="{\displaystyle F_{S}^{-1}}"></span> gives: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{(1/p)}=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m})\otimes _{A}A_{F^{-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{(1/p)}=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m})\otimes _{A}A_{F^{-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91726d2526a3215437beee3866efb8e61bec51a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.419ex; height:3.509ex;" alt="{\displaystyle R^{(1/p)}=A[X_{1},\ldots ,X_{n}]/(f_{1},\ldots ,f_{m})\otimes _{A}A_{F^{-1}}.}"></span></dd></dl> <p>If: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}=\sum _{\beta }f_{j\beta }X^{\beta },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}=\sum _{\beta }f_{j\beta }X^{\beta },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42e1813345c6bbfa2ff11d6b6f6722c71b4c9f0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:15.698ex; height:5.843ex;" alt="{\displaystyle f_{j}=\sum _{\beta }f_{j\beta }X^{\beta },}"></span></dd></dl> <p>then we write: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}^{(1/p)}=\sum _{\beta }f_{j\beta }^{1/p}X^{\beta },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </munder> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}^{(1/p)}=\sum _{\beta }f_{j\beta }^{1/p}X^{\beta },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ee045e08696e464ab2992370611ea909312bcc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:19.985ex; height:6.009ex;" alt="{\displaystyle f_{j}^{(1/p)}=\sum _{\beta }f_{j\beta }^{1/p}X^{\beta },}"></span></dd></dl> <p>and then there is an isomorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{(1/p)}\cong A[X_{1},\ldots ,X_{n}]/(f_{1}^{(1/p)},\ldots ,f_{m}^{(1/p)}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x2245;<!-- ≅ --></mo> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{(1/p)}\cong A[X_{1},\ldots ,X_{n}]/(f_{1}^{(1/p)},\ldots ,f_{m}^{(1/p)}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36dba91f86d3a422bafdceba95027fcf10d5d34a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.584ex; height:3.676ex;" alt="{\displaystyle R^{(1/p)}\cong A[X_{1},\ldots ,X_{n}]/(f_{1}^{(1/p)},\ldots ,f_{m}^{(1/p)}).}"></span></dd></dl> <p>The <b>geometric Frobenius morphism</b> of an <span class="texhtml mvar" style="font-style:italic;">S</span>-scheme <span class="texhtml mvar" style="font-style:italic;">X</span> is a morphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}^{g}:X^{(1/p)}\to X\times _{S}S\cong X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msubsup> <mo>:</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> <msub> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>S</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}^{g}:X^{(1/p)}\to X\times _{S}S\cong X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b68874792d098ea95127e9abb61717c32feb8e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:29.23ex; height:4.009ex;" alt="{\displaystyle F_{X/S}^{g}:X^{(1/p)}\to X\times _{S}S\cong X}"></span></dd></dl> <p>defined by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X/S}^{g}=1_{X}\times F_{S}^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X/S}^{g}=1_{X}\times F_{S}^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9b1fc4da28d0466951cc33586f1b1daa28270a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:18.537ex; height:3.843ex;" alt="{\displaystyle F_{X/S}^{g}=1_{X}\times F_{S}^{-1}.}"></span></dd></dl> <p>It is the base change of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{S}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{S}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8848050832ef234bfdcca3fa28e4e21b9e6da8f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.148ex; height:3.343ex;" alt="{\displaystyle F_{S}^{-1}}"></span> by <span class="texhtml">1<sub><i>X</i></sub></span>. </p><p>Continuing our example of <i>A</i> and <i>R</i> above, geometric Frobenius is defined to be: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }b_{i}^{1/p}X^{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }b_{i}^{1/p}X^{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b986e6a34ba362c33d1168c5e663c0136967b43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.974ex; height:7.509ex;" alt="{\displaystyle \sum _{i}\left(\sum _{\alpha }a_{i\alpha }X^{\alpha }\right)\otimes b_{i}\mapsto \sum _{i}\sum _{\alpha }a_{i\alpha }b_{i}^{1/p}X^{\alpha }.}"></span></dd></dl> <p>After rewriting <i>R</i><span style="padding-left:0.12em;"><sup>(1/<i>p</i>)</sup></span> in terms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f_{j}^{(1/p)}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f_{j}^{(1/p)}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/465fc15df8503caed8d2220804521905c2fd96b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.628ex; height:4.009ex;" alt="{\displaystyle \{f_{j}^{(1/p)}\}}"></span>, geometric Frobenius is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum a_{\alpha }X^{\alpha }\mapsto \sum a_{\alpha }^{1/p}X^{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2211;<!-- ∑ --></mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum a_{\alpha }X^{\alpha }\mapsto \sum a_{\alpha }^{1/p}X^{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d815e85d8830253c678a5d22961404929cfe10c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.754ex; height:4.009ex;" alt="{\displaystyle \sum a_{\alpha }X^{\alpha }\mapsto \sum a_{\alpha }^{1/p}X^{\alpha }.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Arithmetic_and_geometric_Frobenius_as_Galois_actions">Arithmetic and geometric Frobenius as Galois actions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=10" title="Edit section: Arithmetic and geometric Frobenius as Galois actions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that the Frobenius morphism of <span class="texhtml mvar" style="font-style:italic;">S</span> is an isomorphism. Then it generates a subgroup of the automorphism group of <span class="texhtml mvar" style="font-style:italic;">S</span>. If <span class="texhtml"><i>S</i> = Spec <i>k</i></span> is the spectrum of a finite field, then its automorphism group is the Galois group of the field over the prime field, and the Frobenius morphism and its inverse are both generators of the automorphism group. In addition, <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(<i>p</i>)</sup></span></span> and <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup>(1/<i>p</i>)</sup></span></span> may be identified with <span class="texhtml mvar" style="font-style:italic;">X</span>. The arithmetic and geometric Frobenius morphisms are then endomorphisms of <span class="texhtml mvar" style="font-style:italic;">X</span>, and so they lead to an action of the Galois group of <i>k</i> on <i>X</i>. </p><p>Consider the set of <i>K</i>-points <span class="texhtml"><i>X</i>(<i>K</i>)</span>. This set comes with a Galois action: Each such point <i>x</i> corresponds to a homomorphism <span class="texhtml"><i>O<sub>X</sub></i> → <i>K</i></span> from the structure sheaf to <i>K</i>, which factors via <i>k(x)</i>, the residue field at <i>x</i>, and the action of Frobenius on <i>x</i> is the application of the Frobenius morphism to the residue field. This Galois action agrees with the action of arithmetic Frobenius: The composite morphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{X}\to k(x){\xrightarrow {\overset {}{F}}}k(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mover> <mi>F</mi> <mrow /> </mover> </mpadded> </mover> </mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{X}\to k(x){\xrightarrow {\overset {}{F}}}k(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715e23676f866a04b23725d6f3ed990d9e5d122b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-top: -0.341ex; width:18.351ex; height:4.676ex;" alt="{\displaystyle {\mathcal {O}}_{X}\to k(x){\xrightarrow {\overset {}{F}}}k(x)}"></span></dd></dl> <p>is the same as the composite morphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{X}{\xrightarrow {{\overset {}{F}}_{X/S}^{a}}}{\mathcal {O}}_{X}\to k(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mrow /> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> </mpadded> </mover> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{X}{\xrightarrow {{\overset {}{F}}_{X/S}^{a}}}{\mathcal {O}}_{X}\to k(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c83731f698123c4c03374ee8d2d1be8cca22f4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-top: -0.399ex; width:20.312ex; height:5.343ex;" alt="{\displaystyle {\mathcal {O}}_{X}{\xrightarrow {{\overset {}{F}}_{X/S}^{a}}}{\mathcal {O}}_{X}\to k(x)}"></span></dd></dl> <p>by the definition of the arithmetic Frobenius. Consequently, arithmetic Frobenius explicitly exhibits the action of the Galois group on points as an endomorphism of <i>X</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Frobenius_for_local_fields">Frobenius for local fields</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=11" title="Edit section: Frobenius for local fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given an <a href="/wiki/Unramified" class="mw-redirect" title="Unramified">unramified</a> <a href="/wiki/Finite_extension" class="mw-redirect" title="Finite extension">finite extension</a> <span class="texhtml"><i>L/K</i></span> of <a href="/wiki/Local_field" title="Local field">local fields</a>, there is a concept of <b>Frobenius endomorphism</b> that induces the Frobenius endomorphism in the corresponding extension of <a href="/wiki/Residue_field" title="Residue field">residue fields</a>.<sup id="cite_ref-FT144_2-0" class="reference"><a href="#cite_note-FT144-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Suppose <span class="texhtml"><i>L/K</i></span> is an unramified extension of local fields, with <a href="/wiki/Ring_of_integers" title="Ring of integers">ring of integers</a> <i>O<sub>K</sub></i> of <span class="texhtml mvar" style="font-style:italic;">K</span> such that the residue field, the integers of <span class="texhtml mvar" style="font-style:italic;">K</span> modulo their unique maximal ideal <span class="texhtml mvar" style="font-style:italic;">φ</span>, is a finite field of order <span class="texhtml mvar" style="font-style:italic;">q</span>, where <span class="texhtml mvar" style="font-style:italic;">q</span> is a power of a prime. If <span class="texhtml">Φ</span> is a prime of <span class="texhtml mvar" style="font-style:italic;">L</span> lying over <span class="texhtml mvar" style="font-style:italic;">φ</span>, that <span class="texhtml"><i>L/K</i></span> is unramified means by definition that the integers of <span class="texhtml mvar" style="font-style:italic;">L</span> modulo <span class="texhtml">Φ</span>, the residue field of <span class="texhtml mvar" style="font-style:italic;">L</span>, will be a finite field of order <span class="texhtml"><i>q</i><span style="padding-left:0.12em;"><sup><i>f</i></sup></span></span> extending the residue field of <span class="texhtml mvar" style="font-style:italic;">K</span> where <span class="texhtml mvar" style="font-style:italic;">f</span> is the degree of <span class="texhtml"><i>L</i>/<i>K</i></span>. We may define the Frobenius map for elements of the ring of integers <span class="texhtml"><i>O<sub>L</sub></i></span> of <span class="texhtml mvar" style="font-style:italic;">L</span> as an automorphism <span class="texhtml"><i>s</i><sub>Φ</sub></span> of <span class="texhtml mvar" style="font-style:italic;">L</span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{\Phi }(x)\equiv x^{q}\mod \Phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="1em" /> <mi>mod</mi> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{\Phi }(x)\equiv x^{q}\mod \Phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f933c9bbfd83a1c494c75af5d6e1009c27e691f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.652ex; height:2.843ex;" alt="{\displaystyle s_{\Phi }(x)\equiv x^{q}\mod \Phi .}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Frobenius_for_global_fields">Frobenius for global fields</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=12" title="Edit section: Frobenius for global fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a>, <b>Frobenius elements</b> are defined for extensions <span class="texhtml"><i>L</i>/<i>K</i></span> of <a href="/wiki/Global_field" title="Global field">global fields</a> that are finite <a href="/wiki/Galois_extension" title="Galois extension">Galois extensions</a> for <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideals</a> <span class="texhtml">Φ</span> of <span class="texhtml mvar" style="font-style:italic;">L</span> that are unramified in <span class="texhtml"><i>L</i>/<i>K</i></span>. Since the extension is unramified the <a href="/wiki/Decomposition_group" class="mw-redirect" title="Decomposition group">decomposition group</a> of <span class="texhtml">Φ</span> is the Galois group of the extension of residue fields. The Frobenius element then can be defined for elements of the ring of integers of <span class="texhtml mvar" style="font-style:italic;">L</span> as in the local case, by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{\Phi }(x)\equiv x^{q}\mod \Phi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="1em" /> <mi>mod</mi> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{\Phi }(x)\equiv x^{q}\mod \Phi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d5c8061158e90bf6595716e9384a0c77d05444e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.652ex; height:2.843ex;" alt="{\displaystyle s_{\Phi }(x)\equiv x^{q}\mod \Phi ,}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">q</span> is the order of the residue field <span class="texhtml"><i>O<sub>K</sub></i>/(Φ ∩ <i>O<sub>K</sub></i>)</span>. </p><p>Lifts of the Frobenius are in correspondence with <a href="/wiki/P-derivations" class="mw-redirect" title="P-derivations">p-derivations</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=13" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The polynomial </p> <dl><dd><span class="texhtml"><i>x</i><sup>5</sup> − <i>x</i> − 1</span></dd></dl> <p>has <a href="/wiki/Discriminant" title="Discriminant">discriminant</a> </p> <dl><dd><span class="texhtml">19 &#215; 151</span>,</dd></dl> <p>and so is unramified at the prime 3; it is also irreducible mod 3. Hence adjoining a root <span class="texhtml mvar" style="font-style:italic;">ρ</span> of it to the field of <span class="texhtml">3</span>-adic numbers <span class="texhtml"><b>Q</b><sub>3</sub></span> gives an unramified extension <span class="texhtml"><b>Q</b><sub>3</sub>(<i>ρ</i>)</span> of <span class="texhtml"><b>Q</b><sub>3</sub></span>. We may find the image of <span class="texhtml mvar" style="font-style:italic;">ρ</span> under the Frobenius map by locating the root nearest to <span class="texhtml"><i>ρ</i><sup>3</sup></span>, which we may do by <a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a>. We obtain an element of the ring of integers <span class="texhtml"><b>Z</b><sub>3</sub>[<i>ρ</i>]</span> in this way; this is a polynomial of degree four in <span class="texhtml mvar" style="font-style:italic;">ρ</span> with coefficients in the <span class="texhtml">3</span>-adic integers <span class="texhtml"><b>Z</b><sub>3</sub></span>. Modulo <span class="texhtml">3<sup>8</sup></span> this polynomial is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho ^{3}+3(460+183\rho -354\rho ^{2}-979\rho ^{3}-575\rho ^{4})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <mo stretchy="false">(</mo> <mn>460</mn> <mo>+</mo> <mn>183</mn> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>354</mn> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>979</mn> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>575</mn> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho ^{3}+3(460+183\rho -354\rho ^{2}-979\rho ^{3}-575\rho ^{4})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98df0a874e890b0d66801b0f37a47c9e642bece5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.837ex; height:3.176ex;" alt="{\displaystyle \rho ^{3}+3(460+183\rho -354\rho ^{2}-979\rho ^{3}-575\rho ^{4})}"></span>.</dd></dl> <p>This is algebraic over <span class="texhtml"><b>Q</b></span> and is the correct global Frobenius image in terms of the embedding of <span class="texhtml"><b>Q</b></span> into <span class="texhtml"><b>Q</b><sub>3</sub></span>; moreover, the coefficients are algebraic and the result can be expressed algebraically. However, they are of degree 120, the order of the Galois group, illustrating the fact that explicit computations are much more easily accomplished if <span class="texhtml mvar" style="font-style:italic;">p</span>-adic results will suffice. </p><p>If <span class="texhtml"><i>L/K</i></span> is an abelian extension of global fields, we get a much stronger congruence since it depends only on the prime <span class="texhtml mvar" style="font-style:italic;">φ</span> in the base field <span class="texhtml mvar" style="font-style:italic;">K</span>. For an example, consider the extension <span class="texhtml"><b>Q</b>(<i>β</i>)</span> of <span class="texhtml"><b>Q</b></span> obtained by adjoining a root <span class="texhtml mvar" style="font-style:italic;">β</span> satisfying </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{5}+\beta ^{4}-4\beta ^{3}-3\beta ^{2}+3\beta +1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{5}+\beta ^{4}-4\beta ^{3}-3\beta ^{2}+3\beta +1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49853647f41e29294871512d1f2e0df4d60c9ba9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:34.01ex; height:3.009ex;" alt="{\displaystyle \beta ^{5}+\beta ^{4}-4\beta ^{3}-3\beta ^{2}+3\beta +1=0}"></span></dd></dl> <p>to <span class="texhtml"><b>Q</b></span>. This extension is cyclic of order five, with roots </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\cos {\tfrac {2\pi n}{11}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> <mn>11</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\cos {\tfrac {2\pi n}{11}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fab7e4270d2af36d10835973990888d8a01d722" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.634ex; height:3.509ex;" alt="{\displaystyle 2\cos {\tfrac {2\pi n}{11}}}"></span></dd></dl> <p>for integer <span class="texhtml mvar" style="font-style:italic;">n</span>. It has roots that are <a href="/wiki/Chebyshev_polynomials" title="Chebyshev polynomials">Chebyshev polynomials</a> of <span class="texhtml mvar" style="font-style:italic;">β</span>: </p> <dl><dd><span class="texhtml"><i>β</i><sup>2</sup> − 2, <i>β</i><sup>3</sup> − 3<i>β</i>, <i>β</i><sup>5</sup> − 5<i>β</i><sup>3</sup> + 5<i>β</i></span></dd></dl> <p>give the result of the Frobenius map for the primes 2, 3 and 5, and so on for larger primes not equal to 11 or of the form <span class="texhtml">22<i>n</i> + 1</span> (which split). It is immediately apparent how the Frobenius map gives a result equal mod <span class="texhtml mvar" style="font-style:italic;">p</span> to the <span class="texhtml mvar" style="font-style:italic;">p</span>-th power of the root <span class="texhtml mvar" style="font-style:italic;">β</span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=14" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Perfect_field" title="Perfect field">Perfect field</a></li> <li><a href="/wiki/Frobenioid" title="Frobenioid">Frobenioid</a></li> <li><a href="/wiki/Finite_field#Frobenius_automorphism_and_Galois_theory" title="Finite field">Finite field §&#160;Frobenius automorphism and Galois theory</a></li> <li><a href="/wiki/Universal_homeomorphism" title="Universal homeomorphism">Universal homeomorphism</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Frobenius_endomorphism&amp;action=edit&amp;section=15" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">This is known as the <a href="/wiki/Freshman%27s_dream" title="Freshman&#39;s dream">freshman's dream</a>.</span> </li> <li id="cite_note-FT144-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FT144_2-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFFröhlichTaylor1991" class="citation book cs1"><a href="/wiki/Albrecht_Fr%C3%B6hlich" title="Albrecht Fröhlich">Fröhlich, A.</a>; <a href="/wiki/Martin_J._Taylor" title="Martin J. Taylor">Taylor, M.J.</a> (1991). <i>Algebraic number theory</i>. Cambridge studies in advanced mathematics. Vol.&#160;27. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p.&#160;144. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-36664-X" title="Special:BookSources/0-521-36664-X"><bdi>0-521-36664-X</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0744.11001">0744.11001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebraic+number+theory&amp;rft.series=Cambridge+studies+in+advanced+mathematics&amp;rft.pages=144&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1991&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0744.11001%23id-name%3DZbl&amp;rft.isbn=0-521-36664-X&amp;rft.aulast=Fr%C3%B6hlich&amp;rft.aufirst=A.&amp;rft.au=Taylor%2C+M.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFrobenius+endomorphism" class="Z3988"></span></span> </li> </ol></div></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Frobenius_automorphism">"Frobenius automorphism"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Frobenius+automorphism&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DFrobenius_automorphism&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFrobenius+endomorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Frobenius_endomorphism">"Frobenius endomorphism"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Frobenius+endomorphism&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DFrobenius_endomorphism&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFrobenius+endomorphism" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐pdn6j Cached time: 20241122141022 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.666 seconds Real time usage: 0.902 seconds Preprocessor visited node count: 9071/1000000 Post‐expand include size: 60274/2097152 bytes Template argument size: 15395/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 14094/5000000 bytes Lua time usage: 0.280/10.000 seconds Lua memory usage: 5142443/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 613.361 1 -total 31.59% 193.756 145 Template:Math 20.56% 126.086 1 Template:Reflist 19.84% 121.719 1 Template:Short_description 17.72% 108.682 1 Template:Cite_book 13.57% 83.234 1 Template:Refimprove 12.47% 76.458 1 Template:Ambox 11.68% 71.658 2 Template:Pagetype 8.49% 52.063 150 Template:Main_other 4.24% 26.022 2 Template:Springer --> <!-- Saved in parser cache with key enwiki:pcache:1088270:|#|:idhash:canonical and timestamp 20241122141022 and revision id 1226769762. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Frobenius_endomorphism&amp;oldid=1226769762">https://en.wikipedia.org/w/index.php?title=Frobenius_endomorphism&amp;oldid=1226769762</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Finite_fields" title="Category:Finite fields">Finite fields</a></li><li><a href="/wiki/Category:Algebraic_number_theory" title="Category:Algebraic number theory">Algebraic number theory</a></li><li><a href="/wiki/Category:Galois_theory" title="Category:Galois theory">Galois theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_November_2013" title="Category:Articles needing additional references from November 2013">Articles needing additional references from November 2013</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 1 June 2024, at 18:28<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Frobenius_endomorphism&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-w49w4","wgBackendResponseTime":153,"wgPageParseReport":{"limitreport":{"cputime":"0.666","walltime":"0.902","ppvisitednodes":{"value":9071,"limit":1000000},"postexpandincludesize":{"value":60274,"limit":2097152},"templateargumentsize":{"value":15395,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":14094,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 613.361 1 -total"," 31.59% 193.756 145 Template:Math"," 20.56% 126.086 1 Template:Reflist"," 19.84% 121.719 1 Template:Short_description"," 17.72% 108.682 1 Template:Cite_book"," 13.57% 83.234 1 Template:Refimprove"," 12.47% 76.458 1 Template:Ambox"," 11.68% 71.658 2 Template:Pagetype"," 8.49% 52.063 150 Template:Main_other"," 4.24% 26.022 2 Template:Springer"]},"scribunto":{"limitreport-timeusage":{"value":"0.280","limit":"10.000"},"limitreport-memusage":{"value":5142443,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-pdn6j","timestamp":"20241122141022","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Frobenius endomorphism","url":"https:\/\/en.wikipedia.org\/wiki\/Frobenius_endomorphism","sameAs":"http:\/\/www.wikidata.org\/entity\/Q769124","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q769124","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-21T03:19:48Z","dateModified":"2024-06-01T18:28:47Z","headline":"endomorphism of a commutative ring of non-zero characteristics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10